
Adaptive Android Kernel
Live Patching

Tim Xia, Yulong Zhang

Baidu X-Lab

May 2016

Outline

• Android Kernel Vulnerability Landscape

• The Problem:

– Devices Unpatched Forever/for A Long Period

– Difficult to Patch due to Fragmentation

• The Solution: Adaptive Kernel Live Patching

• Establishing the Ecosystem

Threats of Kernel Vulnerabilities

Unprivileged
User

Root

Code Execution
Vulnerability

Info-leak
Vulnerability

User Mode

Kernel Mode Information Leakage Privilege Escalation

Threats of Kernel Vulnerabilities

• Most security mechanisms rely on kernel
integrity/trustworthiness, thus will be broken
– Access control, app/user isolation

– Payment/fingerprint security

– KeyStore

– Other Android user-land security mechanisms

• TrustZone will also be threatened
– Attack surfaces exposed

– Many TrustZone logic trusts kernel input

Kernel Vulnerabilities in Android Security Bulletin

Month Vulnerability List Count

2015/09 CVE-2015-3636 1

2015/12 CVE-2015-6619 1

2016/01 CVE-2015-6637 CVE-2015-6638
CVE-2015-6640 CVE-2015-6642

4

2016/02 CVE-2016-0801 CVE-2016-0802
CVE-2016-0805 CVE-2016-0806

4

2016/03 CVE-2016-0728 CVE-2016-0819 CVE-2016-0820
CVE-2016-0822 CVE-2016-0823

5

2016/04 CVE-2014-9322 CVE-2015-1805 CVE-2016-0843
CVE-2016-0844 CVE-2016-2409 CVE-2016-2410

CVE-2016-2411

7

2016/05 CVE-2015-0569 CVE-2015-0570 CVE-2016-2434
CVE-2016-2435 CVE-2016-2436 CVE-2016-2437
CVE-2015-1805 CVE-2016-2438 CVE-2016-2441
CVE-2016-2442 CVE-2016-2443 CVE-2016-2444
CVE-2016-2445 CVE-2016-2446 CVE-2016-2453

15

Information Leakage Privilege Escalation

Month Count

2015/08 0

2015/09 1

2015/10 0

2015/11 0

2015/12 1

2016/01 4

2016/02 4

2016/03 5

2016/04 7

2016/05 15

• More and more attentions are
drawn to secure the kernel

• More and more vulnerabilities
are in the N-Day exploit arsenal
for the underground businesses

The Growing Trend Indicates

Recent Vulnerabilities with Great Impact

• CVE-2014-3153 (Towelroot)

– The futex_requeue function in kernel/futex.c in the

Linux kernel through 3.14.5 does not ensure that calls
have two different futex addresses, which allows local
users to gain privileges.

Recent Vulnerabilities with Great Impact

• CVE-2015-3636 (PingPong Root)

– The ping_unhash function in net/ipv4/ping.c in the Linux
kernel before 4.0.3 does not initialize a certain list data
structure during an unhash operation, which allows local
users to gain privileges or cause a denial of service.

• CVE-2015-1805 (used in KingRoot)

– The pipe_read and pipe_write implementations in kernel before
3.16 allows local users to cause a denial of service (system
crash) or possibly gain privileges via a crafted application.

– A known issue in the upstream Linux kernel that was fixed in
April 2014 but wasn’t called out as a security fix and
assigned CVE-2015-1805 until February 2, 2015.

Recent Vulnerabilities with Great Impact

Many Vulnerabilities Have Exploit PoC Publicly Disclosed

Vulnerability/Exploit Name CVE ID

mempodipper CVE-2012-0056

exynos-abuse/Framaroot CVE-2012-6422

diagexploit CVE-2012-4221

perf_event_exploit CVE-2013-2094

fb_mem_exploit CVE-2013-2596

msm_acdb_exploit CVE-2013-2597

msm_cameraconfig_exploit CVE-2013-6123

get/put_user_exploit CVE-2013-6282

futex_exploit/Towelroot CVE-2014-3153

msm_vfe_read_exploit CVE-2014-4321

pipe exploit CVE-2015-1805

PingPong exploit CVE-2015-3636

f2fs_exploit CVE-2015-6619

prctl_vma_exploit CVE-2015-6640

keyring_exploit CVE-2016-0728

…...

There’re also exploits made public but

• Never got officially reported to vendors

• Disclosed before being patched

• Not getting timely fix

• …...

Exploits made public but not reported

Android Root and its Providers: A Double-Edged Sword
H. Zhang, D. She, and Z. Qian, CCS 2015

Exploits disclosed but not timely patched

https://bugs.chromium.org/p/project-zero/issues/detail?id=734&can=1&sort=-id

Malware/Adware with Root Exploits

KEMOGE

Malware/Adware with Root Exploits

GHOSTPUSH

Malware/Adware with Root Exploits

DOGSPECTUS

“This is the first time, to my knowledge; an exploit kit has been able to
successfully install malicious apps on a mobile device without any user
interaction on the part of the victim... the payload of that exploit, a Linux ELF
executable named module.so, contains the code for the futex or Towelroot
exploit that was first disclosed at the end of 2014.”

Outline

• Android Kernel Vulnerability Landscape

• The Problem

– Devices Unpatched Forever/for A Long Period

– Difficult to Patch due to Fragmentation

• The Solution: Adaptive Kernel Live Patching

• Establishing the Ecosystem

iOS More Secure?

?

Kernel Vulnerability Disclosure
Frequency Is Comparable

iOS Version Date Count

8.4.1 8/13/15 3

9 9/16/15 12

9.1 10/21/15 6

9.2 12/8/15 5

9.2.1 1/19/16 4

9.3 3/21/16 9

Month Count

2015/09 1

2015/12 1

2016/01 4

2016/02 4

2016/03 5

2016/04 7

2016/05 15

However…

• If Apple wants to patch a vulnerability

– Apple controls the entire (mostly) supply chain

– Apple has the source code

– Apple refuses to sign old versions, forcing one-
direction upgrade

– All the iOS devices will get update in a timely manner

• Android

– Many devices stay unpatched forever/for a long
period...

Devices Unpatched Forever/for A Long Period

• Cause A: The long patching chain

Customer delays or unwilling to take the OTA

Carriers tested and approved the patch

Phone vendors tested and took the patch

Hardware vendors/Google finalized the patch

Researchers found the vulnerability

http://opensignal.com/reports/2015/08/android-fragmentation

Device Fragmentation
Google Dashboard (2016/04/04)

Version Codename API Distribution

2.2 Froyo 8 0.1%

2.3.x Gingerbread 10 2.6%

4.0.x
Ice Cream
Sandwich

15 2.2%

4.1.x

Jelly Bean

16 7.8%

4.2.x 17 10.5%

4.3 18 3.0%

4.4 KitKat 19 33.4%

5.0
Lollipop

21 16.4%

5.1 22 19.4%

6.0 Marshmallow 23 4.6%

Lollipop was released in November 12,

2014, but 60% of the devices are

still older than that!

Google stopped patching for Android

older than 4.4, but 26.2% of the

devices are still older than that!

Chinese Market Is Even Worse
(Stats from devices with Baidu apps installed, 03/21/2016-04/21/2016)

Lollipop was released in November 12,

2014, but 82.8% of the devices are

still older than that!

Version Codename API Rate

2.3.x Gingerbread 10 3.2%

4.0.x Ice Cream Sandwich 15 3.6%

4.1.x

Jelly Bean

16 7.6%

4.2.x 17 12.4%

4.3 18 13.6%

4.4 KitKat 19 42.4%

5
Lollipop

21 9.8%

5.1 22 6.6%

Others - - 0.8%

3%
3%

8%

12%

14%
42%

10%

7%

2.3.x

4.0.x

4.1.x

4.2.x

4.3

4.4

5

5.1

Others

40.4% of the devices are <4.4!

And China blocks Google....

Devices with Unpatched Kernels
(Stats from devices with Baidu apps installed, May 2016)

• CVE-2014-3153 (Towelroot)

– Advisory/Patch Publication Date: Jun. 3rd, 2014

– Device distribution with kernel build date older/newer
than the date:

45%
55%

Older

Newer

Devices with Unpatched Kernels
(Stats from devices with Baidu apps installed, May 2016)

• CVE-2015-3636 (PingPong Root)

– Advisory/Patch Publication Date: Sep. 9th, 2015

– Device distribution with kernel build date older/newer
than the date:

88%

12%

Older

Newer

• CVE-2015-1805 (used in KingRoot)

– Advisory/Patch Publication Date: Mar. 18th, 2016

– Device distribution with kernel build date older/newer
than the date:

Devices with Unpatched Kernels
(Stats from devices with Baidu apps installed, May 2016)

100%

0%

Older

Newer

Devices Unpatched Forever/for A Long Period

• Cause B: Fragmentation & Capability Miss-
matching

Security Vendors:
• Capable to discover and patch vulnerabilities
• Not privileged enough
• Without source code, difficult to adapt the patches

Phone Vendors:
• Privileged to apply the patches
• With source code, easy to adapt the patches
• Not enough resources to discover and patch vulnerabilities

Phone Vendors

Security Vendors

Google

My first priority is
not on vulnerability
discovery and real-

world exploits…

So challenging to
protect the world…

I’ve tried my best…

Image sources:
http://conservativetribune.com/wp-content/uploads/2015/12/Donald-Trump-Sad-2.jpg
https://d.gr-assets.com/hostedimages/1417789603ra/12537314.gif
http://1.bp.blogspot.com/-lnMpoEJ4zgk/TknyHEBtD4I/AAAAAAAACRY/6ogSBlPJFWI/s1600/obama%2Bsweats.jpg

How/Who to Secure Them???

Outline

• Android Kernel Vulnerability Landscape

• The Problem:

– Devices Unpatched Forever/for A Long Period

– Difficult to Patch due to Fragmentation

• The Solution: Adaptive Kernel Live Patching

• Establishing the Ecosystem

Kernel Live Patching

kGraft as an example

Kernel Live Patching

• Load new functions into memory

• Link new functions into kernel
– Allows access to unexported kernel symbols

• Activeness safety check
– Prevent old & new functions from running at same

time

– stop_machine() + stack backtrace checks

• Patch it!
– Uses ftrace etc.

https://events.linuxfoundation.org/sites/events/files/slides/kpatch-linuxcon_3.pdf

Challenges for Third Party

• Most existing work requires source code

– Phone vendor is the only guy that can generate
the live patches

• Unable to directly apply patches to other
kernel builds

– Load code into kernel adaptively

Our Solution - Adaptive Live Patching

Auto patch
adaption

• Kernel info gathering

• Data structure filling

Patching
payload
injection

• Install kernel module

• Shellcode injection via
mem device

Patching
payload

execution

• Replace/hook
vulnerable
functions

Kernel Info Collection

• Kernel version
– /proc/version
– vermagic

• Symbol addresses/CRC
– /proc/kallsyms (/proc/sys/kernel/kptr_restrict)

• Other kernel modules
– Symbol CRC/module init offset

• Boot image
– decompress gzip/bzip/lzma/lzo/xz/lz4
– some are raw code or even ELF file

Patching payload injection
Device Coverage

INSMOD 95%

(K)MEM 60%

0.6%

99.4%

Method A: Kernel Module Injection

• init_module
– CONFIG_MODVERSIONS
– CONFIG_MODULE_FORCE_LOAD

• finit_module

– Linux 3.8+
– MODULE_INIT_IGNORE_MODVERSIONS
– MODULE_INIT_IGNORE_VERMAGIC

• restrictions

– vermagic check
– symbol CRC check
– module structure check
– vendor’s specific check

• Samsung lkmauth

Bypass vermagic/symbol CRC

- Big enough vermagic buffer
- Copy kernel vermagic string to module
- Copy kernel symbol CRCs to module

Bypass module structure

- offsetof(init) difference

- Big enough struct module

Bypass Samsung lkmauth1

Bypass Samsung lkmauth2

Method B: Shellcode Injection

- Symbol addresses

- vmalloc_exec

- module_alloc

- Structured shellcode

- Allocate/reuse memory

- Write into memory

- Trigger the running

Memory Allocation

Shellcode Execution

Patching Payload Execution

• Overwrite the function pointer
– with our own implementation

• Overwrite with patch code directly
– Need permission, CP15 to help

• Inline hook

– Atomic with best effort
– Hook from prolog
– Hook from middle of the function

• Need save some context

Vulnerable Function Hook

STM FD SP!, {R3, LR}

Patch Func

STM FD SP!, {R3, LR}

LDR PC, [PC, #-4]

RET ADDR

RET ADDR

LDR/B Patch

Patch Func

Vulnerable Function Hook(cont.)

• The patch has the option to execute the
original function or just do not

• No option if patch hook from the middle of
the vulnerable function

• Painful in 64bit, no explicit operation on PC

Optimizations

• Utilizing kallsyms_lookup_name

– minimize the symbols imported

• Utilizing existing kernel mem write functions

– mem_text_write_kernel_word

– set_memory_rw

• CP15 to change permission

Challenges Solved

• No source code & fragmentation
problem solved

Patch automatic adaption

Patch

Device
kernel info

Auto adaption

Adapted patch

Challenges Solved

Most existing work requires source code

– Phone vendor is the only guy that can generate the live
patches

Unable to directly apply patches to other kernel
builds

– Load code into kernel adaptively

Vulnerable Immutable Vulnerable Immutable

Successfully Evaluated CVEs

• mmap CVEs (Framaroot)
• CVE-2014-3153 (Towelroot)
• CVE-2015-0569
• CVE-2015-1805
• CVE-2015-3636 (PingPong Root)
• CVE-2015-6640
• CVE-2016-0728
• CVE-2016-0805
• CVE-2016-0819
• CVE-2016-0844
• …...

Successfully Evaluated on Most
Popular Phones

GT-I8552 GT-S7572 S4 A7 SM-G5308W

Grand 2 Note 4

Successfully Evaluated on Most
Popular Phones

C8813 P6-U06 Hornor U8825D

Successfully Evaluated on Most
Popular Phones

M7 M8Sw

S720e T528d

Successfully Evaluated on Most
Popular Phones

A630t A788t A938t K30-T

Successfully Evaluated on Most
Popular Phones

Demo

Before Patch: PingPong Root succeed

After Patch: PingPong Root fail

Samsung S4

Outline

• Android Kernel Vulnerability Landscape

• The Problem

– Devices Unpatched Forever/for A Long Period

– Difficult to Patch due to Fragmentation

• The Solution: Adaptive Kernel Live Patching

• Establishing the Ecosystem

Recall the Two Problems

• The long patching chain

– Solved by adaptive live patching

• Capability miss-matching

– To be solved by a joint-effort

Incentives

• Vendors

– More secure products

– More users & sales

• Security Providers

– Reputation

– profits

Transition to Cooperative Patching

Exploit existing
vulnerabilities to gain root

Vendor cooperation & pre-
embedded kernel agent

Establishing the Ecosystem

Vendor qualification

Signature based patch
distribution

Security vetting
procedure

Reputation ranking

Open Cooperative
Patching Ecosystem

To Be Announced

• Ecosystem alliance

• Flexible & easy-to-review patching mechanism

Thanks!

Tim Xia, Longri Zheng, Yongqiang Lu,
Chenfu Bao, Yulong Zhang, Lenx Wei

Baidu X-Lab
May 2016

