

Schema less

“ACID” (atomicity,
consistency,
isolation and

durability)

Not using the
relational model

Built for the 21st
century web estates

Running well on
clusters

Open-source

Support

Wide Column
Store /
Column
Families

Hbase Cassandra

Document
Store

MongoDB CouchDB

Key Value /
Tuple Store

Riak Redis

Graph
Databases

Neo4J DEX

No Proper Validation in API Calls

Developers Use them to Develop various Applications

PHP is easy to abuse for Mongo ,Couch, Cassandra.

Written in: C++

Main point: Retains some friendly properties
of SQL. (Query, index)

Protocol: Custom, binary (BSON)

Mongod is the "Mongo Daemon” running
on Port 27017 by Default

Web Interface Runs on 28017

Mongo is the Client Mongod

Uses MongoDB Wire Protocol (TCP/IP
Socket)

Data is Represented using JSON format

Mongo Client Mongo Client

Mongo Server

Mongo Client

Mongo Client Mongo Client

Mongo Server

Mongo Client

Sniffing,Enumeration,JS Injection,DOS

JavaScript Attacks mostly used against MongoDB

Vulnerabilities Keep Popping Up

• Run command RCE

Mongo Shell Functions Purely Based on JavaScript

Possible Chances to Overwrite Functions

Resource Exhaustion

Regex Matching ,plenty of JavaScript operations could be used

Mapping SQL Logical Commands to MongoDB

• and mapped to &&

• or to ||

• ‘=‘ to ‘==‘

Blocked

PHP converts parameter with brackets to arrays.

• Already addressed issue in previous researches

Lets Look at Some New vectors

• $exists

• $type

• $all

Mongo on 32 bit environment is too easy for attackers (Max Size limit 2GB)

Use command creates arbitrary schemas on the fly

Attacker could run it continuously exhausting the disk space resource as well as
memory.

var i=1;while(1){use i=i+1;}

• An empty database takes up 192Mb

Backend

CouchDB

Couch FUTIL

Interface
Administrator

Backend

CouchDB

Couch FUTIL

Interface
Administrator

Written in: Erlang

CouchDB document is a JSON object

Schema-Free

Main point: DB consistency, ease of use

Protocol: HTTP/REST

Distributed database system

Runs on Default Port : 5984,Binds to loopback interface by default

Client uses REST API to communicate with the Backend

Futon Web Interface

http://www.json.org/

Admin Party = Game Over.

Auth Cookie Sniffable

Credentials Send over Unencrypted Channel

XSPA attacks in Replication (limited to port web server ports)

XSS,HTML Injection in Futon Interface

DOS (Versions on 1.5 and below),File Enumeration attacks

XSS at the token interface

HTML injection can be used by attackers to lure the victim to other sites.

XSPA Attack can be used in the replication to check whether port is open or
not

Blind File Name Enumeration possible within the Replication

Defaults to Expire within 10 min

Attacker gaining access would want to use these 10 min Fruitfully

NoSQL Framework kicks in with automation session grabbing and dumping
necessary info.

Uses Curl Library to send the requests to the API

Un validated PHP APPS could result in calling Arbitrary API Call
Execution

Download PHP on Couch:

https://github.com/dready92/PHP-on-Couch/

http://redis.io/commands/eval
http://redis.io/commands/evalsha

 Sample Command
ename-command CONFIG l33tshit

 rename-command CONFIG "“

A framework of one of its Kind

Open Source, Written In Python

• I am not a hardcode coder(Bugs are prone )

Documented API’s

Code Download:nosqlproject.com

mailto:feedback@nosqlproject.com

