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Security proofs

� What is cryptography ?
� Cryptography’s aim is to contruct schemes that

achieve some goal despite the presence of an
adversary.

� Example: encryption, key-exchange, signature,
electronic voting...

� Scientific approach:
� To be rigorous, one must specify what it means to

be secure.
� Then one tries to construct schemes that achieve

the desired goal, in a provable way.
� Plain RSA encryption and signature cannot be

used !
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The RSA signature scheme

� Key generation :
� Public modulus: N = p · q where p and q are large

primes.
� Public exponent : e

� Private exponent: d, such that d · e = 1 mod φ(N)

� To sign a message m, the signer computes :

� s = md mod N

� Only the signer can sign the message.

� To verify the signature, one checks that:
� m = se mod N

� Anybody can verify the signature
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Hash-and-sign paradigm

� There are many attacks on basic RSA signatures:
� Existential forgery: re = m mod N

� Chosen-message attack: (m1 · m2)
d = md

1
· md

2

mod N

� To prevent from these attacks, one usually uses a
hash function. The message is first hashed, then
padded.
� m −→ H(m) −→ 1001 . . .0101‖H(m)

� Example: PKCS#1 v1.5:
µ(m) = 0001 FF....FF00||cSHA||SHA(m)

� ISO 9796-2: µ(m) = 6A‖m[1]‖H(m)‖BC
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Proofs for signature schemes

� Strongest security notion (Goldwasser, Micali and
Rivest, 1988):
� It must be infeasible for an adversary to forge the

signature of a message, even if he can obtain the
signature of messages of his choice.

� Security proof:
� Show that from an adversary who is able to forge

signature, you can solve a difficult problem, such
as inverting RSA.

� Examples of provably secure signature schemes:
� Full Domain Hash (FDH)
� Probabilistic Signature Scheme (PSS)
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The FDH scheme

� The FDH signature scheme:
� was designed in 1993 by Bellare and Rogaway.

m −→ H(m) −→ s = H(m)d mod N

� The hash function H(m) has the same output size
as the modulus.

� Security of FDH
� FDH is provably secure in the random oracle

model, assuming that inverting RSA is hard.
� In the random oracle model, the hash function is

replaced by an oracle which outputs a random
value for each new query.
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Security proof for FDH

� We want to show that FDH is a secure signature
scheme:
� Even if the adversary requests signatures of

messages of his choice, he is still unable to
produce a forgery.

� Forgery: a couple (m′, s′) such that s is a valid
signature of m but the signature of m was never
requested by the adversary.
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Security proof for FDH

� Proof in the random oracle model
� The adversary cannot compute the hash-function

by himself.
� He must make a request to the random oracle,

which answers a random, independantly
distributed answer for each new query.

X Randomly distributed in ZN .

� Idealized model of computation
� A proof in the random oracle model does not

imply that the scheme is secure when a concrete
hash-function like SHA-1 is used.

� Still a good guarantee.
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Security proof

Forger Reduction

(N,e,y)

(N, e)

H(m)= ?

S(m)= ?

(M',s')

y^d mod N
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Proof of security

� We assume that there exists a succesfull adversary.
� This adversary is an algorithm that given the

public-key (N, e), after at most qhash hash queries
and qsig signature queries, outputs a forgery
(m′, s′).

� We will use this adversary to solve a RSA challenge:
given (N, e, y), output yd mod N .
� The adversary’s forgery will be used to compute

yd mod N , without knowing d.
� If solving such RSA challenge is assumed to be

hard, then producing a forgery must be hard.
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Security proof for FDH

� Let qhash be the number of hash queries and qsig be
the number of signature queries.
� Select a random j ∈ [1, qhash + qsig + 1].

� Answering a hash query for the i-th message mi:
� If i 6= j, answer H(mi) = re

i mod N for random ri.
� If i = j, answer H(mj) = y.

� Answering a signature query for mi:

� If i 6= j, answer ri = H(mi)
d mod N , otherwise

(i = j) abort.
� We can answer all signature queries, except for

message mj
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Using the forgery

� Let (m′, s′) be the forgery
� We assume that the adversary has already made

a hash query for m′, i.e. , m′ = mi for some i.
X Otherwise we can simulate this query.

� Then if i = j, then s′ = H(mj)
d = yd mod N .

� We return s′ as the solution to the RSA challenge
(N, e, y).
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Success probability

� Our reduction succeeds if i = j

� This happens with probability 1/(qhash + qsig + 1)

� From a forger that breaks FDH with probability ε in
time t, we can invert RSA with probability
ε′ = ε/(qhash + qsig + 1)in time t′ close to t.

� Conversely, if we assume that it is impossible to
invert RSA with probability greater than ε′ in time t′,
it is impossible to break FDH with probability greater
than

ε = (qhash + qsig + 1) · ε′

in time t close to t′.
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Improving the security bound

� Instead of letting H(mi) = re
i mod N for all i 6= j

and H(mj) = y, one lets
� H(mi) = re

i mod N with probability α

� H(mi) = re
i · y mod N with probabiliy 1 − α

� Idea (published at CRYPTO 2000 by me).
� When H(mi) = re

i mod N one can answer the
signature query but not use a forgery for mi.

� When H(mi) = re
i · y mod N one cannot answer

the signature query but can use the forgery to
compute yd mod N .

� Optimize for α.
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Improving the bound

� Probability that all signature queries are answered:
� A signature query is answered with probability α

� At most qsig signature queries ⇒ P ≥ αqsig

� Probability that the forgery (mi, s
′) is useful :

� Useful if H(mi) = re
i · y mod N

X s′ = H(mi)
d = ri · y

d mod N ⇒ yd = s′/ri

mod N

� Global success probability :
� f(α) = αqsig · (1 − α)

� f(α) is maximum for αm = 1 − 1/(q + 1)

� f(αm) ' 1/(e · qsig) for large qsig
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Success probability

� From a forger that breaks FDH with probability ε in
time t, we can invert RSA with probability
ε′ = ε/(4 · qsig) in time t′ close to t.

� Conversely, if we assume that it is impossible to
invert RSA with probability greater than ε′ in time t′,
it is impossible to break FDH with probability greater
than ε = 4 · qsig · ε

′ in time t close to t′.

� Concrete values
� With qhash = 260 and qsig = 230, we obtain ε = 232ε′

instead of ε = 260 · ε′

� More secure for a given modulus size k.
� A smaller modulus can be used for the same level

of security: improved efficiency.
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The PSS signature cheme

� PSS (Bellare and Rogaway, Eurocrypt’96)
� IEEE P1363a and PKCS#1 v2.1.
� 2 variants: PSS and PSS-R (message recovery)
� Provably secure against chosen-message attacks
� PSS-R:

µ(M, r) = ω‖s

� �

�

� �
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Conclusion

� What is cryptography ?
� Cryptography’s aim is to contruct schemes that

achieve some goal despite the presence of an
adversary.

� Scientific approach:
� To be rigorous, one must specify what it means to

be secure.
� Then one tries to construct schemes that achieve

the desired goal, in a provable way.
� Plain RSA encryption and signature cannot be

used !
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