
Mathematical model  
of input validation  
vulnerabilities and attacks 

Ivan Novikov, Wallarm 



@d0znpp (twitter, facebook, etc.) 

Web application security researcher 

Bug hunter 

Author of “SSRF bible” (http://bit.ly/SSRF_bible) 

Wallarm CEO (https://wallarm.com) 

About 



A problem of terminology 

CWE 

WASC 

OWASP 

... 

 

X: I found XSS! 
Y: HTML injection? 
X: !!!!%^@^#%^%@!! 

X: I found XXE! 
Y: XML injection? 
X: !!!!%^@^#%^%@!! 

X: I found CRLF injection! 
Y: Can you exploit it as splitting for 
XSS injection? Or just open-redirect? 
X: !!!!%^@^#%^%@!! 



1930s 



von Neumann (Princeton) Harvard 

1940s 



> SELECT id FROM users WHERE login=’admin’ AND password=’123456’ 

< OK 

 

> SELECT id FROM users WHERE login=? AND password=? 

> admin 

> 123456 

< OK 

“Common bus” in a client-server model 



> SELECT id FROM users WHERE login=’admin’ AND password=’123456’ 

< OK 

 

> SELECT id FROM users WHERE login=? AND password=? 

> admin 

> 123456 

< OK 

“Common bus” in a client-server model 
 

Harvard 

von Neumann (Princeton) 



Which conclusions? 

Data and 
instructions 
How to systemize it? 



As always, mathematics can help us! 





oi 



oi 

oj 



V-objects of Kj type injection for O definition 

Exists o in O have V-objects not in Kj-type AND 

Exists another o in O have V-objects in Kj-type 



V-objects of Kj type execution for O definition 

All o in O have V-objects in Kj-type 



Implementations 

Turing machine 

Formal grammars 

Logic flows 

DNA 

Viruses 

... 



Example #1. XML instructions execution  

POST /xmlrpc HTTP/1.1 

… 

<?xml version=”1.0”?> 

<!DOCTYPE [<!ENTITY % a SYSTEM “http://...”> %a; %o; %l;]> 

<a>test</a> 



Example #1. XML external entities injection 

POST /xmlrpc HTTP/1.1 

… 

<?xml version=”1.0”?> 

<!DOCTYPE [<!ENTITY % a SYSTEM “http://...”> %a; %o; %l;]> 

<a>test</a> 



No precedents (regexps, fingerprints) anymore for: 

IDS/IPS (such as WAF) 

Fuzzers 

DAST 

... 

And what? What does it do in practice? 



libinjection — open source library to detect SQL injection based on tokenizer 

Only first 5 tokens 

Token fingerprints for all known attacks (about 9k) 

Hardcoded tokenizer — hard to maintain 

 

It seems to be a good idea to mark each token as “data” or “instruction”.  
As a result, it’ll be possible to detect attacks without signatures! 

First steps 



http://pastebin.com/8i40qQAx 

http://pastebin.com/Wy0fhegr 

http://pastebin.com/7zd51x0h 

 

 

NEW! Bypasses for mod_security, libinjection and other WAFs  
by @sergey_lakantar , @lightos , @d0znpp , @NGalbreath , @black2fan 

Parser/tokenizer bugs provides bypasses anyway 



And finally... More syntaxes! 

libdetection PoC is available at https://github.com/wallarm now 

./lib/sqli: 

CMakeLists.txt  sqli.c   sqli.h   sqli_lexer.re2c
 sqli_parser.y 

./include/: 

detect.h  detect_parser.h  queue.h 

 

Bison grammar 
(BNF like) 

re2c lexer 
definitions 

interface for 
your parsers 

external 
interface for 
libdetection 







Just PoC. Grammar and lexer are simple! 

Some tests 

/dev/random strings (average length 255 bytes) 

i7-4710HQ (1 core used) 

libinjection wallarm PoC (libdetection) 

/dev/random (255b aver.len) 391k/s 953k/s (+243%) 

libinjection ./data/* attacks 530k/s 539k/s (~ the same) 

AAA...x1024 182k/s 200k/s (+9%) 



Thanks! 

@wallarm, @d0znpp 
https://github.com/wallarm 

research 


