Adaptive Android Kernel
Live Patching

Tim Xia, Yulong Zhang
Baidu X-Lab
May 2016

Outline

Android Kernel Vulnerability Landscape
The Problem:

— Devices Unpatched Forever/for A Long Period
— Difficult to Patch due to Fragmentation

The Solution: Adaptive Kernel Live Patching
Establishing the Ecosystem

Threats of Kernel Vulnerabilities

Unprivile
P ged Root
User
AN
User Mode
|
Information Leakage Privilege Escalation Kernel Mode
N /
Info-leak Code Execution

Vulnerability Vulnerability

Threats of Kernel Vulnerabilities

 Most security mechanisms rely on kernel
integrity/trustworthiness, thus will be broken

— Access control, app/user isolation

— Payment/fingerprint security

— KeyStore

— Other Android user-land security mechanisms

* TrustZone will also be threatened
— Attack surfaces exposed
— Many TrustZone logic trusts kernel input

Kernel Vulnerabilities in Android Security Bulletin

Month Vulnerability List Count
2015/09 CVE-2015-3636 1
2015/12 CVE-2015-6619 1
2016/01 CVE-2015-6637 CVE-2015-6638 4
CVE-2015-6640 CVE-2015-6642
2016/02 CVE-2016-0801 CVE-2016-0802 4
CVE-2016-0805 CVE-2016-0806
2016/03 CVE-2016-0728 CVE-2016-0819 CVE-2016-0820 5
CVE-2016-0822 CVE-2016-0823
2016/04 CVE-2014-9322 CVE-2015-1805 CVE-2016-0843 7
CVE-2016-0844 CVE-2016-2409 CVE-2016-2410
CVE-2016-2411
2016/05 CVE-2015-0569 CVE-2015-0570 CVE-2016-2434 15
CVE-2016-2435 CVE-2016-2436 CVE-2016-2437
CVE-2015-1805 CVE-2016-2438 CVE-2016-2441
CVE-2016-2442 CVE-2016-2443 CVE-2016-2444
CVE-2016-2445 CVE-2016-2446 CVE-2016-2453

B Information Leakage

B rrivilege Escalation

The Growing Trend Indicates

onth | count

2015/08 0 . _
[J
e | i\j/lore and more a':erlltlonslare i
SR | 6 rawn to secure the kerne
2015/11 0
2015/12 1 o
* More and more vulnerabilities
2016/01 4 , _
are in the N-Day exploit arsenal
2016/02 4 :
for the underground businesses
2016/03 5
2016/04 7

2016/05 15

Recent Vulnerabilities with Great Impact

 CVE-2014-3153 (Towelroot)

— The futex_requeue function in kernel/futex.c in the
Linux kernel through 3.14.5 does not ensure that calls
have two different futex addresses, which allows local
users to gain privileges.

Recent Vulnerabilities with Great Impact

* CVE-2015-3636 (PingPong Root)

— The ping_unhash function in net/ipv4/ping.c in the Linux
kernel before 4.0.3 does not initialize a certain list data
structure during an unhash operation, which allows local
users to gain privileges or cause a denial of service.

Recent Vulnerabilities with Great Impact

* CVE-2015-1805 (used in KingRoot)

\® ¥

— The pipe_read and pipe_write implementations in kernel before
3.16 allows local users to cause a denial of service (system
crash) or possibly gain privileges via a crafted application.

— A known issue in the upstream Linux kernel that was fixed in
April 2014 but wasn’t called out as a security fix and
assigned CVE-2015-1805 until February 2, 2015.

Many Vulnerabilities Have Exploit PoC Publicly Disclosed

Vulnerability/Exploit Name

CVEID

mempodipper

CVE-2012-0056

exynos-abuse/Framaroot

CVE-2012-6422

diagexploit

CVE-2012-4221

perf_event_exploit

CVE-2013-2094

fb_mem_exploit

CVE-2013-2596

msm_acdb_exploit

CVE-2013-2597

msm_cameraconfig_exploit

CVE-2013-6123

get/put_user_exploit

CVE-2013-6282

futex_exploit/Towelroot

CVE-2014-3153

msm_vfe_read_exploit

CVE-2014-4321

pipe exploit

CVE-2015-1805

PingPong exploit

CVE-2015-3636

f2fs_exploit

CVE-2015-6619

prctl_vma_exploit

CVE-2015-6640

keyring_exploit

CVE-2016-0728

There’re also exploits made public but

* Never got officially reported to vendors
* Disclosed before being patched
* Not getting timely fix

Exploits made public but not reported

.. We are able to identify at least 10 device driver
epr0|ts (from a famous root app) that are never reportedl
:|n the public..” '

Android Root and its Providers: A Double-Edged Sword
H. Zhang, D. She, and Z. Qian, CCS 2015

Exploits disclosed but not timely patched

Note that this patch was not applied to all msm branches at the time of the
patch release (July 2015) and no security bulletin was issued, so the majority
of Android kernels based on 3.4 or 3.10 are still affected despite the patch
being available for|6 months.

https://bugs.chromium.org/p/project-zero/issues/detail?id=734&can=1&sort=-id

Malware/Adware with Root Exploits

Assistive Touch Kiss Browser

Calculator

Sex Cademy

Talking Tom 3

Privacy Lock Easy Locker 2048kg

Smart Touch

WIFI| Enhancer

. JON 3

Sharelt

Light Browser

KEMOGE

.-

Infection Vectors ‘ Initial Behaviors | Persistent Behaviors |
&). N
" Wﬁ = ()
Local info collection
Third Partv Asgressive ad sewing Remote Control:

@ App Stores * Install any app

* Uninstall any app
@ Qb sos @

* Launch any app
Drop 8 root exploits
to root the device

fi\
Web/Ad Promoted
Installation

Malware/Adware with Root Exploits

GHOSTPUSH

Some app stores (not

More than 30+ apps (WiFi | including Google Play)
nhancer, Talking Tom 3 etC.) | m——————
infected by the virus popular download

sites

Over600,000 phones are
being infected per day

This virus has
become worldwide:

Root your phone, and install

3.658 brands and s R ROM
14,846 types of L J
phone have been l
infected
Virus will autostart with the
phone and is hard to
remove

Virus installs itself
deeply in the phone

=

‘Ghost Push’ will consume
vour cellular data by turning off
vour WiFi connection and then

downloading lots ads and
unwanted apps

|

The hackers are looking to
make money from these ads
and apps

Malware/Adware with Root Exploits

: “This is the first time, to my knowledge; an exploit kit has been able to

: successfully install malicious apps on a mobile device without any user

, interaction on the part of the victim... the payload of that exploit, a Linux ELF
: executable named module.so, contains the code for the futex or Towelroot

; exploit that was first disclosed at the end of 2014.”

= ATTENTION! YOUR DEVICE HAS BEEN LOCKED REASONS
= INDICATED BELOW.

Remaining time to pay a fine

- - All actions are illegal, are fixed.
i -I 2 9 3 4 History query stored in the
L . database of the U.S. Department of

Homeland Security

Otherwise the case file will be transferred to the

DOGSPECTUS =T e

Outline

e The Problem

— Devices Unpatched Forever/for A Long Period
— Difficult to Patch due to Fragmentation

IOS More Secure?

" > lﬁu

Kernel Vulnerability Disclosure
Frequency Is Comparable

i0s version _Date | Count _ m

8.4.1 8/13/15 3 2015/09
9 9/16/15 12 2015/12 1
9.1 10/21/15 6 2016/01 4
9.2 12/8/15 5 2016/02 4
9.2.1 1/19/16 4 2016/03 5
9.3 3/21/16 9 2016/04 7

2016/05 15

However...

* |f Apple wants to patch a vulnerability
— Apple controls the entire (mostly) supply chain
— Apple has the source code

— Apple refuses to sign old versions, forcing one-
direction upgrade

— All the i0OS devices will get update in a timely manner

 Android

— Many devices stay unpatched forever/for a long
period...

Devices Unpatched Forever/for A Long Period

* Cause A: The long patching chain

Researchers found the vulnerability

Hardware vendors/Google finalized the patch

Phone vendors tested and took the patch

Carriers tested and approved the patch

Customer delays or unwilling to take the OTA

DEVICE FRAGMENTATION

TRl L T
haimls it
romm -'““w]

J e Pl
8 CEmmeen)os iz
= ,_--_-rllunl.u_.l

| Shogn: oS =t

I 5= Si=H, i e

LT I g e R Rl e

= l—l—“—ll“—lﬂ“—m-mmnm i _n.-l..u.l._..n.u:.”.p..mmm_.._.._
Bl =5 , =

Smmm 1

. —:

4

http://opensignal.com/reports/2015/08/android-fragmentation

Device Fragmentation

Google Dashboard (2016/04/04)

Version Codename APl Distribution

2.2 Froyo 8 0.1% Lollipap
2.3.x Gingerbread 10 2.6%

4.0.x 'Scaeng;jiir: 15 2.2%

4.1x 16 7.8% A S
42x lelly Bean 17 10.5% il
4.3 18 3.0% KitKat

4.4 KitKat 19 33.4%

5.0 _ 21 16.4% JellyBean
5.1 Lollipop 22 19.4%

6.0 Marshmallow 23 4.6%

2014, but ©60% of the devices are older than 4.4, but 26.2% of the
: still older than that! : i devices are still older than that!

Chinese Market Is Even Worse

(Stats from devices with Baidu apps installed, 03/21/2016-04/21/2016)

Version Codename API

2.3.x Gingerbread 10

4.0x lceCream Sandwich 15

4.1.x 16
4.2 .x Jelly Bean 17
4.3 18
4.4 KitKat 19

5 21

Lollipop
5.1 22
Others - -

: Lollipop was released in November 12,

Rate
3.2%
3.6%
7.6%
12.4%
13.6%
42.4%
9.8%
6.6%
0.8%

2014, but 82.8% of the devices are

still older than that!

W 2.3.x
W 4.0.x
4.1.x
W4.2.x
m43
4.4
m5
m5.1
W Others

40.4% of the devices are <4.4!
: And China blocks Google....

Devices with Unpatched Kernels

(Stats from devices with Baidu apps installed, May 2016)

e CVE-2014-3153 (Towelroot)
— Advisory/Patch Publication Date: Jun. 3rd, 2014

— Device distribution with kernel build date older/newer
than the date:

B Older

B Newer

Devices with Unpatched Kernels

(Stats from devices with Baidu apps installed, May 2016)

 CVE-2015-3636 (PingPong Root)
— Advisory/Patch Publication Date: Sep. 9th, 2015

— Device distribution with kernel build date older/newer
than the date:

B Older

B Newer

Devices with Unpatched Kernels

(Stats from devices with Baidu apps installed, May 2016)

 CVE-2015-1805 (used in KingRoot)
— Advisory/Patch Publication Date: Mar. 18th, 2016

— Device distribution with kernel build date older/newer
than the date:

B Older

B Newer

Devices Unpatched Forever/for A Long Period

e Cause B: Fragmentation & Capability Miss-
matching

Phone Vendors:

* Privileged to apply the patches

* With source code, easy to adapt the patches

* Not enough resources to discover and patch vulnerabilities

|

Security Vendors:

e (Capable to discover and patch vulnerabilities

* Not privileged enough

 Without source code, difficult to adapt the patches

Phone Vendors My first priority is
= ' not on vulnerability
discovery and real-
world exploits...

Security Vendors

-

So challenging to
protect the world...

_

How/Who to Secure Them???

L] -
P Payral VL] DIS&Q}:ER‘l

vy Google Wallet

Outline

* The Solution: Adaptive Kernel Live Patching

Kernel Live Patching

kGraft as an example

Kernel Live Patching

Load new functions into memory
Link new functions into kernel
— Allows access to unexported kernel symbols

Activeness safety check

— Prevent old & new functions from running at same
time

— stop_machine() + stack backtrace checks

Patch it!

— Uses ftrace etc.

https.//events.linuxfoundation.org/sites/events/files/slides/kpatch-linuxcon_3.pdf

Challenges for Third Party

* Most existing work requires source code

— Phone vendor is the only guy that can generate
the live patches

* Unable to directly apply patches to other
kernel builds

— Load code into kernel adaptively

a

Our Solution - Adaptive Live Patching

Auto patch
adaption

e

e Kernel info gathering
e Data structure filling

Patching * Install kernel module

payload e Shellcode injection via

injection =~ mem device
Patching e Replace/hook
payload vulnerable
execution functions

Kernel Info Collection

Kernel version
— /proc/version
— vermagic

Symbol addresses/CRC
— /proc/kallsyms (/proc/sys/kernel/kptr_restrict)

Other kernel modules
— Symbol CRC/module init offset

Boot image
— decompress gzip/bzip/lzma/lzo/xz/1z4
— some are raw code or even ELF file

Patching payload injection
Device Coverage

INSMOD 95%

(KYMEM 60%

Method A: Kernel Module Injection

* init_module
— CONFIG_MODVERSIONS
— CONFIG_MODULE_FORCE_LOAD

e finit_module
— Linux 3.8+

— MODULE_INIT_IGNORE_MODVERSIONS
— MODULE_INIT_IGNORE_VERMAGIC

* restrictions
— vermagic check
— symbol CRC check
— module structure check

— vendor’s specific check
e Samsung lkmauth

Bypass vermagic/symbol CRC

- Big enough vermagic buffer
- Copy kernel vermagic string to module
- Copy kernel symbol CRCs to module

include/linux/vermagic.h

#

VERMAGIC STRING
UTS_RELEASE " "
MODULE_VERMAGIC SMP MODULE_WVERMAGIC PREEMPT

MODULE_VERMAGIC_ MODULE_UNLOAD MODULE_VERMAGIC_ MODVERSIONS
MODULE_ARCH_VERMAGIC

Bypass module structure

- offsetof(init) difference
- Big enough struct module

include/linux/module.h
struct module {

int E ¥1nit } E '..-'l'_'.l'll.l'__i'.:} 3

CONFIG_CONSTRUCTORS

ctor fn_t *ctors;
unsigned int num ctors;

#
int padding[XX];

Bypass Samsung lkmauthl

:Ceac7718
:COacC7718
:CepC771C
:CeacC7720
:CBacC7724
:CBaCy 728
:CBacC772C
:CabC7730
:CBaC7734
:CBaC7738
:CepCT73C
:CeacC7740
:CBac7744
:CBaCy 748
:CBacCy74AC
: CapC7750
:CBaC7754

:CepCT874
:COaC7878
:CBacC787C
: CBaC7880
:CBaC7884
: CabC7888

EXPORT lkmauth
LDR
STMFD
SUB
LDR
MOV
MOV
LDR
LDR
STR
BL
MOV
LDR
BL
ADD
LDR
BL

= stack chk_guard
sp!, {R4-R11,LR}
SP, SP, #0x54
R4, =BxC1254B84
R10, R1
R9, RO
R®, =lkmauth_ mutex
R3, [R3]
R3, [SP,#@x78+var 2C]
mutex lock
R1, R1@
Re, =BxCeCCasD3
printk
RO, SP, #B8x78+var_AC
R1l, =aTima_lkm ; "tima_lkm"
strcpy

R1, [R8,#0x144]

R1, #0

lkmauth_failed // BME => NOP
R8, =@xCaCCaCeb

printk

lkmauth_pass

Bypass Samsung lkmauth?2

; CODE XREF: sys init module+1E8X4}j

LDR R3, [RE,1#4]

CHP R3, #6 ; make lkmauth bootmode=BOOTHMODE RECOUERY to skip
BHE ckip lkmauth

MO RAa, # : <4>TIMA: 1kmauth--verification succeeded
BL printk

LDR RA, =1kmauth mutex

BL mutex unlock

LDR R5, [Ra,#8:x28]

BOOTMODE RECOVERY 2

Method B: Shellcode Injection

Sym bOI a d d resses ,. I-' 1ell_fode_hinarﬂy

Long magic;

- vmalloc_exec : i header oize;

shellcode size;
shellcode_entry;

- Mm Od U |e_a | |OC lookup_name_offset;

g mmap_ram_start offset;

g mmap_ram_end offset;

Structured shellcode unsianed Long viln_count. oFFsets

vuln_ids_offset;
unsigned current pid offset;

Unsi kme ~1te -

Allocate/reuse memory S L
' write_offset_array;

Write into memory imeigned Long® patch offact. amvays

shellcode_body;|

Trigger the running

Memory Allocation

STMFD SP!, {R3,LR}
LDF. Re, loc A4C;
LDR R3, loc 4AC;
BLX R3

LDMFD SP!,

51zZe

vmalloc exec_ addr

user kernel

syscall function
syscall table

cshellcode to
—

allocate memory

+

I
I
I
I
I
I
I
I
I
I
I :
call syscall —— T ™| syscall pointer
I
I
I
I
I
I
I

user

Shellcode Execution

call syscall

kernel

syscall table

allocated memory

*

patches

Patching Payload Execution

* Overwrite the function pointer
— with our own implementation

* Overwrite with patch code directly
— Need permission, CP15 to help

* |nline hook
— Atomic with best effort
— Hook from prolog

— Hook from middle of the function
d NGEd save some context

RET ADDR

Vulnerable Function Hook

STM FD SP!, {R3, LR}

—

LDR/B Patch

—

Patch Func

STM FD SP!, {R3, LR}

LDR PC, [PC, #-4]

RET ADDR

Patch Func

Vulnerable Function Hook(cont.)

* The patch has the option to execute the
original function or just do not

* No option if patch hook from the middle of
the vulnerable function

* Painful in 64bit, no explicit operation on PC

Optimizations

Utilizing kallsyms_lookup name

— minimize the symbols imported

e Utilizing existing kernel mem write functions

— mem_text_write_kernel word

— set_memory_rw

 CP15 to change permission

3l 24 23 20 19 15 14 12 11 10 9 § 543 2 10
Fault IGNORE 0|0
‘Cuar:s'c Coarse page table base address P| Domain SBZ (0]1
page table
5 8 5 5
Section Section base address B|0O|B[S2|B| TEXP | AP |P| Domain [B|{C|B|1|0
Z Z z z
Supersection base | PABS:32] | 3| |3 PA[39:36] |
Supersection] * S I|B|S|B| TEX | AP - B[C[B|1|0
address optional 7 7 optional 7
Fine Fine page table base address SBZ|P| Domain SBZ [1]1
page table

31 16 15 14 121mi1wme 876 5 4 3 1o
Large page Large page base address B| TEX [AP3|AP2| APl | APO|C 01
Z
Small page Small page base address AP3 | AP2 | AP1 | APO|C 10
Extended Extended small page base address . e
small page optional in ARMvSTE, otherwise reserved SBZ TEX | AP C b

Challenges Solved

* No source code & fragmentation
problem solved

» Patch automatic adaption

o
s 01 -
Patch i “-.'J

1100110

1101101
1100001

a

: om«!
Auto adaption IIa 1o
1101101

1100001

Device

kernel info

Adapted patch

Challenges Solved

v’ Most existing work requires source code

— Phone vendor is the only guy that can generate the live
patches

v’ Unable to directly apply patches to other kernel
builds

— Load code into kernel adaptively

-0

®m Vulnerable ®m Immutable ®m Vulnerable m Immutable

Successfully Evaluated CVEs

mmap CVEs (Framaroot)
CVE-2014-3153 (Towelroot)
CVE-2015-0569

CVE-2015-1805

CVE-2015-3636 (PingPong Root)
CVE-2015-6640

CVE-2016-0728

CVE-2016-0805

CVE-2016-0819

CVE-2016-0844

Successfully Evaluated on Most
Popular Phones

SM-G5308W

Successfully Evaluated on Most
Popular Phones

Hornor U8825D

A2 Huawel

Successfully Evaluated on Most
Popular Phones

Successfully Evaluated on Most
Popular Phones

A630t A788t A938t K30-T

lenovo

Successfully Evaluated on Most
Popular Phones

&P $2 nuawer T

Coolpad&ixk PPl GiINEEEII

SMARTPHONE & 5 & T E F

IR emEzL @ ZTES
L EENY Jenovo

SONY VIVVO ToL

Smart Phone

Demo

Before Patch: PingPong Root succeed

| After Patch: PingPong Root fail

Samsung S4

Outline

e Establishing the Ecosystem

Recall the Two Problems

* The long patching chain

— Solved by adaptive live patching
e Capability miss-matching

— To be solved by a joint-effort

Incentives

* VVendors
— More secure products
— More users & sales

e Security Providers

— Reputation
— profits

Transition to Cooperative Patching

Exploit existing
vulnerabilities to gain root

e

\'/r

Vendor cooperation & pre-
embedded kernel agent

.

Establishing the Ecosystem

. ~ Vendor qualification
Open Cooperative

PatChing Ecosystem Signature based patch
~ distribution

Security vetting
procedure

| pr——

~~ Reputation ranking

To Be Announced

* Ecosystem alliance
* Flexible & easy-to-review patching mechanism

Thanks!

Tim Xia, Longri Zheng, Yongqgiang Lu,
Chenfu Bao, Yulong Zhang, Lenx Wei
Baidu X-Lab
May 2016

