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Abstract — We consider the problem of detecting hiding in the
least significant bit (LSB) of images. Since the hiding rate is not
known, this is a composite hypothesis testing problem. We show
that under a mild condition on the host probability mass func-
tion (PMF), the optimal composite hypothesis testing problem is
solved by a related optimal simple hypothesis testing problem.
We then develop practical tests based on the optimal test and
exhibit their superiority over Stegdetect, a popular steganalysis
method used in practice.

I. INTRODUCTION

Steganography (data hiding) tools are easily available in the
public domain (see [1], [2]) and there is a need for the de-
sign of steganalysis tools that detect the presence of hidden
data. While research in steganography is well advanced, that
in steganalysis is still in its infancy. The main reason for this
is that in its full generality, steganalysis is an ill-posed prob-
lem: the original host data is unknown, the rate of hiding (if
data is hidden) is not known, and the number of steganogra-
phy schemes is large. A review of the few currently available
steganalysis tools is given in [3]. Unfortunately, even the most
promising existing approaches, such as Stegdetect ([1]) and
the supervised learning framework ([4]), have drawbacks that
limit their practical use.

1. Existing steganalysis methods are based on heuristics,
and given a steganography method, there is no system-
atic approach for designing a steganalysis method.

2. Every steganalysis method has some parameters to
be chosen, which determine the performance of the
method. Ideally, the test parameters should be chosen
purely on the basis of the data to meet the target perfor-
mance. Such schemes are lacking in the literature.

3. Due to the lack of a theoretical foundation, it is not
known how current steganalysis tests compare with ‘op-
timal’ tests.

In summary, many fundamental issues in steganalysis are
yet to be understood. A promising approach to developing a
systematic framework for steganalysis is the theory of hypoth-
esis testing [5, 6]). We adopt this approach in our study, and
investigate the detection of one of the simplest steganography
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methods–least significant bit (LSB) hiding. It is also popular
in practice - recently, a web-browser based steganography ap-
plication using LSB hiding was released by Hactivismo (see
[2]). However, even in this simple case, several difficulties
must be addressed. First, the host statistics are unknown, in
general, so that the models under the hypotheses ”no data hid-
den” versus ”data hidden” are not known a priori. Second, the
hypothesis ”data hidden” is a composite hypothesis, since the
amount of data hidden may vary.

Our main results are as follows. In Section II, we pro-
vide a simple model for LSB hiding, assuming that the host
symbols are independent and identically distributed (thus, we
throw away information regarding correlations between host
symbols, which could improve performance if accounted for).
In Section III, we study the structure of optimal tests assum-
ing that the host statistics are known, and identify conditions
under which the composite hypothesis ”data hidden” can be
reduced to the simple hypothesis ”data hidden at rate

���
.” The

proof of the latter result is given in Appendix A. In Section
IV, we provide estimators for the host statistics which work
well under both hypotheses (as long as the host statistics are
”smooth enough”), and then plug in these estimates into the
optimal detection rules in (a). This test comprehensively out-
performs Stegdetect, and is less sensitive to choice of threshold
than Stegdetect. Our conclusions are given in Section V.

II. STATISTICAL MODEL FOR LSB HIDING

We consider the case of independent and identically dis-
tributed (i.i.d.) data samples. This model is commonly used
in steganography ([7], [8]). Since the host samples are as-
sumed to be i.i.d., without loss of generality we assume the
data to be one dimensional. Suppose the i.i.d. host is �����	��
����
 ,
where the intensity values ��� are represented by 8 bits, that is,
�������������	�����������	��� � . We assume the hidden data �"! �	��
����
 is
i.i.d. and,

#%$ !&�(')�+*,'
�
� �

#%$ !&��'-��*,'
�
� �#%$ !&�.' NULL *,' $ �0/ � *1�2�43 �65 ���

The hider does not hide in host sample ��� if !&�7' NULL,
otherwise the hider replaces the LSB of ��� with !&� . With this
model for rate

�
LSB hiding, if the probability mass function

(PMF) of �8� is 9 $;: * , : ')���<���<�������=���	� , then the PMF of the data



after LSB hiding at rate
�

is given by,
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�
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���
� �
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 � (1a)
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�� : '����<�����������<�"��� �

(1b)

For sake of convenience, we denote the PMF by the 256-
dimensional vectors 9 , 9 � , and we write 9 � '�� � 9 , where� � is a �	����� �	��� matrix corresponding to the above linear
operation.

III. OPTIMAL COMPOSITE HYPOTHESIS TESTING

In this section we study optimal tests based on the knowledge
of the host PMF; practical tests which do not assume knowl-
edge of the host are given in the next section. Suppose we wish
to decide between two possibilities: data is hidden at some rate�

, where
� � 5-� 5 � 
 , or no data is hidden (

� ' � ). The
parameters � 3 � � 5 � 
 5 � are specified by the user. We
use � � to represent the hypothesis that data is hidden at rate�

. The steganalysis problem in this notation is to distinguish
between � � and � $;� � � � 
 *�� ' ������� � � 5 � 5 � 
 � .
The hypothesis that data is hidden is thus composite while the
hypothesis that nothing is hidden is simple. Suppose the ob-
served data is �! #" ��
" ��
 , where  #" are i.i.d. and take values in
some alphabet $ . For grey-scale images, $6' �"� �����<�����������	�&� .
Mathematically, a detector % is characterized by the acceptance
region &-�'$(
 of hypothesis � � :% $  �
 ���������� 
 * '(� � � if

$  �
 ���������� 
 *0��& �'(� $;� � � � 
<*�� otherwise �
In the absence of an apriori distribution on

�
when data is hid-

den, we use the Neyman-Pearson formulation of the optimal
detection problem: for )+* � given, minimize

# $
Miss *,' ,�-#.�0/213��1
�54 # $ % $  �
 ���������� 
 *,'6� �87 � � *

over detectors % which satisfy

#7$
False alarm * ' # $ % $  �
 ���������� 
 *,'9� $ � � � � 
1* 7 � � * 5 ) �

One way to find the optimal detector is to find the least fa-
vorable distribution ([5, Theorem 7, pp. 91]). Intuitively, for
steganalysis the worst case corresponds to the smallest hiding
rate. The following proposition shows that this intuition is ac-
curate for sufficiently large data lengths : , sufficiently small
hiding rates, and under a ‘smoothness’ constraint on the host
PMF 9 .

Proposition 1 Suppose 9
�;* � for
: ' �����������=����� and define< �=� ' 9 � � � 
?>�9 � � , @ ' � ���	��������������� . We impose the following

condition on the host PMF:A $ 9�*B� ' 
 ��CD
��� �FE $ 9�� � � 9
� � � 
 * � < � � �< � / � �HG 3 ��� (2)

Consider the composite hypothesis testing problem for distin-
guishing between � � and � $;� � � � 
 * . We restrict our atten-
tion to detectors that operate in the region

#%$
Miss * 5 � � � ,#%$

False alarm * 5 � � � . Then there exists : � , �JI * � such
that for :LKM: � , � 
 5 � I

the unique least favorable dis-
tribution is a unit mass at

� �
. Therefore, if N denotes the em-

pirical PMF (that is, normalized histogram) of the observed
data, the optimal detector for :OKP: � and

� 
 3 � I
is the

corresponding likelihood ratio test (LRT), which accepts � ifQ0R
R �0S $ N *B� '6T $ N#U 9 � /"* /VT $ N#U 9�* 5XW $ ) *1�
where

W $ ) * is a real-valued threshold chosen to obtain# $
False alarm * 'Y) and T $ 9ZU[N * is the Kullback-Leibler di-

vergence.

The proof is given in Appendix A. The main conclusion
of the above result is that under (2) the composite hypoth-
esis testing problem associated with steganalysis can be re-
placed by the simple hypothesis testing problem: test � � ver-
sus � � / . The condition (2) means that on an average, the
ratio 9 � � � 
?>=9 � � is not too large or too small. This assump-
tion would be satisfied for images whose histogram varies
smoothly. We have verified that condition (2) is true for a
database of 4000 DOQQ images. Based on this proposition,
we restrict our attention to testing hypothesis � � versus � � .

IV. PRACTICAL TESTS

We note from Proposition 1 that we only need to develop
tests for testing � � versus � � , where

�
is the smallest rate

amongst the possible rates the user is testing for. A problem
with the optimal LLRT test is that we do not know the host
PMF in practice. However, there are two factors that help us
to develop good practical tests based on the optimal LLRT.

1. The hiding rate in practice is very low, and therefore,
we can estimate the host PMF well. We found that a
number of simple estimates of the host PMF based on
the assumption that the host PMF is ‘smooth’ work well.

2. For the optimal LLRT, the threshold that minimize\ #%$
Miss *�� $ � / \ * #%$

False alarm * for \ �^] � ���?_ does
not depend on the host.

With the above motivation, we propose to form an estimate `9
of the host PMF 9 and then form the decision statistic,Q $ N *,'6T $ N#U?�;�a`9�* /VT $ N#U3`98*��
We consider the following estimate for 9 ; we have also tried
other simple estimates, which are reported in our related pa-
per [10]. For natural images the PMF is usually low pass. On
the other hand, random LSB hiding introduces high frequency
components in the histogram. Hence one simple estimate `9
is to pass the empirical PMF N though a low pass 2-tap FIR
filter with taps

$ � � ��� � � �	* . We note that normalization will be
required after the filtering. We refer to this test as the approx-
imate LLRT.

For a database of four thousand images from a DOQQ im-
age set, we obtained the following results by simulation. In
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Figure 1: LLRT with half-half filter estimate versus Stegdetect: the approximate LLRT (with worst case rate
� ' ��� �	� ) is

superior at high as well as low actual hiding rates.

Figure 1 we compare the approximate LLRT test based on
the half-half filter for estimating 9 with Stegdetect. For each
point on the curve, the threshold has been fixed over the entire
database. Clearly, our test outperforms Stegdetect for small as
well as high rates. For the database of images we have used,
the host PMF varies substantially from image to image. Thus
these simulations suggest that Stegdetect is more sensitive to
the choice of the threshold than our approximate LLRT test.
This is not surprising since we know that to attain a target per-
formance, the choice of the threshold in LLRT does not de-
pend on the host PMF. For example, if we choose

W ' � for
the approximate LLRT in the case when the hiding rate is 0.05,
then we found the operating point to be

#%$
Miss * ' ��� �	�����

and
#%$

False Alarm * ' ��� �	����� . From Figure 1 we can verify
that the tangent to the operating curve at this point is of slope
approximately 1 as predicted by the theory.

V. CONCLUSION

We showed that under a mild smoothness assumption on the
host PMF, the composite hypothesis testing problem associ-
ated with steganalysis is solved by the worst case simple hy-
pothesis testing problem. We then demonstrated a practical
test, which does not require the knowledge of the host PMF.
This test comprehensively outperforms Stegdetect and is less
sensitive to the choice of the threshold. More results can be
found in our related paper [10].

While the results in this paper illustrate the power of the
hypothesis testing approach to steganalysis, note that, by de-
signing the test for i.i.d. host samples, we have thrown away
information (e.g., regarding continuity of intensity values in
typical images) that could be useful for steganalysis. An im-
portant area for future research is, therefore, to obtain compact
mathematical models for such correlations to develop more
powerful tests. More generally, since the hypothesis testing
approach requires good models for the statistics under differ-
ent hypotheses, modeling is the key challenge in applying this

approach to the detection of various hiding strategies. Such
modeling includes both the choice of model complexity (e.g.,
to what extent should correlations be modeled) and the esti-
mation of the model parameters, which are typically unknown
a priori.

A. PROOF OF PROPOSITION 1

Consider the LLRT statisticQ0R
R �0S $ N � 
 � *,'6T $ N � 
 � U 9 � /�* /VT $ N � 
 � U 98* ' \	� N � 
 � �
where \ is a column vector whose @ ��
 entry is ��
�� $ 9�� >=9 � / � � * .
In this proof we repeatedly use the following estimates for
small

� �
, \ � ��' � � � 9 � � / 9 � � � 


��9
� � � ��� $;� �� *1� (3a)\ � � � 
 ' � � � 9 � � � 
 / 9 � �
�19 � � � 
 � ��� $;� �� *1� (3b)

For simplicity, we represent N � 
 � by N . We note that the false
alarm probability

#%$ Q R#R �0S $ N *�3 Wa7 � � * depends only on 9 .
Therefore to prove the result, we wish to show that for a given
threshold

W
,
#%$ Q R#R �0S $ N *H* Wa7 ����* is decreasing for

� � 5
� 5 � 
 , so that the unit mass at

� �
is the least favorable

distribution. To do so, we first obtain an approximation for#%$ Q0R
R �0S $ N * * W�7 � � * when
�

is small and : is large. Let�


$�� * be unity minus the distribution function of

Q5R#R �0S $ N * .
By the Berry-Esseen estimate for the rate of convergence in
the central limit theorem ([11, Theorem 4.9, pp. 126]), under
hypothesis � � ,

����
�


$ W * /+� ��� : $ W /�� $ � * *� $ � * � ���� 5 constant� : �

where the constant can be chosen independent of
�

in our case.
Now if

� � � � 
 '�� $ ��> � :�* , then it is easy to check using



(3) that � $ � * ' � $ � >2: * and � $ � * ' � $ ��> � : * . Therefore
choosing

W ' � $ ��>[: * , we get that

� 
 � '
� : $ W /�� $ � * *� $ � * ' � $ �"*1�

It follows that as : � � , the ratio of
#%$

Miss
7 � � * '�



$ W * and � $ � 
 * approaches unity. In words, for sufficiently

small
� �

,
� 
 , and : sufficiently large, we can approximate#%$

Miss
7 � � * by � $ � 
 * . Since the approximation error is uni-

form in
� ��] � � � � 
 _ , to prove the theorem we now work with

this approximation.
Since the � -function is monotonically decreasing, we need

to establish that � $ � * � ' � 
 > � : ' $ W / � $ � * *�> � $ � *
is increasing, that is, its derivative is non-negative for

� �] � � � � 
 _ . Taking the derivative of � $ � * ,

��� $ � * ' / � �
$ � * � � $ � *5� $ W /�� $ � * * $ � � $ � * * �� � $ � * 'a��/ � $ � *� � $ � * �

Our goal is to show that
� $ � * is non-positive in the desired

region. We begin by obtaining an expression for
� $ � * . Let �

be the vector whose even components are of the form 90� � /
9 �
		� 
 and whose odd components are of the form 9 � � � 
 /
9 � � . Then it is easy to see that 9 � ' 9�/ � � >�� , and hence
� $ � * ' � $ �+* ��� � , where � ' / \ � � > � . Substituting for \
and � we get that,

��' �
�

 ��CD
��� � 9

� � $ < � /7��* ��
��
� $ � > �	* � $ � / � > ��* < �$ � > �	* < �� � $ �0/ � >���* < � �

We note that each summand is negative, so that � 3 � and
� $ � * is decreasing. Hence the restriction

#%$
Miss * 5 � � � and#%$

False alarm * 5 � � � implies that

� $;� � * 5 W 5 � $ �	*�� (4)

Similarly, we obtain,

� � $ � * ' � � $ �+*5��
 � ��� � � ��� '�� �

0' / �

�
\ � $ diag

$ � * �7��9�� � * \ �
Putting � ' � $ �	* / W , we obtain,

� $ � * ' /���� � � / ��� � � � $ � � � $ �	* / � 
�*��
We note that

� � $ � * ' / ��� $ � $ � *,/ W * . Since �)3-� , � $ � * is
decreasing and hence � $ � *03 � $;� � * 5XW from (4). Therefore� � $ � *	K�� , that is,

� $ � * is increasing. Therefore it suffices to
show that

� $ ��* 5 � , which is the same as the condition,

/���� ��� � � $ �	*�/ � $ 
Z� ��� � * 5 ��� where � ' � $ �	* / W K ���
(5)

We note that


 ' / �
�
\ � diag

$ � * \ / $ \ � 98*��
' / �

�

 ��CD
��� �

$ 9
� � � 
 / 9�� � * $ \ �� � � 
 / \ �� � * /�T $ 9ZU 9
�0/�*��,�

Using (3), we know that T $ 9�U 93�0/�*4' � $ � �� * , � ' � $;� � * ,
and,


 '
� ��
�


 ��CD
��� �

$ 9 � � � 
 / 9 � � *�� $ 9 � � � 
F� 9 � ��*
9
� � 9
� � � 
 � � $ � �� *��

Thus for
� �

sufficiently small, 
 is positive. Since 
 � ��� �
is positive, to prove (5), we only need to show that /�� � �
� � � $ �	* 5 � , that is, � � 5 � � $ �	* . Again by using (3), we have
for
A $ 98* as in the statement of Proposition 1,\ ' A $ 9�*

�
� �� ��� $;� �� *1��� � ' A � $ 98*

�
� �� ��� $;� �� *��

Therefore for
A%$ 98* 3 � , for

� �
sufficiently small, � � 5

� � $ �	* , and the proof is complete.
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