
Practical Firmware Reversing
and Exploit Development for

AVR-based Embedded Devices

Alexander @dark_k3y Bolshev

Boris @dukeBarman Ryutin

; cat /dev/user(s)

• Alexander Bolshev (@dark_key), Security
Researcher, Ph.D., Assistant Professor @ SPbETU

• Boris Ryutin (@dukeBarman), radare2 evangelist,
Security Engineer @ ZORSecurity

Agenda

Hour 1
• Part 1: Quick RJMP to AVR + Introduction example

Hours 2-3:
• Part 2: Pre-exploitation
• Part 3: Exploitation and ROP-chains building
• Part 4: Post-exploitation and tricks

Hour 4:
• Mitigations
• CFP! (Powered by Roman Bazhin)

Disclaimer:
1) Workshop is VERY fast-paced.
2) Workshop is highly-practical

3) You may encounter information
overflow

If you have a
question, please
interrupt and ask

immediately

Image Credit: Marac Kolodzinski

Part 1: What is AVR?

AVR

• Alf (Egil Bogen) and Vegard (Wollan)’s RISC processor

• Modified Harvard architecture 8-bit RISC single-chip microcontroller

• Developed by Atmel in 1996 (now Dialog/Atmel)

Image: https://de.wikipedia.org/wiki/Atmel AVR

AVR is almost everywhere

• Industrial PLCs and gateways

• Home electronics: kettles, irons, weather stations, etc

• IoT

• HID devices (ex.: Xbox hand controllers)

• Automotive applications: security, safety, powertrain and
entertainment systems.

• Radio applications (and also Xbee and Zwave)

• Arduino platform

• Your new shiny IoE fridge ;)

AVR inside industrial gateway

Synapse IoT module with Atmega128RFA1 inside

Philips Hue Bulb

http://www.eetimes.com/document.asp?doc_id=1323739&image_number=1

AVR inside home automation dimmer

Harvard Architecture

Harvard Architecture

• Physically separated storage and signal pathways for instructions and
data

• Originated from the Harvard Mark I relay-based computer

Image: https://en.wikipedia.org/wiki/Harvard architecture

Modified Harvard architecture…

…allows the contents of the instruction memory to be accessed as if it were data1

1but not the data as code!

Introduction example:
We’re still able to exploit!

AVR “features”

AVR-8

• MCU (MicroController Unit) -- single computer chip designed for
embedded applications

• Low-power

• Integrated RAM and ROM (SRAM + EEPROM + Flash)

• Some models could work with external SRAM

• 8-bit, word size is 16 bit (2 bytes)

• Higher integration

• Single core/Interrupts

• Low-freq (<20MHz in most cases)

Higher Integration

• Built-in SRAM, EEPROM an Flash

• GPIO (discrete I/O pins)

• UART(s)

• I2C, SPI, CAN, …

• ADC

• PWM or DAC

• Timers

• Watchdog

• Clock generator and divider(s)

• Comparator(s)

• In-circuit programming and debugging support

AVRs are very different

• AtTiny13

• Up to 20 MIPS Througput at 20 MHz

• 64 SRAM/64 EEPROM/1k Flash

• Timer, ADC, 2 PWMs, Comparator,
internal oscillator

• 0.24mA in active mode, 0.0001mA in
sleep mode

AVRs are very different

• Atmega32U4

• 2.5k SRAM/1k EEPROM/32k Flash

• JTAG

• USB

• PLL, Timers, PWMs, Comparators,
ADCs, UARTs, Temperatures sensors,
SPI, I2C, … => tons of stuff

AVRs are very different

• Atmega128

• 4k SRAM/4k EEPROM/128k Flash

• JTAG

• Tons of stuff:…

In the rest of the workshop we will focus on this chip

Why Atmega128?

• Old, but very widespread chip.

• At90can128 – popular analogue for CAN buses in automotive
application

• Cheap JTAG programmer

• Much SRAM == ideal for ROP-chain construction training

Let’s look to the architecture of Atmega128…

Ok, ok, let’s simplify a bit

Image: http://www.cs.jhu.edu/~jorgev/cs333/usbkey/uC_3.JPG

Note: code is separated from data

Memory map

Memory: registers

• R1-R25 – GPR

• X,Y,Z – pair “working”
registers, e.g. for memory
addressing operations

• I/O registers – for accessing
different “hardware”

Memory: special registers

• PC – program counter, 16-bit register

• SP – stack pointer, 16-bit register (SPH:SPL)

• SREG – status register (8-bit)

Memory addressing

• SRAM/EEPROM – 16-bit addressing, 8-bit element

• Flash – 16(8)-bit addressing, 16-bit element

LPM
command!

Memory addressing directions

• Direct to register

• Direct to I/O

• SRAM direct

• SRAM indirect (pre- and post- increment)

• Flash direct

Datasheets are your best friends!

Interrupts

• Interrupts normal process of code
execution for handling something
or reacting to some event

• Interrupt handler – procedure to
be executed after interrupt;
address stored in the interrupt
vector

• Examples of interrupts:
• Timers
• Hardware events
• Reset

AVR assembly

In a very quick
manner

Instruction types

• Arithmetic and logic

• Bit manipulation/test

• Memory manipulation

• Unconditional jump/call

• Branch commands

• SREG manipulation

• Special (watchdog, etc)

Instruction mnemonics

mov r16,r0 ; Copy r0 to r16

out PORTA, r16 ; Write r16 to PORTA

16-bit long
“Intel syntax” (destination before source)

A bit more about architecture

Fuses and Lock Bits

• Several bytes of permanent storage

• Set internal hardware and features
configuration, including oscillator
(int or ext), bootloader, pin, ability to
debug/programm, etc.

• 2 lock bits controls programming
protection.

AVR bootloader – what is it?

• Part of code that starts BEFORE RESET interrupt.

• Could be used for self-programmable (i.e. without external device)
systems, in case you need to supply firmware update for your IoT
device.

• Bootloader address and behavior configured via FUSEs.

• BLB lock bits controls bootloader ability to update application and/or
bootloader parts of flash.

AVR bootloaders

• Arduino bootloader

• USB bootloaders (AVRUSBBoot)

• Serial programmer bootloaders (STK500-compatible)

• Cryptobootloaders

• …

• Tons of them!

Watchdog

• Timer that could be used for interrupt or reset device.

• Cleared with WDR instruction.

http://ardiri.com/blog/entries/20141028/watchdog.jpg

Development for AVR

Atmel studio

AVR-GCC

• Main compiler/debugger kit for the platform

• Used by Atmel studio

• Use “AVR libc” -- http://www.nongnu.org/avr-libc/

• Several optimization options, several memory models

Other tools

• Arduino

• CodeVision AVR

• IAR Embedded workbench

Debugging AVR

JTAG

• Joint Test Action Group (JTAG)

• Special debugging interface added to a chip

• Allows testing, debugging, firmware manipulation and boundary
scanning.

• Requires external hardware

JTAG for AVRs

AVR JTAG mkI

AVR JTAG mkII

AVR Dragon

AVR JTAGIce3

Atmel ICE3

Avarice

• Open-source interface between AVR JTAG and GDB

• Also allow to flash/write eeprom, manipulate fuse and lock bits.

• Could capture the exeuction flow to restore the firmware

• Example usage:

avarice --program --file test.elf --part atmega128 --jtag /dev/ttyUSB0 :4444

AVR-GDB

• Part of “nongnu” AVR gcc kit.

• Roughly ported standard gdb to AVR platform

• Doesn’t understand Harvard architecture, i.e. to read flash you will
need to resolve it by reference of $pc:

(gdb) x/10b $pc + 100

Simulators

• Atmel Studio simulator

• Proteus simulator

• Simavr

• Simulavr

VM access:
Login: radare

Password: radare

Real hardware
cd /home/radare/workshop/ex1.1

avarice --mkI --jtag /dev/ttyUSB0 -p -e --file build-crumbuino128/ex1.1.hex -g :4242

avr-gdb

Communication: cutecom or screen /dev/ttyUSB1 9600

Simulator
cd /home/radare/workshop/ex1.1_simulator

simulavr -P atmega128 -F 16000000 –f build-crumbuino128/ex1.1.elf

avr-gdb

Ex 1.1: Hello world!

Real hardware
cd /home/radare/workshop/ex1.2

avarice --mkI --jtag /dev/ttyUSB0 -p -e --file build-crumbuino128/ex1.2.hex -g :4242

avr-gdb

Ex 1.2: Blink!

AVR RE

Reverse engineering AVR binaries

Pure disassemblers:

• avr-objdump – gcc kit standard tool

• Vavrdisasm -- https://github.com/vsergeev/vavrdisasm

• ODAweb -- https://www.onlinedisassembler.com/odaweb/

“Normal” disassemblers:

• IDA Pro

• Radare

https://github.com/vsergeev/vavrdisasm

IDA PRO: AVR specifics

• Incorrect AVR elf-handling

• Incorrect LPM command behavior

• Addressing issues

• Sometimes strange output

...

• However, usable, but “with care”

Radare2

• Opensource reverse engineering framework (RE, debugger, forensics)

• Crossplatform (Linux,Mac,Windows,QNX,Android,iOS, …)

• Scripting

• A lot of Architectures / file-formats

• …

• Without habitual GUI

Radare2. Tools

• radare2

• rabin2

• radiff2

• rafind2

• rasm2

• r2pm

• rarun2

• rax2

• r2agent

• ragg2

• rahash2

• rasign2

Radare2. Using

• Install from git
git clone https://github.com/radare/radare2
cd radare2
sys/install.sh

• Packages (yara, retdec / radeco decompilers, …):
r2pm -i radare2

• Console commands
r2 -d /bin/ls – debugging
r2 –a avr sample.bin – architecture
r2 –b 16 sample.bin – specify register size in bits
r2 sample.bin –i script – include script

https://github.com/radare/radare2

Radare2. Basic commands

• aaa – analyze
• axt – xrefs
• s – seek
• p – disassemble
• ~ - grep
• ! – run shell commands
• / – search
• /R – search ROP
• /c – search instruction
• ? – help

Radare2. Disassembling

• p?

• pd/pD - dissamble

• pi/pI – print instructions

• Examples:

> pd 35 @ function

Radare2. Options

• ~/.radarerc

• e asm.describe=true

• e scr.utf8=true

• e asm.midflags=true

• e asm.emu=true

• eco solarized

Radare2. Interfaces

• ASCII – VV

• Visual panels – V! (vim like controls)

• Web-server – r2 -c=H file

• Bokken

Training kit content
AVR JTAG mkI

Atmega128 custom
devboard

ESP8266 “WiFi to serial”

Arduino (not included)

Part 2: Pre-exploitation

You have a device. First steps?

Decide
what you

want

Determine
target

platform

Search for
I/O

point(s)

Search for
debug

point(s)

Acquire
the

firmware

Fuzz
and/or
static

analysis

Let’s start with a REAL example

• Let’s use training kit board as an example.

• Imagine that you know nothing about it

• We will go through all steps, one by one

What we want?

At first, decide what you want:

• Abuse functionality

• Read something from EEPROM/Flash/SRAM

• Stay persistant

C
o

m
p

lexity

Determine target platform

• Look at the board and search for all ICs…

Atmega128 16AUCP2102

ESP8266EX

Digikey/Octopart/Google…

Search for I/O(s)

USB

Antenna

UART

External connectors

External connectors

Search for I/O(s): tools

Jtagulator

Bus pirate Saleae logic analyzer Arduino

Search for debug interface(s)
ISP

JTAG

Search for debug interface(s): tools

Jtagulator
Arduino + JTAGEnum

Or cheaper

JTAGEnum against
Atmega128 demoboard

Search for debug & I/O: real device

Ethernet

Button

LEDs

Connector ICS bus

2 JTAGs
ISPs

Acquire the firmware

• From vendor web-site

• Sniffing the update process

• From device

Acquire the firmware: sniff it!

Acquire the firmware: JTAG or ISP

• Use JTAG or ISP programmer to connect to the board debug ports

• Use:
• Atmel Studio

• AVRDude

• Programmer-specific software to read flash

$ avrdude -p m128 -c jtagmkI –P /dev/ttyUSB0 \

-U flash:r:”/home/avr/flash.bin":r

Acquire the firmware: lock bits

• AVR has lock bits that protects device from extracting flash

• Removing this lockbits will erase entire device

• If you have them set, you’re not lucky, try to get firmware from other
sources

• However, if you have lock bits set, but JTAG is enabled you could try partial
restoration of firmware with avarice –capture (rare case)

Real hardware

• Read fuses and lock bits using avarice –r

• Acquire firmware using avrdude

Exercise 2.0: Acquire!

Firmware reversing: formats

• Raw binary format

• ELF format for AVRs

• Intel HEX format (often used by programmers)

• Could be easily converted between with avr-objcopy, e.g.:

avr-objcopy -R .eeprom -O ihex test.elf “test.hex"

Real hardware & Simulator
cd /home/radare/workshop/ex2.1

avr-objcopy –I ihex –O binary ex2.1.hex ex2.1.bin

r2 –a avr ex2.1.bin

Ex 2.1: Hello! RE

Arithmetic instructions

add r1,r2 ; r1 = r1 + r2

add r28,r28 ; r28 = r28 + r28

and r2,r3 ; r2 = r2 & r3

clr r18 ; r18 = 0

inc r0 ; r0 = r0 + 1

neg r0 ; r0 = -r0

…

Bit manipulation instructions

lsl r0 ; r0 << 2

lsr r1 ; r1 >> 2

rol r15 ; cyclic shift r16 bits to the

left

ror r16 ; cyclic shift r16 bits to the

right

cbr r18,1 ; clear bit 1 in r18

sbr r16, 3 ; set bits 0 and 1 in r16

cbi $16, 1 ; PORTB[1] = 0

Memory manipulation

mov r1, r2 ; r1 = r2

ldi r0, 10 ; r0 = 10

lds r2,$FA00 ; r2 = *0xFA00

sts $FA00,r0 ; *0xFA00 = r0

st Z, r0 ; *Z(r31:r30) = r0

st –Z, r1 ; *Z-- = r0

std Z+5, r2 ; *(Z+5) = r2

in r15, $16 ; r15 = PORTB

out $16, r0 ; PORTB = r0

…

Same
for LD*

Memory manipulation: stack

push r14 ; save r14 on the Stack

pop r15 ; pop top of Stack to r15

SP = SP - 1

SP = SP + 1

Memory manipulation: flash

lpm r16, Z ; r16 = *(r31:r30), but from flash

Note: code is separated from data

Unconditional jump/call

jmp $ABC1 ; PC = 0xABC1

rjmp 5 ; PC = PC + 5 + 1

call $ABC1 ; “push PC+2”

; jmp $ABC

ret ; “pop PC”

Harvard architecture? But PC goes to DATA
memory

SREG – 8-bit status register

C – Carry flag

Z – Zero flag

N – Negative flag

V – two’s complement oVerflow indicator

S – N ⊕ V, for Signed tests

H – Half carry flag

T – Transfer bit (BLD/BST)

I – global Interrupt enable/disable flag

Conditional jump

cpse r1, r0 ; r1 == r2 ?

PC ← PC + 2 : PC ← PC + 3

breq 10 ; Z ? PC ← PC + 1 + 10

brne 11 ; !Z ? PC ← PC + 1 + 10

…

SREG manipulations

• sec/clc – set/clear carry

• sei/cli – set/clear global interruption flag

• se*/cl* – set/clear * flag in SRGE

Special

• break – debugger break

• nop – no operation

• sleep – enter sleep mode

• wdr – watchdog reset

Real hardware & Simulator
cd /home/radare/workshop/ex2.1

avr-objcopy –I ihex –O binary blink.hex blink.bin

r2 –a avr ex2.1.bin

Ex 2.2: Blink! RE

Questions:
1. Identify main() function and describe it using af

2. Find the LED switching command

3. What type of delay is used and why accurate frequency is required?

4. Locate interrupt vector and init code, explain what happens inside init code.

Reversing: function szignatures

• Most of firmwares contains zero or little strings.

• How to start?

• Use function signatures.

• However, in AVR world signatures may be to vary.

• Be prepared to predict target compiler/library/RTOS and options… or
bruteforce it.

• In R2, signatures are called zignatures.

Embedded code priorities

• Size

• Speed

• Hardware limits

• Redundancy

• …

• …

• …

• …
• Security

Fuzzing specifics

• Fuzzing is Fuzzing. Everywhere.

• But… we’re in embedded world.

• Sometimes you could detect crash through test/debug UART or pins

• In most cases, you could detect crash only by noticing, that device is
no longer response

• Moreover, watchdog timer will could limit your detection capabilities,
because it will reset device.

• So how to detect crash?

Fuzzing: ways to detect crash

• JTAG debugger – break on RESET

• External analysis of functionality – detect execution pauses

• Detect bootloader/initialization code (e.g. for SRAM) behavior with
logic analyzer and/or FPGA

• Detect power consumption change with oscilloscope/DAQ

Sometimes Arduino is enough to detect

• I2C and SPI init sequencies could be captured by Arduino GPIOs

• If bootloader is slow and waits ~1 second, this power consumption
reduction could be reliably detected with cheap current sensor, e.g.:

SparkFun Low Current Sensor Breakout - ACS712
https://www.sparkfun.com/products/8883

+

Let’s proof it.

Part 3: Exploitation

Quick intro to ROP-chains

• Return Oriented Programming

• Series of function returns

• We’re searching for primitives (“gadgets”) ending with ‘ret’ that could
be transformed into useful chain

• SP is our new PC

Notice: Arduino
• The next examples/exercises will be based upon Arduio ‘libc’ (in fact,

Non-GNU AVR libc + Arduino wiring libs)

• We’re using Arduino because it’s complex, full of gadgets but free
(against IAR or CV which are also complex and full of gadgets)

• Also, Arduino is fairly popular today, due to enormous number of
libraries and “quick start” (e.g. quick bugs)

Real hardware
cd /home/radare/workshop/ex3.1

avarice --mkI --jtag /dev/ttyUSB0 -p -e --file build-crumbuino128/ex3.1.hex -g :4242

avr-gdb

Simulator
cd /home/radare/workshop/ex3.1_simulator

simulavr -P atmega128 -F 16000000 –f build-crumbuino128/ex3.1.elf

avr-gdb

Or: node exploit.js

Ex 3.1 – 3.3

Example 3.1: Abusing
functionality: ret to function

Internal-SRAM only memory map

http://www.atmel.com/webdoc/AVRLibcReferenceManual/malloc_1malloc_intro.html

Overflowing the heap => Rewriting the stack!

How to connect data(string/binary) to code?

Standard model: with .data
variables

• Determine data offset in flash

• Find init code/firmware prologue where
.data is copied to SRAM

• Using debugging or brain calculate offset of
data in SRAM

• Search code for this address

Economy model: direct read with
lpm/elpm

• Determine data offset in flash

• Search code with *lpm addressing to this offset

ABI, Types and frame layouts (GCC)

• Types: standard (short == int == 2, long == 4, except for double (4))

• Int could be 8bit if -mint8 option is enforced.

• Call-used: R18–R27, R30, R31

• Call-saved: R2–R17, R28, R29

• R29:R28 used as frame pointer

• Frame layout after function prologue:

incoming arguments

return address

saved registers

stack slots, Y+1 points at the bottom

Calling convention: arguments

• An argument is passed either completely in registers or completely in memory.

• To find the register where a function argument is passed, initialize the register
number Rn with R26 and follow this procedure:

1. If the argument size is an odd number of bytes, round up the size to the next even number.

2. Subtract the rounded size from the register number Rn.

3. If the new Rn is at least R18 and the size of the object is non-zero, then the low-byte of the argument is
passed in Rn. Other bytes will be passed in Rn+1, Rn+2, etc.

4. If the new register number Rn is smaller than R18 or the size of the argument is zero, the argument will
be passed in memory.

5. If the current argument is passed in memory, stop the procedure: All subsequent arguments will also
be passed in memory.

6. If there are arguments left, goto 1. and proceed with the next argument.

• Varagrs are passed on the stack.

Calling conventions: returns

• Return values with a size of 1 byte up to and including a size of 8
bytes will be returned in registers.

• For example, an 8-bit value is returned in R24 and an 32-bit value is
returned R22...R25.

• Return values whose size is outside that range will be returned in
memory.

Example

For

int func (char a, long b);

• a will be passed in R24.

• b will be passed in R20, R21, R22 and R23 with the LSB in R20 and the
MSB in R23.

• the result is returned in R24 (LSB) and R25 (MSB).

Example 3.2: Abusing
functionality: simple ROP

ROP gadget sources

• User functions

• “Standard” or RTOS functions

• Data segment

• Bootloader section

More code => more gadgets

ROP chain size

• It’s MCU

• SRAM is small

• SRAM is divided between register file, heap and stack

• Stack size is small

• We’re low on chain size

• Obviously, you will be limited with 20-40 bytes (~15-30 gadgets)

• However it all depends on compiler and memory model

http://www.atmel.com/webdoc/AVRLibcReferenceManual/malloc_1malloc_tunables.html

Memory maps – external SRAM/separated stack

Memory maps – external SRAM/mixed stack

Detecting “standard” functions

• In AVR we have bunch of compilers, libraries and even RToSes

• So, “standard” function could be vary.

• More bad news: memory model and optimization options could
change function.

• The best approach is try to detect functions like malloc/str(n)cpy and
then find the exact compiler/options that generates such code

• After it, use function signatures to restore the rest of the code

• In Radare2, you could use zignatures or Yara.

Example 3.3: more complex
ROP

Exercise 3.1: ret 2 function
build exploit that starts with ABC but calls switchgreen() function

Exercise 3.3: print something
else

3.3.1) build exploit that prints “a few seconds…”
3.3.2 (homework) build exploit that prints “blink a few seconds…”

Real hardware
cd /home/radare/workshop/ex3.1

in Blink.ino change APNAME constant from “esp_123” to “esp_your3digitnumber”

make

avr-objdump –I ihex –O binary build-crumbuino128/ex3.4.hex ex3.4.bin

avarice --mkI --jtag /dev/ttyUSB0 -p -e --file build-crumbuino128/ex3.4.hex -g :4242

avr-gdb

Connect to “esp_your3digitnumber” and type http://192.168.4.1 in your browser

Simulator
cd /home/radare/workshop/ex3.4_simulator

On 1st terminal: node exploit.js

On 2nd terminal: tail –f serial1.txt

In your browser: http://127.0.0.1:5000

Ex 3.4

http://192.168.4.1/

Example 3.4: Blinking
through HTTP GET

Exercise 3.4: UARTing
through HTTP query

Exercise 3.5: Blinking
through HTTP Post

It’s possible to construct ROP with debugger…
…But if I don’t have some, how I could
determine the overflow point?

•Reverse and use external analysis to find function that
overflows

•Bruteforce it!

Arduino blink (ROP without
debugger)

Part 4: Post-exploitation
&& Tricks

What do we want? (again)

• Evade watchdog

• Work with persistent memory (EEPROM and Flash)

• Stay persistent in device

• Control device for a long time

Evade the watchdog

In most cases, there three ways:

1. Find a ROP with WDR and periodically jump to it.

2. Find watchdog disable code and try to jump to it.

3. Construct watchdog disable code over watchdog enable code.

Set r18 to 0 and JMP here

Fun and scary things to do with memory…

• Read/write EEPROM (and extract cryptography keys)

• Read parts of flash (e.g., reading locked bootloader section) – could
be more useful than it seems

• Staying persistent (writing flash)

Reading EEPROM/Flash

• Ok, in most cases it’s almost easy to find gadget(s) that reads byte
from EEPROM or flash and stores it somewhere.

• We could send it back over UART or any external channel gadgets

• Not always possible, but there are good chances

Writing flash

• Writing flash is locked during normal program execution

• However, if you use “jump-to-bootloader” trick, you could write flash
from bootloader sections.

• To do this, you need bootloader of that has enough gadgets.

• However, modern bootloaders are big and sometimes you could be
lucky (e.g. Arduino bootloader)

• Remember to disable interrupts before jumping to bootloader.

“Infinite-ROP” trick*

1. Set array to some “upper” stack address (A1) and N to some value
(128/256/etc) and JMP to read(..)

2. Output ROP-chain from UART to A1.

3. Set SPH/SPL to A1 (gadgets could be got from init code)

4. JMP to RET.

5. ???

6. Profit!

Don’t forget to include 1 and 3-4 gadgets in the ROP-chain that you are
sending by UART.

*Possible on firmwares with read(array, N) from UART functions and complex init code

Mitigations

Mitigations (software)

• Safe code/Don’t trust external data (read 24 deadly sins of computer
security)

• Reduce code size (less code -> less ROP gadgets)

• Use rjmp/jmp instead of call/ret (ofc, it won’t save you from ret2
function)

• Use “inconvenient” memory models with small stack

• Use stack canaries in your RTOS

• Limit external libraries

• Use watchdogs

• Periodically check stack limits (to avoid stack expansion tricks)

Mitigations (hardware)

• Disable JTAG/debuggers/etc, remove pins/wires of JTAG/ISP/UART

• Write lock bits to 0/0

• Use multilayered PCBs

• Use external/hardware watchdogs

• Use new ICs (more secure against various hardware attacks)

• Use external safety controls/processors

And last, but not least:

• Beware of Dmitry Nedospasov ;)

Part 4: Post-exploitation
&& Tricks

Conclusions

• RCE on embedded systems isn’t so hard as it seems.

• Abusing of functionality is the main consequence of such attacks

• However, more scary things like extracting cipherkeys or rewriting the
flash is possible

• When developing embedded system remember that security also
should be part of the Software DLC process.

Books/links
• Белов А.В. Разработка устройств на микроконтроллерах AVR

• Atmega128 disasm thread: http://www.avrfreaks.net/forum/disassembly-atmega128-bin-file

• Exploiting buffer overflows on arduino: http://electronics.stackexchange.com/questions/78880/exploiting-
stack-buffer-overflows-on-an-arduino

• Code Injection Attacks on Harvard-Architecture Devices: http://arxiv.org/pdf/0901.3482.pdf

• Buffer overflow attack on an Atmega2560: http://www.avrfreaks.net/forum/buffer-overflow-attack-
atmega2560?page=all

• Jump to bootloader: http://www.avrfreaks.net/forum/jump-bootloader-app-help-needed

• AVR Libc reference manual:
http://www.atmel.com/webdoc/AVRLibcReferenceManual/overview_1overview_avr-libc.html

• AVR GCC calling conventions: https://gcc.gnu.org/wiki/avr-gcc

• Travis Goodspeed, Nifty Tricks and Sage Advice for Shellcode on Embedded Systems:
https://conference.hitb.org/hitbsecconf2013ams/materials/D1T1%20-%20Travis%20Goodspeed%20-
%20Nifty%20Tricks%20and%20Sage%20Advice%20for%20Shellcode%20on%20Embedded%20Systems.pdf

• Pandora’s Cash Box: The Ghost Under Your POS: https://recon.cx/2015/slides/recon2015-17-nitay-
artenstein-shift-reduce-Pandora-s-Cash-Box-The-Ghost-Under-Your-POS.pdf

http://www.avrfreaks.net/forum/disassembly-atmega128-bin-file
http://electronics.stackexchange.com/questions/78880/exploiting-stack-buffer-overflows-on-an-arduino
http://arxiv.org/pdf/0901.3482.pdf
http://www.avrfreaks.net/forum/buffer-overflow-attack-atmega2560?page=all
http://www.avrfreaks.net/forum/jump-bootloader-app-help-needed
http://www.atmel.com/webdoc/AVRLibcReferenceManual/overview_1overview_avr-libc.html
https://gcc.gnu.org/wiki/avr-gcc
https://conference.hitb.org/hitbsecconf2013ams/materials/D1T1 - Travis Goodspeed - Nifty Tricks and Sage Advice for Shellcode on Embedded Systems.pdf
https://conference.hitb.org/hitbsecconf2013ams/materials/D1T1 - Travis Goodspeed - Nifty Tricks and Sage Advice for Shellcode on Embedded Systems.pdf
https://recon.cx/2015/slides/recon2015-17-nitay-artenstein-shift-reduce-Pandora-s-Cash-Box-The-Ghost-Under-Your-POS.pdf

Radare2. Links

• http://radare.org

• https://github.com/pwntester/cheatsheets/blob/master/radare2.
md

• https://www.gitbook.com/book/radare/radare2book/details

• https://github.com/radare/radare2ida

http://radare.org/
https://github.com/pwntester/cheatsheets/blob/master/radare2.md
https://www.gitbook.com/book/radare/radare2book/details
https://github.com/radare/radare2ida

Any Q?
@dark_k3y

@dukeBarman

http://radare.org/r/

http://dsec.ru http://eltech.ru http://zorsecurity.ru

Now it’s CTF time!

