Syndrome Decoding in the Non-Standard Cases

Matthieu Finiasz
I. The Problem of Syndrome Decoding
II. The Cryptosystems of McEliece and Niederreiter
III. McEliece-Based Signatures
IV. Provably Secure Syndrome-Based Hash Functions
V. The Multiple of Low Weight Problem
Part I

The Problem of Syndrome Decoding
A code \(C \) can be defined by a \(k \times n \) generator matrix \(G \). A message \(m \) is encoded into a codeword \(c \), adding some noise \(e \) gives a word \(c' = c \oplus e \).

Decoding consists in finding the closest codeword to \(c' \).
A parity check matrix \mathcal{H} of the code C is such that:

$$c \in C \iff \mathcal{H} \cdot c = 0.$$

Using \mathcal{H} one can make decoding independent of c:

$$\mathcal{H} \cdot c' = \mathcal{H} \cdot (c \oplus e) = \mathcal{H} \cdot c \oplus \mathcal{H} \cdot e = S.$$

S is the syndrome of c' (or of e).

Find the word of syndrome S of lowest weight.
Syndrome Decoding: (SD)

Input: an $n - k \times n$ binary matrix \mathcal{H}, an $n - k$ bit vector S and a weight w.

Output: an n bit vector e of Hamming weight $\leq w$ such that $\mathcal{H} \cdot e = S$.

- It is a sort of “bounded” decoding: maximum-likelihood decoding is not in NP.
Known Techniques for Solving SD

- Birthday techniques:
 - standard with 1 list
 - memory saving with 4 lists [Joux 2002]
 - generalized birthday with 2^a lists [Wagner 2002]

- Decoding techniques:
 - information set decoding [Canteaut - Chabaud 1998]
 - iterative decoding [Fossorier - Kobara - Imai 2003]

- Lattice-based techniques?
Part II
The Cryptosystems of McEliece and Niederreiter
The McEliece Cryptosystem

Algorithms

The public key is a scrambled Goppa code generator matrix \(G' = Q \times G \times P \). \((G, P, Q)\) is the private key.

Encryption: \(E_{G'}(m) \)

- Pick \(e \) of weight \(\leq t \).
- Compute \(c' = E_{G'}(m) = m \times G' \oplus e \).

Decryption: \(D_{(G, P, Q)}(c') \)

- Compute \(c' \times P^{-1} = m \times Q \times G \oplus e' \).
- Decode to remove \(e' \) and recover \(m \times Q \), and multiply by \(Q^{-1} \) to get \(m \).
Similar to McEliece, but the message is coded in the error e instead of the codeword.

- The public key is $H' = P \times H \times Q$ where H is a parity check matrix.
- The message is coded into a word e of given weight.
- The ciphertext is the syndrome $S = H' \times e$.

Both systems have equivalent security. Decryption requires to solve an instance of SD.
The original McEliece parameters are $n = 1024$, $k = 524$ and $t = 50 \rightarrow$ not secure enough.

“Better” parameters are $n = 2048$, $k = 1718$, $t = 33$.

The corresponding instances of SD are very specific:
- there is always a single solution,
- parameters correspond to Goppa codes: $\frac{n-k}{w} = \log n$,
 $\rightarrow w$ is a little below the Gilbert-Varshamov bound.

Most research was focused on this type of parameters, they are believed to be among the hard instances of SD.
Information Set Decoding (ISD)

- Find k positions containing no non-zero positions of e.
 - This is called an information set.
 - A Gaussian elimination on the $n-k$ other gives e.

Probability of success $= \frac{(n-w)\binom{k}{w}}{\binom{n}{k}} = \frac{(n-k)\binom{w}{n}}{\binom{n}{w}} \approx \left(\frac{n-k}{n}\right)^w$.

Complexity $= \mathcal{O} \left(Poly(n) \left(\frac{n}{n-k} \right)^w \right)$.
There is a single solution

- generalized birthday does not apply
- simply list words of weight $\frac{w}{2}$ and look for the collision
- complexity is of order $O\left(n^{\frac{w}{2}}\right)$.

If $n - k > \sqrt{n}$, birthdays are less efficient than ISD

→ useful only for codes correcting very few errors.
“Standard case” refers to the kind of instances of SD derived from McEliece or Niederreiter cryptosystems:
▷ a single solution exists
▷ close to the Gilbert-Varshamov bound.

These are the cases that have been the most studied
▷ the best algorithm is quite complex
▷ less research was done for other parameters
→ generic algorithms are used.
Part III

McEliece-Based Signatures
The Problem of Code-Based Signatures
[Courtois - Finiasz - Sendrier 2001]

▶ One needs to decrypt a “random” ciphertext
 △ some (most) syndromes/words can’t be decoded.
 △ some (most) messages can’t be signed!

▶ A simple solution exists:
 △ get the highest possible probability of success
 → increase the density of decodable syndromes.
 △ hash a lot of “equivalent” documents
 → append a counter, for example.

⚠ The counter is part of the signature.
Signature Algorithm: \(\text{Sign}(D) \)

1. Initialize the counter \(i = 0 \)
2. Hash \(D \) and \(i \) into a syndrome: \(S_i = \text{Hash}(D||i) \)
3. Try to decode \(S_i \) into a word \(e_i \)
 \(\rightarrow \) if it fails \(i++ \) and go back to 2
4. Return \(\text{Sign}(D) = (i, e_i) \).

\[\text{The average number of attempts is:} \]

\[\mathcal{N}_{\text{attempts}} = \frac{\mathcal{N}_S}{\mathcal{N}_e} = \frac{2^{n-k}}{\binom{n}{t}} \simeq t! \]
For efficiency, we need codes correcting very few errors

- fewer errors also gives shorter signatures!
- we proposed $n = 2^{16}$, $n - k = 144$ and $t = 9$.

Near the limit where birthday techniques become more efficient than ISD ($n - k$ is very small):

$$
\left(\frac{n}{n - k} \right)^t \approx 2^{79.5} \quad \text{and} \quad n \left\lceil \frac{w}{2} \right\rceil = 2^{80}
$$

Can another algorithm be more efficient yet?
Forging a signature does not simply consist in solving one instance of SD:
- there are many instances sharing the same matrix
- among these some give a solution
- a large majority has no solution.

An attacker needs to solve “one of many” instances
- is this easier (attacks can be parallelized)?
- is this harder (most instances are unusable)?
- how can we improve birthday techniques?
Part IV

Provably Secure Syndrome-Based Hash Functions
Design a compression function for which inversion and collision search requires solving an instance of SD. Take a large random binary matrix, convert the input into a low weight word and output its syndrome.
It has to compress
 ▶ we have to choose a \(w \) such that \(\binom{n}{w} > 2^{n-k} \),
 ▶ there are many solutions to SD for inversion/collision.

It has to be fast
 ▶ one to one conversion to constant weight word is slow → use regular words.
Security

- SD with regular word is still NP-complete
 - collision search or inversion requires to solve an instance of some new problems.

- In practice
 - the best attacks use Wagner’s generalized birthday
 - secure parameters are for example:
 \[n = 21760, \quad n - k = 400 \quad \text{and} \quad w = 85. \]

- Parameters \(n \) and \(n - k \) are similar to signature parameters, but \(w \) is huge → far from Goppa codes.
Quite a few differences compared to attacks on McEliece:

- there are many solutions
- a truly random binary matrix is used
 - is this harder in average than a scrambled Goppa?
- though still NP-complete the problems are not SD
 - instances can be split in subparts
 - ISD attacks can surely be improved
- it has been studied only very little
Part V

The Multiple of Low Weight Problem
A Key Problem of Correlation Attacks

Correlation attacks approximate a stream-cipher by two LFSRs and some noise

In order to recover the initialization of LFSR\(_1\):

- find a multiple \(K \) of weight \(w \) of LFSR\(_2\)
- multiply the stream by \(K \) \(\rightarrow \) suppress LFSR\(_2\)
- results in a decoding problem with noise \(\gamma^w \).
The Multiple of Low Weight Problem (MLW)

Input: a polynomial P, a degree d and a weight w.

Output: a polynomial K of degree $\leq d$, weight $\leq w$ and such that $P|K$.

This is a re-writing of the SD problem, with a truncated cyclic code:

- compute the $d + 1 \times d_P$ binary matrix with columns:
 $$H_i = x^i \mod P(x), \quad i \in [0, d].$$
- look for a word of weight $\leq w$ and syndrome 0.
When attacking a stream cipher, the smaller w and d, the less stream bits will be required to decode.

- Some kind of trade-off between weight and degree,
- Strong threshold: a small change on w and on d will change from no solution to many:

$$\mathcal{N}_{sol} \approx \frac{(d \choose w)}{2^{d_P}}$$

- Finding several solutions is useful,
- LFSR$_2$ will be about 100 bits long
 - $d_P = n - k$ is small: ISD is inefficient.

- Use birthday techniques (either classical or generalized).
Use a multiple of low weight as a trapdoor:

- factor a polynomial K of degree d and weight w,
- choose a factor P and use it for LFSR$_2$,
- use a small LFSR$_1$ to encode the message,
- add some noise γ and output a stream of length ℓ.

For key recovery → find a single “unexpected” solution.

For decryption → find many “expected” solutions.

\mathbf{d}_P is much larger than before. Typical parameters are: $\ell = 50000$, $d_P = 6000$, $d_K = 15000$ and $w = 100$.
The main difference is the use of a truncated cyclic code instead of a "random" matrix. This has little influence on the security: $w \rightarrow w - 1$.

Key recovery for TCHo is very similar to classical SD.

In the other cases, there is no limit for w.
- Some solutions are easy to find (P itself!) → they are usually useless.
- Two types of hard-to-find solutions:
 - w with few solutions → ISD/birthday
 - w with loads of solutions → Wagner.

The best strategy will depend on γ and the stream size.
Conclusion
“Standard SD instances” have been extensively studied
▶ I believe new techniques are possible, but any progress would be a breakthrough.
→ I would compare this to the factoring problem.

“Non-standard SD instances” have been less studied
▶ new specific techniques are bound to appear,
→ take advantage of specific parameters.
→ take advantage of a specific setting.
▶ parameters that are proposed are probably too tight
→ expect attacks with little practical impact.
▶ will these new attacks be generalized?