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Research Focus

● Everything inside <>
● HTML 2.0 – 5.1
● JavaScript / JScript, VBS
● Plug-ins and Controls
● Editable Rich-Text
● SVG, MathML, XLS, XDR
● CSS, Scriptless Attacks
● ES5 / ES6 
● DOM Clobbering
● No binary stuff. My brain 

cannot :) 

● Offense
● Injection Scenarios
● Active File formats
● Parser Analysis
● Archeology & Legacy Porn

● Defense
● XSS Filter / WAF / IDS
● CSP, DOM-based XSS Filter
● DOM Policies
● DOM + Trust & Control



  

Why?

● HTML on its way to ultimate power
● Websites and Applications
● Instant Messengers and Email Clients
● Local documentation and presentations
● Router Interfaces and coffee-machine UIs
● Medical Devices – according to this source
● Operating systems, Win8, Tizen
● HTML + DOM + JavaScript

● “I mean look at friggin' Gmail!”
● I measured the amount of JavaScript on 27th of Jan. 2013
● It was exactly 3582,8 Kilobytes of text/javascript

http://www.spectrummedical.com/solutions/medical/


  

Defense

● Several layers of defense over the years
● Network-based defense, IDS/IPS, WAF
● Server-side defense, mod_security, others
● Client-side defense, XSS Filter, CSP, NoScript
● “We bypassed, they fixed.”

● A lot of documentation, sometimes good ones too!
● Hundreds of papers, talks, blog posts
● Those three horsemen are covered quite well!



  

Horsemen?
● Reflected XSS

● The White Horse – “Purity”. Easy to 
understand, detect and prevent.

● Stored XSS
● The Red Horse – “War”. Harder to 

detect and prevent – where 
rich-text of benign nature is 
needed.

● DOMXSS
● The Black Horse – “Disease”. 

Harder to comprehend. Often 
complex, hard to detect and 
prevent.



  

“But what's a proper apocalypse without...”



  

   

 
“And there before me was a pale horse! Its rider was named Death, and Hades 

was following close behind him. They were given power over a fourth of the earth 
to kill by sword, famine and plague, and by the wild beasts of the earth.”

   
Revelation 6:8



  

“Enough with the kitsch, let's get technical”



  

Assumptions

● Reflected XSS comes via URL / Parameters
● We can filter input properly

● Persistent XSS comes via POST / FILE
● We can filter output properly
● Tell good HTML apart from bad

● DOMXSS comes from DOM properties
● No unfiltered usage of DOMXSS sources
● We can be more careful with DOMXSS sinks
● We can create safer JavaScript business logic

● Following those rules + handling Uploads properly + setting 
some headers mitigates XSS. Right?



  

That telling apart...

● Advanced filter libraries
● OWASP Antisamy / XSS Filter Project
● HTML Purifier
● SafeHTML
● jSoup
● Many others out there

● Used in Webmailers, CMS, Social Networks
● Intranet, Extranet, WWW, Messenger-Tools, Mail-Clients

● They are the major gateway between
● Fancy User-generated Rich-Text
● And a persistent XSS

● Those things work VERY well!
● Without them working well, shit would break



  

“But what if we can fool those tools? Just ship 
around them. Every single one of them?”



  

Convenience



  

Decades Ago...

● MS added a convenient DOM property
● It was available in Internet Explorer 4
● Allowed to manipulate the DOM...
● … without even manipulating it...
● … but have the browser do the work!

● element.innerHTML
● Direct access to the elements HTML content
● Read and write of course
● Browser does all the nasty DOM stuff internally



  

Look at this

// The DOM way
var myId = "spanID";
var myDiv = document.getElementById("myDivId");
var mySpan = document.createElement('span');
var spanContent = document.createTextNode('Bla');
mySpan.id = mySpanId;
mySpan.appendChild(spanContent);
myDiv.appendChild(mySpan);

// The innerHTML way
var myId = "spanID";
var myDiv = document.getElementById("myDivId");
myDiv.innerHTML = '<span id="'+myId+'">Bla</span>';



  

Compared

● Pro
● It's easy
● It's fast
● It's now a standard
● It just works
● It's got a big 

brother.. outerHTML

● Contra
● Bit bitchy with tables
● Slow on older 

browsers
● No XML
● Not as “true” as real 

DOM manipulation



  

Who uses it?



  

Rich Text Editors

● The basically exist because of innerHTML
● And of course contentEditable
● And they are everywhere

● CMS 
● Webmailers
● Email Clients
● Publishing Tools



  

“Now, what's the problem with all this?”



  

Internals

● We might be naïve and assume:
● ƒ(ƒ(x)) ≡ ƒ(x)
● Idempotency
● An elements innerHTML matches it's actual content

● But it doesn't
● It's non-idempotent and changes!

● And that's usually even very good!
● Performance
● Bad markup that messes up structure
● Illegal markup in a sane DOM tree



  

Examples

● We have a little test-suite for you
● Let's see some examples

● And why non-idempotency is actually good

IN: <div>123 OUT: <div>123</div>

IN: <Div/class=abc>123 OUT: <div class="abc">123</div>

IN: <span><dIV>123</span> OUT: <span><div>123</div></span>

http://html5sec.org/innerhtml


  

Funny Stuff

● So browsers change the markup
● Sanitize, beautify, optimize
● There's nothing we can do about it
● And it often helps
● Some funny artifacts exist...

● Comments for instance
● Or try CDATA sections for a change...

IN: <!-> OUT: <!----->

IN: <!--> OUT: <!---->

IN: <![CDATA]> OUT: <!--[CDATA]-->



  

“And what does it have to do 
with security again?”



  

It was back in 2006...

● .. when a fellow desk-worker noticed a 
strange thing. Magical, even!



  

The Broken Preview

● Sometimes print preview was bricked
● Attribute content bled into the document
● No obvious reason...

● Then Yosuke Hasegawa analyzed the problem 
● One year later in 2007
● And discovered the first pointer to mXSS



  

Now let's have a look

● DEMO
● Requires IE8 or older

http://html5sec.org/innerhtml


  

IN:  <img src="foo" alt="``onerror=alert(1)" />

OUT: <IMG alt=``onerror=alert(1) src="x">



  

Pretty bad

● But not new
● Still, works like a charm!

● Update: A patch is on the way!
● Update II: Patch is out!

● But not new
● Did you like it though?
● Because we have “new” :)



  

Unknown Elements

● Again, we open our test suite
● Requires IE9 or older
● Two variations – one of which is new

● The other discovered by LeverOne



  

IN: <article xmlns="><img src=x onerror=alert(1)"></article>

OUT: <?XML:NAMESPACE PREFIX = [default] ><img src=x 
onerror=alert(1) NS = "><img src=x onerror=alert(1)" 
/><article xmlns="><img src=x onerror=alert(1)"></article>



  

IN:  

<article xmlns="x:img src=x 
onerror=alert(1) ">

OUT: 

<img src=x onerror=alert(1) 
:article xmlns="x:img src=x 
onerror=alert(1) "></img src=x 
onerror=alert(1) :article>



  

Not Entirely Bad

● Few websites allow xmlns
● Everybody allows (or will allow) <article> though
● Harmless HTML5
● Alas it's a HTML4 browser – as is IE in older document 

modes
● Wait, what are those again?
● <meta http-equiv="X-UA-Compatible" content="IE=IE5" />
● Force the browser to fall-back to an old mode
● Old features, old layout bugs... 
● And more stuff to do with mutations



  

“Now for some real bad things!”



  

Style Attributes

● Everybody loves them
● It's just CSS, right?
● XSS filters tolerate them
● But watch their content closely!

● No CSS expressions
● No behaviors (HTC) or “scriptlets” (SCT)
● Not even absolute positioning... 
● ...or negative margins, bloaty borders



  

Let's have a look

● And use our test suite again
● All IE versions, older Firefox



  

IN: <p style="font-family:'\22\3bx:expression(alert(1))/*'">

OUT: <P style="FONT-FAMILY: ; x: expression(alert(1))"></P>



  

“And there's so many variations!”

And those are just for you, fellow conference attendees, 
they are not gonna be on the slides

So enjoy!



  

HTML Entities

● Chrome messed up with <textarea>
● Found and reported by Eduardo

● Firefox screwed up with SVG

<svg><style>&ltimg src=x onerror=alert(1)&gt</svg>

● IE has problems with <listing>
● <listing>&ltimg src=x onerror=alert(1)&gt</listing>

● Let's have another look again and demo...

● Also...text/xhtml! 
● All CDATA will be decoded!
● That's also why inline SVG and MathML add more fun



  

Who is affected?

● Most existing HTML filters and sanitizers
● Thus the software they aim to protect
● HTML Purifier, funny, right?
● JSoup, AntiSamy, HTMLawed, you name it!
● Google Caja (not anymore since very recently)

● All tested Rich-Text Editors
● Most existing Web-Mailers

● This includes the big ones
● As well as open source tools and libraries

● Basically anything that obeys standards...
● .. and doesn't know about the problem



  



  



  



  

Wait... it's encoded!

<p 
style="font-family:'foo&amp;#x5c;27&am
p;#x5c;3bx:expr&amp;#x65;ession(alert(

1))'">

Yep. Encoded. But does it matter?



  

Wait... it's encoded!

<p 
style="font-family:'foo&amp;#x5c;27&am
p;#x5c;3bx:expr&amp;#x65;ession(alert(

1))'">

Yep. Encoded. But does it matter?

NO!
mXSS mutations work recursively!

Just access innerHTML twice! For your health!



  



  

How to Protect?
● Fancy Websites

● Enforce standards mode
● Avoid getting framed, use 

XFO
● <!doctype html>
● Use CSP
● Motivate users to upgrade 

browsers
● Avoid SVG and MathML

● Actual Websites
● Patch your filter!
● Employ strict white-lists
● Avoid critical characters in 

HTML attribute values
● Be extremely paranoid about 

user-generated CSS
● Don't obey to standards
● Know the vulnerabilities

And for Pentesters? 
Inject style attributes + backslash or ampersand and 

you have already won. 
Nothing goes? Use the back-tick trick.



  

Alternatives

● mXSS Attacks rely on mutations
● Those we can mitigate in the DOM
● Behold... TrueHTML

● Here's a small demo
● We intercept any innerHTML access
● And serialize the markup... XML-style
● Mitigates a large quantity of attack vectors
● Not all though

● Know thy CDATA sections
● Avoid SVG whenever possible
● Inline-SVG is the devil :) And MathML isn't much better...

http://html5sec.org/trueHTML
http://jsbin.com/ocecec/1


  

Takeaway?

● So, what was in it for you?
● Pentester: New wildcard-bug pattern
● Developer: Infos to protect your app
● Browser: Pointer to a problem-zone to watch
● Specifier: Some hints for upcoming specs



  



  

Wrapping it up

● Today we saw
● Some HTML, DOM and browser history
● Some old yet unknown attacks revisited
● Some very fresh attacks
● A “pentest joker”
● Some guidelines on how to defend
● The W3C's silver bullet. For 2015 maybe.



  

The End

● Questions?
● Comments?
● Can I have a drink now?

● Credits to 
● Gareth Heyes, Yosuke Hasegawa, LeverOne, 
● Eduardo Vela, Dave Ross, Stefano Di Paola
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