
Biting into the
forbidden fruit

Lessons from trusting Javascript crypto

Krzysztof Kotowicz, Hack in Paris, June 2014

About me
• Web security researcher

• HTML5

• UI redressing

• browser extensions

• crypto

• I was a Penetration Tester @ Cure53

• Information Security Engineer @ Google

Disclaimer: “My opinions are mine. Not Google’s”. 
Disclaimer: All the vulns are fixed or have been publicly disclosed in the past.

Introduction

JS crypto history
• Javascript Cryptography Considered Harmful 

http://matasano.com/articles/javascript-
cryptography/

• Final post on Javascript crypto 
http://rdist.root.org/2010/11/29/final-post-on-
javascript-crypto/

http://matasano.com/articles/javascript-cryptography/
http://rdist.root.org/2010/11/29/final-post-on-javascript-crypto/

JS crypto history
• It’s not needed!

• Implicit trust in the server

• SSL / TLS required

• It’s dangerous!

• Any XSS can circumvent the code

• It’s hard!

• Poor crypto support in the language

• Mediocre library quality

• JS crypto is doomed to fail!

Doomed to fail?

https://www.mailvelope.com/https://crypto.cat/ http://openpgpjs.org/

Multiple crypto primitives libraries, symmetric &
asymmetric encryption, TLS implementation, a few
OpenPGP implementations, and a lot of user applications
built upon them. Plus custom crypto protocols.

https://www.mailvelope.com/
https://crypto.cat/
http://openpgpjs.org/

Action plan
• Look at the code

• Find the vulnerabilities

• Understand the root cause

• Compare to native crypto

JS crypto vulns in the wild
• Language issues

• Caused by a flaw of the language

!

• Web platform issues

• “The web is broken”

Language issues

Language issues matter

if (you_think_they_dont)!
 goto fail;!
! goto fail;

Javascript in a glance
• a dynamic language

• a weakly typed language

• with prototypical inheritance

• with a global object

• and a forgiving parser

It’s a flexible language
• Code in 6 characters only!

!

!

!

!

• alert(1), obviously

[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!!
[]+[])[+!+[]]][([][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]
+!+[]+!+[]]+(!![]+[])[+!+[]]]+[])[!+[]+!+[]+!+[]]+(!![]+[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+
[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]])[+!+[]+[+[]]]+([][[]]+[])[+!+[]]+
(![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[+!+[]]+([][[]]+[])[+[]]+([][(![]+[])[+[]]+([![]]+[][[]])[+!
+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]]+[])[!+[]+!+[]+!+
[]]+(!![]+[])[+[]]+(!![]+[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]
+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]])[+!+[]+[+[]]]+(!![]+[])[+!+[]]]((![]+[])[+!+[]]+(![]+[])[!+[]+!+[]]
+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]+(!![]+[])[+[]]+(![]+[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]
+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]])[!+[]+!+[]+[+[]]]+[+!+[]]+
(!![]+[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[!+[]+!+[]+!+

[]]+(!![]+[])[+!+[]]])[!+[]+!+[]+[+[]]])()

Weak typing
• A lot of gotchas & silent type conversions  

!

!

!

• Devs don’t use types. This matters to crypto!

// From wtfjs.com!
!
true == 'true'!
false != 'false'!
!
Math.min() > Math.max()!
!
typeof null == 'object'!
!(null instanceof Object)

http://wtfjs.com

Weak typing
• Cryptocat adventures with entropy 

http://tobtu.com/decryptocat.php

!

!

!

• != 64 random bytes.

• Entropy loss - 512 bits => 212 bits

// Generate private key (64 random bytes)!
var rand = Cryptocat.randomString(64, 0, 0, 1, 0);

"7065451732615196458..."

// Generates a random string of length `size` characters.!
// If `alpha = 1`, random string will contain alpha characters,
// and so on.!
// If 'hex = 1', all other settings are overridden.!
Cryptocat.randomString = function(!
 size, alpha, uppercase, numeric, hex)

http://tobtu.com/decryptocat.php

Magic properties
• Cryptocat - a multiparty chat application

• Check if we don’t yet have the user’s key (=new user).  
Generate shared secrets (hmac key + encryption key)

!

!

• Decrypt incoming message (if you have a secret already)

if (!publicKeys[sender]) {!
 publicKeys[sender] = receivedPublicKey;!
 multiParty.genSharedSecret(sender);!
}

if (sharedSecrets[sender]) {!
 if (message[myName]['hmac'] === HMAC(ciphertext, !
 sharedSecrets[sender]['hmac'])) {!
 message = decryptAES(ct, sharedSecrets[sender]['msg']);!
 return message;!
 }

Magic properties
• Meet __proto__. Always there

!

!

• publicKeys[‘__proto__’] == true, so shared secret is never
generated

• But sharedSecrets[‘__proto__’] == true, so decryption throws
exception

• [CVE 2013-4100] Joining chat as __proto__ breaks chat for
everyone.  
http://www.2ality.com/2012/01/objects-as-maps.html

publicKeys = {one: "1", two: "2"}!
publicKeys['__proto__'] // {}!
Boolean(publicKeys[‘__proto__’]) // true

http://www.2ality.com/2012/01/objects-as-maps.html

Magic properties
• Python has them too!

• Kill an application by submitting a hash algorithm
__delattr__

• http://blog.kotowicz.net/2013/12/breaking-google-
appengine-webapp2.html

http://blog.kotowicz.net/2013/12/breaking-google-appengine-webapp2.html

Silent errors
!

!

• Out-of-bounds array access does not throw error

• At least it returns harmless undefined  
(I‘m looking at you, C)

a = [1];!
a[0] // 1!
a[1000] // undefined. No error!

Unicode fun
• JS strings are unicode, not byte arrays

• String.charCodeAt(index) returns the numeric
Unicode value of the character

• Not a byte value!

• https://speakerdeck.com/mathiasbynens/hacking-
with-unicode

https://speakerdeck.com/mathiasbynens/hacking-with-unicode

16 snowmen attack!

• Reveals AES key by encrypting Unicode and
decrypting the result  
http://vnhacker.blogspot.com/2014/06/why-
javascript-crypto-is-useful.html

☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃☃

http://vnhacker.blogspot.com/2014/06/why-javascript-crypto-is-useful.html

AES

S-BOX

INVERSE S-BOX

INVERSE S-BOX

S-BOX

Encrypting…
function SubBytes(state, Sbox) // state = [9740, 9796, 9743, ...] !
{!
 var i;!
 for(i=0; i<16; i++)!
 state[i] = Sbox[state[i]];!
 return state; // [undefined, undefined, ...]!
}

Implicit type coercion
function MixColumns(state) { // [undefined, undefined, ...]!
 c0 = state[I(0,col)]; // c0 = undefined,...!
 state[I(0,col)] = aes_mul(2,c0) ^ aes_mul(3,c1) ^ c2 ^ c3;!
 return state!
}!
!
function aes_mul(a, b) { // 2, undefined!
 var res = 0;!
 res = res ^ b; // 0 ^ undefined = 0 :)!
}

aes_mul(2,c0) ^ aes_mul(3,c1) ^ c2 ^ c3;!
undefined ^ undefined ^ 0 ^ 0 // 0

AES

0x00, 0x00

0x00, 0x00

Decrypting…
• Decrypt the ciphertext with the same key

• In last round:

!

!

!

• plaintext = key ⊕ [0x52, 0x52, …]

• key = plaintext ⊕ [0x52, 0x52, …]

function SubBytes(state, Sbox) // state = [0, 0, …]!
{!
 var i;!
 for(i=0; i<16; i++)!
 state[i] = Sbox[state[i]];!
 return state; // [0x52, 0x52, …]!
}

Type coercion
CVE-2014-0092 GnuTLS certificate validation bypass  
http://blog.existentialize.com/the-story-of-the-gnutls-bug.html!

!

!

!

• C has no exceptions. Errors were reported as negative
numbers. But callers treated return value as a boolean: 
 

/* Checks if the issuer of a certificate is a!
 * Certificate Authority  
 * Returns true or false, if the issuer is a CA,!
 * or not.!
 */!
static int!
check_if_ca (gnutls_x509_crt_t cert, gnutls_x509_crt_t issuer,!
 unsigned int flags)

if (ret == 0) { /*cert invalid, abort */}

http://blog.existentialize.com/the-story-of-the-gnutls-bug.html

Language issues
• They are not unique to Javascript

• You can overcome them!

• ES 5 strict mode 
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Functions_and_function_scope/Strict_mode

• Type enforcing - e.g. Closure Compiler  
https://developers.google.com/closure/compiler/

• Development practices: tests, continuous integration,
code reviews

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions_and_function_scope/Strict_mode
https://developers.google.com/closure/compiler/

Web platform issues

Web platform
• Javascript code runs in a JS engine…  

*Monkey, v8, Nitro, Chakra, SunSpider

• In an execution environment…  
browser renderer process, server process

• With different APIs available…  
DOM, WebCrypto, browser extension API

• With different restriction/isolation policies…  
Same Origin Policy, CSP, iframe sandbox, extension security
policies

• These conditions are much more important to crypto!

XSS
• Web is full of it

• Any XSS is RCE equivalent for web

• XSS can bypass any crypto code in the same origin

• replace a PRNG

• exfiltrate the key or plaintext

• replace the public key

• There are XSSes in crypto code

XSS
• Mailvelope - DOM XSS in Gmail by sending encrypted

 to the victim

XSS
• [CVE 2013-2259] Cryptocat used client side filtering of

nickname / conversation name.

!

!

!

!

• Chrome extension: CSP, only UI Spoofing

• Firefox extension: XSS = RCE in the OS

RCE in non-JS crypto
• [CVE-2014-3466] A flaw was found in the way

GnuTLS parsed session IDs from ServerHello
messages of the TLS/SSL handshake. A malicious
server could use this flaw to send an excessively
long session ID value, which would trigger a
buffer overflow in a connecting TLS/SSL client
application using GnuTLS, causing the client
application to crash or, possibly, execute arbitrary
code.

Timing side-channels
• OpenPGP.js RSA decryption unpadding

!

!

!

!

!

• This needs to be constant time to avoid Bleichenbacher’s attack  
http://archiv.infsec.ethz.ch/education/fs08/secsem/
Bleichenbacher98.pdf

/**!
 * Decodes a EME-PKCS1-v1_5 padding!
 */!
decode: function(message, len) {!
 if (message.length < len)!
 message = String.fromCharCode(0) + message; // branching!
 if (message.length < 12 || message.charCodeAt(0) !== 0 ||!
 message.charCodeAt(1) != 2) // branching!
 return -1; // early exit!
 var i = 2;!
 return message.substring(i + 1, message.length);!
}

http://archiv.infsec.ethz.ch/education/fs08/secsem/Bleichenbacher98.pdf

Timing side-channels
• Similar problem in Java - JSSE (RSA used in TLS)  

http://www-brs.ub.ruhr-uni-bochum.de/netahtml/
HSS/Diss/MeyerChristopher/diss.pdf

• [CVE-2012-5081] Different error messages

• [CVE-2014-0411] Timing side-channel - random
numbers were generated only on invalid padding

http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/MeyerChristopher/diss.pdf

Direct memory access
• Remember Heartbleed?

• Not a crypto vulnerability, but it allowed to bypass
the encryption by just reading memory

• client sends a large payload length + a tiny
payload

• no bounds check in the server

• server replies with leaked memory contents

Direct memory access
• Thankfully, JS is a memory-safe language. We have

no buffers to overflow…

Direct memory access
• Pwn2Own 2014, Firefox 28, Jüri Aedla  

“TypedArrayObject does not handle the case where ArrayBuffer
objects are neutered, setting their length to zero while still in
use. This leads to out-of-bounds reads and writes into the
Javascript heap, allowing for arbitrary code execution.” 
https://www.mozilla.org/security/announce/2014/mfsa2014-31.html

• Pwnium 4, Chrome 33, geohot (George Hotz)  
https://code.google.com/p/chromium/issues/detail?id=351787 
 
 
 
 

var ab = new ArrayBuffer(SMALL_BUCKET);!
ab.__defineGetter__("byteLength",function(){return 0xFFFFFFFC;});!
var aaa = new Uint32Array(ab);!
// all your base are belong to us

https://www.mozilla.org/security/announce/2014/mfsa2014-31.html
https://code.google.com/p/chromium/issues/detail?id=351787

Direct memory access
• Browsers are an attack surface as well

• network stack

• HTML parser

• JS engine

• Any URL in any tab can trigger an exploit

Browser architecture
• Firefox - single process  

http://lwn.net/Articles/576564/

• IE - multiprocess, sandboxed from OS  
http://blogs.msdn.com/b/ie/archive/2012/03/14/enhanced-protected-mode.aspx

• Chrome - multiprocess, sandboxed from other tabs  
http://www.chromium.org/developers/design-documents/sandbox

http://lwn.net/Articles/576564/
http://blogs.msdn.com/b/ie/archive/2012/03/14/enhanced-protected-mode.aspx
http://www.chromium.org/developers/design-documents/sandbox

Malware problem
• Any malware can circumvent native crypto software

as well. Kernels have vulnerabilities too.

• GnuPG was bypassed by the authorities by simply
installing a keylogger.  
https://www.gnupg.org/faq/gnupg-faq.html#successful_attacks

• For JS crypto - your browser is the OS. Browser
security = host security

• There is one difference though…

https://www.gnupg.org/faq/gnupg-faq.html#successful_attacks

Application delivery
• You don’t install websites

• Code delivery and execution is transparent (drive-
by download)

• Huge code execution playground, running code
separated by Same Origin Policy only

• Roughly half of the users use the browser with any
kind of sandbox

Is JS crypto doomed?
• Create perfect, XSS-free, constant time JS code

• Ensure server will never be compromised

• Put it in a website, serve over HTTPS

• You’re safe until someone uses:

• a browser exploit

• a Same Origin Policy bypass

• How can we fix this?

Extensions 
to the rescue

Browser extension
• Not a plugin (Java, Flash, PDF reader)

• A Javascript application running in privileged execution
environment

• You need to install it

Browser extension
• Secure, signed code delivery

• Better separation from websites than just Same
Origin Policy

• Much smaller attack surface

• Process isolation in Chrome  
http://www.chromium.org/developers/design-
documents/site-isolation

http://www.chromium.org/developers/design-documents/site-isolation

Open problems
• Timing sidechannels are exploitable and hard to fix 

http://sirdarckcat.blogspot.com/2014/05/matryoshka-web-
application-timing.html

• No mlock() equivalent - secrets can be swapped to
disk

• No secure store yet (wait for WebCrypto)

• Extensions silently auto-update

• Lack of full process isolation yet

http://sirdarckcat.blogspot.com/2014/05/matryoshka-web-application-timing.html

Summary
• JS crypto is way better than it used to be

• A lot of perceived “JS crypto flaws” are present in
other languages as well

• The platform issues are much more difficult to
mitigate

• in-website crypto has too large attack surface

• use extensions only

The end
Me: 
http://blog.kotowicz.net, @kkotowicz, krzysztof@kotowicz.net

More vulns: 
https://cure53.de/pentest-report_mailvelope.pdf 
https://cure53.de/pentest-report_openpgpjs.pdf  
https://blog.crypto.cat/wp-content/uploads/2012/11/Cryptocat-2-Pentest-Report.pdf

Thanks to people who helped and inspired 
(in Math.random() order):  
Mario Heiderich, Franz Antesberger, Juraj Somorovsky, Ian
Beer, Ivan Fratric, Eduardo Vela Nava, Thai Duong, Frederic
Braun, Ben Hawkes, Stephan Somogyi, Daniel Bleichenbacher,
Adam Langley, Mathias Biennia

http://blog.kotowicz.net
https://cure53.de/pentest-report_mailvelope.pdf
https://cure53.de/pentest-report_openpgpjs.pdf
https://blog.crypto.cat/wp-content/uploads/2012/11/Cryptocat-2-Pentest-Report.pdf

