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Abstract. In 1990 Rivest introduced the hash function MD4. Two years later
RIPEMD, a European proposal, was designed as a stronger mode of MD4. In 1995
the author found an attack against two of three rounds of RIPEMD. As we show in
the present note, the methods developed to attack RIPEMD can be modified and sup-
plemented such that it is possible to break the full MD4, while previously only partial
attacks were known. An implementation of our attack allows us to find collisions for
MD4 in a few seconds on a PC. An example of a collision is given demonstrating that
our attack is of practical relevance.
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1. Introduction

Rivest [8] introduced the hash function MD4 in 1990. The MD4 algorithm is defined
as an iterative application of a three-round compression function. After an unpublished
attack on the first two rounds of MD4 due to Merkle and an attack against the last two
rounds by den Boer and Bosselaers [3], Rivest introduced the strengthened version MD5
[9]. The most important difference to MD4 is the addition of a fourth round.

On the other hand, the stronger mode RIPEMD [1] of MD4 was designed as a European
proposal in 1992. The compression function of RIPEMD consists of two parallel lines
of a modified version of the MD4 compression function. In [5] we have shown that if
the first or the last round of its compression function is omitted, then RIPEMD is not
collision-free.

Vaudenay [11] described another attack against the first two rounds of MD4. The two
round collisions he found form almost-collisions for the full MD4. However, none of
the previously known partial attacks can be generalized to the three-round MD4. Thus,
the original conjecture that MD4 is collision-free still remained to be disproved. This is
done in this paper.

We show that the methods developed to attack RIPEMD can be applied to MD4 very
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effectively. We derive an algorithm which allows us to compute collisions for the full
MD4 in a few seconds on a PC with a Pentium processor. Finally it is demonstrated that
a further development of our attack allows us to find collisions for meaningful messages.
A recent result sets even the one-wayness of MD4 in question [6]. Therefore we suggest
that MD4 should no longer be applied in practice.

A more sophisticated attack, based on the same techniques as described here for
MD4, can be successfully applied to MD5. In [4] it is explained how collisions for the
compression function of MD5 can be found. We recommend RIPEMD-160 [7] as a
replacement for MD4, MD5, and RIPEMD.

Terminology and Basic Notations

Using the term “collision of a compression function” we assume that the correspond-
ing initial values coincide for both inputs. For “pseudocollisions” this is not required.
However, the latter are of much less practical importance and are not considered here.

Throughout, all occurring variables and constants are 32-bit quantities. Accordingly
the value of an expression is its remainder modulo 232, and equations are understood
to be modulo 232. The symbols∧, ∨, ⊕, and¬ are used for bitwise AND, OR, XOR,
and complement, respectively. For a 32-bit wordW, let W¿s denote the 32-bit value
obtained by circularly shifting (rotation)W left by s bit positions for 0≤ s < 32. If W
is an expression then, of course, evaluate it before shifting. Further, we agree that−W¿s

stands for−(W¿s).
A definition of the compression function of MD4 can be found in the Appendix.

2. Main Result and Plan of the Attack

The main result of this paper is:

MD4 is not collision-free.

There is an algorithm such that the finding of collisions for MD4 requires the same
computational effort as about 220 computations of the MD4-compression function.

The most direct way of trying to get a collision for an iterated hash function like MD4
is by trying to find a collision for the compression function with the fixed initial value
required at the beginning of the computation of hash values. This is precisely what will
be done in this paper for MD4.

Throughout this noteX = (Xi )i<16 denotes a collection of 16 words, and the collection
X̃ = (X̃i )i<16 is defined by setting

X̃i = Xi for i 6= 12,

X̃12 = X12+ 1.

In what follows we demonstrate how to chooseX such that its MD4 hash value coincides
with that of X̃, i.e.,

compress(IV0; X) = compress(IV0; X̃).
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As in [5] the basic idea is that a (small) difference between only one of the input variables
can be controlled in such a way that the differences occurring in the computations of the
two associated hash values are compensated for at the end.

Our attack is separated into three parts. Each part considers a certain segment of the
compression function. Forn < m< 48 we therefore introduce the notation

compressn
m((A, B,C, D); Xϕ(n), . . . , Xϕ(m)) = (A′, B′,C′, D′)

for the segment ofcompress from stepn to stepm, where the mappingϕ is defined
such thatXϕ(i ) is applied at thei th step ofcompress. This means that the computation
of compressn

m starts with the “initial value”(A, B,C, D), then stepsn to m are applied
with the corresponding input wordsXϕ(n), . . . , Xϕ(m), and the output(A′, B′,C′, D′) of
compressn

m is the contents of the registers after stepm.
Sometimes, in the above notation, we write simplyX instead ofXϕ(n), . . . , Xϕ(m).

(However, thereby we do not necessarily assume that allXi are actually defined.) We
introduce another basic notation which is used in what follows. Forn ≤ i ≤ m let

(Ai , Bi ,Ci , Di ) (resp.(Ãi , B̃i , C̃i , D̃i ))

be the contents of the registers after stepi has been applied computingcompressn
m for

the inputX (resp.X̃). Further, we set

1i = (Ai − Ãi , Bi − B̃i , Ci − C̃i , Di − D̃i ).

Note that in each step only one of the registers is changed and that, for instance,
A4k = A4k+1 = A4k+2 = A4k+3 (k = 0,1, . . . ,11).

Part I: Inner Almost-Collisions(Steps12–19)

For the attack against two-round RIPEMD [5],X13 was the selected variable instead of
X12 and the first part was to find “inner collisions,” i.e., an initial value and inputs for
(both lines of)compress13

18 such that118 = 0. SinceX13 occurs precisely in steps 13
and 18 of two-round RIPEMD-compress, this was a suitable approach to find collisions
for two rounds. The main problem in the case of RIPEMD has been to handle its two
parallel lines simultaneously.

However, here we deal with the three rounds of MD4.X12 appears in each round
exactly once, namely, in steps 12, 19, and 35.X and X̃ give a collision if (and only if)
135 = 0, becauseX12 appears in step 35 the last time. To achieve this we require a
certain well-chosen value for119, namely,

119 = (0,1¿25,−1¿5,0).

This means that the outputs ofcompress12
19 for X and X̃ are close but not equal. We

are not looking for inner collisions, but for inner “almost”-collisions with precisely the
output difference specified above.
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Part II: Differential Attack Modulo232 (Steps20–35)

The value for119 of Part I has been carefully selected such that, with relatively high
probability, this difference inherits to step 35 in a way that is compensated for by the
difference between the inputs for this step, i.e.,X12 andX12+1. (It should be emphasized
that here the considered differences are not meant with respect to XOR but modulo 232.)
Based on Part I we can therefore find collisions for the compression function of MD4.

Part III : Right Initial Value(Steps0–11)

In the derived algorithm for finding collisions for the compression function there are
still many variables free. Therefore it is very easy to get even collisions with an arbitrary
prescribed initial value.

The next sections contain a detailed description of the three parts of our attack.

3. Inner Almost-Collisions (Steps 12–19)

In this section we considercompress12
19, i.e., steps 12–19 ofcompress. Let(A, B,C, D)

be the initial value ofcompress12
19. Recall that(A19, B19,C19, D19) denotes the output

of compress12
19, i.e., the contents of the registers after step 19 for the inputsX12, X13,

X14, X15, X0, X4, X8, X12 (resp.(Ã19, B̃19, C̃19, D̃19) for the inputsX12+ 1, X13, X14,
X15, X0, X4, X8, X12+ 1).

We want to find inner almost-collisions that are explicit values forA, B, C, D and
X12, X13, X14, X15, X0, X4, X8 such that

119 = (0,1¿25,−1¿5,0).

The reason for this requirement will become clear in the next section. Tables 1 and 2
show the contents of the registers after application of stepsi = 12, . . . ,19 for X12, X13,
. . .and forX12+ 1, X13, . . . , respectively. To simplify the notations we setA∗ = A19,
B∗ = B19, . . . , U = A12, V = D13, W = C14, Z = B15, andŨ = Ã12, Ṽ = D̃13,
W̃ = C̃14, Z̃ = B̃15.

Here we requireB̃∗ + 1¿25 = B∗ andC∗ + 1¿5 = C̃∗. The boxed entries are those

Table 1

Step A B C D Input Shift Function Constant

12 U B C D X12 3 F 0

13 U B C V X13 7 F 0

14 U B W V X14 11 F 0

15 U Z W V X15 19 F 0

16 A∗ Z W V X0 3 G K1

17 A∗ Z W D∗ X4 5 G K1

18 A∗ Z C∗ D∗ X8 9 G K1

19 A∗ B∗ C∗ D∗ X12 13 G K1
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Table 2

Step A B C D Input Shift Function Constant

12 Ũ B C D X12+ 1 3 F 0

13 Ũ B C Ṽ X13 7 F 0

14 Ũ B W̃ Ṽ X14 11 F 0

15 Ũ Z̃ W̃ Ṽ X15 19 F 0

16 A∗ Z̃ W̃ Ṽ X0 3 G K1

17 A∗ Z̃ W̃ D∗ X4 5 G K1

18 A∗ Z̃ C̃∗ D∗ X8 9 G K1

19 A∗ B̃∗ C̃∗ D∗ X12+ 1 13 G K1

which have been modified in the particular steps, and the Boolean functionsF andG
are “selection” and “majority”:

F(U,V,W) = (U ∧ V) ∨ (¬U ∧W),

G(U,V,W) = (U ∧ V) ∨ (U ∧W) ∨ (V ∧W),

andK1 = 0x5a827999 (see the Appendix). Finding an inner almost-collision is equiv-
alent to finding a collection of solutionsB, C, A∗, B∗, C∗, D∗, U , V , W, Z, Ũ , Ṽ , W̃,
Z̃ for the following system of equations:

1 = Ũ¿29−U¿29, (1)

F(Ũ , B,C)− F(U, B,C) = Ṽ¿25− V¿25, (2)

F(Ṽ, Ũ , B)− F(V,U, B) = W̃¿21−W¿21, (3)

F(W̃, Ṽ, Ũ )− F(W,V,U ) = Z̃¿13− Z¿13, (4)

G(Z̃, W̃, Ṽ)− G(Z,W,V) = U − Ũ , (5)

G(A∗, Z̃, W̃)− G(A∗, Z,W) = V − Ṽ, (6)

G(D∗, A∗, Z̃)− G(D∗, A∗, Z) = W − W̃ + C̃¿23
∗ − C¿23

∗ , (7)

G(C̃∗, D∗, A∗)− G(C∗, D∗, A∗) = Z − Z̃ + B̃¿19
∗ − B¿19

∗ − 1, (8)

whereB̃∗ stands forB∗ − 1¿25 andC̃∗ stands forC∗ + 1¿5. Equations (1)–(8) simply
follow by elimination ofXϕ(i ) from the two equations defining stepsi = 12, . . . ,19 of
compress12

19 for the inputsX andX̃. As an example, by the definition of step 15 we have

Z = (B+ F(W,V,U )+ X15)
¿19,

Z̃ = (B+ F(W̃, Ṽ, Ũ )+ X15)
¿19,

implying (4). Conversely, if a collection of solutions of (1)–(8) is given, then we obtain
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an inner almost-collision by setting

X13 = arbitrary, (9)

X14 = W¿21− C − F(V,U, B), (10)

X15 = Z¿13− B− F(W,V,U ), (11)

X0 = A¿29
∗ −U − G(Z,W,V)− K1, (12)

X4 = D¿27
∗ − V − G(A∗, Z,W)− K1, (13)

X8 = C¿23
∗ −W − G(D∗, A∗, Z)− K1, (14)

X12 = B¿19
∗ − Z − G(C∗, D∗, A∗)− K1, (15)

D = V¿25− F(U, B,C)− X13, (16)

A = U¿19− F(B,C, D)− X12. (17)

The system (1)–(8) has 14 variables. Thus it is a natural idea to make settings for some of
the variables such that finding a solution for the remaining variables is feasible. Therefore
we set

Ũ = −1= 0xffffffff , U = 0, B = 0.

Then (1) is satisfied and (2), (3), (6), (7), (8) can be transformed and reordered as follows:

Z̃ = Z − G(C̃∗, D∗, A∗)+ G(C∗, D∗, A∗)+ B̃¿19
∗ − B¿19

∗ − 1, (18)

W̃ = W − G(D∗, A∗, Z̃)+ G(D∗, A∗, Z)+ C̃¿23
∗ − C¿23

∗ , (19)

V = W¿21− W̃¿21, (20)

Ṽ = V − G(A∗, Z̃, W̃)+ G(A∗, Z,W), (21)

C = V¿25− Ṽ¿25. (22)

For this system the variablesA∗, B∗, C∗,D∗, Z, andW form free parameters for the set
of all solutions. The two remaining equations, (4) and (5), are now

G(Z,W,V)− G(Z̃, W̃, Ṽ) = 1, (23)

F(W̃, Ṽ,−1)− F(W,V,0)− Z̃¿13+ Z¿13 = 0. (24)

Algorithm Searching for Inner Almost-Collisions

After these preparations we can give an example of an algorithm leading to solutions of
(1)–(8), that is, to an inner almost-collision, in about 1 second on a PC. The basic idea
can be described as a kind of “continuous approximation” (see Section 4 of [5]).

1. Choose A∗, B∗, C∗, D∗, Z, W randomly, computeZ̃, W̃, V , Ṽ according to(18)–
(21)and test(23).If the test is passed goto2. (Since W andW̃ (resp. Z andZ̃) are
close with respect to Hamming distance, there is a relatively high probability that
(23) is satisfied.)

2. Take A∗, B∗, C∗, D∗, Z, W found in1 as “basic values.” Change one random bit
in each of these variables, compute the associated̃Z, W̃, V , Ṽ , and test if(23) is
still satisfied and if, moreover, the right four bits of

F(W̃, Ṽ,−1)− F(W,V,0)− Z̃¿13+ Z¿13 (25)
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are zero. If this test is passed take the corresponding values A∗, B∗, C∗, D∗, Z, W
as the new “basic values.” Next do the same as before. If it appears that even the
eight right bits of(25) are zero, then the next phase of the algorithm is reached.
Now new basic values are taken only if the eight right bits of(25)are zero. Continue
with making the12, 16,. . . right bits zero until(24) is fulfilled.

3. Now(23)and(24)are satisfied, and we obtain an inner almost-collision by setting
B = 0 and defining A, C, D, and Xi (i = 0,4,8,12,13,14,15) according to
(9)–(17)and(22).

In order that the inner almost-collision can be used for the differential attack explained
in the next section, the following additional equation has to be satisfied:

G(B∗,C∗, D∗) = G(B̃∗, C̃∗, D∗). (26)

SinceB̃∗ andB∗ (resp.C̃∗ andC∗) are close, there is a high probability that this condition
is true. Thus, to achieve (26) also, step 2 above has to be repeated a few times. (To be
more precise, nine times on average, as we shall see in the next section.)

We call an inner almost-collisionadmissibleif (26) is satisfied. Using again our original
notation in (26) we can summarize the result of this section as follows:

Lemma 1. There is a practical algorithm, which allows us to compute an admissible
inner almost-collision, i.e., an initial value(A, B,C, D) and inputs X12, X13, X14, X15,
X0, X4, X8 for compress12

19 such that we have

119 =
(
0,1¿25,−1¿5,0

)
,

G(B19,C19, D19) = G(B̃19, C̃19, D19).

The computation requires less than1 second on a PC.

4. Differential Attack Modulo 2 32 (Steps 20–35)

The main part of the work has been done in the preceding section. We are now well
prepared for a routine differential attack, which will allow us to find collisions for the
compress function of MD4. Using the notation introduced in Section 2 we can state this
result as follows:

Lemma 2. Suppose that an admissible inner almost-collision, i.e., an initial value
(A, B,C, D) for step12and variables X12, X13, X14, X15, X0, X4, X8 are given accord-
ing to Lemma1.Choose the remaining Xi ’s randomly and determine the corresponding
initial value by computingcompress0

11 backward starting with

(A11, B11,C11, D11) = (A, B,C, D).

Then the probability that X and̃X form a collision for the compression function of MD4
(i.e.,135 = 0) is about2−22.
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Table 3

Stepi 1∗i Function Shift pi−1
i Input Constant

19 0 1¿25 −1¿5 0 ∗ ∗ ∗ ∗ ∗
20 0 1¿25 −1¿5 0 G 3 1 X1 K1

21 0 1¿25 −1¿5 0 G 5 1/9 X5 K1

22 0 1¿25 −1¿14 0 G 9 1/3 X9 K1

23 0 1¿6 −1¿14 0 G 13 1/3 X13 K1

24 0 1¿6 −1¿14 0 G 3 1/9 X2 K1

25 0 1¿6 −1¿14 0 G 5 1/9 X6 K1

26 0 1¿6 −1¿23 0 G 9 1/3 X10 K1

27 0 1¿19 −1¿23 0 G 13 1/3 X14 K1

28 0 1¿19 −1¿23 0 G 3 1/9 X3 K1

29 0 1¿19 −1¿23 0 G 5 1/9 X7 K1

30 0 1¿19 −1 0 G 9 1/3 X11 K1

31 0 1 −1 0 G 13 1/3 X15 K1

32 0 1 −1 0 H 3 1/3 X0 K2

33 0 1 −1 0 H 9 1/3 X8 K2

34 0 1 0 0 H 11 1/3 X4 K2

35 0 0 0 0 H 15 1 X12(+1) K2

Proof. Let p be the probability that135 = 0 under the given assumption. We have to
confirm that

p ≈ 2−22.

Table 3 defines a sequence of fixed values1∗i (i = 19, . . . ,35) for differences starting
with1∗19 =

(
0,1¿25,−1¿5,0

)
and ending with1∗35 = 0. The boxed entries correspond

to those variables which are modified in the particular steps. The Boolean functionsG
and H are majority and XOR, respectively. Herepj

i (i > j ) denotes the probability
that1i = 1∗i under the assumption that1j = 1∗j . The asterisk entries for step 19
mean that we do not refer to these values in our argumentation. Note that119 = 1∗19,
since an inner almost-collision is given. We have120 = 1∗20 and thereforep19

20 = 1,
because the given inner almost-collision is admissible. To verifyp34

35 = 1 note that
134 = (0,1,0,0) = 1∗34 implies

B35 = (B34+ H(C34, D34, A34)+ X12+ K2)
¿15

= ((B̃34+ 1)+ H(C̃34, D̃34, Ã34)+ X12+ K2)
¿15

= (B̃34+ H(C̃34, D̃34, Ã34)+ (X12+ 1+ K2))
¿15

= B̃35.
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Also each of the other given values forpi−1
i can be proved easily. As an example, for

i = 32 we have to show that(R+ 1)⊕ S= R⊕ (S+ 1) holds with probability 1/3 for
independent random wordsR, S. This equation is satisfied if and only if exactly one of
the following conditions for the binary representations ofR andS is given:

R = ∗0 and S = ∗0,
R = ∗01 and S = ∗01,
R = ∗011 and S = ∗011,

...
...

R = 01· · ·11 and S = 01· · ·11,
R = 1 · · ·11 and S = 1 · · ·11.

Here an asterisk marks an arbitrary bit sequence of suitable length. (These sequences do
not have to coincide forR andS in the particular cases.) Thus we conclude

p31
32 =

1

22
+ 1

42
+ 1

82
+ · · · + 1

262
+ 1

264
+ 1

264
= 1

3

(
1+ 1

263

)
.

The above table yields

35∏
i=20

pi−1
i = 2−30.11.

This already indicates thatp is large enough for a practical attack. Since the conditions
1i = 1∗i are strongly dependent, we obtain a much more realistic approximation forp if
we consider four steps at once. The values forpi−4

i can certainly be computed similarly
as pi−1

i . However, this seems to require lengthy considerations of various cases. The
values in Table 4 have been found by a simple Monte Carlo method.

Now we get

p19
23p23

27p27
31p31

35 = 2−24.54.

This is a much better approximation forp. Experimental observations suggest thatp is
in fact still larger. We found the estimationp ≈ 2−22.

Thus we have shown that a random choice of the nine freeXi ’s gives a collision of
the compression function with probability 2−22. Therefore, in principle, each given inner

Table 4

Stepi 1∗i pi−4
i

19 0 1¿25 −1¿5 0 ∗
23 0 1¿6 −1¿14 0 1/35

27 0 1¿19 −1¿23 0 1/315
31 0 1 −1 0 1/315

35 0 0 0 0 1/7
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almost-collision allows us to find on average about 2266 collisions for the compression
functions.

Actually we need much less than 222 trials to find a collision for the compression
function. The reason is that we do not have to start each trial from the beginning. IfX1,
X5, X9 have been found such that together with the already fixedX13 we have reached
the required difference for step 23, then keepX1, X5, X9. Next choose suitable values for
X2, X6, X10, and so on. In this way we can find a collision for the compression function
in a small fraction of a second on a PC.

5. Right Initial Value (Steps 0–11)

It remains to compute collisions with the initial valueIV0 required by the definition of
MD4. By Lemma 2 there are enough variables free to manage this easily. (The following
argumentation does of course not depend on the particular choice ofIV0.)

Suppose an admissible inner almost-collision with initial value(A, B,C, D) is given.
Take randomX1, X2, X3, andX5. Recall thatX0, X4, andX8 are already fixed. Compute
compress0

5(IV0; X0, . . . , X5). Now A5 = A4, B5 = B4 = B3, C5 = C4 = C3 = C2,
D5 are fixed.

Next we defineX6, X7, X9, X10, andX11 such that the output of

compress0
11(IV0; X0, . . . , X11)

matches with(A, B,C, D), or, in other words,

compress6
11((A4, B3,C2, D5); X6, . . . , X11) = (A, B,C, D).

Matching B, C, andD can be done directly by associating suitable values to the free
variablesX11, X10, andX9, respectively. It remains to matchA in step 8. This cannot be
done as before, sinceX8 is already fixed. Step 8 is defined by the equation

A8 = (A4+ F(B7,C6, D5)+ X8)
¿3.

According to the definition ofF as a selection function, we achieveA8 = A if B7 =
−1 = 0xffffffff andC6 = A¿29− A4 − X8. These values forC6 and B7 can be
obtained by a suitable choice ofX6 andX7.

Explicitly, this simple idea leads to the settings:

X6 := −C2− F(D5, A4, B3)+ (A¿29− A4− X8)
¿21,

C6 = (C2+ F(D5, A4, B3)+ X6)
¿11 = A¿29− A4− X8,

X7 := −B3− F(C6, D5, A4)− 1,

B7 = (B3+ F(C6, D5, A4)+ X7)
¿19 = −1,

A8 = (A4+ F(−1,C6, D5)+ X8)
¿3 = (A4+ C6+ X8)

¿3 = A,
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X9 := D¿25− D5− F(A,−1,C6),

D9 = (D5+ F(A,−1,C6)+ X9)
¿7 = D,

X10 := C¿21− C6− F(D, , A,−1),

C10 = (C6+ F(D, A,−1)+ X10)
¿11 = C,

X11 := B¿13+ 1− F(C, D, A),

B11 = (−1+ F(C, D, A)+ X11)
¿19 = B.

This means we obtain

compress0
11(IV0; X0, . . . , X11) = (A11, B11,C11, D11) = (A8, B11,C10, D9)

= (A, B,C, D),

i.e., as desired, we have reached the connection to the given inner almost-collision.

6. Collision Search Algorithm

As we have now described all parts of the attack, we give an overview summarizing the
single steps of the derived algorithm searching for collisions:

1. Compute A, B,C, D and X0, X4, X8, X12, X13, X14, X15, which give an inner
almost-collision(from steps12 to 19).The technical details of a suitable algorithm
have been explained in Section3. It also fixes values for A19, B19,C19, D19 and
Ã19, B̃19, C̃19, D̃19.

2. According to Sections4 and5 choose X1, X2, X3, X5 randomly and compute

(A5, B5,C5, D5) = compress0
5(IV0; X0, . . . , X5), (27)

t = A¿29− A5− X8, (28)

X6 = t¿21− C5− F(D5, A5, B5), (29)

X7 = −1− B5− F(t, D5, A5), (30)

X9 = D¿25− D5− F(A,−1, t), (31)

X10 = C¿21− t − F(D, A,−1), (32)

X11 = B¿13+ 1− F(C, D, A), (33)

(A35, B35,C35, D35) = compress20
35(A19, B19,C19, D19; X), (34)

(Ã35, B̃35, C̃35, D̃35) = compress20
35(Ã19, B̃19, C̃19, D̃19; X̃), (35)

135 = (A35, B35,C35, D35)− (Ã35, B̃35, C̃35, D̃35). (36)

3. If 135 = 0, then we have found a collision. Otherwise make a new trial by going
to 2.

Tuning, Computational Effort, and Example

To make 2 more effective do not compute the compression function from steps 20 to 35
completely. Instead, as a condition to break up the trial, test immediately after each step
i if 1i 6= 1∗i (i = 21,22, . . .); see Table 3.
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In this way for the largest part of all trials the computation will already be broken up
after step 21, i.e., it is restricted to (27)–(33) and two steps of (34) and (35), respectively.
(On the other hand, it is unlikely that135 = 0 but1i 6= 1∗i for somei . The sequence
1∗19, . . . , 1

∗
34 in Section 3 is the “almost unique” way leading to135 = 0. If we leave

this way, then it is very likely that the avalanche effect brings everything out of control.
Hence it is unlikely that we lose a successful trial by the proposed selection.) Thus mainly
a trial requires about the same effort as 16 steps (one-third) of MD4-compress.

In view of Lemma 2 this means that finding a collision takes on average the same
computational effort as about 220 computations of MD4-compress. This estimation has
been confirmed by an implementation of the attack.

The algorithm sometimes runs into a dead end. For instance, this happens if the
values A19, B19,C19, D19 and Ã19, B̃19, C̃19, D̃19 coming from the inner almost-
collision are badly conditioned with respect to the differential attack. This effect can
be taken into account by controlling the success of the algorithm and making a new
start if necessary.

Beside the complexity of a collision search algorithm, the “variety” of collisions
which, at least theoretically, can be found is another important aspect. In particular, the
number of obtainable collisions is of interest. We therefore mention that by Lemma 2
for each found inner almost-collision, in principle, about 2106 collisions of MD4 can be
computed by applying the above algorithm, since there are four words free in 2 (i.e., 2128

trials), and the probability for success is about 2−22.
For the sake of readability of our exposition we have restricted ourselves to the de-

scription of the most direct version of our attack. However, there are still many further
technical tricks to improve it considerably. In this way we can even get collisions of
practical relevance. This is demonstrated in the next section. First, however, we give a
collision which has been found by the previously described search algorithm:

X0 = 0x13985e12 , X8 = 0xabe17be0 ,

X1 = 0x748a810b , X9 = 0xed1ed4b3 ,

X2 = 0x4d1df15a , X10 = 0x4120abf5 ,

X3 = 0x181d1516 , X11 = 0x20771029 ,

X4 = 0x2d6e09ac , X12 = 0x20771027 ,

X5 = 0x4b6dbdb9 , X13 = 0xfdfffbff ,

X6 = 0x6464b0c8 , X14 = 0xffffbffb ,

X7 = 0xfba1c097 , X15 = 0x6774bed2 .

Recall thatX̃ is defined by setting̃Xi = Xi (i < 16, i 6= 12) and

X̃12 = X12+ 1= 0x20771028 .

X andX̃ have the same MD4-compression value with respect to the initial valueIV0 (see
the Appendix). The complete MD4 algorithm, including the padding rule, associates to
X and X̃ the common hash value

0x711ad51b 0xbbab5e22 0x618b1c76 0x17c15892 .
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7. Collisions for Crooks

How to Swindle Ann(see[12])

Alf wanted to sell Ann his house, and Ann was interested. They agreed on a price of
$176,495. Alf asked Ann to sign a contract using a digital signature scheme which is
based on some public-key algorithm and the hash function MD4. The contract read as
follows:

********************
CONTRACT

At the price of $176,495 Alf Blowfish
sells his house to Ann Bonidea. . . .

“The first 20 bytes (each of them is represented by an asterisk above) are random. They
have been placed before the text for security reasons!” claimed Alf, and Ann signed
the contract. Later, however, Alf substituted the contract file by another which read as
follows:

********************
CONTRACT

At the price of $276,495 Alf Blowfish
sells his house to Ann Bonidea. . . .

The contract had been prepared by him such that replacing $176,495 by $276,495 does
not change the MD4 hash value!

How Alf Did It

We now explain the precise definition of the above digital contract. Its first sixteen 32-bit
words are:

M0 = 0x9074449b , M8 = 0x68742074 ,

M1 = 0x1089fc26 , M9 = 0x72702065 ,

M2 = 0x8bf37fa2 , M10 = 0x20656369 ,

M3 = 0x1d630daf , M11 = 0x2420666f ,

M4 = 0x63247e24 , M12 = 0x2C363731 ,
M5 = 0x4e4f430a , M13 = 0x20353934 ,

M6 = 0x43415254 , M14 = 0x20666c41 ,

M7 = 0x410a0a54 , M15 = 0x776f6C42 .
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The 20 bytes ofM0–M4 are the above mentioned “random bytes.” The bytes ofM5, in
reverse ordering (according to the definition of MD4) and interpreted as ASCII read as
follows:

0a 43 4f 4e = Line feed‘CON’,

and so on toM15 which reads

42 6c 6f 77 = ‘Blow’.

The sequenceMi (i < 16) has been chosen such that settingM ′12 = M12 + 1 and
M ′i = Mi for i < 16, i 6= 12 gives a collision, i.e.,

compress(IV0;M) = compress(IV0;M ′)
for the compression function of MD4 and its fixed initial valueIV0. This collision
has been found in less than 1 hour on a PC. InterpretingM12 = 0x2c363731 and
M ′12 = 0x2c363732 we get

M12 = 31 37 36 2c = ‘176,’

M ′12 = 32 37 36 2c = ‘276,’

In view of the definition of MD4 as the iterative application ofcompress we obtain a
collision by taking any bit string and appending it toM andM ′.

8. The 256-Bit Extension of MD4

Together with MD4 Rivest [8] also proposed an extension of MD4 with 256-bit hash
values for highest security requirements. The compression functioncompress-ext of
this Extended MD4 is designed as follows: Two copies of MD4 compress run in parallel.
The first copy is standard MD4 compress. The second copy differs only in the choice of
the constants. For the first (resp. second) copy the following constantsKi (resp.K ′i ) are
used in roundi :

K1 = 0, K ′1 = 0,
K2 = 0x5a827999 , K ′2 = 0x50a28be6 ,

K3 = 0x6ed9eba1 , K ′3 = 0x5c4dd124 .

After computing each copy separately, the values of the A registers in the two copies
are exchanged. Extended MD4 is defined as the iterative application ofcompress-ext
starting with the initial valueIV∗ = (IV∗0, IV∗1), where

IV∗0 = 0x67452301 0xefcdab89 0x98badcfe 0x10325476 ,

IV∗1 = 0x33221100 0x77665544 0xbbaa9988 0xffeeddcc .

The following example of a collision forcompress-ext was found by using methods as
for the RIPEMD and MD4 attacks.The reason for the weakness of ExtendedMD4 and
RIPEMD can be clearily identified: The two parallel lines of the compression function
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are too similar. The ordering in which the words are applied in the single steps is the
same. This allows both lines to be attacked in parallel.

SetIV = (IV0, IV1) with

IV0 = IV1 = 0x3106724a 0x187c28f6 0x6db5f180 0xafdad375 .

Define the inputs

X0 = 0x51737d99 , X8 = 0xfec3fc24 ,

X1 = 0x527507ef , X9 = 0x74fdd294 ,

X2 = 0x69ea5e67 , X10 = 0x28566835 ,

X3 = 0x6a7e3c3d , X11 = 0x0ec55879 ,

X4 = 0x8171ebe6 , X12 = 0x9a213c15 ,

X5 = 0x453ef355 , X13 = 0x2069ff64 ,

X6 = 0x0535803b , X14 = 0xffffbffb ,

X7 = 0x2c885e93 , X15 = 0x2fa86b00 .

Define X̃ by settingX̃i = Xi (i < 16, i 6= 12) andX̃12 = X12+ 1. Then we have

compress-ext(IV; X) = compress-ext(IV; X̃).

Computation of collisions of the compression function of Extended MD4 withIV0 = IV1

requires about the same effort as 226 compression computations (resp. 240 compression
computations if the value forIV0 = IV1 is prescribed). We anticipate that a more
sophisticated attack allows us to find collisions with the prescribed initial valueIV∗

above (i.e., collisions for Extended MD4) byO(240) operations.
The design of RIPEMD and Extended MD4 are very similar. Therefore the demon-

strated weakness of Extended MD4 supports the proposal to replace RIPEMD by a
strengthened version (see [7]). However, this old version of RIPEMD should not be
confused with its successor RIPEMD-160 [7] with 160-bit hash values or with the
new RIPEMD-128, the plug-in substitute for RIPEMD with a 128-bit result. RIPEMD-
128/160 were designed by taking account of the experiences made by the analysis of
MD4, Extended MD4, MD5, and RIPEMD.

9. Conclusions

A dedicated hash function should be secure and fast at the same time. Everyone who
comes up with a new design of a fast algorithm, especially if there is insufficient experi-
ence with related algorithms, runs a great risk of overlooking weaknesses and underes-
timating possibilities of finding new cryptanalytic methods. However, there is no other
way than to start with concrete proposals, thereby pushing on an evolutionary process
leading to better and better solutions. Therefore the introduction of MD4 by Rivest [8]
in 1990 was a significant contribution. Today there is a whole family of hash functions
based on MD4’s design elements.



268 H. Dobbertin

A short time after MD4 had been introduced, some weaknesses became apparent and
Rivest introduced MD5 in 1991. He explained his reasons in [9]:

“The MD5 algorithm is an extension of the MD4 message-digest algorithm.
MD5 is slightly slower than MD4, but is more conservative in design. MD5
was designed because it was felt that MD4 was perhaps being adopted for
use more quickly than justified by the existing critical review; because MD4
was designed to be exceptionally fast, it is at the edge in terms of risking
successful cryptanalytic attack. . . .”

The weaknesses of MD4 observed in [3] and [11], two-round attacks and almost colli-
sions, were generally considered to be mainly of theoretical importance. In view of the
presented attack this can no longer be assumed, as has been demonstrated.

WhereMD4 is still in use, it should be replaced!

Even the one-wayness of MD4 is set in question by a recent result showing that preimages
for the first two rounds can be found very fast [6].

The compression function of the 256-bit extension of MD4 (see [8]) is not collision-
free as shown in Section 8. RIPEMD is another strengthened mode of MD4 proposed
in 1992 [2]. The design of RIPEMD and that of Extended MD4 are very similar. We
anticipate that, in addition to the already known two-round attacks [4], the compression
function of RIPEMD is also not collision-free. Also the compression function of MD5
is not collision-free [4].

However, the consequence of our analysis of (Extended) MD4, MD5, and RIPEMD is
not that any hash functions, whose design is based on MD4, is compromised (similar as,
say, the fact that eight round DES is weak does not mean that all Feistel ciphers are weak).
On the contrary, the basic design princples of MD4 are today well analyzed, we have
learned how to avoid weaknesses and to estimate better how many rounds are needed.
The result is the hash function RIPEMD-160 [7] (with 160-bit hash values), which we
would suggest as a replacement for MD4, MD5, and RIPEMD. Another alternative is
the revised version of the Secure Hash Algorithm (SHA-1), which was designed by NSA
and published by NIST (National Institute of Standards and Technology) [1]. The design
criteria of SHA-1 are secret. SHA-1 and RIPEMD-160 are also recommended by RSA
Data Security Inc. for applications which require a collision-free hash function [10].
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Appendix

The hash function MD4 is defined as the iteration of a certain compression function,
which we specify below. The computation starts with the initial value

IV0 = 0x67452301 0xefcdab89 0x98badcfe 0x10325476 .
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Each application of the compression function uses a collection of four words as initial
value and sixteen words of the message as input, and it gives four words output, which
are then used as the initial value for the next application. The final output is the hash
value. This works, since there is a padding rule (addition of bits to the message such that
its length is a multiple of 512= 16× (length of words)). A description of MD4 including
also the padding rule can be found in [8].

The compression function of MD4 uses the Boolean vector functions

F(U,V,W) = (U ∧ V) ∨ (¬U ∧W),

G(U,V,W) = (U ∧ V) ∨ (U ∧W) ∨ (V ∧W),

H(U,V,W) = U ⊕ V ⊕W

and the constants

K1 = 0x5a827999 ,

K2 = 0x6ed9eba1 .

Let F F(a,b, c,d, Z, s), GG(a,b, c,d, Z, s), andH H(a,b, c,d, Z, s) denote the op-
erations

a := (a+ F(b, c,d)+ Z)¿s,

a := (a+ G(b, c,d)+ Z)¿s,

a := (a+ H(b, c,d)+ Z)¿s,

respectively. In order to define the MD4 compression function suppose now that the
initial value(A, B,C, D) and inputsX0, X1, . . . , X15 are given. CopyA, B,C, D into
registersa,b, c,d, and apply the following steps:

First round

step 0 F F(a,b, c,d, X0,3)
step 1 F F(d,a,b, c, X1,7)
step 2 F F(c,d,a,b, X2,11)
step 3 F F(b, c,d,a, X3,19)
step 4 F F(a,b, c,d, X4,3)
step 5 F F(d,a,b, c, X5,7)
step 6 F F(c,d,a,b, X6,11)
step 7 F F(b, c,d,a, X7,19)
step 8 F F(a,b, c,d, X8,3)
step 9 F F(d,a,b, c, X9,7)
step 10 F F(c,d,a,b, X10,11)
step 11 F F(b, c,d,a, X11,19)
step 12 F F(a,b, c,d, X12,3)
step 13 F F(d,a,b, c, X13,7)
step 14 F F(c,d,a,b, X14,11)
step 15 F F(b, c,d,a, X15,19)
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Second round

step 16 GG(a,b, c,d, X0+ K1,3)
step 17 GG(d,a,b, c, X4+ K1,5)
step 18 GG(c,d,a,b, X8+ K1,9)
step 19 GG(b, c,d,a, X12+ K1,13)
step 20 GG(a,b, c,d, X1+ K1,3)
step 21 GG(d,a,b, c, X5+ K1,5)
step 22 GG(c,d,a,b, X9+ K1,9)
step 23 GG(b, c,d,a, X13+ K1,13)
step 24 GG(a,b, c,d, X2+ K1,3)
step 25 GG(d,a,b, c, X6+ K1,5)
step 26 GG(c,d,a,b, X10+ K1,9)
step 27 GG(b, c,d,a, X14+ K1,13)
step 28 GG(a,b, c,d, X3+ K1,3)
step 29 GG(d,a,b, c, X7+ K1,5)
step 30 GG(c,d,a,b, X11+ K1,9)
step 31 GG(b, c,d,a, X15+ K1,13)

Third round

step 32 H H(a,b, c,d, X0+ K2,3)
step 33 H H(d,a,b, c, X8+ K2,9)
step 34 H H(c,d,a,b, X4+ K2,11)
step 35 H H(b, c,d,a, X12+ K2,15)
step 36 H H(a,b, c,d, X2+ K2,3)
step 37 H H(d,a,b, c, X10+ K2,9)
step 38 H H(c,d,a,b, X6+ K2,11)
step 39 H H(b, c,d,a, X14+ K2,15)
step 40 H H(a,b, c,d, X1+ K2,3)
step 41 H H(d,a,b, c, X9+ K2,9)
step 42 H H(c,d,a,b, X5+ K2,11)
step 43 H H(b, c,d,a, X13+ K2,15)
step 44 H H(a,b, c,d, X3+ K2,3)
step 45 H H(d,a,b, c, X11+ K2,9)
step 46 H H(c,d,a,b, X7+ K2,11)
step 47 H H(b, c,d,a, X15+ K2,15)

Finally, compute the outputAA, B B,CC, DD as follows:

AA = A+ a, B B= B+ b, CC = C + c, DD = D + d.

That is, one sets

compress((A, B,C, D); X0, X1, . . . , X15) = (AA, B B,CC, DD).
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