ANALOGUE NETWORK SECURITY

The Premise: Hack in Paris, 2015

- I may be right on some stuff. Probably wrong on other bits.
- Analogue is meant to help people think differently.
- This is the Hack in Paris 2015 version, and is subject to all sorts of changes as the book is finished.
- Please send me your ideas.
- Thanks! See you next year.
- For first edition signed copies of the book:

1ST Edition Signed Copies

WHAT'S HE TALKING ABOUT?

Today, we now assume our networks are 'P0wn3d' - already infiltrated by hostiles. You see the 'déjà vu' epic fail of security?

We 'know' that by adding more technology our security problems will go away.

TCP/IP. It was just an experiment. Today, it is the inter-infrastructural foundation of civilization.

Is this any way to run a planet?

I have a few ideas.

ROOT is the root of all cyber-evil, passwords will be the downfall of us all and the game is really about IdM. Security requires a single, interdisciplinary metric for the cyber, physical and human domains. Digital is not binary. And then some.

Learn More & Get an Advance Signed Copy:

ANALOGUENETWORKSECURITY.COM

The World As It Is <Le Sigh>

- Security is Broken. Abysmally so.
- TCP/IP was just an experiment.
 - We run the planet on it.
- Assume the bad guys are inside already.
- We 'know' newer, faster technology will protect networks and data.
 - (Same promises since 1980s)
- If You Can't Measure It, You Can't Manage It.

My Analogue Assessment

- Digital is Not Binary
- Security is Not Static
- No Common Metric: Risk, Security & Privacy
- We "Can't" Measure Security. Or can we?
- Defense > Offense Is 'Almost' Possible

My Political Assessment

- Security Only Keeps the Good Guys Honest.
- Legislation, Regulations and Governance Require *Willingness* to Follow the Rules.
- Here Comes the IoT

• International Cooperation Can Solve Many Security Issues... if, and only if, Technology Comes First. Politics, Second.

Winn As Young TV Repairman

And Color Blind

I Grew Up Analogue Rock'n'Roll: Complex Systems

Analogue: WTF?

Continuously Variable & Dynamic

Is It Analogue?

The Simple Question?	Analogue Thinking	In the sky.	
Lawyer in court: Where was the sun?	Do you want the ecliptic or rectagular equatorial coordinates and to what degree of precision?		
Is the network secure?	Define security and defeine the granulatrity of the time function. Yes.		
Is her hair brown?	The CMYK vales are close to 43, 65, 92, 44 Yes.		
What is the length of the coastline of	Well, it depends upon the length of the measuring device.	1000km	
How tall, long, heavy is something?	.9995kg - 1.0005kg; 1kg +/0005kg	1kg exactly.	
Yoda	Try.	Do or not do.	
Will a lawyer screw you?	> 0, but indeterminate, at all times	Yes, Of course he will	
Minimum Wage	Tie to a regional index and cost of living, with automatic changes on a periodic basis. Shut down Congress for voracious mean-poliitical reasons while people suffer, one screams loud enough.		
Speed Limits	Cops' moods	The law is the law.	
Age verification for drinking	Looks close enough.	Check everyone, every time, even octogenarians.	
Music	Vinyl. Tubes and transistors.	MP3, Fast Fourrier, filters, compression.	
Movies	We see it as continuous movement.	Frames per second, doh! Digital flashing by quickly yields analogue perception.	

Analogue = Continuously Variable

Averaging Quanta: Plank's 'd'

Continua (Not Binary)

Sine Waves: Analogue

The Internet Is Analogue & Alive

The Brain is Analogue

Analogue Bio-Computers (Neural Interface / IoT)

Static Security Models

- Expensive
- Not Prone to Communication/Commerce
- Models from 1970's
 - Bell LaPadula
 - Bibi

Analyze/Decide Prior to

Permission

Fortress Mentality & Risk Avoidance

"Build the walls high enough and the computers are secure."

The Reference Monitor

- Each System Request Is Mediated
- Yes/No Decisions
- Process Halts

System Request Look up ACTs **Halt Processing** NoGo Go/NoGo Deny/Permit Go **Continue Process**

Protect-Detect-Respond' The Original 'Model: 1994

Is The Vault Secure?

Safe Ratings

- This terribly expensive burnished steel vault is secure against:
 - 3200C Oxyacetylene torch for 92 Hrs.
 - 5.2kg of 3.8 Rated TNT

It's About Time

Can You Rate Your Firewall? (0-10)

Why We Can't Rely on Protection

- No Product Guarantees
- Networks are highly dynamic
 - Most protection is highly static.
 - The security posture changes continuously
 - Network maps are 'iffy'. Especially ingress/egress
 - Partner networks are often security suspects.
 - Complexity breeds vulnerability
- New hacks & '0'-Days
- Patches take time
- Improper configuration
- Insiders (Errors & Intent)

How Much Protection Does
The Window Provide (Time)?

What *Can* We Measure?

Reaction

Detection

Time Based Security Formula

- Protection (The glass/bank vault)
- Detection (The sensors and alarms)
- Reaction (The cops)
- Two Analogue Components:
 - Time (Dynamic)
 - > (Versus '=' which is static)

P(t) > D(t) + R(t)

Measure Your Network Security ... Now!

MAD Cold War = Time

Adding It All Up: D_(t) + R_(t)

D + R = 527 Secs.

E = 8.8 Mins

F = 81.3MB. (T-1)

F = 6.7MB (512)

E = .6 Secs

F = 92K (T-1)

F = 7.7K(512)

Evaluating Exposure: E_(t)

- Assume No Protection:
 - If P = 0,
 - Then $E_{(t)} = D_{(t)} + R_{(t)}$
 - If P > 0,
 - Then $E_{(t)} = [P_{(t)} (D_{(t)} + R_{(t)})]$
- Given Total Access to Your Networks -
 - How much 'Value' can be stolen in 1 minute?
 - How about 10 minutes?
 - What about 2 hours?
- Cost in \$ of DOS/DDoS?
- Best-Case Metric of Security

$$\lim_{t\to 0} E_t = \lim_{t\to 0} (D_t) + \lim_{t\to 0} (R_t)$$

Data Evaluation

Stop Treating Networks As Single Objects!

Date Location Server				
If this data is released, modified or destroyed:	Company Proprietary	Employee Private	Customer Private	Partner, Government, Other
The results will be absolutely disasterous with no chance of economic or politcal recovery.				
There will be severe financial, political or other undesirable results, but we will survive.				
but spin doctoring will take care of it.				
Negligible effects, but we still really don't want it to happen.				
Publish it all you want. It's free, please take it!				

Defense in Depth (Yes, but...)

 $P_{(r1)} > D_{(r1)} + R_{(r1)}$

$$P > D + R$$

$$\downarrow$$

$$P(a1) > D(a1) + R(a1)$$

Measuring Which Files Are Targets

```
P > D + R
  If P = 0, then D + R = E
F/BW = T
  BW(mb)/\sim 10 = BW(MB)
1Gb/sec ~ (100MB/Sec)
  F = 100MB
If E > 1sec, or E > T, F is Vulnerable
```


Dim All The Data

I = E/R

T = F / BW

Bandwidth Compression

1 GB sec	Time	Data Extricated	
	1 sec	1 GB	
	1 min	60 GB	
	1 hr	3.6 TB	
			90% reducation in data
100MB sec	Time	Data Extricated	extraction
	1 sec	100 MB	
	1 min	6 GB	
	1 hr	360 GB	
			99% reducation in data
10MB sec	Time	Data Extricated	extraction
	1 sec	10 MB	
	1 min	600 MB	
	1 hr	36 GB	
			99.9% reducation in data
1MB sec	Time	Data Extricated	extraction
	1 sec	1 MB	
	1 min	60 MB	
	1 hr	3.GB	

The Bad Guys Know Math, Too

- Offense: Think
- 1/[P = (D+R)]
- If Defense P > 0
 - then Offense A > P for success,
 - iff (D + R) > P
- If Defense P = 0,
 - then Offense A < (D + R) or A < E (Defense)

Kill Root

A

B

Multiple Admins

- With Multiple Individuals, What Happens to Trust Factor?
- Improves? Worsens?

Admin Weakens Security Trust Factors: 'OR'

- If 2 Admins (OR)
 - Admin 1 and Admin 2 TF = .9 Each
 - Total TF = TF1 * TF2 = .81 (<.9)
- If 2 Admins (OR)
 - Admin 1 TF = .9
 - Admin 2 TF = .5
 - Total TF = .9 * .5 = .45!
- Lower TF than the Weakest Link!

2MR Goal

- Ensure that Administrators Do Not Exceed Authority
- Ensure They Do Not Cause Intentional or Accidental Damage
- Reduce Risk From Insiders With Authority

Two Man Rule: #1

- Admin 1 + Admin 2 = Security Relevant Changes
- Must Have 2 Authorized Admins Prior to Change

Problems With Two Man Rule

- Forces Hierarchal Administration for Security Relevant Changes
 - Good!
- Slows Down Process/Functionality
 - Bad!
- How Do We Achieve Balance?
 - Time, of course!

Do You Trust Your Partner?

Sample Company 100 Somewhere Rd. Nowhere, CA 90000 (111) 111-1111 My Bank 123 Bank Road No. 1003

67-76890

Date 12/31/2012

Pay To The John Smith

\$ 100.00

One Hundred and 00/100

Dollars

John Smith Apt. 3100 1000 Somewhere Rd. Nowhere, KY 42000

Memo: Test Pay Check ...

"00000 100 3" :: 1 234 56 78 9:: 0 1 234 56 78 9

Binary Trust

- Complete Trust is Placed in One Individual Over A Network
- What is Your Trust Factor?

TRUST FACTORS (Analogue)

	1	#2	#2	#1	#1
	Value	Weighting	Weighted	Weighting	Weighted
Criteria	0.0 to 1.0	Factor	Value	Factor	Value
Technical Competence	0.95	75.00%	0.713	6.00%	0.057
Past Job History	0.85	10.00%	0.085	5.00%	0.043
Recommendations	0.9	6.00%	0.054	2.00%	0.018
Vetting Level 1	0.97	1.00%	0.010	5.00%	0.049
Vetting Level 2	0.86	0.00%	0.000	5.00%	0.043
Vetting Level 3	0.65	0.00%	0.000	5.00%	0.033
Years on Current Job	0.5	1.00%	0.005	15.00%	0.075
Miscreant Behavior	1	1.00%	0.010	19.00%	0.190
Psychological Profiling	0.67	1.00%	0.007	8.00%	0.054
Belief Systems	0.77	1.00%	0.008	3.00%	0.023
Weaknesses/Frailties	0.6	1.00%	0.006	9.00%	0.054
Commitment	0.78	1.00%	0.008	11.00%	0.086
Life Goals	0.7	1.00%	0.007	3.00%	0.021
Career Goals	0.7	1.00%	0.007	4.00%	0.028
Total Trust Factor	0.779	100.00%	0.918	100.00%	0.772

OODA Loop (JIT-Supply Chain)

Squeezing the Loop_(t) Time Time

Defense in Depth - OODA

Feedback Is Analogue (Equilibrium vs. Chaos/Tipping Point)

Acoustic

Mechanical

Haptics/Learning

Adding Time Based Security to Protection Products

Process Approval

Reaction Channel

Process Stopped?

If T > x, then R

Stop Clock

Start Clock

TBS Feedback

- Admin 'A' AND Admin 'B' Must Agree, but...
- Security Action Can Occur Before 'B' Agrees
- Saves Time, Increases Exposure & Vulnerability

Using TBS to Enforce 2MR

Admin 1 Request Approval

Admin 1 Request Stopped?

Reaction Channel
If T > x, then R

Stop Admin 2 Clock

Start Admin 2 Clock

Admin 1 Request

Adding TBS to I&A Mechanisms

Start Clock

P = Maximum Window for Authentication.

D = Amount of Time It Takes to Detect a User's Sign-on

R = Amount of Time It Takes to Sever a Connection

I&A Request

Adding TBS to Access Control

Process Approval

Reaction Channel

Process Stopped?

Stop Clock

Start Clock

P = Time To Provide Legitimate Access To Resources

D = Time To Detect

R = Time To Respond

Process Request

Fundamental 'Bit' of Feedback

(a) Logic diagram

SR	Q Q'	
10	10	5
0.0	1.0	(after S=1, R=0)
0 1	0 1	
0.0	0 1	(after S=0, R=1)
1.1	0.0	R0078-5-1-102-226 (1) 8 (1) 6

(b) Truth table

Basic flip-flop circuit with NOR gates

Adding Analogue Feedback (Time)

T-AND Gate Truth Table

A = Set	B = Approve	B(t)	Q = Enable
0	0	OFF	0
0	0	t>0	0
0	0	t = 0	0
1	0	OFF	1
1	0	t > 0	1
1	0	t = 0	0
1	1	OFF	1
1	1	t > 0	1
1	1	t = 0	1
0	1	N/A	0
0	1	N/A	0
0	1	N/A	0

How Do You Launch A Nuclear Missile?

Launch a Nuke Circuit

Go Out of Band (OOB)

Version 4 bits	IHL 4 bits	Services Type 8 bits	Total Length 16 bits	
	ldentificati 16 bits	on	Flags Fragmentation Offset 13 bits	
11/05/00/00/00	To Live bits	Protocol 4 bits	Header Checks um 16 bits	
	Source Address 32 bits			
Destination Address 32 bits				
Options Padding		Padding		

O.O.B. - Time Based Escalation APT: 400+ Days... Seriously?

As Sensors ρ , $[D_t + R_t] > 0$ Common OOB Security Protocol

Sample Reaction Matrix

Reaction Matrix			
		Desired	Measured
Detected Event (Anomaly)	Chosen Reaction	Time	Time
3 Bad Password Attempts	Log and Notify Admin	1 sec	2.4 secs
3 Bad Password Attempts	Turn off Account/Notify Admin	1 sec	.94 secs
Mulitple Port Scan	Initiate Trace Route	250ms	1.5 secs
Internal User - Audit Bahavior #1	Involve HR Immediately		
Ping of Death	Kill the Bastard :-)		
Syn-Ack Attack	Reaction # 23		
Mail Bombs	Reaction # 81		
Firewall Breach Attempt	Autofilter Source	100ms	2.7 secs
Traffic 2X Anticipated	Log and Notify Admin		
Multiple Site Attack	Shut Down Network	3 secs	2 Days
Shut Down \$ Server	Isolate Network	1 min	2.4 hours

What events matrix build

Single Reaction Channel

Reaction Matrix: R₁....R_n

Detection in Depth

Solving Denial of Service: OOB Comm

- 1. Detect Attack
- 2. React
- 3. Contact ISP
- 4. Out-of-Band Comm
- 5. Filter Attack @ISP

- 2. Process/Validate Comm
- 3. Filter Attack
- 4. Establish Primary Channel

- 1. Email Bombs
- 2. Bandwidth Filling Spam
- 3. Other Denial of Service

Target Victim

Getting at the Source of DoS/CnC/Botnet

Out of Band Analogue Security Detection in Depth & Reaction Channel

Apply 'Negative' Time in Sensor & Reaction Based Networks

- Write (Input)
- Delay Time
- Read (Output)

Use Delay Lines to match D(t) + R(t) or T-AND Gates

Optimize for
$$\lim_{t>0} E_t = \lim_{t>0} (D_t) + \lim_{t>0} (R_t)$$

Time Difference < 0, thus perfecting security.

Virtual Queue Stability Theorem:

Recall: $Q_i(t+1) = max[Q_i(t) + y_i(t), 0]$

Theorem: $Q_i(t)/t \rightarrow 0$ implies $\overline{y}_i \leq 0$.

Proof: $Q_i(\tau+1) = \max[Q_i(\tau) + y_i(\tau), 0]$ $\geq Q_i(\tau) + y_i(\tau).$

Thus: $Q_i(\tau+1) - Q_i(\tau) \ge y_i(\tau)$ for all τ .

Use telescoping sums over τ in $\{0, ..., t-1\}$:

$$Q_{i}(t) - Q_{i}(0) \ge \sum_{\tau=0}^{t-1} y_{i}(\tau).$$

Divide by t and take limit as $t \rightarrow \infty$.

What Else Can Analogue Network Security Do For You?

- Encourage International Cooperation
- Measure NW Security ... Now!
- Talk to Risk Folks
- Added Resilience
- Stop Bots
- Malware Scanning w/NW-Delay Line
- Stop Click Through Infections (NW-DL)
- IoT End Point 'Intelligence'
- Improved Mobile/Remote Security
- Enhanced Two Factor

I have not figured it all out yet...

Analogue Network Security Tenets

Nothing is Absolute ('0' or '1') Digital is Not Binary Dynamic Approach (vs. Static) Time is the Security Metric All Data (NWs) Are Not Equal Security is Fractal **Use Trust Factors** Apply Two Man(+) Rule Feedback/OODA Apply Detection in Depth Sensor Based Granularity OOB Comm Fundamental New Logic Elements

Comments? Questions? Responses?

Winn Schwartau

- www.AnalogueNetworkSecurity.Com
- +1 727 393 6600
- CEO/Founder
- TheSecurityAwarenessCompany.Com
- Winn@TheSecurityAwarenessCompany.com

facebook.com/TheSACompany

twitter.com/SecAwareCo

linkedin.com/company/the-security-awareness-company

The Security Awareness Company

Entertaining. Educational. Effective

Winn Schwartau, Founder & CEO +1.727.393.6600