
Browser	Fuzzing	with	a	Twist	
(and	a	Shake)	

Jeremy	Brown,	2015	



Agenda	

I.   Introduc*on	
I.   Target	Architecture	
II.   Infrastructure	Notes	

II.   ShakeIt	
I.   Current	Tooling	
II.   Internals	
III.   IncubaHon	Results	

III.   Conclusion	



#whoami	

•   Jeremy	Brown	
–   Independent	researcher	/	consultant	
–  Formerly	of	MicrosoN	

•  Windows/Phone/Xbox	Security	
•   Malware	ProtecHon	Center	

–  Also,	Tenable	
•   Nessus	
•   RE	patches	



What	I’m	not	covering	

•   Comprehensive	browser	fundamentals	
–   Just	enough	to	get	your	feet	wet	

•   Looking	for	bugs	outside	of	rendering	engines	
–  There’s	plenty	of	other	aWack	surface,	but	this	one	
is	really	juicy	&	oNen	no	user	interacHon	required	

•   Sandbox	escapes	
–  This	is	needed	post-compromise	of	renderer	





What	I’m	covering	

•   The	fuzzing	engine	part	of	the	puzzle	
–  But	ShakeIt	is	not	a	fuzzer,	it	is	a	mutator	

•   Working	with	grammar-based	parsing	engines	
–  Not	specific	to	browsers,	but	they’re	a	primary	
target	

•   Overall	setup	you	need	to	do	so	effecHvely	
–  But	not	claiming	I	fuzz	as	well	as	Ben	Nagy	
–  A	lot	of	hard	lessons	learned	



Why	

•   Share	the	research	instead	of	just	le_ng	it	sit	
on	my	box	
–  Projects	oNen	fade	away	aNer	incubaHon,	but	are	
more	valuable	in	collaboraHon	

•   Not	many	talks	detail	the	process	and	how	the	
engine	actually	works	
–  Most	engines	are	not	rocket	science	
–  Fuzzing	really	has	no	rules,	any	method	fair	game	



AWack	Surface	Overview	



Credit:	
Chris	Rolf	/	LeafSR	(now	Yahoo!)		

hWp://blog.leafsr.com/2012/09/09/google-naHve-client-aWack-surface-and-vulnerabiliHes-part-4/	



Reference:	
“Inside	Adobe	Reader	Protected	Mode	-	Part	1	-	Design”	–	Security	@	Adobe	

hWp://blogs.adobe.com/security/2010/10/inside-adobe-reader-protected-mode-part-1-design.html	



Fuzzing	OpHons	

•   GeneraHon	

Reference:	hWp://www.peachfuzzer.com	



Fuzzing	OpHons	

•   MutaHon	
–  Zzuf	is	the	canonical	example	here	

Reference:	hWp://caca.zoy.org/wiki/zzuf	



Fuzzing	OpHons	

•   Code-assisted	(eg.	sub-evoluHonary)	
–  American	Fuzzy	Lop	

Reference:	hWp://lcamtuf.coredump.cx/afl/	



Fuzzing	OpHons	

Reference:	hWp://lcamtuf.coredump.cx/afl/	



Infrastructure	



Pieces	to	the	Puzzle	

•   A	complete	fuzzing	framework	has	
–  Fuzzing	Engine	
–  System	Harnesses	
–  Scaling	Infrastructure	
–  Target-specific	Support	
–  Helpers	



Pieces	to	the	Puzzle	

•   Fuzzing	Engine	
–  Generator	per	specificaHons	
–  Mutator	based	on	parHcular	algorithms	
–   InstrumentaHon	for	code-assisted	fuzzing	



Pieces	to	the	Puzzle	

•   Local	System	Harnesses	
–  Debug	harness	to	catch	crashes	
–  Filesystem	monitor	for	interesHng	read/write	
–  Dedicated	and	high	performance	database	server	

•   Or	SSD	for	fast	access	to	local	sqlite	db	



Pieces	to	the	Puzzle	

•   Scaling	Infrastructure	
–  High-performance	machines	with	hypervisors	
–  Clusters	in	a	master/slave	setup	
–  An	Army	of	Droids	(eg.	jduck)	
–  UHlizing	the	online	cloud	providers	



Pieces	to	the	Puzzle	

•   Target-specific	Support	
–  File	store	for	templates	(eg.	html,	xml,	pdf)	

•   Client	to	add	new	templates	/	remove	bad	ones	

•   WinAppDbg	
–  Great	framework,	very	versaHle	
–  Provides	a	ton	of	opHons	for	instrumentaHon	
–  Run	into	interesHng	issues	someHmes,	eg.	
boWleneck	with	db	server	/	aWach	memory	errors	



Pieces	to	the	Puzzle	

•   Helpers	
–  Pause/Restart	support	
–  AutomaHc	repro	/	PoC	generaHon	
–  Data	failure	backup	mechanisms	
–  Minset	support	
–   InstrumentaHon	/	Code	Coverage	



Agenda	

I.   IntroducHon	
I.   Target	Architecture	
II.   Infrastructure	Notes	

II.   ShakeIt	
I.   Current	Tooling	
II.   Internals	
III.   IncubaHon	Results	

III.   Conclusion	



Current	Tooling	

•   Cross_fuzz	
–  Cross-document	DOM	binding	fuzzer	by	lcamtuf	
–  Similar	concept	to	ShakeIt	as	it	either	selects	or	
reuses	input	fragments	

•   Fuzzinator	
–  Tokenizes	a	collecHon	of	input	and	builds	new	
tests	from	those	

References:	
hWp://lcamtuf.coredump.cx/cross_fuzz/	

hWp://browser.sed.hu/blog/20141023/fuzzinator-reloaded	



Current	Tooling	

•   Jsfunfuzz	
–   JavaScript	fuzzer	from	Jesse	Ruderman	
–  Uses	generaHonal	method	to	create	interesHng	JS	

•   LangFuzz	
–  Grammar-based	fuzzer	by	Mozilla	/	Saarland	Uni	
–  UHlizes	the	ANTLR	suite	for	parsing	
–  Like	Cross_fuzz,	it	can	reuse	input	fragments	

References:		
hWps://github.com/MozillaSecurity/funfuzz/blob/master/js/jsfunfuzz/README.md	

hWps://www.st.cs.uni-saarland.de/publicaHons/files/holler-usenix-2012.pdf	



DeviaHons	from	ShakeIt	

•   DicHonary	
–  Defining	a	dicHonary	of	valid	tokens	and	replacing	
them	with	either	randomly	generated	or	oracle	
input	

•   NesHng	
–  DuplicaHng	or	mulHplying	tokens	to	create	nesHng	
in	random	or	strategic	locaHons	



ShakeIt	Algorithm	



High-level	Diagram	



How	it	works	

•   CollecHon	of	tokens	or	“changeables”	
–  Data	
–  PosiHon	

•   Switch	the	data	a	random	posiHons	
•   Fix	it	all	back	up	and	generate	new	test	case	
•   Idea	is	simple,	but	implementaHon	is	more	
complex	



Process	

•   Step	1	
–  Feed	it	templates	(HTML,	XML,	JS,	PDF	+	JS,	etc)	
–  Can	handle	simple	or	complex	input	



ImplementaHon	Details	

•   Consume	template	
–  Modes	for	HTML/JS	or	PDF/JS	

•   Call	Shake.It	
–   It	calls	Token.Find	to	find	all	the	tokens	
–  We	need	at	least	(2)	to	perform	mutaHon	
–  Token.Find	uses	extensive	set	of	regex’s	



ImplementaHon	Details	

•   Token.Match	successful,	save	it	and	conHnue	
•   Once	complete,	Shake.Shuffle	all	the	tokens	
–   Iterate	from	the	end,	choosing	random	index	and	
removing	items	from	the	pool	unHl	exhausHon	



ImplementaHon	Details	

•   ANer	Shuffle,	now	build	out	the	mutaHon	
–  Find	each	shuffled	posiHon,	insert	new	data	and	
append	all	other	template	content	appropriately	



ImplementaHon	Details	

•   Write	to	output	and	repeat	n	iteraHons!	
–  We	use	.NET	threads	to	uHlize	compuHng	power	
–  SHA1	for	*unique	filenames	

	
	
	
•   *	We	don’t	care	about	collisions	here	J	



Example	Template	





Fuzzing	Strategy	

•   Tries	to	“confuse”	the	rendering	engine	
•   Mixes	types,	parameters,	values,	objects	
•   Tries	to	put	the	browser	in	a	weird	state	and	
force	it	to	make	bad	decisions	
–  “Shaking	the	memory	corrupHon	tree”	



Mutated	Examples	









Process	

•   Step	2	
–  Store	mutated	collecHon	on	file	or	web	server	
–  Make	it	accessible	to	a	browser	



Process	

•   Step	3	
–  Setup	target	with	harness,	iterate	over	collecHon	
–  Store	results	in	database	for	sorHng,	repros	on	
network	share	for	debugging	promising	crashes	



ImplementaHon	

•   WriWen	in	C#	
–  Algorithm	is	portable	though	

•   Available	aNer	this	talk	



IncubaHon	



IncubaHon	Results	

•   InteresHng	Chrome/Opera	crashes	
–  Sadly	hard	to	save	repros	per	infrastructure	issues	
–  Could	not	determine	if	crashes	can	from	render	
bugs	or	aWach/synchronizaHon	issues	



IncubaHon	Results	

•   MulHple	crashes	in	WebKit/GTK+	
–  Only	2	/	4	repro’d	
–  Suspected	invalid	access	on	garbage	collecHon	



IncubaHon	Results	

•   Unremarkable	crash	in	KHTML	
–  ConHnuous	memory	allocaHons	and	copies	



IncubaHon	Results	

•   Likely	exploitable	memory	corrupHon	bug	in	
Netsurf	(popular	embedded	device	browser)	
–  CorrupHon	of	internal	structure	pointer	
–  Triggered	by	mutated	tag	property	



IncubaHon	Results	

•   InteresHng	crash	in	Phonon	(VLC	@	web)	
–  Triggered	by	parsing	mulHmedia	content	/	tags	



Challenges	/	Lessons	Learned	

•   Comprehensive	fuzzing	harnesses	enable	a	
smooth	process	

•   Without	a	complete	system,	it’s	tough	to	be	
successful	
–  Bandwidth,	resources	or	tooling	are	boWlenecks	



Agenda	

I.   IntroducHon	
I.   Target	Architecture	
II.   Infrastructure	Notes	

II.   ShakeIt	
I.   Current	Tooling	
II.   Internals	
III.   IncubaHon	Results	

III.   Conclusion	



Future	Work	

•   Enable	ShakeIt	in	scalable	environment	OR	
•   Port	it	to	exisHng	fuzzing	frameworks	
–   Joxean’s	Nightmare	Fuzzer	
–  <insert	your	custom	fuzzing	framework	@	home>	
–  Perhaps	even	a	Metasploit	auxiliary	module	



Conclusion	

•   Fuzzing	is	more	than	a	mutaHon	engine	
–  Strategy	and	infrastructure	maWer	too	

•   Investment	in	tooling	is	paramount	
–  But	don’t	micro-manage	ROI!	

•   More	complexity	==	more	fuzzing	bugs	
–  Code	review	for	complex	operaHons	is	expensive	
–  Manually	pen-tesHng	is	great	for	logic	bugs	
–  Does	anyone	seeing	so>ware	becoming	simpler?	



Conclusion	

•   Sandboxes	cannot	save	you	from	bugs	
–  You	just	need	+1	more	bug	

•   SDL	cannot	save	you	from	bugs	
–  Too	much	old	code,	too	much	new	code,	not	
enough	eyes	or	interested	people	to	throw	at	it	

•   MiHgaHons	cannot	save	you	from	bugs	
–  They	only	make	them	+n	days	harder	to	exploit	

•   Managed	code	is	a	posi*ve	step	forward	



The	End	

	
	

QuesHons?	


