Arithmétique

2ième année de DUT Informatique

Version 2.1
3 février 2009

Ph. Roux
2002-2009
Table des matières

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cours magistral</td>
<td>3</td>
</tr>
<tr>
<td>1.1 Divisibilité</td>
<td>4</td>
</tr>
<tr>
<td>1.1.1 L'algorithme d'Euclide</td>
<td>4</td>
</tr>
<tr>
<td>1.1.2 Identités de Bezout</td>
<td>6</td>
</tr>
<tr>
<td>1.1.3 Conversion d’un entier en base p</td>
<td>7</td>
</tr>
<tr>
<td>1.2 Nombres premiers</td>
<td>8</td>
</tr>
<tr>
<td>1.2.1 Théorème de décomposition en facteurs premiers</td>
<td>8</td>
</tr>
<tr>
<td>1.2.2 Recherche de grands nombres premiers</td>
<td>12</td>
</tr>
<tr>
<td>1.3 Congruesnces</td>
<td>19</td>
</tr>
<tr>
<td>1.3.1 Calcul modulo n</td>
<td>19</td>
</tr>
<tr>
<td>1.3.2 Le Théorème Chinois</td>
<td>25</td>
</tr>
<tr>
<td>1.4 L’ensemble $\mathbb{Z}/n\mathbb{Z}$</td>
<td>29</td>
</tr>
<tr>
<td>1.4.1 Structure d’anneau et de corps</td>
<td>29</td>
</tr>
<tr>
<td>1.4.2 Polynômes et résidus quadratiques</td>
<td>34</td>
</tr>
<tr>
<td>1.4.3 Générateurs de $\mathbb{Z}/n\mathbb{Z}$</td>
<td>38</td>
</tr>
<tr>
<td>1.5 Cryptographie</td>
<td>39</td>
</tr>
<tr>
<td>1.5.1 Codage d’un texte ou d’un document</td>
<td>39</td>
</tr>
<tr>
<td>1.5.2 Les principes de la cryptographie moderne</td>
<td>41</td>
</tr>
<tr>
<td>1.5.3 Cryptosystème à clé symétrique : Le DES</td>
<td>44</td>
</tr>
<tr>
<td>1.5.4 Cryptosystème à clé asymétrique : le RSA</td>
<td>45</td>
</tr>
<tr>
<td>1.5.5 Protection des cartes bancaires</td>
<td>48</td>
</tr>
<tr>
<td>1.6 Autres Applications</td>
<td>51</td>
</tr>
<tr>
<td>1.6.1 les fonctions de Hachage</td>
<td>51</td>
</tr>
<tr>
<td>1.6.2 Codes correcteurs d’erreurs</td>
<td>53</td>
</tr>
<tr>
<td>1.7 Aspect historiques</td>
<td>55</td>
</tr>
<tr>
<td>1.7.1 l’arithmétique dans l’antiquité</td>
<td>55</td>
</tr>
<tr>
<td>1.7.2 Pierre de Fermat</td>
<td>55</td>
</tr>
<tr>
<td>1.7.3 Marin Mersenne</td>
<td>56</td>
</tr>
<tr>
<td>1.7.4 Cryptographie</td>
<td>56</td>
</tr>
<tr>
<td>1.7.5 RSA data-security</td>
<td>57</td>
</tr>
<tr>
<td>1.7.6 Le bug du P*ntium</td>
<td>58</td>
</tr>
<tr>
<td>1.7.7 l’histoire de GNUPG</td>
<td>59</td>
</tr>
</tbody>
</table>

Bibliographie | 61
Chapitre 1

cours magistral

L’arithmétique est la partie des mathématiques qui étudie les ensembles

\[\mathbb{N} = \{0; 1; 2; \ldots \} , \ \mathbb{N}^* = \{1; 2; \ldots \} , \ \mathbb{Z} = \{\ldots ; -2; -1; 0; 1; 2; \ldots \} \]

munis des opérations naturelles qui leur sont associées:

- l’addition +
- la multiplication ×
- et la divisibilité |

Ces opérations sont bien sûr indépendantes de la manière dont on représente les nombres entiers. Par défaut on représente les nombres entier en base 10:

\[x = (a_0a_1a_2 \ldots a_na_{n-1})_{10} = \sum_{k=0}^{n} a_k 10^k = a_n \times 10^n + a_{n-1} \times 10^{n-1} + \ldots a_2 \times 10^2 + a_1 \times 10 + a_0 \]

où les chiffres \(a_n \ldots a_1a_0 \) appartiennent à \{0; 1; 2; \ldots 9\} mais on pourrait tout aussi bien travailler dans une base \(p \) quelconque, où la notation des entiers est définie par

\[x = (b_0b_1b_2b_3 \ldots b_{n-1}b_n)_{p} = \sum_{k=0}^{n} b_k p^k = b_n \times p^n + b_{n-1} \times p^{n-1} + \ldots b_2 \times p^2 + b_1 \times p + b_0 \]

où les chiffres cette fois appartiennent à \{0; 1; 2; \ldots p\}. Cela pose un problème pour les bases \(p > 10 \) (les chiffres de 0 à 9 ne suffisent plus). Pour résoudre ce problème on peut utiliser soit des groupements de chiffres soit des lettres pour remplacer les chiffres manquants. Par exemple en Hexadécimal (base 16) on peut utiliser les chiffres:

1; 2; 3; 4; 5; 6; 7; 8; 9; A; B; C; D; E; F

ou

01; 02; 03; 04; 05; 06; 07; 08; 09; 10; 11; 12; 13; 14; 15

alors

\((123456789)_{10} = (11101011110011010010101)_2 = (75BCD15)_{16} \text{ ou } (07051112130105)_{16}\)

La longueur de l’écriture d’un nombre \(x \) en base \(p \) est la partie entière de

\[\ln_p(x) = \frac{\ln(x)}{\ln(p)} \]
1.1 Divisibilité

1.1.1 L’algorithme d’Euclide

Définition 1.1.1
On dit qu’un entier \(a \) divise un autre entier \(b \) si et seulement si il existe un entier \(c \) tel que \(b = a \times c \) ce qu’on note \(a \mid b \). Si \(a \) ne divise pas \(b \) on le note \(a \nmid b \).

Les règles élémentaires de divisibilité :
- \(\forall a \in \mathbb{Z}, \ a \mid a, \ a \mid 0, \ et \ 0 \nmid a \)
- si \(a \mid b \) alors \(\forall c \in \mathbb{Z}, \ a \mid bc \)
- si \(a \mid b \) et \(a \mid c \) alors \(\forall x,y \in \mathbb{Z} \ a \mid bx + cy \)
- si \(a \mid b \) et \(b \mid c \) alors \(a \mid c \)
- si \(a \mid b \) et \(b \mid a \) alors \(a = \pm b \)
- si \(a > 0, \ b > 0 \) et \(a \mid b \) alors \(a \leq b \)

Définition 1.1.2 Étant donné deux entiers \(a \) et \(b \) on note
- \(\operatorname{PGCD}(a,b) \) le plus grand entier naturel qui divise \(a \) et \(b \),
- \(\operatorname{PPCM}(a,b) \) le plus petit multiple commun à \(a \) et \(b \).

Théorème 1.1.3 (Division Euclidienne)
\(\forall a \in \mathbb{Z}, \ b \in \mathbb{N}^*, \ \exists (q,r) \in \mathbb{Z} \times \mathbb{N}^* \) tel que \(a = b \times q + r \) avec \(0 \leq r < b \)

\(q \) est appelé le quotient de \(a \) par \(b \) et \(r \) le reste de la division de \(a \) par \(b \).

Exemple Pour \(a = 17 \), \(b = 9 \), on a \(17 = 9 \times 1 + 8 \implies q = 1, \ r = 8 \). Les autres égalités \(17 = 9 \times 2 - 1 = 9 \times 0 + 17 = 9 \times (-1) + 26 \) ne donnent pas les bonnes valeurs de \((q,r) \) car dans chacun des cas qui précèdent le reste \(r \notin [0,9[\).

\[a \]
\[\begin{array}{ccccccc}
0 & \ldots & |x-1| \times b & q \times b & |x+1| \times b & |x+2| \times b & \mathbb{N}
\end{array} \]

\[r \]

Fig. 1.1 – Preuve de l’existence d’une division Euclidienne.

Preuve :

existence: si l’on découpe l’axe \([0, +\infty[\) en “boîtes” de “taille” \(b \) le nombre \(a \) tombe dans une de ces boîtes, la \(q^\text{ème} \) Cela revient à dire que le nombre \(a/b \) est compris entre les entiers \(q \) et \(q + 1 \), il est alors facile de définir \(r \):

\[\exists q \in \mathbb{N}, \ \frac{a}{b} < q + 1 \Rightarrow qb \leq a < (q + 1)b \Rightarrow 0 \leq a - qb < b \Rightarrow r = a - qb \]
unicité: elle repose sur une démonstration par l’absurde. Supposons donc qu’il existe 2 solutions \((q_1,r_1)\) et \((q_2,r_2)\) alors on a:

\[
a = b \times q_1 + r_1 = b \times q_2 + r_2 \implies b(q_1 - q_2) = r_2 - r_1 \tag{1.1}
\]

et comme les restes sont compris entre 0 et \(b\)

\[
0 \leq r_1 < b \quad \text{et} \quad 0 \leq r_2 < b \implies -b < r_2 - r_1 < b \implies 0 < |r_2 - r_1| < |b| \tag{1.2}
\]

Maintenant on a l’alternative suivante:

- soit \(q_1 = q_2\) et dans ce cas \(r_1 = r_2\) d’après l’équation (1.1)
- soit \(q_1 \neq q_2\) et dans ce cas on trouve une contradiction entre les équations (1.1) et (1.2)

\[
q_1 - q_2 \neq 0 \implies |q_1 - q_2| \geq 1 \implies |r_2 - r_1| = |b||q_1 - q_2| \geq |b|.
\]

seul le premier cas est donc réalisé.

Le calcul du PGCD s’effectue facilement à partir de l’algorithme d’Euclide. Si on suppose que \(a\) et \(b \geq 0\) alors on peut calculer le PGCD\((a,b)\) par divisions Eucliennes successives:

\[
\begin{align*}
a &= b \times q_1 + r_1 \\
b &= r_1 \times q_2 + r_2 \\
r_1 &= r_2 \times q_3 + r_3 \\
&\vdots \\
r_{n-4} &= r_{n-3} \times q_{n-2} + r_{n-2} \\
r_{n-3} &= r_{n-2} \times q_{n-1} + r_{n-1} \\
r_{n-2} &= r_{n-1} \times q_n + r_n \implies \text{PGCD}(a,b) = r_n \\
r_{n-1} &= r_n \times q_{n+1} + 0
\end{align*}
\]

Preuve :

- en remontant la suite d’équations

\[
r_n|r_{n-1} \implies r_{n-1}|r_{n-2} \cdots \implies r_1|a \quad \text{et} \quad b \implies r_n|\text{PGCD}(a,b)
\]

- en descendant la suite d’équations

\[
\text{PGCD}(a,b)|a \quad \text{et} \quad b \implies \text{PGCD}(a,b)|b \quad \text{et} \quad r_1 \cdots \implies \text{PGCD}(a,b)|r_n
\]

donc \(r_n = \text{PGCD}(a,b)!\)

Exemple 1.1.4 [détail d’un exemple avec 48 et 27]

\[
\begin{align*}
48 &= 27 \times 1 + 21 \\
27 &= 21 \times 1 + 6 \\
21 &= 6 \times 3 + 3 \\
6 &= 3 \times 2 + 0 \\
\implies \text{PGCD}(48,27) &= 3
\end{align*}
\]
1.1.2 Identités de Bezout

Théorème 1.1.5 (Identité de Bezout)
Si $a, b \in \mathbb{Z}$ alors il existe $u, v \in \mathbb{Z}$ tels que

$$a \times u + b \times v = \text{PGCD}(a, b).$$

Il faut remarquer que le couple (u, v) dans l’identité de Bezout n’est pas unique! En effet comme $a \times b + b \times (-a) = 0$ on peut ajouter un multiple de b à u et un multiple de a à v. Pour obtenir tous les autres couples solution (u', v') à partir de (u, v) on utilisera les formules suivantes:

$$u' = u + k \frac{\text{PPCM}(a, b)}{a}, \quad v' = v - k \frac{\text{PPCM}(a, b)}{b}, \quad k \in \mathbb{Z}$$

on peut exprimer ces formules avec des PGCD car

$$\text{PPCM}(a, b) = \frac{\text{PPCM}(a, b) \times \text{PGCD}(a, b)}{a \times \text{PGCD}(a, b)} = \frac{ab}{a \times \text{PGCD}(a, b)} = \frac{b}{\text{PGCD}(a, b)}$$

Exemple 1.1.6 Pour $a = 17, b = 9$, on a

$$\text{PGCD}(17, 9) = 1 = 9 \times 2 + 17 \times (-1) = 9 \times 19 + 17 \times (-10) = \ldots.$$

Pour calculer des identités de Bezout on peut utiliser les différentes équations obtenues dans l’algorithme d’Euclide

$$\implies \text{PGCD}(a, b) = r_n \quad \text{étape 0}$$
$$= r_{n-2} - r_{n-1} q_n \quad \text{étape 1}$$
$$= r_{n-4} - r_{n-3} q_n - 2 - (r_{n-3} - r_{n-2} q_{n-1}) q_n \quad \text{étape 2}$$
$$\vdots$$
$$= \text{en fonction de } r_{n-k}, \ldots r_{n-2k} \quad \text{étape } k$$
$$\vdots$$
$$= au + bv \quad \text{étape } n$$

Exemple 1.1.7 [détail d’un exemple avec 48 et 27]

\begin{align*}
48 &= 27 \times 1 + 21 & 3 &= -3 \times 6 + 21 \\
27 &= 21 \times 1 + 6 &= -3 \times (27 - 21) + (48 - 27) \\
21 &= 6 \times 3 + 3 &= -3 \times (2 \times 27 - 48) + 48 - 27 \\
6 &= 3 \times 2 + 0 &= -7 \times 27 + 4 \times 48
\end{align*}

$$\implies 27 \times (-7) + 48 \times 4 = 3 = \text{PGCD}(27, 48)$$
Résolution de l’équation $ax + by = c$

- Calculer le PGCD de a et b via l’algorithme d’Euclide.
- Si PGCD(a,b) ne divise pas c alors l’équation n’a pas de solutions.
- Si PGCD$(a,b)|c$ on cherche une identité de Bezout

 $$ au + bv = \text{PGCD}(a,b). $$

- En multipliant l’identité de Bezout par $c/\text{PGCD}(a,b)$ (qui est bien un entier!) on obtient une solution :

 $$ x_0 = \frac{u \times c}{\text{PGCD}(a,b)}, \quad y_0 = \frac{v \times c}{\text{PGCD}(a,b)}. $$

- À partir de cette solution on obtient toutes les autres solutions (x,y) avec la même méthode que pour les identités de Bezout :

 $$ x = x_0 + \frac{b \times l}{\text{PGCD}(a,b)}, \quad y = y_0 - \frac{a \times l}{\text{PGCD}(a,b)}, \quad l \in \mathbb{Z}. $$

1.1.3 Conversion d’un entier en base p

La méthode la plus efficace pour convertir un entier en base p est la méthode du bit de poids faible. Elle consiste à calculer le dernier chiffre de la représentation du nombre en base p par une division Euclidienne. En effet si

$$ x = (b_nb_{n-1} \ldots b_2b_1b_0)_p = b_n \times p^n + b_{n-1} \times p^{n-1} + \ldots + b_2 \times p^2 + b_1 \times p + b_0 $$

alors

$$ x = (b_nb_{n-1} \ldots b_2b_1b_0)_p = \sum_{k=0}^{n} b_k p^k $$

$$ = b_n \times p^n + b_{n-1} \times p^{n-1} + \ldots + b_2 \times p^2 + b_1 \times p + b_0 $$

$$ = (b_n \times p^{n-1} + b_{n-1} \times p^{n-2} + \ldots + b_2 \times p + b_1) \times p + b_0 $$

$$ = (b_nb_{n-1} \ldots b_2b_1)_p \times p + b_0 $$

donc le reste de la division de x par p est b_0 et on peut réappliquer la méthode au quotient de x par p qui est $(b_nb_{n-1} \ldots b_2b_1)_p$. On peut récapituler la méthode comme ci-dessous :

Écrire x en base p: la méthode du bit de poids faible

- initialisation $x_0 = x$
- à chaque étape on fait la division entière de x_i par p: $x_i = x_{i+1}p + b_i$
 - b_i est donc le reste de la division de x_i par p
 - x_{i+1} est donc le quotient de la division de x_i par p
- il n’est plus nécessaire de continuer dès que $x_i = 0$.

1.2 Nombres premiers

1.2.1 Théorème de décomposition en facteurs premiers

Définition 1.2.1

- On dit que \(a, b \in \mathbb{Z} \) sont premiers entre eux si et seulement si \(\text{PGCD}(a, b) = 1 \).
- On dit que \(p \in \mathbb{N}^* \) est un nombre premier si et seulement si il n’est divisible par aucun entier \(1 < k < p \).
- On appelle \(\mathcal{P} \) l’ensemble des nombres premiers.

Il faut signaler un cas particulier de cette définition : \(p = 1 \) est considéré comme premier avec n’importe quel nombre \(n > 1 \) car \(\text{PGCD}(1, n) = 1 \) comme le montre l’identité de Bezout : \(n \times 1 + 1 \times (1 - n) = 1 \).

La première chose à savoir sur les nombres premiers est qu’il en existe un nombre infini, on pourra donc en trouver d’aussi grands que l’on veut (à condition d’avoir un algorithme efficace pour les générer et les tester!). Ce théorème a été démontré par Euclide.

Théorème 1.2.2 L’ensemble \(\mathcal{P} \) des nombres premiers contient une infinité d’éléments.

Preuve : Supposons que \(\mathcal{P} = \{p_1, p_2, \ldots, p_n\} \) est fini et considérons \(q = p_1 p_2 \ldots p_n + 1 \) alors \(q \) n’est divisible par aucun \(p_i \) donc il est premier et \(q \in \mathcal{P} \). □

Exemple 1.2.3 Cette preuve par l’absurde (donc pas vraiment constructive) permet de trouver une méthode pour engendrer des (facteurs) premiers de plus en plus gros :

\[
2 \in \mathcal{P}, 2 + 1 = 3 \in \mathcal{P}, 2 \times 3 + 1 = 7 \in \mathcal{P}, 2 \times 3 \times 7 + 1 = 43 \in \mathcal{P},
\]

par contre \(2 \times 3 \times 7 \times 43 + 1 = 1807 = 13 \times 139 \notin \mathcal{P} \), mais on abien deux nouveaux facteurs premiers 13 et 139 \(\notin \mathcal{P} \), ensuite \(2 \times 3 \times 7 \times 43 \times 139 + 1 = 3263443 \in \mathcal{P} \),

et \(2 \times 3 \times 7 \times 43 \times 139 \times 3263443 + 1 = 10650056950807 = 547 \times 607 \times 1033 \times 31051 \) on a donc bien des facteurs premiers nouveaux à chaque étape mais pas forcément des nombres premiers et pas forcément en ordre croissant.

Les nombres premiers forment donc une suite \((p_k)_{\mathbb{N}} \) il est de coutume de noter \(p_0 = 1 \) puis \(p_1 = 2 \) (premier nombre premier) \(p_2 = 3, p_4 = 5, p_5 = 7, p_6 = 11 \ldots \). Le théorème suivant est souvent très utile et sa démonstration est caractéristique des raisonnements faisant intervenir les nombres premiers et les relations de divisibilité.

Théorème 1.2.4 (Théorème de Gauss)

si \(a|b \times c \) et \(a \) est premier avec \(b \) alors \(a|c \).

Preuve : Traduisons les données du problème en équations :

- \(a|b \times c \iff \exists k \in \mathbb{Z}, \ bc = ak \)
- \(a \) est premier avec \(b \iff \exists u, v \in \mathbb{Z}, \ au + bv = 1 \)

multiplions l’identité de Bezout par \(c \) puis utilisons la première égalité :

\[
c = acu + bcv = acu + akv = a(cu + kv) \Rightarrow \exists k' = cu + kv \in \mathbb{Z}, \ c = ak' \iff a|c
\]
Le théorème fondamental de ce chapitre est le théorème de décomposition en facteurs premier, simple à énoncer il n’est pas facile à traduire en équation. Euclide à son époque ne disposait pas des notations algébriques suffisantes (puissances, suites, . . .) pour énoncer clairement ce théorème bien qu’il ait certainement compris le théorème de décomposition, puisqu’il en a énoncé toutes les conséquences!

Théorème 1.2.5 (théorème de décomposition en facteurs premier)

Tout entier \(n \in \mathbb{N}, \ n \geq 2 \) *admet une unique décomposition en facteurs premiers :*

\[
n = p_1^{\eta_1} p_2^{\eta_2} \cdots p_k^{\eta_k}
\]

où les entiers \(p_1, p_2, \ldots, p_k \) sont premiers et \(\eta_1, \eta_2, \ldots, \eta_k \geq 0 \)

Preuve : le théorème de décomposition nécessite une démonstration par récurrence :

- \(\mathcal{P}_n \Leftrightarrow \) tous les nombres \(\leq n \) admettent une décomposition unique
- \(\mathcal{P}_2 \) est vraie.
- \(\mathcal{P}_n \Rightarrow \mathcal{P}_{n+1} \)
 - soit \(n + 1 \) est premier et sa décomposition est unique
 - soit \(n + 1 \) est divisible par \(p \), comme \((n + 1)/p \leq n\) on a \((n + 1)/p = p_1^{\eta_1} p_2^{\eta_2} \cdots p_k^{\eta_k}\) admet une décomposition unique et \(n + 1 = pp_1^{\eta_1} p_2^{\eta_2} \cdots p_k^{\eta_k}\) aussi

Cette preuve nous permet de trouver un algorithme pour calculer la décomposition en facteurs premiers d’un entier quelconque :

![Décomposition en nombres premiers](image)

Remarque 1.2.6 On ne sait pas facilement trouver le nombre premier suivant \(p \), alors on fait \(p := p + 1 \). Cependant on est sûr qu’un facteur \(p \) trouvé par l’algorithme est à chaque fois un nombre premier. En effet si \(p = p_1 \times p_2 \) alors \(p_1 \) et \(p_2 \) auront déjà été testé par l’algorithme (car \(p_1, p_2 < p \)) et \(n \) ne pourra plus être divisible par \(p \).

Il est possible d’améliorer cet algorithme en stoppant la recherche du facteur \(p \) dès que \(p > \sqrt{n} \) en effet à une étape donné de l’algorithme \(n \) n’est pas divisible par
les facteurs premiers $q < p$ donc il n’a que des facteurs $q \geq p$. En conséquence si n à au moins 2 facteurs on a que $n \geq p^2 > \sqrt{n^2} = n$ ce qui est impossible! Donc n est forcément un nombre premier.

Exemple 1.2.7 En testant si $p < \sqrt{n}$ on peut réduire un peu le temps de calcul, surtout s’il reste un dernier facteur premier de grande taille:

<table>
<thead>
<tr>
<th>n</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>80360</td>
<td>2</td>
</tr>
<tr>
<td>40180</td>
<td>2</td>
</tr>
<tr>
<td>20090</td>
<td>2</td>
</tr>
<tr>
<td>10045</td>
<td>5</td>
</tr>
<tr>
<td>2009</td>
<td>7</td>
</tr>
<tr>
<td>287</td>
<td>7</td>
</tr>
<tr>
<td>41</td>
<td>arrêt recherche</td>
</tr>
<tr>
<td></td>
<td>à $p = 8 > \sqrt{41}$</td>
</tr>
<tr>
<td></td>
<td>41 (premier)</td>
</tr>
</tbody>
</table>

conclusion : $80360 = 2^3 \times 5 \times 7^2 \times 41$.

un autre exemple simple :

<table>
<thead>
<tr>
<th>n</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>2</td>
</tr>
<tr>
<td>42</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>fin</td>
</tr>
</tbody>
</table>

conclusion : $84 = 2^2 \times 3 \times 7$.

On peut signaler que la décomposition en facteurs premiers permet de retrouver les résultats sur les PGCD et PPCM.

Théorème 1.2.8 Soient a et b deux entiers positifs, on note leurs décompositions en facteurs premiers

$$a = p_1^{\alpha_1} p_2^{\alpha_2} \ldots p_k^{\alpha_k} \quad b = p_1^{\beta_1} p_2^{\beta_2} \ldots p_k^{\beta_k}$$

alors

$$\text{PGCD}(a,b) = p_1^{\min(\alpha_1,\beta_1)} p_2^{\min(\alpha_2,\beta_2)} \ldots p_k^{\min(\alpha_k,\beta_k)},$$

$$\text{PPCM}(a,b) = p_1^{\max(\alpha_1,\beta_1)} p_2^{\max(\alpha_2,\beta_2)} \ldots p_k^{\max(\alpha_k,\beta_k)}$$

en particulier $\text{PGCD}(a,b) \times \text{PPCM}(a,b) = a \times b$.

Exemple 1.2.9 Par exemple $48 = 2^4 \times 3$ et $27 = 3^3 = 2^0 \times 3^3$ donc $\text{PGCD}(48,27) = 2^0 \times 3^1 = 3$ et $\text{PPCM}(48,27) = 2^4 \times 3^3 = 432$ et on a bien

$$\text{PGCD}(48,27) \times \text{PPCM}(48,27) = (2^0 \times 3^1) \times (2^4 \times 3^3) = (2^4 \times 3^1) \times (2^0 \times 3^3) = 48 \times 27$$

La fonction suivante sera utilisé pour le crypto-système RSA. Elle joue un grand rôle en arithmétique et son calcul repose entièrement sur la décomposition en facteurs premiers.

Définition 1.2.10 (la fonction d’Euler) on définit la fonction Φ telle que $\Phi(1) = 1$ et $\Phi(n)$ = le nombre d’entiers premiers avec n et compris entre 1 et $n - 1$

$$\Phi : \mathbb{N}^* \longrightarrow \mathbb{N}^*$$

$$n \quad \longmapsto \quad \Phi(n)$$

10
Exemple 1.2.11 Pour comprendre on peut calculer les premières valeurs de $\Phi(n)$:
- $\Phi(7) = 6$ car 7 est premier, donc premier avec 1,2,3,4,5,6
- $\Phi(10) = 4$ car 10 est premier avec 1,3,7,9
- $\Phi(12) = 4$ car 12 est premier avec 1,5,7,11

par contre si n devient grand il devient très lourd de vérifier pour tout $p < n$ si p est premier avec n.

On a donc besoin d’une formule de calcul efficace pour Φ.

Proposition 1.2.12 (calcul de Φ)

- si p est premier alors $\Phi(p) = p - 1$
- si p est premier et $\alpha \geq 1$ alors $\Phi(p^\alpha) = p^\alpha - p^{\alpha-1} = p^\alpha(1 - \frac{1}{p})$
- si $\text{PGCD}(a,b) = 1$ alors $\Phi(ab) = \Phi(a)\Phi(b)$.
- si $n = p_1^{\eta_1}p_2^{\eta_2} \ldots p_k^{\eta_k}$ alors

$$\Phi(n) = n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \ldots \left(1 - \frac{1}{p_k}\right)$$

Preuve :
- tous les nombres inférieurs à p sont premier avec lui donc il y en a $p - 1 = \Phi(p)$,
- seuls les nombres $p, 2p, 3p, \ldots, p^{\alpha-1}p$ ne sont pas premiers avec p^α et compris entre 1 et p^α. Il y en a donc $p^\alpha - 1$ et le nombre d’entiers premiers avec p^α est $\Phi(p^\alpha) = p^\alpha - p^{\alpha-1}$.
- On considère un nombre q premier avec ab et $q \in [1,ab]$, et les ensembles :
 - $\{r_1, \ldots, r_{\Phi(a)}\}$ = nombres premiers avec a et $< a$
 - $\{s_1, \ldots, s_{\Phi(b)}\}$ = nombres premiers avec b et $< b$

l’idée de base est que si un nombre q est premier avec ab son reste modulo a est premier avec a (idem avec b). En effet sinon on aurait un diviseur commun à a et r, le reste de q/a (soit $q = ak + r$ avec $k \in \mathbb{N}$), ce qui donnerait :

$$\exists d > 1, \ d|a \ et \ d|r \Rightarrow d|ka + r = q$$

ce qui est impossible car d diviserait q et ab! Donc r est un des restes numérotés r_i (et de même pour le reste modulo b qui doit être un des s_j). Donc on a un système de 2 équations dont il faut compter les solutions :

$$\begin{cases} q = r_i + ka \\ q = s_j + k'b \end{cases} \Rightarrow ka + (-k')b = s_j - r_i$$

comme $\text{PGCD}(a,b) = 1$ il existe des solutions à cette équation diophantienne, solutions qui s’écrivent pour chaque couple (r_i, s_j) :

$$\begin{cases} k = k_i + b \times l \\ -k' = -k_j' + a \times l \end{cases} \quad l \in \mathbb{Z} \quad \Rightarrow \quad q = r_i + k_i a + ab \times l$$

on trouve donc une seule solution q dans l’intervalle $[1,ab]$, associée au couple (r_i, s_j), donc il y a autant de solutions que de couple $\rightarrow \Phi(a)\Phi(b)$.
- application des 2 résultats précédents.
Exemple 1.2.13 on peut reprendre les exemples précédents pour voir l’efficacité de la formule :

- $\Phi(7) = \Phi(7^1) = 7 - 1 = 6$
- $\Phi(10) = \Phi(2 \times 5) = 10 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{5}\right) = 10 \times \frac{4}{5} = 4$
- $\Phi(12) = \Phi(2^2 \times 3) = 12 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) = 10 \times \frac{2}{3} = 4$
- $\Phi(60) = \Phi(2^2 \times 3 \times 5) = 60 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{5}\right) = 10 \times \frac{2}{3} \times \frac{4}{5} = 16$

Attention, dans la formule finale, la puissance d’un facteur p dans la décomposition du nombre n n’intervient pas dans le calcul de $\Phi(n)$!

1.2.2 Recherche de grands nombres premiers

Théorème 1.2.14 (théorème de raréfaction) Soit $\pi(x)$ le nombre de nombres premiers inférieurs à x alors on a que

$$\pi(x) \sim \frac{x}{\ln(x)} \iff \lim_{x \to \infty} \frac{\pi(x)}{x/\ln(x)} = 1.$$

Si on note p_n le $n^{\text{ième}}$ nombre premier alors le résultat précédent est équivalent au fait que

$$p_n \sim n \ln(n).$$

Preuve : La répartition des nombres premiers est l’un des phénomènes les plus complexes. Il est très difficile d’obtenir des informations sur la répartition des nombres premiers, l’approche la plus efficace repose sur l’étude de séries. En effet un bon moyen de savoir s’il y a “beaucoup” d’entiers d’une certaine forme u_n est de regarder la série $\sum \frac{1}{u_n}$. Par exemple on peut dire qu’il y a peu de carrés parfaits ($u_n = n^2$) par rapport aux entiers ($u_n = n$) car $\sum_{k=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ converge alors que $\sum_{k=1}^{\infty} \frac{1}{n} = \infty$ diverge. C’est avec ce type d’idées qu’on peut démontrer le théorème de raréfaction des nombres premiers, on va donner une idée des éléments qui peuvent conduire à une preuve (longue et complexe) de ce théorème.

Dans la suite on note \mathcal{P}_n l’ensemble des n premiers nombres premier (rappel $p_n > n$). La question fondamentale est donc : “comment estimer la série $\sum \frac{1}{p_n}$ associée à la suite des nombres premier $(p_n)_{n \geq 1}$?”. Tout repose sur les arguments suivants :

- En utilisant la formule de la série géométrique avec p est un facteur premier puis en faisant le produit sur tous les facteurs premiers p_i plus petit que n on obtient :

$$\left(1 - \frac{1}{p}\right)^{-1} = \sum_{k=0}^{\infty} \frac{1}{p^k} \Rightarrow \prod_{p_i \in \mathcal{P}} \left(1 - \frac{1}{p_i}\right)^{-1} = \prod_{p_i \in \mathcal{P}_n} \left(\sum_{k=0}^{\infty} \frac{1}{p_i^k}\right) = \sum_{k=0}^{\infty} \prod_{p_i \leq n} p_i^k \geq \sum_{q=1}^{n} \frac{1}{q}$$

où $\prod p_i^k$ représente tous les produits possibles de facteurs premiers $p_i \in \mathcal{P}_n$ à des exposants k (différents). On a donc dans l’avant dernière somme au moins tous les entiers $q \leq n$ (car le $n^{\text{ième}}$ nombre premier est $> n$) ce qui justifie la dernière inégalité. On a donc relié un produit de nombres premiers avec la série harmonique $\sum_{q=1}^{n} \frac{1}{q}$.
 Ensuite la série harmonique peut être encadrée par comparaison avec des intégrales (voir le cours d’analyse de première année) ce qui donne :

\[
\sum_{q=1}^{n} \frac{1}{q} \geq \int_{1}^{n} \frac{1}{x} \, dx = \ln(n) \Rightarrow \prod_{p_i \in \mathbb{P}_n} \left(1 - \frac{1}{p_i}\right)^{-1} \geq \ln(n)
\]

Les produits peuvent être transformés en somme par passage au logarithme, en tenant compte de la croissance de la fonction \(\ln \) on obtient :

\[
\ln \left(\prod_{p_i \in \mathbb{P}_n} \left(1 - \frac{1}{p_i}\right)^{-1} \right) = \sum_{p_i \in \mathbb{P}_n} - \ln \left(1 - \frac{1}{p_i}\right) \geq \ln(\ln(n))
\]

Enfin on dispose d’encadrements simples du logarithme népérien

\[
\forall x \in [0, +\infty[, \quad x \leq -\ln(1 - x) \leq x + \frac{x^2}{2}
\]

en les appliquant à l’inégalité précédente on obtient :

\[
\sum_{p_i \in \mathbb{P}_n} \frac{1}{p_i} + \frac{1}{2p_i^2} \geq \sum_{p_i \in \mathbb{P}_n} - \ln \left(1 - \frac{1}{p_i}\right) = \ln \left(\prod_{p_i \in \mathbb{P}_n} \left(1 - \frac{1}{p_i}\right)^{-1} \right) \geq \ln(\ln(n))
\]

En se rappelant que la série \(\sum_{q=1}^{\infty} \frac{1}{q^2} = \frac{\pi^2}{6} \) en sommant seulement sur les \(q = p_i \) premiers et plus petits que \(n \) (donc sur moins de nombres) on obtient que :

\[
0 \leq \sum_{p_i \in \mathbb{P}_n} \frac{1}{2p_i^2} \leq \frac{\pi^2}{12} \Rightarrow \sum_{p_i \in \mathbb{P}_n} \frac{1}{p_i} \geq \ln(\ln(n)) - \sum_{p_i \in \mathbb{P}_n} \frac{1}{2p_i^2} \geq \ln(\ln(n)) - \frac{\pi^2}{12}
\]

on peut donc en conclure que la série \(\sum_{p_i \in \mathbb{P}_n} \frac{1}{p_i} \) diverge ce qui signifie qu’il y a “beaucoup” de nombres premiers. Si on pousse l’analyse plus loin on peut extraire plus d’informations sur la répartition des nombres premiers. D’une manière similaire (mais plus compliquée!) on peut obtenir que \(\sum_{p_i \in \mathbb{P}_n} \frac{1}{p_i} \leq \ln(\ln(n)) + C^\text{ste} \) ce qui conduit à dire que :

\[
\sum_{p_i \in \mathbb{P}_n} \frac{1}{p_i} \approx \ln(\ln(n)) \quad \text{quand} \quad n \to \infty
\]

de là on peut déduire heuristiquement que :

\[
\frac{1}{p_n} = \sum_{p_i \in \mathbb{P}_n} \frac{1}{p_i} - \sum_{p_i \in \mathbb{P}_{n-1}} \frac{1}{p_i} \approx \ln(\ln(n)) - \ln(\ln(n-1)) = \ln \left(\frac{\ln(n-1) - \ln (1 - \frac{1}{n})}{\ln(n-1)} \right)
\]

et en utilisant que \(\ln(1 + x) \approx x \) quand \(x \to 0 \) on peut estimer que :

\[
\frac{1}{p_n} \approx \ln \left(1 + \frac{1}{n \ln(n-1)} \right) \approx \frac{1}{n \ln(n-1)} \approx \frac{1}{n \ln(n)}
\]

ce dernier résultat suggère que le \(n^\text{ième} \) nombre premier \(p_n \) vérifie

\[
p_n \approx n \ln(n) \quad \text{quand} \quad n \to \infty
\]
le théorème de raréfaction en découle par de simples comparaisons: on pose \(f(x) = x \ln(x) \) alors une brève étude de \(f \) montre que \(f \) est bijective de \([1, +\infty[\) dans \([0, +\infty[\) car \(f'(x) = \ln(x) + 1 > 0 \) si \(x \geq 1 \) et \(f(1) = 0 \). En particulier \(f^{-1} \) sera croissante.

Pour montrer que \(f^{-1}(y) \approx \frac{y}{\ln(y)} \) quand \(y \to \infty \) il suffit d’encadrer convenablement \(f(x) \) puis d’appliquer \(f^{-1} \) à cette inégalité. La première est assez simple à obtenir :

\[
\begin{align*}
\frac{y}{\ln(y)} &= \frac{y}{\ln(y)} \times (\ln(y) - \ln(\ln(y))) = y \left(1 - \frac{\ln(\ln(y))}{\ln(y)} \right) < y
\end{align*}
\]

donc \(\frac{y}{\ln(y)} < f^{-1}(y) \). Pour l’autre sens il faut un peut plus de travail :

\[
\begin{align*}
\frac{y}{\ln(y)} \times \frac{1}{1 - \frac{\ln(\ln(y))}{\ln(y)}} &= \frac{y}{\ln(y)} \times \frac{1}{1 - \frac{\ln(\ln(y))}{\ln(y)}} \\
&\times \left(\ln(y) - \ln(\ln(y)) - \ln \left(1 - \frac{\ln(\ln(y))}{\ln(y)} \right) \right) \\
&= y \times \left(1 - \frac{\ln(\ln(y))}{\ln(y)} \right) > y
\end{align*}
\]

donc \(\frac{y}{\ln(y)} \times \frac{1}{1 - \frac{\ln(\ln(y))}{\ln(y)}} > f^{-1}(y) \). Au final on a bien

\[
\begin{align*}
\frac{y}{\ln(y)} \times \frac{1}{1 - \frac{\ln(\ln(y))}{\ln(y)}} > f^{-1}(y) > \frac{y}{\ln(y)} \implies f^{-1}(y) \approx \frac{y}{\ln(y)}
\end{align*}
\]

donc si on sait que \(p_n \approx n \ln(n) = f(n) \) alors \(f^{-1}(p_n) \approx n = \text{le nombre de nombres premier plus petits que } p_n \text{ donc } f^{-1}(n) \approx \frac{n}{\ln(n)} \approx \text{le nombre de nombres premier plus petits que } n \).

\(\Box \)

Le théorème de raréfaction a été conjecturé par Gauss au début du XIXème siècle mais sa démonstration rigoureuse n’a été obtenue qu’à la fin du XIXème siècle (par De La Vallée-Poussin et Hadamard en 1896). Il n’est pas possible d’en donner ici une démonstration simple cependant il est nécessaire de bien comprendre toutes les implications de ce théorème en vue des applications que nous en ferons.

Le théorème 1.2.14 exprime qu’il est difficile de trouver (en cherchant au hasard) de grands nombres premiers. Le tableau ci-dessous donne la probabilité \(\mathbb{P}(a_n \in \mathcal{P}) = \text{de trouver un nombre premier en tirant au hasard un nombre } a_n \approx n \) :

<table>
<thead>
<tr>
<th>(n)</th>
<th>100</th>
<th>1000</th>
<th>10000</th>
<th>. . .</th>
<th>(10^8)</th>
<th>(10^{12})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi(n))</td>
<td>25</td>
<td>168</td>
<td>1229</td>
<td>. . .</td>
<td>5 761 455</td>
<td>3.76 (10^{10})</td>
</tr>
<tr>
<td>(\frac{n}{\ln(n)})</td>
<td>217.14724</td>
<td>144.76483</td>
<td>1085.7362</td>
<td>. . .</td>
<td>5 428 681</td>
<td>3.619 (10^{10})</td>
</tr>
<tr>
<td>(\mathbb{P}(a_n \in \mathcal{P}))</td>
<td>(\approx \frac{n}{\ln(n)})</td>
<td>25%</td>
<td>16.8%</td>
<td>12.3%</td>
<td>. . .</td>
<td>5.7%</td>
</tr>
</tbody>
</table>

Ce fait est d’autant plus contraignant, quand on cherche à générer de grands nombres premiers, qu’il n’existe pas de formule permettant de générer le \(n \text{ième} \) nombre premier ou même seulement un nombre premier d’une taille donnée. Pour
se faire une idée de la faiblesse de l’approximation du \(n \)\(^{\text{ième}} \) nombre premier donné
par le théorème 1.2.14 on peut se référer au tableau suivant dans lequel \(p_n = n \)\(^{\text{ième}} \) nombre premier et \(p'_n = n \ln(n) + n(\ln(\ln(n)) - 1) \) qui est une approximation un peu
plus fine que celle du théorème 1.2.14 (mais aussi peu utile dans la recherche exacte
de nombres premiers) :

<table>
<thead>
<tr>
<th>(n)</th>
<th>(p_n)</th>
<th>(n \ln(n))</th>
<th>(p'_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>3571</td>
<td>3107.304</td>
<td>3520.7554</td>
</tr>
<tr>
<td>1000</td>
<td>7919</td>
<td>6907.7553</td>
<td>7840.4</td>
</tr>
<tr>
<td>1500</td>
<td>12553</td>
<td>10969.831</td>
<td>12454.356</td>
</tr>
<tr>
<td>2000</td>
<td>17389</td>
<td>15201.805</td>
<td>17258.339</td>
</tr>
<tr>
<td>2500</td>
<td>22307</td>
<td>19560.115</td>
<td>22203.12</td>
</tr>
<tr>
<td>3000</td>
<td>27449</td>
<td>24019.103</td>
<td>27259.814</td>
</tr>
<tr>
<td>3500</td>
<td>32609</td>
<td>28561.814</td>
<td>32409.391</td>
</tr>
<tr>
<td>4000</td>
<td>37813</td>
<td>33176.199</td>
<td>37638.352</td>
</tr>
<tr>
<td>4500</td>
<td>43051</td>
<td>37853.247</td>
<td>42936.624</td>
</tr>
<tr>
<td>5000</td>
<td>48611</td>
<td>42585.966</td>
<td>48296.4</td>
</tr>
</tbody>
</table>

Il n’existe donc aucune formule permettant de calculer directement le \(n \)\(^{\text{ième}} \)
nombre premier ou même seulement un nombre premier aussi grand que l’on veut
… pour établir la liste de tous les nombres premiers (inférieur à un certain seuil) on
peut utiliser que l’algorithme d’Ératosthène :

Le crible d’Ératosthène

\[L = (2, 3, \ldots, n) \]
\[k = 2 \]
\[\text{tant que } k \leq \sqrt{n} \text{ faire} \]
\[\begin{align*}
& \text{éliminer tous les multiples de } k \text{ de } L; \\
& k := \text{le premier chiffre supérieur à } k \text{ restant dans } L;
\end{align*} \]
\[\text{fin faire} \]

\[\text{remarque: si } k \text{ est le premier chiffre non souligné et non barré son premier}
\text{multiple non déjà barré est } k^2, \text{ donc si } k > \sqrt{n} \text{ tous les chiffres restant non}
barrés doivent être souligné et l’algorithme est terminé. \]

Le théorème suivant explique pour quoi l’algorithme d’Ératosthène est inutilisable
pour rechercher des nombres premiers de grande taille (plusieurs milliers de chiffres).

Théorème 1.2.15 Le calcul de la liste des nombres premiers plus petits que \(n \) par
l’algorithme d’Ératosthène nécessite un temps de l’ordre de \(n \ln(\ln(n)) \).

\[\text{Preuve : } \] Il faut calculer le nombre d’opérations engendré par l’appel de l’algorithme
d’Ératosthène avec le paramètre \(n \). L’ordre de grandeur de ce nombre est
donné par la série \(\sum_{k=1}^{\sqrt{n}} f(k) \) où \(f(k) \) est le nombre d’opérations effectuées lors d’une
étape de la boucle \text{tant que} \. Lors de cette étape il y a \(n/k \) multiples de \(k \) inférieurs
à n à éliminer donc le nombre d’opérations est

$$\sum_{k=1}^{\sqrt{n}} \frac{n}{k} \approx n \ln(\sqrt{n}) = \frac{1}{2} n \ln(n)$$

une analyse plus fine montre qu’il n’y a d’élimination que si k est premier, donc en utilisant le théorème de rarefaction des nombres premiers on a :

$$\sum_{1 \leq k \leq \sqrt{n}} \frac{n}{k \ln(k)} \sum_{k=1}^{\sqrt{n}} \frac{n}{k \ln(k)} \approx n \ln \left(\frac{\sqrt{n}}{\ln(\sqrt{n})} \right) \approx n \ln(\ln(n))$$

Pour bien comprendre la démonstration précédente il est utile de tester l’algorithme d’Ératosthène pour de petites valeurs de n. Par exemple pour $n = 40$ on verra qu’il suffit d’appliquer l’algorithme jusqu’à $k > \sqrt{40} = 6.324 \cdots > 6$ pour avoir la liste des nombres premiers et qu’on a des éliminations seulement pour $k = 2, 3$ et 5.

initialisation

$\begin{array}{cccccccccccccccc}
2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
28 & 29 & 30 & 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 \\
\end{array}$

étape 1, $k=2$

$\begin{array}{cccccccccccccccc}
2 & 3 & \cancel{4} & \cancel{5} & \cancel{6} & \cancel{7} & \cancel{8} & \cancel{9} & \cancel{10} & \cancel{11} & \cancel{12} & \cancel{13} & \cancel{14} \\
15 & 16 & 17 & \cancel{18} & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 \\
28 & 29 & \cancel{30} & 31 & \cancel{32} & 33 & \cancel{34} & 35 & \cancel{36} & 37 & \cancel{38} & 39 & \cancel{40} \\
\end{array}$

étape 2, $k=3$

$\begin{array}{cccccccccccccccc}
2 & 3 & \cancel{4} & \cancel{5} & \cancel{6} & \cancel{7} & \cancel{8} & \cancel{9} & \cancel{10} & \cancel{11} & \cancel{12} & \cancel{13} & \cancel{14} \\
15 & 16 & \cancel{17} & \cancel{18} & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 \\
28 & 29 & \cancel{30} & 31 & \cancel{32} & 33 & \cancel{34} & 35 & \cancel{36} & 37 & \cancel{38} & \cancel{39} & \cancel{40} \\
\end{array}$

étape 3, $k=5$

$\begin{array}{cccccccccccccccc}
2 & 3 & \cancel{4} & \cancel{5} & \cancel{6} & \cancel{7} & \cancel{8} & \cancel{9} & \cancel{10} & \cancel{11} & \cancel{12} & \cancel{13} & \cancel{14} \\
15 & 16 & \cancel{17} & \cancel{18} & 19 & 20 & \cancel{21} & \cancel{22} & \cancel{23} & \cancel{24} & \cancel{25} & \cancel{26} & \cancel{27} \\
28 & 29 & \cancel{30} & 31 & \cancel{32} & 33 & \cancel{34} & 35 & \cancel{36} & 37 & \cancel{38} & \cancel{39} & \cancel{40} \\
\end{array}$

fin, $k=7$

$\begin{array}{cccccccccccccccc}
2 & 3 & \cancel{4} & \cancel{5} & \cancel{6} & \cancel{7} & \cancel{8} & \cancel{9} & \cancel{10} & \cancel{11} & \cancel{12} & \cancel{13} & \cancel{14} \\
15 & 16 & \cancel{17} & \cancel{18} & 19 & 20 & \cancel{21} & \cancel{22} & \cancel{23} & \cancel{24} & \cancel{25} & \cancel{26} & \cancel{27} \\
28 & 29 & \cancel{30} & 31 & \cancel{32} & 33 & \cancel{34} & 35 & \cancel{36} & 37 & \cancel{38} & \cancel{39} & \cancel{40} \\
\end{array}$

la liste des nombres premiers plus petits que 40 est donc :

$2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37$

à défaut de pouvoir trouver tous les nombres premiers on verra qu’il existe certains nombres d’une forme particulière dont la primalité est plus facile à tester.
Un autre résultat surprenant sur les nombres premiers est le suivant :

Théorème 1.2.16 La probabilité que deux nombres a et b choisis au hasard soient premiers entre eux est \(\frac{6}{\pi^2} \approx 60.8\% \).

Là encore il n’est pas possible de donner une démonstration rigoureuse de ce résultat dans ce cours mais on peut en donner une euistique convaincante

Preuve : Il faut d’abord définir ce qu’est cette probabilité. Choisir au hasard des nombres entiers signifie qu’on les tire au hasard avec une loi uniforme, mais cela n’a de sens que dans un ensemble fini comme l’intervalle \([1,n]\). On va donc poser que la probabilité que l’on cherche est la limite quand \(n \to \infty \) des probabilités de tirer au hasard dans \([1,n]\) deux nombres premiers entre eux :

\[
\lim_{n \to \infty} \mathbb{P}(\text{PGCD}(a,b) = 1 | a,b \leq n)
\]

Plus généralement on va considérer \(p_k = \mathbb{P}(\text{PGCD}(a,b) = k) \) pour \(k \in [1,n] \) alors on a que la somme de ces probabilités est 1 :

\[
p_1 + p_2 + \cdots + p_n + \cdots = 1
\]

Maintenant si \(\text{PGCD}(a,b) = d \) alors \(a \) et \(b \) sont des multiples de \(d \) donc \(a = kd \) et \(b = ld \). Si on admet que les 3 événements \(\text{PGCD}(a,b) = d \), \(a = kd \) et \(b = ld \) sont indépendants

1 alors on obtient que

\[
\mathbb{P}(\text{PGCD}(a,b) = d) = \mathbb{P}(a = kd) \times \mathbb{P}(b = ld) \times \mathbb{P}(\text{PGCD}(k,l) = 1)
\]

or dans la division Euclidienne par \(d \) le nombre de multiples de \(d \) plus petit que \(n \) est la partie entière de \(\frac{n}{d} \) et donc

\[
\mathbb{P}(a = kd) = \mathbb{P}(b = ld) = \frac{\left\lfloor \frac{n}{d} \right\rfloor}{n} \approx \frac{1}{d}
\]

et donc \(\mathbb{P}(\text{PGCD}(a,b) = d) = \mathbb{P}(a = kd) \times \mathbb{P}(b = ld) \times \mathbb{P}(\text{PGCD}(k,l) = 1) \approx \frac{1}{d^2} \) donc en utilisant que la somme des \(p_k \) vaut 1 on obtient :

\[
p_1 \left(\frac{1}{1^2} + \frac{1}{2^2} + \cdots + \frac{1}{n^2} \right) \approx 1 \implies p_1 \approx \frac{1}{\sum_{n=1}^{\infty} \frac{1}{n^2}}
\]

quand \(n \to \infty \), et comme \(\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \) on a bien que \(p_1 \approx \mathbb{P}(\text{PGCD}(a,b) = 1) = \frac{6}{\pi^2} \)

\[\square\]

1. ce qui est faux!!! En fait la démonstration ci-dessus n’est pas correcte, mais les “vraies” démonstrations de ce résultat sont très difficiles.
Les nombres de Mersenne et la recherche de grands nombres premiers sur ordinateurs Marin Mersenne (1588-1648) étudia les nombres premiers en particuliers ceux de la forme

$$M_p = 2^p - 1, \quad p \in \mathbb{N}^*$$

Certains de ces nombres sont premiers

$$M_2 = 3, M_3 = 7, M_5 = 31, \ldots M_{127} = 1.701.10^{38}$$

mais pas tous

$$M_{11} = 2047 = 23 \times 89.$$

Mersenne trouva “presque” tous les M_p premiers jusqu’à $p = 257$ en ne faisant que des calculs à la main! En fait il existe des méthodes pour tester la primalité des nombres de la forme M_p sans tester tous les diviseurs inférieurs à M_p. Ces méthodes peuvent être facilement programmées mais demandent beaucoup de temps pour être exécutées. C’est pour cette raison que George Woltman (informaticien américain à la retraite) a imaginé de distribuer (via internet) les calculs à des volontaires acceptant de donner du temps de calcul de leur(s) machine(s) personnelle(s) (lorsqu’elles sont inutilisées) : c’est le projet GIMPS (Great Internet Mersenne Prime Search)[5]. C’est de cette manière qu’en 1998 un étudiant de 19 ans Roland Clarkson a découvert le plus grand nombre premier connu à cette date :

$$M_{6972593} \approx 4 \times 10^{2098959}$$

le dernier en date a été découvert le 6 septembre 2008 par Edson Smith (ou plutôt les machines du département de mathématique de UCLA!) il s’agit du 45ième nombre de Mersenne premier connu : $2^{43112609} - 1!$ Il possède 12 978 189 décimales.

Vous pouvez aussi visiter le site de l’EFF (Electronic Frontier Foundation voir [4]), qui offre des récompenses pour la découverte des plus gros nombres premiers. C’est ainsi que 100 000 dollars ont été offerts aux découvreurs du premier nombre premier à plus de 10 millions de chiffres . . .
1.3 Congruences

1.3.1 Calcul modulo n

Définition 1.3.1 Soient trois entiers a,b,n, on dit que a et b sont congrus modulo n (que l’on note $a \equiv b \mod n$) si et seulement si a et b ont le même reste dans la division Euclidienne par n :

$$a \equiv b \mod n \iff n | (a - b) \iff \exists k \in \mathbb{Z}, \ a = b + kn$$

Exemple 1.3.2 pour un a et un n fixes on est pas obligé de prendre b égal au reste de a dans la division par n, par exemple :

$$29 \equiv 3 \equiv 16 \equiv -10 \mod 13$$

suivant le cas il sera plus pratique de prendre -10 que 3. Notez aussi qu’il est très pratique de pouvoir écrire plusieurs “congruences” (\equiv) sur une même ligne avec un seul “modulo” (\mod) en fin de ligne. Pour simplifier il faut bien retenir que le mod ne fait pas partie des nombres qui apparaissent dans les congruences. En particulier pour désigner le carré du reste de a modulo n ne jamais écrire ($a \mod n)^2$!!!

Les règles de calculs avec les principales opérations arithmétiques dans des congruences sont les mêmes que pour les calculs dans \mathbb{Z}.

Proposition 1.3.3

Soient cinq entiers $a,b,c,d,n \in \mathbb{Z}$ et $e \in \mathbb{N}$, on a les règles de calcul suivantes :

- $a \equiv b \mod n$ et $c \equiv d \mod n \implies a + c \equiv b + d \mod n$
- $a \equiv b \mod n$ et $c \equiv d \mod n \implies a \times c \equiv b \times d \mod n$
- $a \equiv b \mod n \implies a^e \equiv b^e \mod n$

Preuve : Les bases du calcul modulo n reposent sur les 3 règles de la proposition précédente que l’on peut très facilement démontrer. Commençons par l’addition et la multiplication :

<table>
<thead>
<tr>
<th>a</th>
<th>$b + kn$</th>
<th>a</th>
<th>$b + kn$</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>$d + k'n$</td>
<td>c</td>
<td>$d + k'n$</td>
</tr>
<tr>
<td>$a + b$</td>
<td>$b + d + (k + k')n$</td>
<td>ac</td>
<td>$bd + (bk' + dk + kk')n$</td>
</tr>
</tbody>
</table>

pour les puissances prenons l’exemple $e = 2$:

$$a^2 = (b + kn)^2 = b^2 + 2bkn + k^2n^2 = b^2 + (2bk + k^2n)n$$

le cas général se démontre en utilisant la formule du binôme de Newton :

$$a^e = (b + kn)^e = \sum_{p=0}^{e} C_e^p b^{e-p} (kn)^p$$

$$= b^e + \sum_{p=1}^{e} C_e^p b^{e-p} (kn)^p$$

$$= b^e + nk \sum_{p=1}^{e} C_e^p b^{e-p} (kn)^{p-1}$$

$$= b^e + nk'$$
Exemple 1.3.4 Pour comprendre comment s’utilisent les règles de calculs de la proposition précédente essayons de résoudre une équation toute simple :

\[15x + 24 \equiv 17 \mod 29 \]

Comme on peut utiliser les nombres négatifs dans des congruences il est très facile de se débarrasser du 24 dans le membre de gauche :

\[15x \equiv 17 - 24 \equiv -7 \equiv 22 \mod 29 \]

pour éliminer le 15 qui se trouve devant le x on ne peut pas diviser par 15! Il faut donc chercher un \(u \) tel que \(15 \times u \equiv 1 \mod 29 \), c’est possible en cherchant une identité de Bezout :

\[
\begin{align*}
29 &= 15 \times 1 + 14 \\
15 &= 14 \times 1 + 1 \\
14 &= 1 \times 14 + 0
\end{align*}
\]

donc

\[15 \times 2 + 29 \times (-1) = 1 \implies 15 \times 2 \equiv 1 \mod 29 \]

Donc en multipliant par 2 l’équation on obtient

\[
\begin{align*}
15x &\equiv 22 \mod 29 \\
2 \times 15x &\equiv 2 \times 22 \mod 29 \\
1 \times x &\equiv 44 \mod 29 \\
x &\equiv 15 \mod 29
\end{align*}
\]

Et les solutions sont de la forme \(x = 15 + 29k \) avec un paramètre \(k \in \mathbb{Z} \).

Il faudra bien retenir cette technique très importante pour le calcul de l’inverse modulo \(n \).

Lemme 1.3.5 (inverse modulo \(n \))

si \(a \) et \(n \) sont premiers entre eux alors il existe \(u \in \mathbb{Z} \) tel que \(a \times u \equiv 1 \mod n \)

Preuve : si \(a \) et \(n \) sont premiers entre eux alors on peut trouver une identité de Bezout :

\[\exists u,v \in \mathbb{Z}, \quad au + vn = 1 \implies au = 1 - vn \implies au \equiv 1 \mod n \]

Le fait que \(a \equiv b \mod n \implies a^e \equiv b^e \mod n \) est très important, ce type de calcul apparait partout dans le crypto-système RSA, et pour des nombres \(a,b,e \)
de très grande taille. Nous avons donc besoin d’étudier comment calculer de telles puissances pour des nombres assez grands.

Lemme 1.3.6 pour tout \(a, b, c, n \in \mathbb{Z}\) on a :
\[
 n^{a+b} = n^a \times n^b, \quad n^{a\times b} = (n^a)^b, \quad n^{a\times b+c} = (n^a)^b \times n^c
\]

Exemple 1.3.7 ce lemme est très utile pour le calcul de puissances modulo \(n\).
Calculons par exemple \(153^{100} \mod 29\). D’abord, plutôt que de calculer les puissances de 153, il vaut mieux calculer les puissances de son reste mod 29 qui sera un nombre plus petit :
\[
 153 = 5 \times 29 + 8 \implies 153^{100} \equiv 8^{100} \equiv (2^3)^{100} \equiv 2^{300} \mod 29
\]
maintenant calculons les premières puissances de 2 modulo 29 :
\[
 2^3 = 8, \quad 2^4 = 16, \quad 2^5 = 32 \equiv 3 \mod 29
\]
donc on peut réduire l’exposant en le divisant par 5 et chaque \(2^5\) sera remplacé par 3 (modulo 29) :
\[
 300 = 5 \times 60 \implies 153^{100} \equiv 2^{5\times 60} \equiv (2^5)^{60} \equiv 3^{60} \mod 29
\]
on recommence ensuite avec 3 :
\[
 3^3 = 27 \equiv -2 \mod 29 \implies 153^{100} \equiv 3^{3\times 20} \equiv (3^3)^{20} \equiv (-2)^{20} \equiv 2^{20} \mod 29
\]
ainsi de suite on va réduire l’exposant jusqu’à arriver à quelque chose de calculable de tête :
\[
 153^{100} \equiv 2^{5\times 4} \equiv (2^5)^4 \equiv 3^4 \equiv 3^3 \times 3 \equiv -2 \times 3 \equiv -6 \equiv 23 \mod 29
\]
cest permet de calculer de tête le reste de 153\(^{100}\) mais cette méthode est aussi très importante du point de vue algorithmique. En effet pour calculer le reste de 153\(^{100}\) modulo 29 cette méthode est beaucoup plus efficace que celle qui consisterait à calculer d’abord le développement de 153\(^{100}\) (218 chiffres!) puis d’en faire la division par 29. Nous verrons que c’est d’une manière très similaire que sont calculés les restes de puissances modulo \(n\) dans le crypto-système RSA (algorithme d’exponentiation modulaire rapide).

Pour simplifier des puissances élevées nous avons dû chercher (au hasard) une relation donnant une simplification de base \((2^5 \equiv 3 \mod 29\) et \(3^3 \equiv -2 \mod 29\)). Le théorème suivant, dû à Fermat, permet de trouver de telles relations pour simplifier \(a^e \mod n\) dans le cas où \(a\) et \(n\) sont premiers entre eux.

Théorème 1.3.8 (petit théorème de Fermat)
Soient \(a\) et \(n\) deux entiers premiers entre eux alors
\[
 a^{\Phi(n)} \equiv 1 \mod n
\]
où \(\Phi\) est la fonction d’Euler. En particulier si \(n\) est premier alors
\[
 a^{n-1} \equiv 1 \mod n, \quad \forall a \in [1, n-1].
\]
ou encore
\[
 a^n \equiv a \mod n, \quad \forall a \in \mathbb{Z}.
\]
Preuve : On peut immédiatement remarquer que si $\text{PGCD}(a,n) = 1$ et $\text{PGCD}(x,n) = 1$ alors $\text{PGCD}(a \times x,n) = 1$. Ceci signifie que la fonction

$$f : E \rightarrow E = \{a_1, \ldots a_{\Phi(n)}\}$$

ne prend ses valeurs que parmi les $\Phi(n)$ entiers premiers plus petits que n (cet ensemble est noté E et $a_1 = a \in E$). Chacun de ces entiers a_i étant premier avec n on peut leur trouver un inverse modulo n, comme dit dans le lemme 1.3.5, à partir d’identités de Bezout

$$\text{PGCD}(a_i,n) = 1 \iff \exists u_i \in \mathbb{Z}, a_i u_i + kn = 1 \iff a_i u_i \equiv 1 \mod n$$
d’où on obtient que

$$a \times a_i \equiv a \times a_j \mod n \iff u_1 a \times a_i \equiv u_1 a \times a_j \mod n \iff a_i \equiv a_j \mod n$$
c’est à dire que f permuter les valeurs de l’ensemble E. Maintenant le résultat s’obtient en faisant le produit des valeurs $f(a_i)$:

$$\prod_{i=1}^{\Phi(n)} a_i = \prod_{i=1}^{\Phi(n)} f(a_i) \implies \prod_{i=1}^{\Phi(n)} a \times a_i = a^{\Phi(n)} \prod_{i=1}^{\Phi(n)} a_i \equiv \prod_{i=1}^{\Phi(n)} a_i \mod n$$
il reste à multiplier les deux membres par $\prod_{i=1}^{\Phi(n)} u_i$ pour éliminer les facteurs $\prod_{i=1}^{\Phi(n)} a_i$, ensuite il reste $a^{\Phi(n)} \equiv 1 \mod n$ □

Exemple 1.3.9 On peut facilement vérifier le théorème de Fermat pour de petites valeurs de n, par exemple dans le cas $n = 7$:

<table>
<thead>
<tr>
<th>a</th>
<th>a^2</th>
<th>a^3</th>
<th>a^4</th>
<th>a^5</th>
<th>a^6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Mais l’intérêt du théorème est justement de l’utiliser pour de grandes valeurs de n, pour simplifier des calculs de puissances. Reprenons le calcul de $153^{100} \mod 29$ comme 153 et 29 sont premier entre eux et que $\Phi(29) = 28$ on peut dire que $153^{28} \equiv 1 \mod n$ ce qui permet de réduire déjà pas mal le calcul:

$$153^{100} \equiv 153^{28 \times 3 + 16} \equiv (153^{28})^3 \times 153^{16} \equiv (1)^3 \times 153^{16} \equiv (2^{3})^{16} \equiv 2^{48} \mod 29$$

On peut alors recommencer avec 2, comme 2 et 29 sont premiers entre eux:

$$2^{48} \equiv 2^{28} \times 2^{20} \equiv 1 \times 2^{20} \equiv 2^{20} \mod 29$$

Calculer 2^{20} de tète est envisageable et, se faisant, on tombera rapidement sur les simplifications déjà vues:

$$2^{20} = (2^{10})^2 = 1024^2 = (9)^2 = 81 = 23 \mod 29$$
Autre exemple le calcul de $17^{1717} \mod 10$ se ramène à :

- $\Phi(10) = 10 \times (1 - 1/2) \times (1 - 1/5) = 4$
- $17^4 \equiv 1 \mod 10$ (vérifier)
- $1717 = 4 \times 429 + 1 \implies 17^{1717} = (17^4)^{429} \times 17 \equiv 17 \equiv 7 \mod 10$

La réciproque du théorème de Fermat n’est pas vraie, mais le théorème suivant permet de résoudre partiellement le problème.

Théorème 1.3.10 (de l’ordre) Soient a et n deux entiers premiers entre eux. On appelle $k_a \in \mathbb{N}^*$ le plus petit entier tel que

$$a^{k_a} \equiv 1 \mod n$$

alors

$$k_a | \Phi(n)$$

et

$$a^k \equiv 1 \mod n \implies k_a | k$$

Preuve : si $a^k \equiv 1 \mod n$ et que $k_a \nmid k$ alors soit r le reste de la division Euclidienne de k par k_a :

$$k = k_a \times q + r \quad \text{avec} \quad 0 \leq r < k_a \implies 1 \equiv a^k = (a^{k_a})^q \times a^r \equiv a^r \mod n$$

donc r est une solution plus petite que k_a.\square

Le petit théorème de Fermat est la source d’un test de non-primalité très efficace : le test de Fermat. L’idée de Pierre de Fermat est que pour un nombre $n \geq 3$ composé on doit trouver un a tel que le petit théorème de Fermat soit mis en défaut :

$$n \geq 3 \text{ premier } \implies a^{n-1} \equiv 1 \mod n, \forall a \in \mathbb{N}^*, 2 \leq a < n.$$

\[\downarrow \]

Test de Fermat

\begin{align*}
\text{procédure} & \quad \text{fermat}(n) \\
& \quad \text{choisir un entier } a \text{ compris entre } 2 \text{ et } n - 1 \\
& \quad \text{calculer } x = a^{n-1} \mod n \\
& \quad \text{si } x \neq 1 \text{ alors } n \text{ est composé} \\
& \quad \text{sinon } n \text{ est probablement premier} \\
& \quad \text{fin si}
\end{align*}

Un nombre n qui passe (victorieusement) le test de Fermat pour un a donné est dit a-pseudo-premier. Le test de Fermat est un test de non-primalité c’est à dire que si le test renvoie faux on est sûr que n est composé alors que s’il renvoie vrai n peut être composé ... mais un nombre qui passe le test de Fermat plusieurs a différents aura de moins en moins de chances d’être composé comme le montre le résultat suivant.

Lemme 1.3.11 Soient les événements : $F_{n,k} = \text{“le nombre } n \text{ passe } k \text{ fois le test de Fermat”}$ et $P_n = \text{“le nombre } n \text{ est premier”}$ alors la probabilité que n soit premier s’il passe k fois le test de Fermat vérifie :

$$\mathbb{P}(P_n|F_{k,n}) \geq 1 - \ln(n) \left(1 - \frac{6}{\pi^2}\right)^k$$
Preuve : On rappelle que le choix de \(a \) peut être considéré comme le tirage d’un nombre au hasard entre 1 et \(n \), donc la probabilité que \(a \) et \(n \) soient premiers entre eux est

\[
P(A_{a,n}) = \frac{6}{\pi^2} \approx 60,8\% \text{ avec } A_{a,n} = \text{“} a \text{ et } n \text{ sont premiers entre eux”}
\]

si \(n \) passe le test de Fermat pour un certain \(a \) alors \(a \) et \(n \) doivent être premiers entre eux car :

\[
a^{n-1} \equiv 1 \mod n \iff \exists k \in \mathbb{Z}, \quad a \times a^{n-2} - n \times k = 1 \implies \text{PGCD}(a,n) = 1
\]

donc si \(n \) n’est pas premier il ne peut passer le test de Fermat que si le \(a \) choisi est au moins premier avec lui. Si l’on admet que les choix des différents \(a \) sont indépendants entre eux, on obtient que

\[
P(F_{k,n} | P_n) \leq P(A_{a,n}) \leq \left(1 - \frac{6}{\pi^2}\right)^k
\]

la probabilité qu’un nombre composé passe \(k \) fois le test de Fermat vérifie donc :

\[
P(P_n \cap F_{n,k}) = P(F_{n,k} | P_n) P(P_n) \leq \left(1 - \frac{6}{\pi^2}\right)^k P(P_n)
\]

d’un autre côté si \(n \) est premier il passe forcément le test de Fermat donc :

\[
P(F_{n,k} | P_n) = 1 \text{ et } P(P_n \cap F_{n,k}) = P(F_{n,k} | P_n) P(P_n) = P(P_n)
\]

ce qui permet d’évaluer la probabilité qu’un nombre \(n \) quelconque (premier ou pas) passe \(k \) fois le test de Fermat :

\[
P(F_{n,k}) = P(P_n \cap F_{n,k}) + P(P_n \cap F_{n,k}) = P(P_n) + P(P_n) \left(1 - \frac{6}{\pi^2}\right)^k
\]

on en déduit la probabilité qu’un nombre \(n \) qui passe \(k \) fois le test de Fermat soit premier est :

\[
P(P_n | F_{n,k}) = \frac{P(P_n \cap F_{n,k})}{P(F_{n,k})} \geq \frac{P(P_n)}{P(P_n) + P(P_n) \left(1 - \frac{6}{\pi^2}\right)^k} = \frac{1}{1 + \frac{P(T_n)}{P(P_n)} \left(1 - \frac{6}{\pi^2}\right)^k}
\]

comme pour \(u \geq 0 \) on a \(\frac{1}{1 + u} \geq 1 - u \) et \(P(P_n) \approx 1/\ln(n) \) on peut dire que :

\[
P(P_n | F_{n,k}) \geq f(n) \approx 1 - \ln(n) \left(1 - \frac{6}{\pi^2}\right)^k
\]

Comme \(f(n) \to 0 \) quand \(k \) tend vers \(\infty \) plus un nombre passe de tests de Fermat plus la probabilité qu’il soit premier sera grande. □
1.3.2 Le Théorème Chinois

Pour comprendre le fonctionnement de plusieurs crypto-systèmes nous aurons besoin de résoudre des systèmes d’équations aux congruences. Dans le cas général, ce type de problème est très compliqué à résoudre. Nous allons seulement nous intéresser aux cas les plus simples. La théorie de ces systèmes d’équations repose sur le Théorème Chinois :

Théorème 1.3.12 (Théorème Chinois) Soient $m_1, m_2, \ldots, m_k \in \mathbb{N}^*$ et $a_1, a_2, \ldots, a_k \in \mathbb{Z}$ et le système d’équations :

$$(\mathcal{E}) \iff \begin{cases} x \equiv a_1 \mod m_1 \\ x \equiv a_2 \mod m_2 \\ \vdots \equiv \vdots \\ x \equiv a_k \mod m_k \end{cases}$$

- si (\mathcal{E}) possède une solution x_0 alors il en possède une infinité données par la formule :

$$x = x_0 + k \times \text{PPCM}(m_1, m_2, \ldots, m_k) \iff x \equiv x_0 \mod \text{PPCM}(m_1, m_2, \ldots, m_k)$$

- si m_1, m_2, \ldots, m_k sont premiers entre eux (PGCD(m_1, m_2, \ldots, m_k) = 1) alors il existe une solution x_0, cette solution s’obtient à partir d’une identité de Bezout entre les $M_i = \prod_{i \neq j} m_j$ par

$$\sum_{i=1}^{k} u_i M_i = 1 \implies x_0 = \sum_{i=1}^{k} a_i u_i M_i$$

Preuve : La première assertion est très simple. Dès qu’on a une solution particulière x_0 on trouve facilement toutes les autres puisque

$$\begin{cases} x - x_0 \equiv 0 \mod m_1 \\ x - x_0 \equiv 0 \mod m_2 \\ \vdots \equiv \vdots \\ x - x_0 \equiv 0 \mod m_k \end{cases}$$

donc $x - x_0$ est un multiple du PPCM(m_1, \ldots, m_k) = $m_1 \times \cdots \times m_k$. Ensuite il faut trouver la solution particulière dans le cas où les m_i sont premiers entre eux. Dans ce cas les M_i sont aussi premiers entre eux donc on doit avoir une identité de Bezout $u_1 M_1 + u_2 M_2 + \ldots + u_k M_k = 1$ en particulier

$$1 \equiv u_1 M_1 \mod m_1 \quad \text{car seul } M_1 \text{ n’est pas divisible par } m_1$$

$$\equiv u_2 M_2 \mod m_2 \quad \text{car seul } M_2 \text{ n’est pas divisible par } m_2$$

$$\vdots$$

$$\equiv u_k M_k \mod m_k \quad \text{car seul } M_k \text{ n’est pas divisible par } m_k$$

25
donc $x_0 = a_1 u_1 M_1 + a_2 u_2 M_2 + \ldots a_k u_k M_k$ est bien une solution particulière car

\[
x_0 \equiv a_1 u_1 M_1 \equiv a_1 \mod m_1 \quad \text{car seul } M_1 \text{ n’est pas divisible par } m_1
\]
\[
\equiv a_2 u_2 M_2 \equiv a_2 \mod m_2 \quad \text{car seul } M_2 \text{ n’est pas divisible par } m_2
\]
\[
\ldots
\]
\[
\equiv a_k u_k M_k \equiv a_k \mod m_k \quad \text{car seul } M_k \text{ n’est pas divisible par } m_k
\]

\[\blacksquare\]

Regardons ce que donne concrètement le théorème Chinois dans le cas d’un système de 2 équations:

Exemple 1.3.13 Résoudre

\[
x \equiv 5 \mod 17
\]
\[
x \equiv 8 \mod 29
\]

il faut résoudre

\[
17 \times k_1 - 29 \times k_2 = 3
\]
on en déduit une identité de Bezout :

\[
17 \times 12 + 29 \times (-7) = 1
\]

comme $1|3$ il y a des solutions en multipliant par 3 on obtient une solution

\[
17 \times 36 + 29 \times (-21) = 3
\]
donc $x_0 = 36 \times 17 + 5 = 21 \times 29 + 8 = 617$ et

\[
x_0 \equiv 617 \equiv 124 \mod 493
\]

La méthode de résolution repose donc sur celle vue au premier chapitre. On peut la résumer ainsi :
résolution du système de deux congruences

\[(\mathcal{E}) \iff \begin{cases} x \equiv a_1 \mod m_1 \\ x \equiv a_2 \mod m_2 \end{cases} \]

- **Trouver toutes les solutions** : On peut déduire TOUTES les solutions à partir d’une solution particulière \(x_0\) en remarquant que

\[(\mathcal{E}) \iff \begin{cases} x = x_0 \mod m_1 \\ x = x_0 \mod m_2 \end{cases} \iff \begin{cases} x - x_0 = 0 \mod m_1 \\ x - x_0 = 0 \mod m_2 \end{cases} \]

donc \(x - x_0\) est divisible par \(\text{PPCM}(m_1,m_2)\) et

\[x = x_0 + k\text{PPCM}(m_1,m_2), \quad k \in \mathbb{Z}\]

- **Trouver une solution particulière** :
 traduire les congruences en égalités dans \(\mathbb{Z}\):

\[(\mathcal{E}) \iff \begin{cases} x = a_1 + m_1 \times k_1 \quad k_1 \in \mathbb{Z} \\ x = a_2 + m_2 \times k_2 \quad k_2 \in \mathbb{Z} \end{cases} \]

en éliminant \(x\) entre les deux équations on obtient une équation Diophantienne

\[a_1 + m_1 \times k_1 = x = a_2 + m_2 \times k_2 \Rightarrow m_1 \times k_1 + m_2 \times (-k_2) = a_2 - a_1\]

on est ramené à chercher les solutions \((x_1,x_2) \in \mathbb{Z}^2\) de

\[m_1 x_1 + m_2 x_2 = a_2 - a_1\]

- si \(\text{PGCD}(m_1,m_2) \nmid a_1 - a_2\) alors le système n’a pas de solution :
- sinon le système à des solutions pour les trouver :
 - on cherche une identité de Bézout pour \(m_1\) et \(m_2\):
 \[m_1 \times u_1 + m_2 \times u_2 = \text{PGCD}(m_1,m_2)\]
 - en multipliant par \((a_2 - a_1)/\text{PGCD}(m_1,m_2)\) on obtient une égalité:
 \[x_1 \times m_1 + x_2 \times m_2 = a_2 - a_1\]
 \[\begin{cases} k_1 = x_1 = u_1 \times (a_2 - a_1)/\text{PGCD}(m_1,m_2), \\ k_2 = -x_2 = -u_2 \times (a_2 - a_1)/\text{PGCD}(m_1,m_2) \end{cases}\]
 - on obtient la solution particulière en écrivant :
 \[x_0 = a_1 + m_1 \times k_1 = a_2 + m_2 \times k_2\]

On peut étendre cette méthode pour résoudre des systèmes de plus de deux équations mais cela devient vite très compliqué. Dans le cas général où les \(m_i\) ne sont pas premiers entre eux l’existence d’une solution particulière n’est pas assurée,
si on prend deux équations du système
\[
\begin{align*}
\begin{cases}
x \equiv a_i \mod m_i \\
x \equiv a_j \mod m_j
\end{cases}
\iff
\begin{cases}
x = a_i + m_i \times k_i \quad k_i \in \mathbb{Z} \\
x = a_j + m_j \times k_j \quad k_j \in \mathbb{Z}
\end{cases}
\end{align*}
\]
on doit avoir que \(m_j \times k_j - m_i \times k_i = a_i - a_j \) et on obtient une condition nécessaire :
\[
\forall i,j = 1,2 \ldots k, \quad \text{PGCD}(m_i,m_j)|a_i - a_j
\]
mais cette condition ne dit pas comment trouver une solution particulière. La seule manière générale d’y arriver est de résoudre les 2 premières équations
\[
\begin{align*}
\begin{cases}
x \equiv a_1 \mod m_1 \\
x \equiv a_2 \mod m_2
\end{cases}
\end{align*}
\]
ce qui donne une nouvelle équation \(x \equiv x_1 \mod \text{PPCM}(m_1,m_2) \) puis recommencer avec la troisième équation :
\[
\begin{align*}
\begin{cases}
x \equiv x_1 \mod \text{PPCM}(m_1,m_2) \\
x \equiv a_3 \mod m_3
\end{cases}
\end{align*}
\]
et ainsi de suite ... un exemple pour comprendre :

Exemple 1.3.14 Résoudre
\[
\begin{align*}
x & \equiv 5 \mod 17 \\
x & \equiv 8 \mod 29 \\
x & \equiv 11 \mod 9
\end{align*}
\]
on a déjà obtenu pour les deux premières équations que
\[
x \equiv 617 \equiv 124 \mod 493
\]
ensuite il faut donc résoudre
\[
\begin{align*}
x & \equiv 124 \mod 493 \\
x & \equiv 11 \mod 9
\end{align*}
\]
il faut résoudre
\[
493 \times k_1 - 9 \times k_2 = -113
\]
on en déduit une identité de Bezout :
\[
493 \times 4 + 9 \times (-219) = 1
\]
comme \(1| -113 \) il y a des solutions en multipliant par \(-113\) on obtient une solution
\[
493 \times (-452) + 9 \times 24747 = -113
\]
donc \(x_0 = -452 \times 493 + 124 = -24747 \times 9 + 11 = -222712 \) et
\[
x \equiv -222712 \equiv 3575 \mod 4437
\]
1.4 L’ensemble $\mathbb{Z}/n\mathbb{Z}$

1.4.1 Structure d’anneau et de corps

Dans le chapitre sur l’algèbre linéaire nous avons vu un certain nombres de méthodes générales de calculs (pivot de Gauss) permettant de résoudre de nombreux problèmes d’apparence différents. Ces méthodes sont les mêmes quelque soit le corps de nombres que l’on utilise : généralement les réels (\mathbb{R}) parfois les complexes (\mathbb{C}). Dans cette partie nous allons découvrir que l’arithmétique nous permet de construire des corps de nombres finis, c’est à dire contenant un nombre fini d’éléments contrairement à \mathbb{R} ou \mathbb{C}.

Définition 1.4.1 On appelle $\mathbb{Z}/n\mathbb{Z}$ l’ensemble $\{0,1,\ldots,n-1\}$ que l’on munit des deux opérations internes suivantes :

- l’addition définie par :
 \[\forall a,b \in \mathbb{Z}/n\mathbb{Z}, \quad a + b = (a + b \mod n) \]

- la multiplication définie par :
 \[\forall a,b \in \mathbb{Z}/n\mathbb{Z}, \quad a \times b = (a \times b \mod n) \]

dans la pratique on retiendra que :

\[
\begin{array}{c|c|c|c}
+ & 0 & 1 & 2 \\
0 & 0 & 1 & 2 \\
1 & 1 & 2 & 0 \\
2 & 2 & 0 & 1 \\
\end{array}
\quad \quad \quad
\begin{array}{c|c|c|c}
\times & 0 & 1 & 2 \\
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 2 \\
2 & 0 & 2 & 1 \\
\end{array}
\]

Exemple 1.4.2 quelques exemples de calculs simples :

- Pour $\mathbb{Z}/3\mathbb{Z} = \{0; 1; 2\}$ on a

\[
\begin{array}{c|c|c|c}
+ & 0 & 1 & 2 \\
0 & 0 & 1 & 2 \\
1 & 1 & 2 & 0 \\
2 & 2 & 0 & 1 \\
\end{array}
\quad \quad \quad
\begin{array}{c|c|c|c}
\times & 0 & 1 & 2 \\
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 2 \\
2 & 0 & 2 & 1 \\
\end{array}
\]

- par contre pour $\mathbb{Z}/4\mathbb{Z} = \{0; 1; 2; 3\}$ on a

\[
\begin{array}{c|c|c|c}
+ & 0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 & 3 \\
1 & 1 & 2 & 3 & 0 \\
2 & 2 & 3 & 0 & 1 \\
3 & 3 & 0 & 1 & 2 \\
\end{array}
\quad \quad \quad
\begin{array}{c|c|c|c}
\times & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 2 & 3 \\
2 & 0 & 2 & 0 & 2 \\
3 & 0 & 3 & 2 & 1 \\
\end{array}
\]

- exemple de calcul dans $\mathbb{Z}/7\mathbb{Z}$:

\[
3 \times 5^2 + 2 \times 5 - 3 = 3 \times 4 + 3 + 4 = 5 + 0 = 5
\]
Étant donné la définition de $\mathbb{Z}/n\mathbb{Z}$ les opérations $+$ et \times possèdent au minimum les propriétés des opérations $+$ et \times dans \mathbb{Z}.

Proposition 1.4.3 On a les propriétés suivantes :

- L'opération $+$ est commutative, associative et possède un élément neutre 0.
- L'opération \times est commutative, associative et possède un élément neutre 1.
- \times est distributive par rapport à $+$ dans $\mathbb{Z}/n\mathbb{Z}$
- tout $a \in \mathbb{Z}/n\mathbb{Z}$ possède un opposé (symétrique pour $+$), noté $-a$, vérifiant :

\[-a \equiv (n - a) \mod n\]

$\mathbb{Z}/n\mathbb{Z}$ a une structure d’anneau commutatif.

Preuve : on peut repasser par les définitions de $+$ et \times en termes de congruences pour vérifier chacune des affirmations de la proposition :

- par exemple pour l’addition on a :
 - $a + b = b + a$ dans \mathbb{Z} donc $a + b \equiv b + a$ mod n et donc $a + b = b + a$ dans $\mathbb{Z}/n\mathbb{Z}$
 - $(a + b) + c = a + (b + c)$ dans \mathbb{Z} donc $(a + b) + c \equiv a + (b + c)$ mod n et donc $(a + b) + c = a + (b + c)$ dans $\mathbb{Z}/n\mathbb{Z}$
 - $a + 0 = 0 + a = a$ dans \mathbb{Z} donc $a \equiv a + 0 \equiv 0 + a$ mod n et donc $a + 0 = 0 + a = a$ dans $\mathbb{Z}/n\mathbb{Z}$

- par exemple pour la multiplication on a :
 - $a \times b = b \times a$ dans \mathbb{Z} donc $a \times b \equiv b \times a$ mod n et donc $a \times b = b \times a$ dans $\mathbb{Z}/n\mathbb{Z}$
 - $(a \times b) \times c = a \times (b \times c)$ dans \mathbb{Z} donc $(a \times b) \times c \equiv a \times (b \times c)$ mod n et donc $(a \times b) \times c = a \times (b \times c)$ dans $\mathbb{Z}/n\mathbb{Z}$
 - $a \times 1 = 1 \times a = a$ dans \mathbb{Z} donc $a \equiv a \times 1 \equiv 1 \times a$ mod n et donc $a \times 1 = 1 \times a = a$ dans $\mathbb{Z}/n\mathbb{Z}$

- pour l’opposé : $(n - a) + a = n + (-a + a) = n + 0 \equiv 0$ mod n donc $n - a \in \mathbb{Z}/n\mathbb{Z}$ est l’opposé de a

\[\Box\]

Comme toujours le problème vient de l’existence d’un symétrique pour la multiplication.

Théorème 1.4.4 Soit $a \in \mathbb{Z}/n\mathbb{Z}$ alors a possède un inverse (symétrique pour \times), noté a^{-1}, si et seulement si PGCD(a,n) = 1. En particulier si n est premier tout $a \in \mathbb{Z}/n\mathbb{Z}$ $a \neq 0$ possède un inverse et donc $\mathbb{Z}/n\mathbb{Z}$ est un corps si et seulement si n est premier.

Preuve : Ce problème de l’inversion a déjà été traité dans la partie sur les congruences. Il faut commencer par chercher une identité de Bezout dans \mathbb{Z}, ce qui n’est possible que si a et n sont premiers entre eux :

\[
\text{PGCD}(a,n) = 1 \implies \exists u,v \in \mathbb{Z}, \ a \times u + n \times v = 1 \implies au = 1 - nv
\]
ensuite on voit que les coefficients de cette identité de Bezout fournissent un inverse pour a:
\[\exists u, v \in \mathbb{Z}, \; au \equiv 1 \mod n \Rightarrow a \times u = 1 \; \text{dans} \; \mathbb{Z}/n\mathbb{Z} \]

inversement si a à un inverse u alors
\[a \times u = 1 \; \text{dans} \; \mathbb{Z}/n\mathbb{Z} \; \text{alors} \; a \times u \equiv 1 \mod n \Rightarrow \exists k \in \mathbb{Z}, \; au = 1 + kn \Rightarrow au + n(-k) = 1 \]
donc $\text{PGCD}(a,n) = 1$. □

On se rappellera que trouver l’opposé d’un élément de $\mathbb{Z}/n\mathbb{Z}$ est simple par contre trouver l’inverse nécessite plus de travail car repose sur le calcul d’une identité de Bezout

trouver un inverse dans $\mathbb{Z}/n\mathbb{Z}$ revient
à chercher une identité de Bezout :
\[au + nv = 1 \iff au \equiv 1 \mod n \iff u = a^{-1} \; \text{dans} \; \mathbb{Z}/n\mathbb{Z} \]

Exemple 1.4.5 On peut faire des calculs dans $\mathbb{Z}/n\mathbb{Z}$ comme dans n’importe quel autre corps, par exemple pour résoudre une équation ou un système d’équations dans $\mathbb{Z}/7\mathbb{Z}$:

\[3x + 2 = 0 \iff 3x = -2 \]
\[\iff 3x = 5 \]
\[\iff 5 \times 3x = 5 \times 5 \]
\[\iff 1 \times x = 4 \]
\[\iff x = 4 \]

car l’inverse de 3 est 5 puisqu’une identité de Bezout entre 3 et 7 est donnée par :
\[3 \times 5 - 2 \times 7 = 1 \]

si on tombe sur une autre identité de Bezout on doit savoir retrouver le résultat :
\[3 \times 12 - 5 \times 7 = 1 \iff 3 \times 12 \equiv 3 \times 5 \equiv 1 \mod 7 \]

Les éléments inversibles forment un sous ensemble important de $\mathbb{Z}/n\mathbb{Z}$:

Définition 1.4.6 (éléments inversibles de $\mathbb{Z}/n\mathbb{Z}$)

On notera $(\mathbb{Z}/n\mathbb{Z})^*$ l’ensemble des éléments inversibles dans $\mathbb{Z}/n\mathbb{Z}$:
\[(\mathbb{Z}/n\mathbb{Z})^* = \{ a \in \mathbb{Z}/n\mathbb{Z} \mid \exists a^{-1} \in \mathbb{Z}/n\mathbb{Z}, \; a \times a^{-1} = 1 \} \]
on a Card $((\mathbb{Z}/n\mathbb{Z})^*) = \Phi(n)$.

Mis à part la difficulté du calcul de l’inverse les règles de calculs dans $\mathbb{Z}/n\mathbb{Z}$ sont les mêmes que dans \mathbb{R}.
Proposition 1.4.7 soit \(x \in (\mathbb{Z}/n\mathbb{Z})^* \) et \(a,b \in \mathbb{N} \) alors :

- \(x^0 = 1 \) l’élément neutre de \(\times \),
- \((-x)^a = (-1)^a \times (x^a)\),
- \((-x)^{-1} = -(x^{-1})\),
- \((x^a)^{-1} = (x^{-1})^a \) qu’on pourra noter \(x^{-a} \),
- \(x^{a-b} = x^a \times x^{-b} \)

Preuve : Par abus de notation on confond \(x \in \mathbb{Z}/n\mathbb{Z} \) et sont “représentant” dans \(x \in \mathbb{Z} \):

- pour \(a > 0 \) dans \(\mathbb{Z} \) on a \(x^0 \times x^a = x^{0+a} = x^a = x^{a+0} = x^a \times x^0 \) ce qui reste vrai mod \(n \) et donc aussi dans \(\mathbb{Z}/n\mathbb{Z} \), \(x^0 \) est donc bien l’élément neutre de \(\times \) d’où \(x^0 = 1 \).
- la relation \((-x)^a = (-1)^a \times (x^a)\) étant vraie dans \(\mathbb{Z} \) et reste vraie en mod \(n \) et donc dans \(\mathbb{Z}/n\mathbb{Z} \),
- si \(x \) est premier avec \(n \) alors \(-x(= n-x \mod n)\) est aussi premier avec \(n \) et on peut chercher l’inverse de \(-x\). ensuite on joue sur la commutativité de \(\times \) pour montrer que \((-x^{-1})\) est l’inverse de \(-x\):

\[
-x^{-1} \times (-x) = (1) \times (x^{-1}) \times (-x) = (x^{-1}) \times (-1) \times (-x) = (x^{-1}) \times x = 1
\]

on ne peut pas passer par \(\mathbb{Z} \) car \(x^{-1} \notin \mathbb{Z} \)!!! Sans compter que en fait \(x^{-1} \) diffère de \(\frac{1}{x} \) (l’inverse de \(x \) au sens des \(\mathbb{R} \) ou \(\mathbb{Q} \)).
- même type de démonstration que ci-dessus pour montrer que \((x^{-1})^a\) est l’inverse de \(x^a \):

\[
(x^{-1})^a \times x^a = (x^{-1} \times x) \times \ldots (x^{-1} \times x) = 1 \times \ldots \times 1 = 1
\]

- plus difficile à comprendre, on le fait par récurrence sur \(b \): pour \(n = 1 \) on a l’implication évidente (multiplier l’équation de gauche par \(x^{-1} \)):

\[
x \times x^{a-1} = x^a \implies x^{a-1} = x^a \times x^{-1}
\]

pour passer de \(b \) à \(b+1 \) on fait de même en utilisant en plus l’hypothèse de récurrence

\[
x \times x^{a-b-1} = x^{a-b} \implies x^{a-b-1} = x^{a-b} \times x^{-1} = x^a \times x^{-b} \times x^{-1} = x^a \times x^{-b-1}
\]

\(\square \)

La non-inversibilité de certains élément de \(\mathbb{Z}/n\mathbb{Z} \), quand \(n \) n’est pas premier, fait apparaître des phénomènes qui peuvent sembler étrange dans certains calculs et qui sont liés à l’existence de diviseurs de 0 :

Proposition 1.4.8 On considère l’équation \(a \times b = 0 \) dans \(\mathbb{Z}/n\mathbb{Z} \) alors :

- si \(n \) est premier alors \(a \times b = 0 \implies a = 0 \) ou \(b = 0 \)
- si \(n \) est composé alors \(\exists a,b \in \mathbb{Z}/n\mathbb{Z} \setminus \{0\} \), \(a \times b = 0 \), \(a \) et \(b \) sont appelés des diviseurs de 0.
Preuve :

- si n est premier alors soit $a = 0$ et la conclusion est vraie, soit $a \neq 0$ et dans ce cas on peut trouver un inverse à a, en multipliant par cet inverse on obtient :

 $$a^{-1} \times a \times b = 0 \implies 1 \times b = b = 0$$

 et la conclusion de la proposition est aussi vraie.

- si n est composé alors $\exists 1 < a, b < n$, $n = a \times b$ donc $a \times b = 0$ avec $a, b \in \mathbb{Z}/n\mathbb{Z} \setminus \{0\}$.

\[\Box\]

Exemple 1.4.9 En faisant les tables de multiplications on peut vérifier que dans un $\mathbb{Z}/11\mathbb{Z}$ il n'y a pas de diviseurs de 0 :

<table>
<thead>
<tr>
<th>\times</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>2</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>8</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>8</td>
<td>3</td>
<td>9</td>
<td>4</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>7</td>
<td>3</td>
<td>10</td>
<td>6</td>
<td>2</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

alors que dans $\mathbb{Z}/15\mathbb{Z}$ il y en a plusieurs :

<table>
<thead>
<tr>
<th>\times</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>3</td>
<td>7</td>
<td>10</td>
<td>3</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>8</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>8</td>
<td>3</td>
<td>9</td>
<td>4</td>
<td>10</td>
<td>5</td>
<td>8</td>
<td>3</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>7</td>
<td>3</td>
<td>10</td>
<td>6</td>
<td>2</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>3</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>

par exemple :

$$3 \times 5 = 6 \times 5 = 9 \times 10 = 12 \times 5 = 0$$

On retiendra qu’il est beaucoup plus facile de travailler dans $\mathbb{Z}/n\mathbb{Z}$ avec n premier que avec n composé.
1.4.2 Polynômes et résidus quadratiques

Nous aurons besoin du théorème suivant valable dans n’importe quel corps de nombre K.

Théorème 1.4.10

Soit un polynôme $P(x) = a_kx^k + \cdots + a_0 \in K[X]$ de degré k alors P possède au plus k racines dans K.

Pour le démontrer on a besoin du lemme suivant :

Lemme 1.4.11 pour tout a,b

\[
 a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + \cdots + ab^{n-2} + b^{n-1})
\]

Preuve : le lemme est très simple à démontrer :

\[
 (a - b)(a^{n-1} + a^{n-2}b + \cdots + ab^{n-2} + b^{n-1})
 = a^n + a^{n-1}b + \cdots + a^2b^{n-2} + ab^{n-1}
 - a^{n-1}b - a^{n-2}b^2 - \cdots - ab^{n-1} - b^n
 = a^n - b^n
\]

ensuite le théorème se démontre par récurrence sur le degré k du polynôme :

- on pose $\mathcal{P}_k : \{ \text{un polynôme de degré } k \text{ à au plus } k \text{ racines } \}$
- rang initial $k = 1 : P(X) = a_1X + a_0 = 0 \implies X = -a_1^{-1}a_0$ si a_1 est inversible sinon il n’y a pas forcément de solution. Donc il y a bien au plus une solution.
- passage de $\mathcal{P}_k \Rightarrow \mathcal{P}_{k+1}$:
 soit P n’a aucune racine sinon on en a une r et en utilisant que $P(r) = 0$ et que $x^i - r^i$ se factorise par $x - r$ et un polynôme de degré $i - 1$ on a alors

\[
 P(X) = P(X) - P(r) = \sum_{i=0}^{k} a_i(X^i - r^i) = (X - r)Q(X)
\]

avec Q un polynôme de degré $k - 1$ qui a donc au plus $k - 1$ racine. Au total P a au plus k racine.

\[\square\]

Comme dans \mathbb{R} on aimerait pouvoir trouver les racines d’un trinôme du second degré. Mais on va voir que c’est plus difficile que dans \mathbb{R}.

Théorème 1.4.12

Si n est premier l’équation $x^2 = 1$ a deux solution Dans $\mathbb{Z}/n\mathbb{Z} : x = 1$ ou $x = -1$.

Preuve : on travaille comme avec les nombres réels :

\[
 x^2 = 1 \iff x^2 - 1 = 0 \iff (x - 1)(x + 1) = 0
\]

comme il n’y a pas de diviseurs de 0 on a

\[
 [x + 1 = 0 \text{ ou } x - 1 = 0] \iff [x = 1 \text{ ou } x = -1]
\]

34
Exemple 1.4.13 En ne gardant que la diagonale des tables de Pythagore de $\mathbb{Z}/11\mathbb{Z}$ on voit bien qu’il n’y a que les deux solutions annoncées 1 et $-1 = 10$:

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>x^2</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Par contre dans $\mathbb{Z}/15\mathbb{Z}$ d’autres solutions, comme 4 et 11, peuvent apparaître, en plus de 1 et $-1 = 14$, car 15 est composé:

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>x^2</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>10</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

On peut voir dans ces exemples que tous les nombres ne sont pas des carrés dans $\mathbb{Z}/n\mathbb{Z}$. Savoir si un nombre est un carré ou pas est une question cruciale en arithmétique, résolue par le théorème suivant :

Proposition 1.4.14 Si n est premier il y a $\frac{n+1}{2}$ carrés dans $\mathbb{Z}/n\mathbb{Z}$ (dont 0).

Preuve : si $x^2 = y^2$ alors $x^2 - y^2 = (x-y)(x+y) = 0$ donc $x = y$ ou $x = -y$. On peut donc regrouper les valeurs de $\mathbb{Z}/n\mathbb{Z}$ par 2 \{ x; $-x$ \} qui donnent le même carré plus 0 qui est un carré. Conclusion le nombre de carrés différents est la moitié de $n - 1$ plus le 0 donc $\frac{n-1}{2} + 1 = \frac{n+1}{2}$ □

Exemple 1.4.15 Il y a bien 6 carrés dans $\mathbb{Z}/11\mathbb{Z}$ qui sont 0; 1; 4; 9; 5; 3. La formule ne marche pas dans $\mathbb{Z}/15\mathbb{Z}$ où il n’y a que 6 carrés 0; 1; 4; 6; 9; 10.

Le théorème suivant permet de tester si un x donné est un carré ou pas (sans calculer les carrés de tous les éléments de $\mathbb{Z}/n\mathbb{Z}$).

Théorème 1.4.16 Si $n > 2$ est premier alors $x \in (\mathbb{Z}/n\mathbb{Z})^*$ est un carré si et seulement si $x^{\frac{n-1}{2}} = 1$.

Preuve : on peut d’abord remarquer que comme n est impair $\frac{n-1}{2}$ est bien un entier. si $\exists y \in \mathbb{Z}/n\mathbb{Z}$, $y^2 = x$ alors en utilisant le petit théorème de Fermat ($\forall 0 < y < n$, $y^{n-1} \equiv 1 \mod n$) on a $(y^{2^{\frac{n-1}{2}}})^{n-1} = 1 = x^{\frac{n-1}{2}}$ dans $\mathbb{Z}/n\mathbb{Z}$. Inversement si $x^{\frac{n-1}{2}} = 1$ alors x est racine de $P(X) = X^{\frac{n-1}{2}} - 1$ qui a au plus $\frac{n-1}{2}$ racines dans $\mathbb{Z}/n\mathbb{Z}$ or on sait déjà qu’il n’y a que $\frac{n-1}{2}$ carrés non nuls qui sont déjà racines de P. Conclusion il n’y en a pas d’autres. □

En général (pour n grand) il est difficile de calculer $x^{\frac{n-1}{2}}$ pour vérifier si n est un carré (avec l’algorithme d’exponentiation modulaire rapide et un ordinateur ça devient plus facile) sauf dans la cas où $x = -1$:

Théorème 1.4.17 Si $n > 2$ est premier alors $-1 \in (\mathbb{Z}/n\mathbb{Z})^*$ est un carré si et seulement si $n \equiv 1 \mod 4$.

Preuve : $(-1)^{\frac{n-1}{2}} = 1$ si et seulement si $\frac{n-1}{2} = 2k$, $k \in \mathbb{Z}$ ($i.e.$ est pair!) donc $n = 1 + 4k \iff n \equiv 1 \mod 4$. □

Pour aller plus loin il faut introduire le symbole de Legendre :
Théorème 1.4.18 (Symbole de Legendre)
Soient \(n > 2 \) premier et \(x \in \mathbb{Z} \) alors on définit le symbole de Legendre par :

\[
\left(\frac{x}{n} \right) = x^{\frac{n-1}{2}} = \begin{cases}
0 & \text{si } n \mid x \\
1 & \text{si } x \text{ est un carré mod } n \\
-1 & \text{si } x \text{ n’est pas un carré mod } n
\end{cases}
\]

le symbole de Legendre est multiplicatif : \(\forall x, y \in \mathbb{Z}, \ (\frac{x}{n}) \cdot (\frac{y}{n}) = (\frac{xy}{n}) \).

Preuve : On commence par se ramener à calculer \(x^{\frac{n-1}{2}} = 0^{\frac{n-1}{2}} = 0 \). Ensuite comme \(x^{n-1} = 1 \) (petit théorème de Fermat on a que \(x^{\frac{n-1}{2}} \) est une racine carrée de 1 donc vaut ±1 selon que \(x \) est un carré ou pas. La dernière égalité vient juste de \((\frac{x}{n}) = (\frac{xy}{n}) = (\frac{x}{n}) (\frac{y}{n})\).

\[\Box \]

Lemme 1.4.19 (résidus minimaux)
Si on appelle résidu minimal de \(x \) modulo \(n \) le plus petit entier congru à \(x \) dans l’intervalle \(]-\frac{n-1}{2}; \frac{n-1}{2}[\) alors \((\frac{x}{n}) = (-1)^\mu \) où

\[\mu = \text{nombre de résidu minimaux} < 0 \text{ dans } \{x; 2x; 3x; \ldots \frac{n-1}{2}x\} \]

Preuve : On commence par écrire que

\[
\left\{ x; 2x; 3x; \ldots \frac{n-1}{2}x \right\} = \{-s_1; -s_2; \ldots; -s_\mu; r_1; r_2; \ldots r_{\frac{n-1}{2}-\mu}\}
\]

où les \(s_i, r_j > 0 \) sont (au signe près) les résidus minimaux. Le résultat essentiel est que les \(r_i \) et \(s_j \) prennent \(\frac{n-1}{2} \) valeurs différentes :

\[
\{s_1; s_2; \ldots; s_\mu; r_1; r_2; \ldots r_{\frac{n-1}{2}-\mu}\} = \left\{1; 2; 3; \ldots \frac{n-1}{2}\right\}
\]

en effet si \(s_i = s_j \implies m_i x = m_j x \implies m_i = m_j \)
de même pour \(r_i = r_j \) mais aussi pour \(s_i = r_j \) car

\[
s_i = r_j \implies -m_i x = m_j x \implies m_i = m_j \implies m_i + m_j \equiv 0 \text{ mod } n
\]
or \(0 < m_i, m_j < n/2 \implies 0 < m_i + m_j < n \). Maintenant on note \(P \) le produit des éléments de \(\{x; 2x; 3x; \ldots \frac{n-1}{2}x\} \) on a alors :

\[
P = x \times 2x \times \cdots \times \frac{n-1}{2}x = x \times x \times \cdots \times x \times 1 \times 2 \times \cdots \times \frac{n-1}{2}x = x^{\frac{n-1}{2}} \times \left(\frac{n-1}{2}\right)!
\]

d’un autre coté en notant \(r_i \) les résidus positifs et \(-s_j \) ceux qui sont négatifs :

\[
P = x \times 2x \times \cdots \times \frac{n-1}{2}x = (-1)^\mu s_1 \times s_2 \times \cdots \times s_\mu \times r_1 \times r_2 \times \cdots \times r_{\frac{n-1}{2}-\mu} = (-1)^\mu \left(\frac{n-1}{2}\right)!
\]

il ne reste plus qu’à multiplier par l’inverse de \((\frac{n-1}{2})! \) (qui n’est pas divisible par \(p \) donc inversible dans \(\mathbb{Z}/p\mathbb{Z} \)) pour obtenir \(x^{\frac{n-1}{2}} = (-1)^\mu \).

Maintenant on peut calculer le symbole de Legendre pour d’autres valeurs :

Théorème 1.4.20 Pour \(n \) premier > 2 on a : \((\frac{2}{n}) = (-1)^{\frac{n}{2} - 1}\)
Preuve : il faut donc compter le nombre de résidus minimaux < 0 dans

\{2; 4; 6; \ldots n−1\} = \{2; 4; 6; \ldots -3; -1\}

il sont donc positifs si \(2x \leq \frac{n-1}{2}\) donc il y a au plus \(E\left(\frac{n-1}{4}\right)\) résidus positifs (partie entière de \(\frac{n-1}{4}\)). Si \(n \equiv 1 \mod 4\) alors \(E\left(\frac{n-1}{4}\right) = \frac{n-1}{4}\) et \(\mu = \frac{n-1}{2} - \frac{n-1}{4} = \frac{n+1}{4}\).

Par contre si \(n \equiv 3 \mod 4\) alors \(E\left(\frac{n-1}{4}\right) = \frac{n-3}{4}\) et \(\mu = \frac{n-1}{2} - \frac{n-3}{4} = \frac{n+1}{4}\).

Il ne reste plus à remarquer que :

\[
\frac{n^2-1}{8} = 2 \frac{n+1}{4} \frac{n-1}{4} = \begin{cases} \frac{n-1}{4} \frac{n+1}{4} & \text{si } n \equiv -1 \mod 4 \\ \frac{n+1}{4} \frac{n-1}{4} & \text{si } n \equiv 1 \mod 4 \end{cases}
\]

à donc la même parité que \(E\left(\frac{n-1}{4}\right)\) ce qui permet d’écrire que :

\[
(-1)^\mu = (-1)^{\frac{n^2-1}{8}} = \begin{cases} (-1)^{\frac{n+1}{4} \frac{n-1}{4}} & \text{si } n \equiv -1 \mod 4 \\ (-1)^{\frac{n+1}{4} \frac{n-1}{4}} & \text{si } n \equiv 1 \mod 4 \end{cases}
\]

le théorème suivant du à Gauss est très pratique pour savoir si un nombre est un carré ou pas.

Théorème 1.4.21 (loi de réciprocité quadratique)

si \(p\) et \(q\) sont premiers et impairs alors

\[
\left(\frac{p}{q}\right) = (-1)^{\frac{p-1}{2} \times \frac{q-1}{2}} \left(\frac{q}{p}\right)
\]

Exemple 1.4.22 Voici quelques exemples d’utilisation des règles précédentes pour savoir si des entiers sont ou pas des carrées modulo 86477 :

- **Pour 2** on utilise la formule du théorème 1.4.20 :

\[
\left(\frac{2}{86477}\right) = (-1)^{\frac{86477^2-1}{8}} = (-1)^{93473941} = -1
\]

donc 2 n’est pas un carré dans \(\mathbb{Z}/86477\mathbb{Z}\).

- **pour 5** on utilise la loi de réciprocité quadratique pour réduire les calculs au minimum. Il faut donc calculer :

\[
\left(\frac{5}{86477}\right) = (-1)^{\frac{2 \times 43238}{2}} \left(\frac{86477}{5}\right) = \left(\frac{2}{5}\right)
\]

ensuite on peut calculer si 2 est un carré modulo 5 en utilisant la définition :

\[
\left(\frac{2}{5}\right) = 2^{\frac{5-1}{2}} = 2^2 = 4 = -1
\]

ou le théorème 1.4.20 :

\[
\left(\frac{2}{5}\right) = (-1)^{\frac{2 \times 5-1}{2}} = (-1)^{24} = 1
\]

dans tous les cas 5 n’est pas un carré dans \(\mathbb{Z}/86477\mathbb{Z}\)!

- **Par contre 10** est un carré dans \(\mathbb{Z}/86477\mathbb{Z}\) car en utilisant le fait que le symbole de Legendre est multiplicatif on obtient :

\[
\left(\frac{10}{11}\right) = \left(\frac{2}{11}\right) \left(\frac{5}{11}\right) = (-1) \times (-1) = 1
\]

37
1.4.3 Générateurs de $\mathbb{Z}/n\mathbb{Z}$

Les puissances successives d’un élément de $\mathbb{Z}/n\mathbb{Z}$ jouent un rôle très important (comme dans le chapitre précédent).

Définition 1.4.23 Un $a \in (\mathbb{Z}/n\mathbb{Z})^*$ est générateur de $(\mathbb{Z}/n\mathbb{Z})^*$ si et seulement si les puissances successives de a permettent de générer tous les éléments de $(\mathbb{Z}/n\mathbb{Z})^*$:

$$(\mathbb{Z}/n\mathbb{Z})^* = \{a^k| k = 1, \ldots, \Phi(n)\}$$

Pour qu’un élément soit générateur de $\mathbb{Z}/n\mathbb{Z}$ on a une condition nécessaire :

Théorème 1.4.24

Soit $n > 2$ est premier, si $a \in (\mathbb{Z}/n\mathbb{Z})^*$ est générateur de $(\mathbb{Z}/n\mathbb{Z})^*$ alors $x^{\frac{n-1}{2}} = -1$.

Preuve : Les puissances successives de a se répètent forcément au bout de la nième au maximum puisqu’il n’y a que $n - 1$ valeurs différentes dans $(\mathbb{Z}/n\mathbb{Z})^*$. Si $a^{\frac{n-1}{2}} = 1$ alors $a^{\frac{n+1}{2}} = a$ donc les valeurs se répètent au bout de seulement $\frac{n-1}{2}$ valeurs et a ne peut générer $(\mathbb{Z}/n\mathbb{Z})^*$ donc $a^{\frac{n-1}{2}} = -1$. □

Exemple 1.4.25 Hélas cette condition n’est pas suffisante! Prenons l’exemple de $\mathbb{Z}/n\mathbb{Z}$ avec $n = 11$ si on fait la table des puissances on trouve que :

<table>
<thead>
<tr>
<th>x</th>
<th>x^2</th>
<th>x^3</th>
<th>x^4</th>
<th>x^5</th>
<th>x^6</th>
<th>x^7</th>
<th>x^8</th>
<th>x^9</th>
<th>x^{10}</th>
<th>x^{11}</th>
<th>x^{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>11</td>
<td>9</td>
<td>5</td>
<td>10</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>12</td>
<td>9</td>
<td>10</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>12</td>
<td>9</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>8</td>
<td>1</td>
<td>5</td>
<td>12</td>
<td>8</td>
<td>1</td>
<td>5</td>
<td>12</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>8</td>
<td>9</td>
<td>2</td>
<td>12</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>11</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>5</td>
<td>9</td>
<td>11</td>
<td>12</td>
<td>6</td>
<td>3</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>5</td>
<td>1</td>
<td>8</td>
<td>12</td>
<td>5</td>
<td>1</td>
<td>8</td>
<td>12</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>12</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>10</td>
<td>9</td>
<td>12</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>12</td>
<td>2</td>
<td>9</td>
<td>8</td>
<td>10</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>12</td>
<td>1</td>
</tr>
</tbody>
</table>

les générateurs de $(\mathbb{Z}/n\mathbb{Z})^*$ sont donc $a = 2; 6; 7; 11$ alors que $a = 2; 5; 6; 7; 8; 11$ vérifient le critère ($-1 = 12$ dans $\mathbb{Z}/13\mathbb{Z}$) :

<table>
<thead>
<tr>
<th>x</th>
<th>x^2</th>
<th>x^3</th>
<th>x^4</th>
<th>x^5</th>
<th>x^6</th>
<th>x^7</th>
<th>x^8</th>
<th>x^9</th>
<th>x^{10}</th>
<th>x^{11}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>12</td>
<td>1</td>
</tr>
</tbody>
</table>

Conclusion : comme les problèmes précédents (factorisation, calcul de résidu, . . .) trouver a un générateur de $\mathbb{Z}/n\mathbb{Z}$ ou pour un b trouver x tel que $a^x = b$ (problème du logarithme discret) sont des problèmes difficiles . . . qui vont servir de base pour la construction de cryptosystèmes efficaces.
1.5 Cryptographie

1.5.1 Codage d'un texte ou d'un document

Pour comprendre les notions de bases de la cryptographie il faut commencer par définir ce à quoi elle s’applique. Les données que nous avons besoin déchiffrer peuvent être assimilés à des textes c’est à dire une suite de caractères sont choisis dans un ensemble fini (qu’on appelle couramment un alphabet) de longueur finie qui n’est limitée que par la capacité de stockage du support utilisé pour conserver ou transmettre le texte. La transmission d’un texte (clair ou crypté) repose sur son découpage en paquets qui peuvent être transmis les uns à la suite des autres, par exemple nous pouvons découper un texte en syllabes, en mots, en phrases, en chapitres …

Cette définition d’un texte s’applique sans problème au fichiers informatiques que nous pouvons avoir besoin de chiffrer. Examinons le cas particulier d’un fichier texte. Ils sont écrit dans à partir d’un alphabet de 256 caractères le code ASCII, chaque caractère peut être représenté par un code, un nombre entre 0 et 255 (un entier sur 8 bits) donc en binaire par une suite de 8 nombres valant 0 ou 1. En mettant bout à bout les codes des différents caractères on obtient une suite de 0 et de 1 représentant le texte (un nombre binaire en fait) quel’on peut découper en tranches de taille arbitraire (128 bits, 512 bits ...) et que l’on peut ensuite transmettre.

message original = 1011011010000111 ...

descendu

texte prêt à coder = 1011 | 0110 | 1000 | 0111 ...

nombre de 4 bits

Ces groupes peuvent donc être considérés comme représentant des nombres binaires à k chiffres ou, ce qui revient au même, des éléments de \(\mathbb{Z}/n\mathbb{Z} \) (avec \(n = 2^k \)). Si on utilise une autre base \(p \) pour représenter les codes des différents caractères et que l’on fait des blocs de \(k \) chiffres on obtiendra une représentation du texte par une suite d’éléments de \(\mathbb{Z}/p^k\mathbb{Z} \). Pendant ce cours (et en particulier en TP) pour continuer à travailler avec les nombres écrit en base 10 (qui nous sont plus familiers) nous allons utiliser la table de 100 caractères suivante:

<table>
<thead>
<tr>
<th>code</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>chaine</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
<td>j</td>
<td>k</td>
<td>l</td>
<td>m</td>
<td>n</td>
<td>o</td>
<td>p</td>
<td>q</td>
<td>r</td>
<td>s</td>
<td>t</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>code</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
<th>38</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>chaine</td>
<td>u</td>
<td>v</td>
<td>w</td>
<td>x</td>
<td>y</td>
<td>z</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

code	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	
chaine	P	Q	R	S	T	U	V	W	X	Y	Z	a	q	e	e	e	e	e	i	i	o

| code | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 |
|------|
| chaine | 0 | (|) | [|] | _ | > | > | / | \ | * | * | - | * | - | - | - | - | , | : |

code	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99		
chaine	!	?	&																			

39
Pour comprendre prenons un exemple. Si l’on a la texte *Un exemple!*

| 46 | 13 | 75 | 4 | 23 | 4 | 12 | 15 | 11 | 4 | 80 |

Pour découper ce texte en groupe de 4 caractères il faut qu’il ait un nombre de caractères multiple de 4, quitte à ajouter des espaces (caractère 75) à la fin. Ici le texte n’ayant que 11 caractères on ajoute un espace pour obtenir :

| 46 | 13 | 75 | 4 | 23 | 4 | 12 | 15 | 11 | 4 | 80 | 75 |

puis on regroupe les termes par 4 (notez bien le caractère e de code 4 devient 04):

| 20137504 | 23041215 | 11048075 |

Dans la réalité c’est de cette manière que sont découps les textes mais en utilisant le codage ASCII et en regroupant les chiffres de leur représentation binaire.

Pour information voici la table des caractères ASCII de code 0 à 127 (qui fut ensuite étendue à 256 caractères).

<table>
<thead>
<tr>
<th>Dec</th>
<th>Hex</th>
<th>Oct</th>
<th>Char</th>
<th>Dec</th>
<th>Hex</th>
<th>Oct</th>
<th>Char</th>
<th>Dec</th>
<th>Hex</th>
<th>Oct</th>
<th>Char</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
<td>NUL (null)</td>
<td>32</td>
<td>20</td>
<td>032</td>
<td>Space</td>
<td>64</td>
<td>40</td>
<td>064</td>
<td>80</td>
<td>080</td>
</tr>
<tr>
<td>1</td>
<td>001</td>
<td>SOH (start of heading)</td>
<td>33</td>
<td>21</td>
<td>033</td>
<td>!</td>
<td>65</td>
<td>41</td>
<td>065</td>
<td>81</td>
<td>081</td>
</tr>
<tr>
<td>2</td>
<td>002</td>
<td>STX (start of text)</td>
<td>34</td>
<td>22</td>
<td>034</td>
<td>"</td>
<td>66</td>
<td>42</td>
<td>066</td>
<td>82</td>
<td>082</td>
</tr>
<tr>
<td>3</td>
<td>003</td>
<td>ETX (end of text)</td>
<td>35</td>
<td>23</td>
<td>035</td>
<td>#</td>
<td>67</td>
<td>43</td>
<td>067</td>
<td>83</td>
<td>083</td>
</tr>
<tr>
<td>4</td>
<td>004</td>
<td>EOT (end of transmission)</td>
<td>36</td>
<td>24</td>
<td>036</td>
<td>$</td>
<td>68</td>
<td>44</td>
<td>068</td>
<td>84</td>
<td>084</td>
</tr>
<tr>
<td>5</td>
<td>005</td>
<td>ENQ (enquiry)</td>
<td>37</td>
<td>25</td>
<td>037</td>
<td>%</td>
<td>69</td>
<td>45</td>
<td>069</td>
<td>85</td>
<td>085</td>
</tr>
<tr>
<td>6</td>
<td>006</td>
<td>ACK (acknowledge)</td>
<td>38</td>
<td>26</td>
<td>038</td>
<td>^</td>
<td>70</td>
<td>46</td>
<td>070</td>
<td>86</td>
<td>086</td>
</tr>
<tr>
<td>7</td>
<td>007</td>
<td>BEL (bell)</td>
<td>39</td>
<td>27</td>
<td>039</td>
<td>`</td>
<td>71</td>
<td>47</td>
<td>071</td>
<td>87</td>
<td>087</td>
</tr>
<tr>
<td>8</td>
<td>010</td>
<td>BS (backspace)</td>
<td>40</td>
<td>28</td>
<td>040</td>
<td>\</td>
<td>72</td>
<td>48</td>
<td>072</td>
<td>88</td>
<td>088</td>
</tr>
<tr>
<td>9</td>
<td>011</td>
<td>HT (vertical tab)</td>
<td>41</td>
<td>29</td>
<td>041</td>
<td>I</td>
<td>73</td>
<td>49</td>
<td>073</td>
<td>89</td>
<td>089</td>
</tr>
<tr>
<td>10</td>
<td>A12</td>
<td>LF (line feed, new line)</td>
<td>42</td>
<td>30</td>
<td>042</td>
<td>J</td>
<td>74</td>
<td>4A</td>
<td>074</td>
<td>90</td>
<td>090</td>
</tr>
<tr>
<td>11</td>
<td>B13</td>
<td>VT (vertical tab)</td>
<td>43</td>
<td>31</td>
<td>043</td>
<td>K</td>
<td>75</td>
<td>4B</td>
<td>075</td>
<td>91</td>
<td>091</td>
</tr>
<tr>
<td>12</td>
<td>C14</td>
<td>FF (form feed, new page)</td>
<td>44</td>
<td>32</td>
<td>044</td>
<td>L</td>
<td>76</td>
<td>4C</td>
<td>076</td>
<td>92</td>
<td>092</td>
</tr>
<tr>
<td>13</td>
<td>D15</td>
<td>CRS (carriage return)</td>
<td>45</td>
<td>33</td>
<td>045</td>
<td>M</td>
<td>77</td>
<td>4D</td>
<td>077</td>
<td>93</td>
<td>093</td>
</tr>
<tr>
<td>14</td>
<td>E16</td>
<td>SR (shift out)</td>
<td>46</td>
<td>34</td>
<td>046</td>
<td>N</td>
<td>78</td>
<td>4E</td>
<td>078</td>
<td>94</td>
<td>094</td>
</tr>
<tr>
<td>15</td>
<td>F17</td>
<td>ST (shift in)</td>
<td>47</td>
<td>35</td>
<td>047</td>
<td>O</td>
<td>79</td>
<td>4F</td>
<td>079</td>
<td>95</td>
<td>095</td>
</tr>
<tr>
<td>16</td>
<td>020</td>
<td>DLE (data link escape)</td>
<td>48</td>
<td>36</td>
<td>048</td>
<td>P</td>
<td>80</td>
<td>40</td>
<td>080</td>
<td>96</td>
<td>096</td>
</tr>
<tr>
<td>17</td>
<td>021</td>
<td>DC1 (device control 1)</td>
<td>49</td>
<td>37</td>
<td>049</td>
<td>Q</td>
<td>81</td>
<td>41</td>
<td>081</td>
<td>97</td>
<td>097</td>
</tr>
<tr>
<td>18</td>
<td>022</td>
<td>DC2 (device control 2)</td>
<td>50</td>
<td>38</td>
<td>050</td>
<td>R</td>
<td>82</td>
<td>42</td>
<td>082</td>
<td>98</td>
<td>098</td>
</tr>
<tr>
<td>19</td>
<td>023</td>
<td>DC3 (device control 3)</td>
<td>51</td>
<td>39</td>
<td>051</td>
<td>S</td>
<td>83</td>
<td>43</td>
<td>083</td>
<td>99</td>
<td>099</td>
</tr>
<tr>
<td>20</td>
<td>042</td>
<td>DC4 (device control 4)</td>
<td>52</td>
<td>40</td>
<td>052</td>
<td>T</td>
<td>84</td>
<td>44</td>
<td>084</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>21</td>
<td>025</td>
<td>NAK (negative acknowledge)</td>
<td>53</td>
<td>41</td>
<td>053</td>
<td>U</td>
<td>85</td>
<td>45</td>
<td>085</td>
<td>101</td>
<td>101</td>
</tr>
<tr>
<td>22</td>
<td>026</td>
<td>SYN (synchronous idle)</td>
<td>54</td>
<td>42</td>
<td>054</td>
<td>V</td>
<td>86</td>
<td>46</td>
<td>086</td>
<td>102</td>
<td>102</td>
</tr>
<tr>
<td>23</td>
<td>027</td>
<td>ETB (end of block)</td>
<td>55</td>
<td>43</td>
<td>055</td>
<td>W</td>
<td>87</td>
<td>47</td>
<td>087</td>
<td>103</td>
<td>103</td>
</tr>
<tr>
<td>24</td>
<td>030</td>
<td>CAN (cancel)</td>
<td>56</td>
<td>44</td>
<td>056</td>
<td>X</td>
<td>88</td>
<td>48</td>
<td>088</td>
<td>104</td>
<td>104</td>
</tr>
<tr>
<td>25</td>
<td>031</td>
<td>EM (end of medium)</td>
<td>57</td>
<td>45</td>
<td>057</td>
<td>Y</td>
<td>89</td>
<td>49</td>
<td>089</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td>26</td>
<td>032</td>
<td>SUB (substitute)</td>
<td>58</td>
<td>46</td>
<td>058</td>
<td>Z</td>
<td>90</td>
<td>4A</td>
<td>090</td>
<td>106</td>
<td>106</td>
</tr>
<tr>
<td>27</td>
<td>033</td>
<td>ESC (escape)</td>
<td>59</td>
<td>47</td>
<td>059</td>
<td>(</td>
<td>91</td>
<td>4B</td>
<td>091</td>
<td>107</td>
<td>107</td>
</tr>
<tr>
<td>28</td>
<td>034</td>
<td>FS (file separator)</td>
<td>60</td>
<td>48</td>
<td>060</td>
<td>)</td>
<td>92</td>
<td>4C</td>
<td>092</td>
<td>108</td>
<td>108</td>
</tr>
<tr>
<td>29</td>
<td>035</td>
<td>GS (group separator)</td>
<td>61</td>
<td>49</td>
<td>061</td>
<td>,</td>
<td>93</td>
<td>4D</td>
<td>093</td>
<td>109</td>
<td>109</td>
</tr>
<tr>
<td>30</td>
<td>036</td>
<td>RS (record separator)</td>
<td>62</td>
<td>4A</td>
<td>062</td>
<td>.</td>
<td>94</td>
<td>4E</td>
<td>094</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>31</td>
<td>037</td>
<td>US (unit separator)</td>
<td>63</td>
<td>4B</td>
<td>063</td>
<td>/</td>
<td>95</td>
<td>4F</td>
<td>095</td>
<td>111</td>
<td>111</td>
</tr>
</tbody>
</table>

Source: www.asciitable.com
1.5.2 Les principes de la cryptographie moderne

Maintenant nous pouvons expliquer en quoi consiste le chiffrement d’un tel texte. Le chiffrement repose sur plusieurs règles

- La modification de l’alphabet utilisé (par exemple : le a est systématiquement remplacé par la lettre u, le b par m etc...)
- un mélange des caractères (par exemple : écrire chaque bloc de texte codé de droite à gauche au lieu du sens habituel)
- le tout doit dépendre d’une information simple la clé permettant le chiffrement ou le déchiffrement.

Un exemple pour illustrer qu’il est nécessaire de combiner ces 3 règles pour obtenir un chiffrement le code de César. Ce code consiste à décaler les lettres de l’alphabet d’un certain rang a. Par exemple pour $a = 3$ on a la table de conversion suivante :

clair	a	b	c	d	e	f	g	h	i	j	k	l	m	...
-------	---	---	---	---	---	---	---	---	---	---	---	---	---	
codé	d	e	f	g	h	i	j	k	l	m	n	o	p	...

Dans le cas du code de César l’équation $f(x) = x + a$ est très simple à inverser :

$$f(x) = x + a = y \iff x = y - a = g(y) = f^{-1}(y)$$

Ce cryptosystème n’assure pas de grande sécurité. En effet si on code un texte assez long on pourra chercher la lettre apparaissant le plus fréquemment et identifier par quelle lettre est remplacé le e ce qui permet de déterminer la valeur de a et de décoder tout le texte. Il s’agit d’une attaque “statistique” du cryptosystème.

Un cas particulier du code de César est celui ou la clé $a = 13$ qui est connu sous le nom de ROT13. Dans ce cas on a: $f(x) = x + 13 = g(x)$ car $13 = -13$ dans $\mathbb{Z}/26\mathbb{Z}$! Ce système est utilisé dans certains forums ou sur certains newsgroups pour éviter que l’on ne lise une information involontairement (pour la lire il faut la décoder). On l’appelle ROT13 car il consiste en une permutation circulaire des lettres de l’alphabet qu’on peut représenter par la table suivante :

clair	a	b	c	d	e	f	g	h	i	j	k	l	m	codé
-------	---	---	---	---	---	---	---	---	---	---	---	---	---	
codé	n	o	p	q	r	s	t	u	v	w	x	y	z	clair
On sait que César utilisait ce code car Suétone (écrivain Romain, 70-127) en fait une description dans “La vie des 12 Césars”, une biographie des 12 premiers empereurs de Rome. César employait également une autre méthode de stéganographie très originale. Pour transmettre un message, il rasait la tête d’un esclave et inscrivait le message sur son crâne! Ensuite il attendait la repousse des cheveux et envoyait l’esclave. Malgré (ou à cause de) sa simplicité, ce chiffre fut encore employé par des officiers sudistes pendant la guerre de Sécession et par l’armée russe en 1915.

Ce sont les mêmes principes qui ont été utilisés par les ingénieurs allemands pour définir le cryptosystème ENIGMA (en 1919) qui fut largement utilisé par les armées allemandes pour protéger leur communications à partir de 1926 puis par les nazis pendant toute la seconde guerre mondiale. La machine ENIGMA est basé sur une technologie électromécanique (sans rapport avec celle utilisée maintenant) mais selon les même principes que nous avons énoncés. Elle se présente comme une machine à écrire où l’on saisit le texte à chiffrer.

FIG. 1.3 – la machine ENIGMA
Un système complexes de rotors permet d’associer à une lettre frappée sur le clavier à une autre lettre. C’est la position des rotors au début de la frappe du texte qui détermine les règle de conversions: c’est donc la clé du cryptosystème. S’il l’on veut déchiffrer un message intercepté sans aucune autre information alors il faut essayer chacune des clés possibles! La sécurité du système reposait donc sur le nombre de clés différentes à tester (contrairement au code de César) car sur les machines Enigma on pouvait chiffrer un texte selon 10^{16} combinaisons différentes!

C’est un mathématicien polonais de 27 ans, Marian Rejewski, qui trouvera dès les années 30 une première manière de trouver rapidement la clé, idées qui seront ensuite développées sous la direction d’Alan Turing à Bletchley Park, un manoir proche de Londres où se sont retranchés tous les cryptologues et mathématiciens alliés, et qui permettrons de casser tout le système cryptographique de l’armée nazi.

Pour appliquer ces règles (en particulier le changement d’alphabet), à un texte codé sous forme d’une suite de chiffres, il est très pratique d’utiliser des fonctions arithmétiques telles que l’élévation à la puissance modulo n. En effet le comportement irrégulier (mais totalement déterministe) de ces fonctions semble totalement aléatoire! Dans la suite nous allons voir qu’il existe 2 grands types de cryptosystèmes:

cryptosystème à clé privée: le chiffrement et le déchiffrement reposent sur la connaissance d’une même clé qui doit rester secrète pour conserver la sûreté du cryptosystème,

cryptosystème à clé publique: le chiffrement repose sur une méthode publique (accessible à tous) mais le déchiffrement repose sur la connaissance d’une clé secrète.
1.5.3 Cryptosystème à clé symétrique : Le DES

Le DES (data encryption system) est l’exemple type des cryptosystèmes à clé privée. Dans une version très simplifiée le principe de l’algorithme DES consiste à répéter un grand nombre de fois une opération très simple (que l’on peut inverser) qui “mélange” peu à peu les bits d’un document. L’opération de base s’appelle La méthode de Feistel (cf. figure 1.5) et consiste à échanger/combiner deux groupes de bits adjacents. Étant donné une fonction $f : \mathbb{Z}/n\mathbb{Z} \rightarrow \mathbb{Z}/n\mathbb{Z}$, (pas forcément bijective) la fonction de chiffrement sera définie par :

$$(A,B) \overset{\text{chiffrement}}{\mapsto} (B,A + f(B))$$

Il est alors très facile de décoder en utilisant les formules suivantes

$$(A',B') \overset{\text{déchiffrement}}{\mapsto} (B' - f(A'),A')$$

en effet on peut vérifier que

$$(A,B) \overset{\text{chiffrement}}{\mapsto} (B,A + f(B)) \overset{\text{déchiffrement}}{\mapsto} (A + f(B) - f(B),B) = (A,B)$$

![Diagramme de Feistel](image)

Fig. 1.5 – La méthode de Fiestel

Le DES consiste à répéter de nombreuses fois de suite la méthode de Fiestel avec différentes fonctions à chaque fois (cf. figure 1.6), ce qui complique la recherche de clés pour quelqu’un qui voudrait déchiffrer le message sans y être autorisé. La clé secrète est donc la suite de fonctions $f_j : \mathbb{Z}/n\mathbb{Z} \rightarrow \mathbb{Z}/n\mathbb{Z}$, $j = 1, \ldots k$. Dans la pratique, chacune de ces clés peut se ramener à un entier dans $\mathbb{Z}/n\mathbb{Z}$ (de grande taille). On peut facilement implémenter cet algorithme en prenant des fonctions du type :

$$f_j(x) = x_j^a \mod n$$

$$\Rightarrow (a_1, \ldots, a_k) = \text{clé secrète}$$

dont le comportement “aléatoire” permettra d’obtenir un chiffrement de bonne qualité.
1.5.4 Cryptosystème à clé asymétrique : le RSA

Au contraire du DES, le RSA est un cryptosystème à clé publique. La clé d’un tel cryptosystème est un triplet d’entiers \((n,e,d)\) qui doit être généré de la manière suivante :

- générer aléatoirement deux nombres premiers (distincts) \(p\) et \(q\)
 - calculer \(n = p \times q\)
 - calculer \(\Phi(n) = (p - 1) \times (q - 1)\)
- générer aléatoirement un nombre \(e\) premier avec \(\Phi(n)\)
 - calculer \(d\) tel que \(e \times d \equiv 1 \mod \Phi(n)\)

Au final les parties publiques et privées de la clé et les fonctions de chiffrement/déchiffrement s’obtiennent de la manière suivante :

\[
\begin{array}{c|c}
\hline
(n,e) & (n,d) \\
\hline
\text{clé publique} & \text{clé secrète} \\
\mid \downarrow & \mid \downarrow \\
\text{\quad} f(A) = A^e \mod n & \quad f^{-1}(B) = B^d \mod n \\
\text{fonction de chiffrement} & \text{fonction de déchiffrement} \\
\end{array}
\]

\[
\begin{array}{c|c}
\hline
\text{chiffrement publique} & \text{déchiffrement privé} \\
\hline
\text{message clair} = 1011011010000111... & \text{message chiffré} = 0100010110101001... \\
\mid \downarrow & \mid \downarrow \\
\text{création des groupes} A_1 A_2 \ldots A_{2p-1} A_{2p} & \text{création des groupes} B_1 B_2 \ldots B_{2p-1} B_{2p} \\
\mid \downarrow & \mid \downarrow \\
\text{chiffrer avec la clé publique} f & \text{déchiffrer avec la clé privée} f^{-1} \\
\text{message chiffré} = 0100010110101001... & \text{message clair} = 1011011010000111... \\
\end{array}
\]
La mise en œuvre du cryptosystème à clé publique RSA est plus simple que celle du DES (cf. figure 1.7), par contre la preuve du bon fonctionnement du RSA est plus complexe. Pour montrer que les fonction f et f^{-1} sont bien inverses l’une de l’autre on a besoin du petit théorème de Fermat et du théorème chinois :

Preuve : Il faut montrer que

$$\forall \ x \in [0, n-1], \quad f(f^{-1}(x)) = f^{-1}(f(x)) = x^{ed} \equiv x \mod n.$$

car

$$x \overset{\text{chiffrement}}{\mapsto} x^e \mod n \quad \overset{\text{décryptage}}{\mapsto} (x^e)^d = x^{ed} \mod n$$

Remarquons d’abord que quelque soit $x \in [0, n-1]$ (avec $n = pq$) alors PGCD(x, p) = 1 ou PGCD(x, q) = 1. Les rôles de p et q étant totalement symétriques il suffit de considérer le cas PGCD(x, p) = 1. On a alors l’alternative suivante :

- PGCD(x, q) = 1 d’après le théorème de Fermat on a

 $$x^{\Phi(n)} = (x^{p-1})^{q-1} \equiv 1^{q-1} \equiv 1 \mod p$$

 et

 $$x^{\Phi(n)} = (x^{q-1})^{p-1} \equiv 1^{p-1} \equiv 1 \mod q$$

 le théorème Chinois permet alors de conclure que

 $$x^{\Phi(n)} \equiv 1 \mod pq.$$

 ce qui donne

 $$x^{ed} = x^{1+k \times \Phi(n)} = x \times (x^{\Phi(n)})^k \equiv x \mod n$$

- PGCD(x, q) ≠ 1 dans ce cas on a toujours

 $$x = \alpha \times q \equiv 0 \mod q, \quad 0 \leq \alpha < p.$$

On a alors

$$x^{ed} = 0^{ed} \equiv 0 \equiv x \mod q$$

et aussi

$$x^{ed} = x((x^{p-1})^{q-1})^k \equiv x \mod p$$

donc $x^{ed} \equiv x \mod pq.$

Il reste à montrer la sûreté du cryptosystème RSA. Pour comprendre cherchons à trouver la clé secrète d à partir de la clé publique (n, e). Pour cela il faut :

- décomposer n en 2 facteurs premiers $p \times q$
- Calculer $\Phi(n) = (p - 1) \times (q - 1)$
- Calculer une identité de Bezout $e \times d + k \times \Phi(n) = 1$ pour obtenir d
Toutes ces opérations peuvent être programmées sur machine (cf. les TP) et l’on pourrait croire que le cryptosystème est facilement “cassable”. En fait la sécurité du cryptosystème RSA repose sur un choix des entiers \(p \) et \(q \) qui rende très difficile la factorisation de \(n \). Il est possible de générer rapidement des entiers \(p \), \(q \) et \(e \) premiers qui soient très grands (plusieurs centaines de chiffres décimaux) qui rendent impossible la factorisation de \(n \) en un temps raisonnable! En effet si on compare les temps de calcul des différents algorithmes à mettre en œuvre en fonction de la taille des données en entrée on obtient le tableau qui suit. Si \(a,b,e \approx n \) sont des entiers de taille maximale \(n \) et

\[
L = \log(n) \approx \text{nombre de chiffres en écriture décimale}
\]

alors

<table>
<thead>
<tr>
<th>opération</th>
<th>temps de calcul nécessaire ≤</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a + b)</td>
<td>(c_1 \times L)</td>
</tr>
<tr>
<td>(a \times b)</td>
<td>(c_2 \times L^2)</td>
</tr>
<tr>
<td>PGCD((a,b))</td>
<td>(c_3 \times L^3)</td>
</tr>
<tr>
<td>Bezout((a,b))</td>
<td>(c_4 \times L^3)</td>
</tr>
<tr>
<td>powermod((a,e,n))</td>
<td>(c_5 \times L^3)</td>
</tr>
<tr>
<td>(\text{prime}(k))</td>
<td>(c_6 \times L^3)</td>
</tr>
<tr>
<td>(\text{eratosthene}(n))</td>
<td>(c_8 \times \log(L) \times 10^L)</td>
</tr>
<tr>
<td>(\text{decomp}(n))</td>
<td>(c_9 \times 10^{L/2})</td>
</tr>
<tr>
<td>(\Phi(n))</td>
<td>(c_{10} \times 10^{L/2})</td>
</tr>
</tbody>
</table>

Les algorithmes à utiliser pour générer des clés ont un temps de calcul (on parle de complexité) proportionnel à \(L^k \) (i.e. polynômial) alors que les algorithmes pour factoriser des entiers ont une complexité en \(10^{k \times L} \) donc exponentielle. Bref pour des entrées suffisamment grandes le temps de calcul pour générer des entiers premiers reste raisonnable alors que le temps de calcul pour factoriser un entier devient irréaliste (plusieurs fois l’âge supposé de l’univers ... cf figure 1.8).

![Graphique de comparaison des complexités des différents algorithmes](image)

FIG. 1.8 – Comparaison des complexités des différents algorithmes
La taille des clés de chiffrement est d’ailleurs clairement indiquée dans les textes de loi en France. Ces textes concernant la cryptographie ont été révisés par les décrets 99-199 et 99-200 du 17 mars 1999 :

- la création et l’utilisation de logiciels dont l’algorithme utilise une clé inférieure à 40 bits est totalement libre
- l’utilisation de logiciels dont l’algorithme utilise une clé inférieure à 128 bits est libre à condition que :
 - l’éditeur du logiciel ait fait une déclaration
 - logiciels utilisés dans un cadre privé exclusivement
- les logiciels de cryptographie utilisant une clé à plus de 128 bits doivent faire l’objet d’une déclaration pour pouvoir être utilisés, par exemple :
 - Pour les cartes bancaires les clés RSA (à 700 bits) doivent être communiqués à un organisme public (un tiers de confiance)
 - L’utilisation de GNUPG (version libre de RSA) pour l’échange de mails et la signature électronique à été autorisée

1.5.5 Protection des cartes bancaires

Que se passe-t-il lorsqu’on introduit sa carte bleue dans un distributeur automatique ou un terminal de paiement chez un commerçant? Ce système repose sur plusieurs protocoles cryptographiques bien plus complexes que ne le laisse imaginer la simple saisie de votre code personnel à 4 chiffres ...

La carte à puce française est une sorte de petit ordinateur, elle possède :

- un processeur (assez peu puissant) qui permet d’effectuer des calculs
- une mémoire “vive” pour enregistrer l’historique des transactions
- une mémoire “morte” où sont stockées les informations nécessaires à l’authentification et au chiffrement des données (dont une partie est en lecture seule et l’autre en lecture cachée)

Dans les autres pays, Japon ou Etats-Unis par exemple, les cartes de paiement sont toujours dépourvues de puces. Examinons maintenant ce qui se passe lors d’un paiement (en France) :

- Tout commence par l’authentification de la carte qui repose sur le système RSA : une valeur de signature VS a été calculée lors de la fabrication de la carte à partir d’informations relatives au propriétaire (nom, numéro de carte, date de validité ...) d’un fonction de hachage (voir chapitre suivant) et de (S,N) la partie secrète de la clé RSA associée à la carte à partir de la formule :

$$VS = RSA(hash(infos),S,N)$$

de telle sorte que si (P,N) est la partie publique de la clé RSA associée à la carte on a :

$$hash(infos) = RSA(VS,P,N)$$

2. inventé par deux français (Roland Moreno et Michel Ugon) vers la fin des années 1970!
Il faut savoir que pour les CB le modulo N est un entier possédant entre 768 et 1024 bits (produit de 2 facteurs premiers) et $P = 3$. L’authentification de la carte se fait donc simplement par :

```
\begin{align*}
\text{infos} &= \text{informations personnelles (nom, numéro de carte, date de validité ...)} \\
y_1 &= \text{hash}(\text{infos}) \text{ (calcul d’une empreinte de taille fixée)} \\
VS &= \text{valeur de signature de la carte} \\
(P,N) &= \text{clé RSA (partie Publique) associé à la carte} \\
y_2 &= \text{RSA}(VS,P,N) \\
Vs &= \text{valeur de signature} \\
\text{si } y_1 = y_2 \text{ alors } OK \\
\text{sinon } \text{FAILED} \\
\end{align*}
```

La sécurité de la carte repose sur le fait que VS est écrit sur la partie non-lisible de sa mémoire morte. Il n’est donc pas possible de cloner la carte.

Il est très important de remarquer aussi que cette partie est donc faite hors-ligne !

- Ensuite on procède à l’identification du porteur de la carte : c’est là que l’on saisit son code confidentiel à 4 chiffres. Ce code étant stocké sur la partie lisible de la mémoire “morte” le processeur de la carte peut le comparer à la valeur saisie et transmet sa réponse au terminal (si tout se passe bien le terminal affiche “code bon”).

- Au delà d’un certain montant une troisième protection est ajoutée il s’agit d’une Authentification en ligne : un serveur distant envoie à la carte une valeur aléatoire x. La carte calcule $y = \text{DES}(x,K)$ avec une clé secrète K, inscrite dans la partie cachée de la mémoire “morte” de la carte, et renvoie le résultat au serveur distant qui donne ou pas l’autorisation.

L’affaire Humpich En 1998, Serge Humpich a fabriqué (à partir de pièces en vente libre) une fausse carte bancaire capable de passer les contrôles d’un terminal de paiement. C’est ce qu’on a appelé “l’affaire Serge Humpich” qui a fait la une des journaux pendant quelques semaines. En fait Serge Humpich n’avait contourné que deux des trois systèmes de sécurité :

- à partir d’un lecteur de carte à puce il a extrait les informations publiques d’une véritable carte à puce : informations personnelles (infos), la partie publique N (et $P = 3$) de la clé RSA.
- en 1998, le clés publiques N utilisé par le Groupement Inter-Bancaire (GIE) avait pour taille 320 bits (valeur fixée depuis 1990). A cette époque, factoriser un tel entier n’était plus impossible (le record se situait à 512 bits), et Humpich, en utilisant simplement un logiciel japonais de factorisation, a réussi à

3. ce code est aussi stocké sur la piste magnétique et les terminaux de paiement étrangers qui n’utilisent pas la puce de nos cartes authentifient le porteur de carte à partir de la piste magnétique
4. le terminal de paiement indique alors qu’il demande une “autorisation” au serveur de la banque
5. la clé secrète K est donc un secret partagé entre le possesseur de la carte et le serveur distant.
factoriser le N, à calculer la clé secrète S et à en déduire la valeur de signature VS de la carte!

• Il ne lui restait plus qu’à fabriquer une "yes card" c’est à dire une carte à puce qui répond OK au premier protocole d’identification du porteur de la carte quelque soit le code à 4 chiffres saisi au terminal (c’est possible puisque cette vérification est faite sur le processeur de la carte, il suffit donc de modifier l’opération de contrôle qui est codée sur cette puce) et à partir de là il pouvait cloner la carte bancaire en utilisant la valeur de signature VS calculée (pour un coût faible car un graveur de carte à puce vaut 50 Euros et une carte vierge s’achète dans les 15 Euros).

La dernière sécurité, elle, est toujours restée valide, mais comme cette vérification DES n’est faites qui si l’achat dépasse un certain montant la carte pouvait fonction dans beaucoup de cas. Le GIE aurait du relever bien plus tôt la taille des clés, les 320 bits étaient déjà suffisants en 1990, l est désormais de 768 bits. Il existe bien d’autres moyens de falsifier une carte bleue, le plus simple étant de calculer un faux numéro à 16 chiffres\(^6\) (et le cryptogramme qui va avec) et d’effectuer des paiement sur internet avec ce seul numéro.

\(^6\) Avant 2001, ce numéro était indiqué sur les tickets de carte bancaire! Depuis qu’il en a été supprimé il faut en généré un qui soit valide car tous les nombres à 16 chiffres ne donnent pas un numéro de carte bancaire valide…il existe des sites Internet où on explique comment calculer un numéro de carte bancaire valable!
1.6 Autres Applications

1.6.1 les fonctions de Hachage

Définition 1.6.1 Une fonction de Hachage est une fonction qui prend en entrée un texte (de longueur quelconque) et renvoie un nombre dans $\mathbb{Z}/n\mathbb{Z}$, appelé empreinte, de telle sorte qu’étant donné une empreinte il soit très difficile de trouver un texte ayant cette empreinte.

Par exemple les fonctions qui associent à un texte la valeur du premier bit (ou des n premiers bits) ou du dernier bit (ou des n dernier bits) ne sont pas des fonctions de hachage car il est facile de trouver un texte qui redonne une empreinte donnée.

Proposition 1.6.2 une fonction de hachage à valeur dans $\mathbb{Z}/n\mathbb{Z}$ est une fonction f de \mathbb{N} dans $\mathbb{Z}/n\mathbb{Z}$, cette fonction est donc forcément non-injective, c’est à dire que:

$$\exists x, y \in \mathbb{N}, \quad x \neq y \text{ et } f(x) = f(y)$$

Étant donné une fonction de hachage, trouver deux textes ayant la même empreinte s’appelle trouver une collision.

Puisqu’il y a plus de n textes différents dans l’ensemble de départ la fonction ne peut être injective. L’intérêt d’une fonction de hachage est que lorsque l’on change ne serait ce qu’un seul caractère du texte son empreinte est complètement modifiée. Prenons l’exemple de la fonction md5 (nommée ici md5sum), l’empreinte d’un texte simple est donnée ci-dessous sous forme hexadécimale (128 bits → 32 chiffres en base 16 car $2^4 = 16$ et $128 = 32 \times 16$):

```
philippe@pc1 ~
$ echo 'Calcul d’une empreinte avec l’algorithme md5.' > testmd5

philippe@pc1 ~
$ md5sum testmd5
af23f039a3770dfbf43c311b5208f892 *testmd5

philippe@pc1 ~
$ echo 'calcul d’une empreinte avec l’algorithme md5.' > testmd5

philippe@pc1 ~
$ md5sum testmd5
af23f039a3770dfbf43c311b5208f892 *testmd5
```

On voit que le simple fait de changer le ‘c’ en ‘C’ change totalement l’empreinte du message. L’une des applications principales des fonctions de hachage concerne la transmission sécurisée des mots de passe. En effet les mots de passe ne doivent pas être conservés dans une base de donnée (sinon quelqu’un peut éventuellement y accéder) mais il faut absolument pouvoir vérifier si quelqu’un connaît ou pas un mot de passe donné. Pour cela il suffit de conserver seulement l’empreinte du mot de passe (celle-ci ne permet pas de retrouver le mot de passe) et de demander
à un utilisateur d’envoyer seulement l’empreinte de son mot de passe (si elle est interceptée ce n’est pas grave elle ne permet pas de retrouver le mot de passe) et de comparer que les deux empreintes correspondent. Cependant il faut être sûr qu’on ne peut pas à partir de l’empreinte trouver un mot de passe donnant cette empreinte (une collision). Hélas pour le md5, en 2005 une méthode a été trouvé pour produire à partir de l’empreinte (et en un temps raisonnable) un mot de passe donnant la même empreinte.

/* gentil.c */

#include <stdlib.h>
#include <stdio.h>

int main(){
 printf("Je suis gentil !\n");
}

/* mechant.c */

#include <stdlib.h>
#include <stdio.h>

int main(){
 printf("Je suis mechant !\n");
}

après les avoir compilés on obtient deux fichiers qui ont des signatures différents :

philippe@pc1 ~
$ gcc -o gentil ./gentil.c

philippe@pc1 ~
$./gentil
Je suis gentil !

philippe@pc1 ~
$ gcc -o mechant ./mechant.c
philippe@pc1 ~
$.mechant
Je suis mechant !

philippe@pc1 ~
$ md5sum gentil.exe
c4ff40f0ec801b9b0d41832396bbe88 *gentil.exe

philippe@pc1 ~
$ md5sum mechant.exe
mais en utilisant le crack disponible à l'adresse [7] on peut créer 2 archives *.bin qui ont la même empreinte et la même taille, seul un **diff** permet de voir que les deux fichiers sont différents:

```bash
philippe@pc1 ~
$ md5sum gentil.bin
41916ea01aaf54d222a6d538d5bb65a8 *gentil.bin

philippe@pc1 ~
$ md5sum mechant.bin
41916ea01aaf54d222a6d538d5bb65a8 *mechant.bin

philippe@pc1 ~
$ ls -l *.bin
-rw-r--r-- 1 philippe Aucun 17882 Feb 14 18:23 gentil.bin
-rw-r--r-- 1 philippe Aucun 17882 Feb 14 18:23 mechant.bin

philippe@pc1 ~
$ diff gentil.bin mechant.bin
Files gentil.bin and mechant.bin differ
```

...on peut donc distribuer une archive vérifiée à la place de l'archive saine car affichant le md5 certifié! Il en est de même pour d'autres algorithmes de hachage comme le SHA, SHA1. Il en existe d'autres sûr (SHA256 et SHA512) mais plus lourds à utiliser. Des méthodes comme celle du **grain de sel** permettent cependant de contrer ce genre de faille du MD5. Pour information on trouvera la description du fonctionnement du MD5 en fin de cours.

1.6.2 Codes correcteurs d'erreurs

Voir exercice de TD.
La fonction de hashage MD5
Soit un message W qui va être le message à chiffrer composé de l bits, $MD5(W)$ va produire une empreinte à 128 bits (dans $\mathbb{Z}/2^{128}\mathbb{Z}$):

- **Complétion du message:**
 - On complète le message par un 1 et autant de 0 que nécessaires pour obtenir une longueur l' congrue à 448 modulo 512 (même si la longueur du message d’origine est congrue à 448 modulo 512).
 - On ajoute à ce message la valeur de l codée sur 64 bits, ce qui donne un message de longueur $l'' = l' + 64 \equiv 448 + 64 \equiv 512 \equiv 0$ mod 512.
- **On découpe le message en** N **blocs de 16 mots de 32 bits (car** $16 \times 32 = 512$ **et** l'' **est un multiple de 512)** puis on calcule l’empreinte:

remarque : on commence par initialiser certaines valeurs (sur 64 bits):

- $r[0..15] := 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22$
- $r[16..31] := 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20$
- $r[48..63] := 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21$.

$h0 := 0x67452301; \ h1 := 0xEFCDAB89; \ h2 := 0x98BADCFE; \ h3 := 0x10325476$

- **remarque** : MD5 utilise des sinus d’entiers pour ses constantes

pour $i = 0$ **jusqu’à** 63 **faire**

- $k[i] := \text{floor}(abs(sin(i + 1)) \times 2^{32})$

fin faire

pour chaque bloc w de 512 bits du message W **faire**

- **pour** $i = 0$ **jusqu’à** 63 **faire**
 - **alors** $f := (b \land c) \lor ((\neg b) \land d); \ g := i$
 - **sinon** $16 \leq i \leq 31$
 - **alors** $f := (d \land b) \lor ((\neg d) \land c); \ g := (5 \times i + 1) \mod 16$
 - **sinon** $32 \leq i \leq 47$
 - **alors** $f := b \oplus c \oplus d; \ g := (3 \times i + 5) \mod 16$
 - **sinon** $48 \leq i \leq 63$
 - **alors** $f := c \oplus (b \lor (\neg d)); \ g := (7 \times i) \mod 16$

fin si

fin si

- **temp** := $d; \ d := c; \ c := b$
- $b := ((a + f + k[i] + w[g]) \text{leftrotate} r[i]) + b$

remarque : leleftrotate fait un décalage de $r[i]$ bits vers la gauche

$a := \text{temp}$

fin faire

$h0 := h0 + a; \ h1 := h1 + b; \ h2 := h2 + c; \ h3 := h3 + d$

fin faire

empreinte := $(h0; h1; h2; h3)$
1.7 Aspect historiques

1.7.1 l’arithmétique dans l’antiquité

Ératosthène : il naquit en -276 à Cyrène (Libye) et fit ses études de mathématiques à Alexandrie et Athènes avant de devenir directeur de la grande bibliothèque d’Alexandrie et précepteur du fils du roi Ptolémée III. Outre le crible qui porte son nom il est connu pour avoir calculé la circonférence de la Terre (≈ 40000 km) avec une extrême précision pour les moyens de l’époque (mesure de la longueur de l’ombre d’un mat!!). Devenu aveugle il se suicide vers -194.

1.7.2 Pierre de Fermat

Pierre de Fermat (1601-1665) est issu d’une famille bourgeoise aisée, il travaille comme conseiller au parlement de Toulouse. Fermat semble contredire tous les clichés sur les génies : il n’est pas précoce (il commence à s’intéresser aux mathématiques après 30 ans), il travaille en amateur et ne s’intéresse pas à la publication de ses résultats. C’est dans ses loisirs qu’il aime lire la traduction en latin des œuvres de Diophante (IIème siècle après J-C) qu’il annote de démonstrations ou de généralisations. Ses communications avec les mathématiciens de son époque se limitent à des échanges épistolaires avec Mersenne, Pascal, Huygens. C’est son fils qui publiera les annotations laissées par son père dans un livre, *arithmetica*, publié après sa mort. On y trouve en particulier l’énoncé du grand théorème de Fermat :

\[a^n + b^n = c^n \] n’a pas de solution entières \((a,b,c) \neq (0,0,0)\) si \(n \geq 3\)

avec l’annotation : “J’ai découvert une démonstration merveilleuse mais je n’ai pas la place de la mettre dans la marge” . . . on mettra plus de trois siècles avant de trouver une démonstration valable (A. Wiles 1993).

L’idée du crible quadratique est aussi due à Fermat qui l’utilise conjointement au test basé sur le petit théorème de Fermat pour trouver des facteurs premiers de grands entiers. C’est au début des années 80 que le crible quadratique à pu être amélioré grâce à une méthode qui “accélère” la recherche des “bons” \(x\) à tester. À partir de 1980 ce type de crible a permi de factoriser des clés jusqu’à une taille de \(10^{140}\).
1.7.3 Marin Mersenne

Marin Mersenne (1588-1648) moine de l’ordre Minimes enseigne la philosophie au couvent de l’Annonciade à Paris. Opposant à l’alchimie, l’astrologie et autres sciences mystiques il défend les théories des grands scientifiques de l’époque (Descartes, Galilée,...) dont il traduit et diffuse les œuvres. Il fait une recherche exhaustive des entiers p compris entre 2 et 257, tels 2^p − 1 soit premier et dont la liste est: p = 2; 3; 5; 7; 13; 17; 19; 31; 61; 89; 107; 127. Il se trompa seulement pour p = 67,257 (qui ne conduisent pas à des nombres premiers) et ne trouva pas ceux correspondant à p = 61,89 et 107^8. Sans autre moyen que le calcul manuel il réussit la factorisation 2^{67} − 1 = 223 × 616318177. La popularité des nombres de Mersenne vient de leur lien avec les nombres parfaits cités dans la bible. Euclide à montré à leur sujet que si 2^p − 1 est premier alors 2^{p−1}(2^p − 1) est nombre parfait.

1.7.4 Cryptographie

Le DES fut utilisé par l’administration des États Unis pour le chiffrement de toutes les données non liées à la défense nationale à partir de 1977. L’intérêt du DES était qu’à condition de répéter un nombre de fois suffisant la méthode Feistel on pouvait se permettre d’utiliser des clés relativement petites (56 bits dans les années 80!) assurant à la fois une grande rapidité et un bon degré de sûreté. Techniquement on peut préciser que le texte était découpé en blocs de 32 bits, chacun de ces bloc était transformé en blocs de 48 bits (par une méthode de duplication de bits) auquel on appliquait la méthode de Feistel avant de retransformer les blocs de 48 bits obtenus en blocs de 32 bits. Le tout était répété 16 fois de suite avec 16 clés différentes! Dans les années 90 la puissance des ordinateurs progressant, les autorités Américaines ont du relever la norme de sécurité du DES (qui devint le TDES avec des clés de taille 112 bits), mais avec cette nouvelle norme l’algorithme était devenu trop lent. Il dut être remplacé, il y a quelques années, par un nouveau cryptosystème le AES.

On entend par cryptosystème à clé publique un système de chiffrement/déchiffrement où le chiffrement reposera sur une clé publique pouvant être divulguée (par exemple dans un annuaire ouvert à tout le monde) le déchiffrement reposant quant à lui sur une clé privée connue seulement de celui qui décide! Le risque de voir la sécurité du cryptosystème mise à mal par un “transfuge” devient alors nulle. L’idée d’un cryptosystème à clé publique est apparue dans les années 60, les agences de renseignement Britannique focalisèrent leur efforts sur cette question vers 1969 (sous l’impulsion de Ellis) et la solution, trouvée en 1973 (par un certain Cocks), resta classée “secret défense”. C’est en 1977 que trois Américains (Rivest, Shamir et Adi) ont proposés la première mise en œuvre d’un cryptosystème à clé publique: Le RSA. Les Américains déposèrent un brevet et créèrent la société RSA security pour l’exploiter. Les Britannique ayant conservé tout le secret de leur découverte perdirent donc leur avantage dans l’exploitation commerciale de cette découverte ...

8. Quoique certains prétendent que la confusion entre p = 61 et p = 67 proviennent d’une coquille dans le texte de Mersenne!
9. égaux à la somme de leurs diviseurs comme 6 = 1 + 2 + 3 ou 28 = 1 + 2 + 4 + 7 + 14.
1.7.5 RSA data-security

Comme nous l’avons vu dans ce cours, bien que la multiplication $a.b$ de deux nombres a et b constitue une opération simple, la factorisation, qui consiste à retrouver les nombres a et b à partir du produit $a.b$, peut se révéler très délicate, en particulier lorsque a et b sont des nombres premiers de plusieurs dizaines de chiffres. La sécurité du système de chiffrement RSA (du nom de ses concepteurs R. Rivest, A. Shamir, L. Adleman) repose précisément sur cette difficulté puisqu’un message codé selon ce principe ne peut être lu que si l’on connaît une des clés, c’est-à-dire l’un des nombres a ou b.

Afin de s’assurer que la longueur des clés de chiffrement demeure suffisamment grande pour garantir une sécurité optimale, les laboratoires RSA Security lancèrent en 1991 des défis RSA en soumettant de grands nombres à factoriser. Ceux-ci ont été baptisés RSA suivi du nombres de décimales correspondant. RSA-100, et RSA-110, de 100 et 110 chiffres respectivement, furent par exemple les premiers nombres RSA à être factorisés en 1991 et 1992. On pensait à la fin des années 70 qu’il faudrait des millions d’années pour y parvenir. Mais de nouvelles méthodes (comme le crible quadratique ou les cribles sur des corps de nombres généralisés) alliées à la puissance de calcul accrue des ordinateurs ont changé la donne.

Pour encourager la recherche, une récompense était offerte à la première équipe qui trouverait la factorisation d’un nombre RSA :

- 10 000 dollars pour une clé inférieure à 768 bits ($n \approx 1.553 \times 10^{231}$)
- ...
- 200 000 dollars pour des clés de 2048 bits ($n \approx 3.232 \times 10^{616}$).

L’opération s’est arrêtée fin 2007, mais il reste encore de nombreux défis ouverts… citons le nombre RSA-193 ou le monstre RSA-2048 pour lequel 200 000 dollars étaient promis. Pour comprendre la complexité du problème examinons les moyens mis en œuvre pour factoriser le RSA-155. Le 22 août 1999, une équipe du CWI (Institut national de recherche en mathématiques et en science informatique d’Amsterdam) annonça qu’elle avait cassé une clé numérique de 512 bits (155 chiffres décimaux) du système cryptographique RSA. Il s’agit de la factorisation d’un nombre de 155 chiffres en deux nombres premiers de 78 chiffres :

\[
10941 \quad 7386415705 \quad 2742180970 \quad 7322040357 \\
6120037329 \quad 4544920599 \quad 0913842131 \quad 4763499842 \\
8893478471 \quad 7997257891 \quad 2673324976 \quad 2575289978 \\
1833797076 \quad 5372440271 \quad 4674353159 \quad 3354333897 \\
= \quad 10263959 \quad 2829741105 \quad 7720541965 \quad 7399167590 \\
0716567808 \quad 0380668033 \quad 4193352179 \quad 0711307779 \\
x \quad 10660348 \quad 8380168454 \quad 8209272203 \quad 6001287867 \\
9207958575 \quad 9892915222 \quad 7060823719 \quad 3062808643
\]
Quelques détails technique sur le RSA-155 :
- Initialisation du calcul 9 semaines (sur une seule machine!)
- Calcul du système d’équations à résoudre (répartit sur 300 machines)
- Tri des équations pendant 1 mois (sur une seule machine encore) jusqu’à obtenir le système d’équations à 6 699 191 lignes et 6 711 336 colonnes.
- Résolution du système d’équations sur un ordinateur CrayC916 durée 224heures, espace disque: 2 gigaoctets.
- Simplification du résultat 39 heures.

La dernière factorisation en date est celle du RSA-200. Une équipe de la ”Bundesamt für Sicherheit in der Informationstechnik” (BSI, agence fédérale pour la sécurité des techniques de l’information) a annoncé le 9 mai 2005 la factorisation d’un nombre à 200 chiffres, connu sous le nom de RSA-200. Cette équipe s’était déjà illustré en décembre 2003 pour la factorisation d’un nombre à 174 chiffres (RSA-174). La factorisation de RSA-200 trouvée par l’équipe allemande est la suivante:

\[
\begin{align*}
2799783391 &\quad 1221327870 &\quad 8294676387 &\quad 2260162107 &\quad 0446786955 \\
4285375600 &\quad 0992932612 &\quad 8400107609 &\quad 3456710529 &\quad 5536085606 \\
1822351910 &\quad 9513657886 &\quad 3710595448 &\quad 2006576775 &\quad 0985805576 \\
1357909873 &\quad 4950144178 &\quad 8631789462 &\quad 9518723786 &\quad 9221823983 \\
= 3532461934 &\quad 4027701212 &\quad 7260497819 &\quad 8464368671 &\quad 1974001976 \\
2502364930 &\quad 3468776121 &\quad 2536794232 &\quad 0005854795 &\quad 6528088349 \\
\times 7925869954 &\quad 4783330333 &\quad 4708584148 &\quad 0059687737 &\quad 9758573642 \\
1996073433 &\quad 0341455767 &\quad 8728181521 &\quad 3538140930 &\quad 4740185467 \\
\end{align*}
\]

1.7.6 Le bug du P*ntium

T. Nicely est professeur au Lynchburg College, en Virginie. Il travaille sur les nombres premiers et cherche à obtenir des tables précises des nombres premiers inférieurs à 10^{15} pour évaluer la validité de certaines conjectures (sur les écarts entre 2 nombres premiers consécutifs).

Pour faire ce travail il utilisait le réseau informatique de son université lorsque celui-ci est peu ou pas utilisé (nuit, vacances …) en distribuant les calculs sur une centaine de machines : des PC équipés de “vieux” processeurs 486 ou du “flambant neuf” Pentium.

Pour éviter toute erreur de calcul tous les programmes étaient exécutés en “double” sur 2 machines différentes …et le 13 juin 1994 : un décompte incorrect des nombres premiers inférieurs à 20×10^{12} est identifié par comparaison avec des tables!

4 octobre 1994 : T. Nicely note une nouvelle erreur. Comme le programme est sûr, il localise rapidement l’erreur (en qq jours!). Il établit que c’est le calcul de 1/824 633 702 441 qui est faux en langage C++ avec le Pentium. L’erreur provient donc soit du compilateur C++, soit du Pentium.

18 octobre 1994 : L’erreur est reproduite avec le langage Power Basic et le logiciel Quatro-Pro sur un ordinateur équipé d’un Pentium (ce qui met le compilateur C++ hors de cause), mais disparaît quand le processeur mathématique du Pentium est désactivé : c’est donc lui le coupable.

Le 24 octobre 1994 : Intel est prévu. L’affaire commence...

... durant les mois qui suivirent le problème du Pentium a été décortiqué, et des cas d’erreurs très simples ont été repérés. Si vous souhaitez tester votre machine le pire cas d’erreur a été découvert par Tim Coe, de la Société Vitesses Semiconductors, faite la division suivante :

\[
\frac{4195835.0}{3145727.0} = \begin{cases}
1.33382049136... & \text{OK} \\
1.333739068902... & \text{Pentium défectueux}
\end{cases}
\]

L’erreur du Pentium est 10000 fois supérieure à celle d’une calculatrice valant 50 francs : il ne s’agit pas d’une erreur normale d’arrondi.

Une analyse détaillée montre que c’est avec des nombres proches de l’unité que le Pentium se trompe or ce sont ce type de divisions qui ont la plus grande probabilité d’apparaître dans les calculs. Au total le Pentium se trompe avec une probabilité de 1/3000!

1.7.7 l’histoire de GNUPG

GNUPG est le premier logiciel libre publié donnant accès au moyens moderne de cryptographie. Il est le fruit du travail d’un ingénieur informaticien et militant pacifique à ses heures : Philip R. Zimmermann (surnommé sur Internet “PRZ”). C’est le 5 Juin 1991 que la version PGP 1.0 est diffusée en urgence sur des BBS téléphoniques (l’ancêtre du réseau Internet) répartis dans tous les USA alors qu’un projet de loi US menace d’interdire la cryptographie libre. Peu après, la société RSA Data Security Inc. somme Phil Zimmermann de stopper la diffusion de PGP 1.0 (qui utilise l’algorithme breveté RSA sans avoir acheté de licence). Malgré tout P. Zimmerman continue le développement et publie PGP2.0 en septembre 1992. Mais le 14 Septembre 1993 le bureau des Douanes américaines de San Jose, Californie (USA) délivre une assignation contre “PGP, Philip Zimmermann, and anyone or any entity acting on behalf of Philip Zimmermann for the time period June 1, 1991 to the present” au sujet d’une violation de la réglementation sur les ventes d’armes et l’exportation de matériel technologique! En effet la réglementation US assimile les logiciels de cryptographie à une “arme” non-exportable. L’affaire durera 2 ans et demi, jusqu’au 11 Janvier 1996 où les Douanes US annonce que les poursuites contre Phil Zimmermann sont arrêtées. Aucune explication n’est fournie (le communiqué fait 7 lignes!). Le créateur de PGP n’est plus menacé, mais comme tous les logiciels de cryptographie, son programme reste interdit d’exportation des USA. Malgré tout le
10 août 1997 Ståle Schumacher publie en Norvège une version internationale freeware (PGP 5.0i) pour Unix, basée pour la première fois sur une exportation légale des USA du code-source sous la forme … d’*un livre imprimé*! Ce livre a ensuite été scanné, puis passé à la reconnaissance de caractères pour reconstituer le code-source en dehors des USA et compiler légalement cette version de GNUPG. Voir le cite [8] pour plus de détails. Vous pouvez télécharger et installer GNUPG sur votre machine depuis le site [9].
Bibliographie

[2] Bertrand Hauchecorne, Daniel Surrateau *Des mathématiciens de A à Z*