Cryptographie

Cours no. 3

Jean-Sébastien Coron

coron@clipper.ens.fr

Université du Luxembourg
What is cryptography?

Cryptography’s aim is to construct schemes that achieve some goal despite the presence of an adversary.

Example: encryption, key-exchange, signature, electronic voting...

Scientific approach:

To be rigorous, one must specify what it means to be secure.
Then one tries to construct schemes that achieve the desired goal, in a provable way.
Plain RSA encryption and signature cannot be used!
The RSA signature scheme

Key generation:
- Public modulus: $N = p \cdot q$ where p and q are large primes.
- Public exponent: e
- Private exponent: d, such that $d \cdot e = 1 \pmod {\phi(N)}$

To sign a message m, the signer computes:
- $s = m^d \pmod N$
- Only the signer can sign the message.

To verify the signature, one checks that:
- $m = s^e \pmod N$
- Anybody can verify the signature
Hash-and-sign paradigm

There are many attacks on basic RSA signatures:

- **Existential forgery:** \(r^e = m \mod N \)
- **Chosen-message attack:** \((m_1 \cdot m_2)^d \equiv m_1^d \cdot m_2^d \mod N \)

To prevent from these attacks, one usually uses a hash function. The message is first hashed, then padded.

- \(m \rightarrow H(m) \rightarrow 1001\ldots 0101\| H(m) \)
- **Example:** PKCS#1 v1.5:
 \(\mu(m) = 0001 \text{ FF}\ldots \text{FF00}\| c_{SHA}\| \text{SHA}(m) \)
- **ISO 9796-2:** \(\mu(m) = 6A\| m[1]\| H(m)\| \text{BC} \)
Proofs for signature schemes

Strongest security notion (Goldwasser, Micali and Rivest, 1988):
- It must be infeasible for an adversary to forge the signature of a message, even if he can obtain the signature of messages of his choice.

Security proof:
- Show that from an adversary who is able to forge signature, you can solve a difficult problem, such as inverting RSA.

Examples of provably secure signature schemes:
- Full Domain Hash (FDH)
- Probabilistic Signature Scheme (PSS)
The FDH scheme

The FDH signature scheme:
- was designed in 1993 by Bellare and Rogaway.

\[m \rightarrow H(m) \rightarrow s = H(m)^d \mod N \]

- The hash function \(H(m) \) has the same output size as the modulus.

Security of FDH
- FDH is provably secure in the random oracle model, assuming that inverting RSA is hard.
- In the random oracle model, the hash function is replaced by an oracle which outputs a random value for each new query.
We want to show that FDH is a secure signature scheme:

- Even if the adversary requests signatures of messages of his choice, he is still unable to produce a forgery.
- Forgery: a couple \((m', s')\) such that \(s\) is a valid signature of \(m\) but the signature of \(m\) was never requested by the adversary.
Security proof for FDH

- Proof in the random oracle model
 - The adversary cannot compute the hash-function by himself.
 - He must make a request to the random oracle, which answers a random, independently distributed answer for each new query.
 - Randomly distributed in \mathbb{Z}_N.

- Idealized model of computation
 - A proof in the random oracle model does not imply that the scheme is secure when a concrete hash-function like SHA-1 is used.
 - Still a good guarantee.
Security proof

Forger

\((N, e) \)

\(\text{H(m)} = ? \)

\(\text{S(m)} = ? \)

\((M', s') \)

\(y^d \mod N \)

Reduction

\((N, e, y) \)
Proof of security

- We assume that there exists a successful adversary.
 - This adversary is an algorithm that given the public-key \((N, e)\), after at most \(q_{hash}\) hash queries and \(q_{sig}\) signature queries, outputs a forgery \((m', s')\).

- We will use this adversary to solve a RSA challenge: given \((N, e, y)\), output \(y^d \mod N\).
 - The adversary’s forgery will be used to compute \(y^d \mod N\), without knowing \(d\).
 - If solving such RSA challenge is assumed to be hard, then producing a forgery must be hard.
Let q_{hash} be the number of hash queries and q_{sig} be the number of signature queries.

Select a random $j \in [1, q_{hash} + q_{sig} + 1]$.

Answering a hash query for the i-th message m_i:
- If $i \neq j$, answer $H(m_i) = r_i^e \mod N$ for random r_i.
- If $i = j$, answer $H(m_j) = y$.

Answering a signature query for m_i:
- If $i \neq j$, answer $r_i = H(m_i)^d \mod N$, otherwise $(i = j)$ abort.
- We can answer all signature queries, except for message m_j.
Using the forgery

Let \((m', s')\) be the forgery

- We assume that the adversary has already made a hash query for \(m'\), i.e., \(m' = m_i\) for some \(i\).
- Otherwise we can simulate this query.

Then if \(i = j\), then \(s' = H(m_j)^d = y^d \mod N\).

We return \(s'\) as the solution to the RSA challenge \((N, e, y)\).
Success probability

- Our reduction succeeds if \(i = j \)
 - This happens with probability \(\frac{1}{q_{hash} + q_{sig} + 1} \)
- From a forger that breaks FDH with probability \(\varepsilon \) in time \(t \), we can invert RSA with probability \(\varepsilon' = \frac{\varepsilon}{q_{hash} + q_{sig} + 1} \) in time \(t' \) close to \(t \).
- Conversely, if we assume that it is impossible to invert RSA with probability greater than \(\varepsilon' \) in time \(t' \), it is impossible to break FDH with probability greater than
 \[
 \varepsilon = (q_{hash} + q_{sig} + 1) \cdot \varepsilon'
 \]
 in time \(t \) close to \(t' \).
Improving the security bound

Instead of letting \(H(m_i) = r_i^e \mod N \) for all \(i \neq j \) and \(H(m_j) = y \), one lets

\[
\begin{align*}
\diamond & \quad H(m_i) = r_i^e \mod N \text{ with probability } \alpha \\
\diamond & \quad H(m_i) = r_i^e \cdot y \mod N \text{ with probability } 1 - \alpha
\end{align*}
\]

Idea (published at CRYPTO 2000 by me).

\[
\begin{align*}
\diamond & \quad \text{When } H(m_i) = r_i^e \mod N \text{ one can answer the signature query but not use a forgery for } m_i. \\
\diamond & \quad \text{When } H(m_i) = r_i^e \cdot y \mod N \text{ one cannot answer the signature query but can use the forgery to compute } y^d \mod N. \\
\diamond & \quad \text{Optimize for } \alpha.
\end{align*}
\]
Improving the bound

- Probability that all signature queries are answered:
 - A signature query is answered with probability α
 - At most q_{sig} signature queries $\Rightarrow P \geq \alpha^{q_{\text{sig}}}$

- Probability that the forgery (m_i, s') is useful:
 - Useful if $H(m_i) = r_i^c \cdot y \mod N$
 - $s' = H(m_i)^d = r_i \cdot y^d \mod N \Rightarrow y^d = s' / r_i \mod N$

- Global success probability:
 - $f(\alpha) = \alpha^{q_{\text{sig}}} \cdot (1 - \alpha)$
 - $f(\alpha)$ is maximum for $\alpha_m = 1 - 1/(q + 1)$
 - $f(\alpha_m) \approx 1/(e \cdot q_{\text{sig}})$ for large q_{sig}
Success probability

From a forger that breaks FDH with probability ε in time t, we can invert RSA with probability $\varepsilon' = \frac{\varepsilon}{4 \cdot q_{sig}}$ in time t' close to t.

Conversely, if we assume that it is impossible to invert RSA with probability greater than ε' in time t', it is impossible to break FDH with probability greater than $\varepsilon = 4 \cdot q_{sig} \cdot \varepsilon'$ in time t close to t'.

Concrete values

- With $q_{hash} = 2^{60}$ and $q_{sig} = 2^{30}$, we obtain $\varepsilon = 2^{32} \varepsilon'$ instead of $\varepsilon = 2^{60} \cdot \varepsilon'$
- More secure for a given modulus size k.
- A smaller modulus can be used for the same level of security: improved efficiency.
The PSS signature scheme

- PSS (Bellare and Rogaway, Eurocrypt’96)
 - IEEE P1363a and PKCS#1 v2.1.
 - 2 variants: PSS and PSS-R (message recovery)
 - Provably secure against chosen-message attacks

- PSS-R:
 \[\mu(M, r) = \omega \| s \]

\[M \| r \]

\[H \]

\[G \]

\[\omega \]

\[s \]
What is cryptography?

Cryptography’s aim is to construct schemes that achieve some goal despite the presence of an adversary.

Scientific approach:

To be rigorous, one must specify what it means to be secure.

Then one tries to construct schemes that achieve the desired goal, in a provable way.

Plain RSA encryption and signature cannot be used!