
Keychain Analysis with Mac OS X Memory Forensics

Kyeongsik Lee1, Hyungjoon Koo
2

Defense Cyber Warfare Technology Center, Agency for Defense Development, Sonpa P.O Box 132, Seoul, Republic of Korea

Center for Information Security Technologies (CIST), Korea University, Anam-Dong, Seongbuk-Gu, Seoul, Republic of Korea

Abstract

User credentials are often regarded as one of significant digital evidence during an investigation process. Users

tend to save their credentials in various devices for the ease of use such as messenger accounts, e-mail accounts,

websites form, calendar, contacts and so forth. In particular, Mac OS X gets more information as it begins to interact

with diverse smart devices like iPhone and iPad. Mac OS X maintains its own password management system called

a Keychain, which stores sensitive data including application users account, keys, certificates, encrypted volume

passwords with providing protection features. The core of this mechanism takes triple-DES in CBC mode. However,

examiners have had difficulty in further investigation but performing simple keyword search because the structure of

a Keychain remains unknown. This paper proposes how to analyze a Keychain file with a digital forensic

perspective. We present the method to obtain master key from dumped memory image and to demystify a Keychain

format from acquired disk image, thereby eventually reveal user credentials. The result of our experiment shows all

user credentials in a Keychain. This technique helps investigators not only to extend the range of evidence

examination but also to preserve integrity and reliability.

Keywords: Digital forensics, Memory forensics, Keychain, Apple Database, Mac OS X.

1. Introduction

As of January 2013, statistics shows that the iOS, Apple mobile operating system, accounts for 60% market share

on smartphones [1]. The number of Mac OS X, Apple desktop operating system, has also increased as its many

features have interacted with iOS operating system gradually. [2].

Mac OS X holds the password management mechanism called a Keychain for the purpose of user credential

protection such as E-Mail client and messenger software in use. A Keychain is the file which maintains the space to

store encrypted user accounts, public/private key pairs, certificates, encrypted volume passwords and security notes

[3]. Apple explicitly states that a Keychain takes the 3DES block cipher algorithm for encryption and decryption.

However, implementation details and inside logic have not revealed yet [4]. The way digital investigators often use

today for useful information extraction is simple file carving and/or retrieval technique from artifact acquirement in

memory and raw disk image.

With regard to a Keychain file analysis, a couple of methodologies have been introduced. However, mostly it

covered merely the extraction of signature-based data due to the lack of full interpretation of a Keychain file

structure. But, traditional methodology had limitations in that it was unlikely to extract entire user information.

Moreover, it only worked in a live system which actual keychain resided in with root privilege.

This paper suggests how to extract the master key to decrypt a Keychain from the acquired memory and/or disk

image during an investigation process, whose targets are mainly Mac OS X Lion (version 10.7) and Mountain Lion

(version 10.8). Moreover, the technique will be proposed to extract encrypted area and to decrypt the information

which users creates through the structure of a Keychain file format analysis, irrespective of operating systems.

2. Related Works

So far little has been known for a Keychain in Mac OS since the research on Mac artifacts has not relatively

1
Corresponding author. Fax: +82 2 403 3512 (15826).
E-mail addresses: n0fate@add.re.kr (K, Lee).

2E-mail addresses: kevinkoo001@gmail.com (H. Koo)

widely performed as much as that of Microsoft Windows OS from a digital forensic perspective. Although a

Keychain analysis has been highlighted as one of significant artifacts in Mac OS forensic analysis, it should be

performed in a live system or available on the other Mac OS system. There are two mainstreams to access a

Keychain: one is with the tool Apple officially provides, and the other is with the enhanced tool to help analysis in

effective manner.

Apple offers a console-based tool called ‘security’ and a GUI-based application called ‘Keychain Access’ in order

to handle a Keychain, the integrated system for password management in Mac OS. The security command provides

a variety of built-in features which allow users to dump, add, and find Keychain elements and to create, delete, lock,

and unlock a Keychain file itself [5]. However, this tool does not reveal actual data in plaintext thus it might not

come in useful for the purpose of investigation. Keychain Access also allows to use mostly features in security and

to obtain each decrypted data from encrypted blob with user password [6]. Still the latter has the same limitations

that examiners should input user password to decrypt each blob.

In 2004, Matt Johnston released the tool “exetractkeychain”, written in python for a Keychain analysis [7]. This

was based on secuirty-177, the source code opened to the public by Apple. This tool introduced a Keychain analysis

for the first time. It generated a master key with user password from the beginning and then decrypted a wrapped

DB key in a Keychain file with that key. Next, it dumped user data area with security command. Eventually,

decrypted data could be obtained with a decrypted DB key. Yet it chiefly relied on built-in system command,

security as well as it helped to extract only partial information such as e-mail client accounts, messengers and so

forth. In addition, it might not maintain system integrity because of the limitation of root privilege requirement ia

live system.

In October 2011, Juuso Salonen wrote “keychaindump” tool, which employed more enhanced technique

compared to the previous ones [8]. It targeted Mac OS X Lion or later because Apple adapted to store the master key

of a Keychain in memory to promote user convenience. Here is a brief procedure of the tool. When a user executed

keychaindump with root privilege, at first it checked MALLOC_TINY of heap space from security server process

area in memory with built-in system command, vmmap. This led to extract master key candidates from the space.

With choosing a correct master key among them, user credentials were disclosed at last. This technique basically

took a signature-based analysis of a Keychain file before pulling a master key and user data in sequence.

Nonetheless it was essential to have root privilege, and was unlikely to draw all stored user information as well.

Thus it had the same drawbacks with Matt’s tool.

In this paper, we propose a brand new technique not only to extract useful evidence in a forensically sound

manner, but also to preserve integrity and reliability. Besides our tool is platform-independent. We start to explain

by introducing the overall procedure for a Keychain analysis.

3. Procedure for Keychain Analysis

Figure 1 illustrates the entire procedure for Keychain analysis. We have a premise that by any means an

investigator already obtains a Keychain file from disk image and acquires memory image. Once attained, a master

key from dumped memory should be extracted and checked its validation with file signature. Once Secure Server

Daemon process is discovered from memory image in linear format, then Virtual Memory Map can be extracted

from that process. Since a master key in use resides in a Keychain, we need to pull MALLOC_TINY area allocated

within heap from virtual memory map, resulting in the extraction of multiple master key candidates. This is feasible

because the data structure of a master key contains a master key and its fixed-length, 0x18.

Figure 1. Procedure for Keychain Analysis

(Master key candidates extraction on the left and Keychain analysis on the right)

With master key candidates, it is possible to analyze a Keychain. A Keychain header enables to verify the file, to

parse its schema and to extract inner table lists. Now it is time to make an attempt to get a database key, 24 bytes in

size for Triple DES symmetric cryptography. We have to learn an appropriate master key from the candidates by

checking if there is a valid padding (in the form of PKCS#1) at the end of the excerpt. Then this process repeatedly

should be done until the correct master key is found. Once discovered, the database key needs to be decrypted. This

can be done with Metadata Table called CSSM_DL_DB_RECORD_METADATA in table lists. After the database

key is decrypted, it is feasible to have a series of key records, KeyBlob, from Key Table such as

CSSM_DL_DB_RECORD_SYMMETRIC_KEY. Again, the key records can be decrypted by the database key.

Figure 2. Keychain structure

Each Keyblob in Key Table consists of a record key and a corresponding SSGP label. This label identifies

encrypted data, DataBlob, by matching the equivalent of the value in the Credential Table. Ultimately, it is

obtainable to gain user credential including stored passwords, WiFi key, and other diverse information in a

Keychain.

The most significant part along the process above is to extract the master key and ultimate user credential by

thoroughly interpreting a Keychain structure. At the following section, we discuss the methodology of logical

analysis and real test results in details.

4. Keychain Analysis with Memory Forensic Techniques

This section demonstrates a Keychain analysis with memory forensic techniques.

4.1. Extracting master key candidates from Physical Memory Image

The following summary shows how to extract master key candidates from obtained physical memory image.

(1) Finding a Security Server process

(2) Finding MALLOC_TINY area in virtual memory map

(3) Extracting master key candidates

We introduced the process of extracting master key candidates in previous study, so this paper focuses on different

part from it.

4.1.1. Finding a Security Server Process

Mac OS X system controls security issues in a Security Server process. This process takes the request by Security

Agent and responds its result back on client-server architecture [9]. Especially it maintains diverse data regarding

with security in memory space. One of them is a master key related to a Keychain. This key has been generated,

based upon user password. When application or user needs the privilege to access stored user credential, OS X Lion

or later makes Mac users better, allowing them to access a Keychain simply by clicking “Allow” button instead of

typing a password every single time in the past [10]. In other words, the state of a Keychain file is unlocked, which

means no password is required, potentially resulting in a master key extraction through a Security Server process

analysis in memory.

Figure 3. Keychain Access Control Change

The structure of a Security Server process can be traced with the kernel symbols. Using volafox, Mac OS X

memory forensic toolkit, it allows to extract the structure of a Security Server process, called ‘securityd’ in the

‘kernproc’ symbol pointing to a proc structure of BSD system [11][12][13].

4.1.2. Finding MALLOC_TINY Area

According to aforementioned keychaindump, a Security Server stores the master key of a Keychain in

MALLOC_TINY area (1MB in size) from heap space in memory. To begin with, the virtual memory space of a

security server process should be dumped in order to retain the specific area. The Mach, one of Mac OS X kernel

components, provides virtual memory management. Each task structure in Mach contains the pointer of virtual

memory map, or vmmap, which represents task address space. This means that it is probable to obtain the regions of

virtual memory in the process through vmmap structure analysis. [14] However, currently vmmap structure does not

explicably indicate MALLOC_TINY area. Hence we assume that MALLOC_TINY would be a single

megabyte(1,024KB) in size. The following summarizes the steps to find MALLOC_TINY area in order.

(1) Finding Task structure from a security server process

(2) Getting the pointer of vmmap structure consisting of vm_map_entry in the form of doubly linked list

and pmap (physical memory map structure) pointers

(3) Getting the regions of virtual memory by vm_map_entry analysis respectively

(4) Defining MALLOC_TINY area if the size of virtual memory region were 1MB to be exact.

(5) Dumping MALLOC_TINY area since the value of CR3 register indicates pmap structure.

As a result, we were successfully able to get the regions of virtual memory including MALLOC_TINY area in the

experiment.

4.1.3. Extracting master key Candidates

Now master key candidates can be extracted from the obtained MALLOC_TINY area. We are aware that a

Security Server process keeps this key in the allocated heap space. In MALLOC_TYNY area, when the key length

0x18 is found as 8 bytes pointer move on, the following 24 bytes is defined as one of master key candidates [15].

Interestingly enough, DB key can be obtained as well with the same fashion.

4.2. Keychain Analysis

Keychain files are located in the following.

(1) /Library/Keychains/System.keychain

(2) ~/Library/Keychains/login.keychain

Mac OS X creates a Keychain file while installation process. Each user in Mac OS X is able to create or delete a

Keychain file in need. The keychain file at the location (1) keeps certificates for Mac OS X application and security

update validation. The other one at the location (2) holds user-generated credential such as user accounts for

installed applications, Wi-Fi password or wireless network key, encrypted volume password. Each user owns a

login.keychain file separately. While Keychain files have the same file format, the record column in the file varies

depending on master key and record type. This paper deals with a login.keychain file only which contains user

credential.

Once a Keychain is obtained, now we have the following encrypted area in the file:

 (1) E1=EKMS(KDB),

 (2) E2=(s1||EKDB(r1), s2||EKDB(r2), …, sn||EKDB(rn)),

 (3) E3=(s1||Er1(p1), s2||Er2(p2), …, s3||Ern(pn))

where

 E: Encryption with Triple DES inCBC mode

 KMS: Master Key

 KDB: DB Key

 R={r| record keys per each user credential}={r1,r2, …, rn}

 S={s| SSGP label}={s1,s2, …, sn}

 P={p| user credential in plaintext}={p1,p2, …, pn}

 The following summarizes how to decrypt necessary keys from each blob structure.

 (1) E1=EKMS(KDB)

 E1 is stored within DbBlob record in the table from a Keychain.

 By decrypting E1 with extracted master key KMS, we can get KDB.

 (2) E2=(s1||EKDB(r1), s2||EKDB(r2), …, sn||EKDB(rn))

 E2 is stored within KeyBlob record in the table from a Keychain.

 By decrypting E2 with extracted KDB, we can get partially encrypted “r1||s1, r2||s2, …, rn||sn”.

 (3) E3=(s1||Er1(p1), s2||Er2(p2), …, s3||Ern(pn))

 E3 is stored within DataBlob record in the table from a Keychain.

 By decrypting E3 with extracted r1,r2, …, rn, we can eventually get “p1||s1, p2||s2, …, pn||sn“

 (4) Lastly, we can obtain “p1,p2, …, pn” by matching each SSGP label in (2) and (3).

According to the source code in Apple Open Source website, a Keychain follows Apple Database format [16].

The data in the format adopts big-endian representation.

A Keychain consists of Apple Database Header and Apple Database Schema which includes Database schema,

table offsets, and tables in designated offsets. After understanding basic structure of Apple Database Header and

Schema, we are quickly able to grasp how to decrypt database key, record keys and user credential in order.

4.2.1. The Basic Structure of a Keychain

Figure 4 describes the structure of Apple Database Header and Schema at the beginning of a Keychain file.

Figure 4. Apple DB Header and Schema

There are five 4-Bytes fields in Apple Database Header: magic number, version, header size, schema offset, and

auth offset. Mac OS X does validation check with the magic number, kych, and version information. The schema

offset points to the starting address of Apple Database Schema. The field, auth offset, is not currently in use [17].

Apple Database Schema contains table information. The field, table count, literally informs the number of tables.

The location of each table can be calculated by adding each table offset to the starting address of Apple Database

Schema. The Apple Open Source site publishes that Schema management table comes first and user-defined one

comes next for the initial launch of Apple Database [18][19].

Table 1. Table Types in Apple Database Schema
Name Space Record Type (prefix ‘CSSM_DL_DB_’) Value Description

Schema
Management

SCHEMA_INFO 0x00000000 Schema information

SCHEMA_INDEXES 0x00000001 Schema indexes

SCHEMA_ATTRIBUTES 0x00000002 Schema attributes

SCHEMA_PARSING_MODULE 0x00000003 Schema parsing module

Open Group
Application

RECORD_ANY 0x0000000A Temporary table type.

RECORD_CERT 0x0000000B Certificates

RECORD_CRL 0x0000000C Certificate Revocation List

RECORD_POLICY 0x0000000D Policy

RECORD_GENERIC 0x0000000E Generic information

RECORD_PUBLIC_KEY 0x0000000F Public key

RECORD_PRIVATE_KEY 0x00000010 Private key

RECORD_SYMMETRIC_KEY 0x00000011 Symmetric key

RECORD_ALL_KEY 0x00000012 Temporary table type

Industry at
Large

Applications

RECORD_GENERIC_PASSWORD 0x80000000 User credential

RECORD_INTERNET_PASSWORD 0x80000001
User credential on the Internet in
particular

RECORD_APPLESHARE_PASSWORD 0x80000002 (Depreciated)

RECORD_USER_TRUST 0x80000003 User-defined certificates

RECORD_X509_CRL 0x80000004 X.509 Certificate Revocation List

RECORD_UNLOCK_REFERRAL 0x80000005 Unlock referral

RECORD_EXTENDED_ATTRIBUTE 0x80000006
Extended attribute for database
management

RECORD_X509_CERTIFICATE 0x80001000 X.509 Certificates

RECORD_METADATA 0x80008000 Metadata information

The tables in Apple Database Schema are classified into a couple of Name Spaces: Schema Management, Open

Group Application and Industry at Large Applications (Table 1). The Schema Management table lies at the-first-

four-table-offsets in Apple Database Schema. The record type is defined in the table header. The structure of this

table and header looks like Figure 5.

Figure 5. Table and Table Header Structure in Apple Database Schema

The tableid field in Table Header represents the record type of each table. The records field indicates the first

record offset, and the record offset list depends on value of recordnumbercount field in Table Header. Additionally,

each record comprises Record Header and corresponding Record Data. Record Header contains basic information

including starting address of record data, column list on record and so on, which varies depending on table structure.

4.2.2. Decrypting database key with master key in DbBlob

Let us look into the table, named CSSM_DB_DL_RECORD_METADATA.(Figure 6) As we expected, this table

maintains Table Header and records, and each record contains Record Header and Record Data. We call the area

DbBlob which contains database key in the table.

Figure 6. Record Header in METADATA table

We make use of identified three fields: Record size, record number and DbBlob size from Record Header. In

Record Data, it contains a salt (20 bytes) for master key generation, encrypted DB Key, and DB Key IV (8 bytes)

[20]. The size of encrypted DB key varies, which is determined by startCryptoBlob and totalLength. This paper does

not cover how to generate master key, and we assume that it can be selected from master key candidates in memory

image. Figure 7 illustrates DbBlob structure in details.

Figure 7. DbBlob Structure

All Blob structures have the first 16 bytes in common and the rest part often varies due to different structures

from each table. KeyBlob and DataBlob in the following section have similar structure as well.

Database key encryption applies symmetric key algorithm, 3DES block cipher with CBC mode and PKCS#1

padding technique [21]. Putting database key IV and master key together, we can obtain decrypted database key,

which will use at the decryption process of record keys in KeyBlob.

4.2.3. Decrypting record keys with database key in KeyBlob

Once decrypted database key, KeyBlob decryption should be done to attain user credential. KeyBlob is the

terminology called by Apple, indicating a chunk of encrypted record keys with database key. What we need is to

extract KeyBlob area in a specific table which stores identified record types.

The tables associated with record key are CSSM_DB_DL_PUBLIC_KEY, CSSM_DB_DL_PRIVATE_KEY,

and CSSM_DB_DL_SYMMETRIC_KEY. As the name indicates, the first two tables are for asymmetric

cryptography and the last table is for symmetric one, which decrypts all password tables in practice. Thus we take a

CSSM_DB_DL_SYMMETRIC_KEY table for this time.

The records in the table contain the offset information pointing to the location of elements in Record Header and

actual data at designated offset in Record Data or KeyBlob. We concentrate on two things: record keys to decrypt

user credential and SSGP Label fields to recognize which encrypted user credential matches with which record key.

Figure 8 shows the structure of record header (0x84 bytes in size).

Figure 8. Record Header in SYMMETRIC_KEY table

The very following section by Record Header locates KeyBlob in Figure 9. As stated above, the first 16 bytes

represents common Blob fields, including StartCryptoBlob and totalLength. This value helps to determine the exact

encrypted Key Record range by subtracting startCryptoBlob from totalLength. The size of this range should be a

multiple of eight bytes because it is 3DES block cipher output. The next field represents initial vector at offset 0x10,

followed by common Blob fields. SSGP Label is followed by encrypted area with the signature “ssgp”. If this string

is found, the next 16 bytes is identified as SSGP Label.

Figure 9. KeyBlob Structure

It is now feasible to decrypt record keys with Database Key and given initial vector in KeyBlob. The

cryptography basically uses the same algorithm as database key encryption, 3DES with CBC Mode and PKCS #1

padding. Note that KeyBlob has encrypted twice in the Figure 10 [22].

Hence we need to decrypt key record area in KeyBlob twice: both use the same DB Key but different IV. The first

decryption process employs the fixed IV, magicCmsIv (0x4adda22c79e82105). And the second one employs the

extracted IV from KeyBlob structure. Make sure that the input of the second decryption takes the reversed order of

the octets from the first output. Eventually the record key (24 Bytes in size) is returned. The following section shows

how to obtain user credential with SSGP label and the record keys from KeyBlob.

Figure 10. KeyBlob Decryption Process

4.2.4. Decrypting User Credential with record key in DataBlob

This section explains the final step to extract user credential with aforementioned SSGP label and decrypted

record key. A Keychain manages user passwords in three tables: CSSM_DL_DB_GENERIC_PASSWORD,

CSSM_DL_DB_INTERNET_PASSWORD and CSSM_DL_DB_APPLESHARE_PASSWORD. The last table

AppleShare passwords, are no longer in use unless application takes lower-level API because they are stored as

Internet password items [23].

Although the structure of these tables are similar to that of KeyBlob table, they store more columns to provide

more information. The Schema namespace in KeychainCore class defines these columns [24]. This paper

predominately focuses on Generic Password table and Internet Password table, which holds most user credential.

(Figure 11 and 12)

Figure 11. Record Header in Generic Password table

Figure 12. Record Header in Internet Password table

Each record header of two tables has actual data offsets or pointers on pre-defined column. They have many

columns in common, but the finding shows that Internet Password table has more. Note that actual data is stored at

the offsets subtracted by one respectively. The Table 2 describes useful columns in the table to contain user

credential.

Table 2. Useful Columns on Password Tables

Record Type (prefix ‘CSSM_DL_DB’) Data Description

Common Columns in
PASSWORD table

Create Date Creation date and time (GMT +0)

Modified Date Last modified date and time (GMT +0)

Description Description for the record

Comment Additional description for the record

Creator The object to create the record

Type Record type

PrintName Keychain name shown by Keychain Access tool

Alias Record alias

Account Account name (e.g. UserName)

Additional Columns in
GENERIC_PASSWORD table

Service Service name to create a Keychain record

Additional Columns in
INTERNET_PASSWORD table

Server Destination domain or IP address which connect to.

Protocol Protocol type (e.g SSH, HTTP, SSL)

AuthType Authentication type (e.g Basic, Non)

Port Port number (Web-form always has the value of 0x00)

Path Application path for the record

DataBlob is the terminology also called by Apple, indicating a chunk of encrypted user credential with record key

and fields defined in Record Header. Figure 13 illustrates SSGP structure, which directly follows by Record Header.

The size of SSGP comes from Record Header.

Figure 13. SSGP Structure in DataBlob

SSGP Label, 16 bytes in length, can be used as an identifier by matching the corresponding record key.

Since the encryption also uses 3DES-CBC-PKCS#1 algorithm, we can acquire decrypted user credential with the

IV from DataBlob and obtained record keys in 4.2.3. The user data in the PASSWORD tables can be obtained

through this process. In Figure 14, the output shows one of the records in Internet Password table.

Figure 14. Decrypted User Password from login.keychain file

5. Implementation

5.1. The Keychaindump module in the volafox project for extracting master key candidates

In order to extract master key candidates from physical memory, we wrote keychaindump module in the volafox

utility known as Mac OS X memory forensic toolkit. As we mentioned earlier, master key candidates can be

acquired if two parameters are provided like this:

volafox –i [memory_image] –o keychaindump

The volafox has been written in Python by Kyeongsik Lee as a cross platform open source project. It is now

available at “http://code.google.com/p/volafox”.

5.2. Chain Breaker, Tool for Keychain Forensics

Chain Breaker is the tool to extract user credential in a Keychain file with master key and/or DB key candidates,

extracted from volafox keychaindump module. The Table 3 enumerates the features of this tool.

Table 3. Features of Chain Breaker

Category Description

Target A Keychain file for each login user

Features

[database key Decryption]
- database key decryption with master key candidates
- database key decryption with user password

[Generic Password Decryption]
- SSH account including password
- Wireless AP SSID and password
- Application UserName and password
- Email / Calendar related ID and password
- Messenger(eg. Adium, etc) ID and password
- FaceTime / iCloud / iMessage
- Encrypted Volume password
- RSA Public/Private Key Pair

[Internet Password Decryption]
- Google Chrome SafeStorage Key
- Safari Webform Auto Fill ID and password
- SSH account including password
- HTTPS/HTTP/GitHub/svn related to account including password

[Apple Share Password Decryption]
- Not Applicable

This open-source tool is currently available at github site, “https://github.com/n0fate/chainbreaker”. We wrote it

in Python, supporting cross platform. We will re-implement this tool in GUI (using QT) for the user-friendly

purpose. While Chain Breaker merely provides passwords generated by user, later on it supports decryption for all

information stored in a Keychain.

6. Experiment

We conducted a series of experiments to prove what we have presented so far. The five different version of target

Mac OS were: Mac OS X Lion (version 10.7.5) and Mountain Lion (version 10.8.2) on physical machines, and

Snow Leopard (10.6.3), Lion (10.7.5), and Mountain Lion (10.8.2) on virtual machines. In order to gather master

key candidates, each memory had to be dumped while user logged in respectively.

Using Mac Memory Reader or Inception tool, we were able to dump memory image on physical machine.

However, Inception did not fully support memory dump due to IOKit stack bug [25]. Therefore we used Mac

Memory Reader by Hajime Inoue to dump physical memory [26]. Then, a Keychain file, login.keychain was

extracted on a live state. In case of virtual machine, we dumped parallels memory image (which has “mem” file

extension) under suspended state and extracted a login.keychain file.

Table 4. Experiment: Test Set

Targets Version (Darwin Version)
Memory Size

(bytes)

Number of passwords stored

 in a Keychain file

Physical Machine

(Macbook Pro)

Lion (10.7.5) 8,498,995,200 25(Generic: 13,Internet: 12)

Mountain Lion (10.8.2) 8,498,995,200 47(Generic: 30,Internet: 17)

Virtual Machine

(VMWare)

Snow Leopard (10.6.3) 1,073,741,824 2(Generic: 2,Internet: 0)

Lion (10.7.5) 2,147,483,648 18(Generic: 12,Internet: 6)

Mountain Lion (10.8.2) 2,147,483,648 18(Generic: 12,Internet: 6)

The experiment comprised two phases: extracting master key candidates from dumped memory and decrypting

user credential from an extracted Keychain file. Table 4 and 5 shows the test set on the experiment and its results.

Table 5. Experiment: Result of extracting master key candidates with volafox

Targets
Version

(Darwin Version)
Master/DB key

candidates
Master key

Validation (count)
DB Key

Validation (count)

Physical Machine

(Macbook Pro)

Lion (10.7.5) 12 True (1) True (1)

Mountain Lion (10.8.2) 8 True (1) True (2)

Virtual Machine

(VMWare)

Snow Leopard (10.6.3) 0 False False

Lion (10.7.5) 7 True (1) True (1)

Mountain Lion (10.8.2) 8 True (1) True (1)

As expected, we could extract master key and DB key candidates from the image except Mac OS X Snow

Leopard. This is normal because Mac OS X has begun to store master key from the Lion / ML or later. With these

candidates, we successfully performed the decryption of user credential using Chain Breaker. Since it was unlikely

to extract master key candidates from Snow Leopard, we entered a valid password and finally obtained user

credential as well. Obviously, Table 6 displays the end results to decrypt passwords and keys found in a Keychain.

Table 6. Experiment: Result of decrypting user’s credential with Chain Breaker

Targets Version (Darwin Version) Test Sets
User credential found in a

Keychain file

Physical Machine

(Macbook Pro)

Lion (10.7.5) 25(Generic: 13,Internet: 12) 25(Generic: 13,Internet: 12)

Mountain Lion (10.8.2) 47(Generic: 30,Internet: 17) 47(Generic: 30,Internet: 17)

Virtual Machine

(VMWare)

Snow Leopard (10.6.3) 2(Generic: 2,Internet: 0) 2(Generic: 2,Internet: 0)

Lion (10.7.5) 18(Generic: 12,Internet: 6) 18(Generic: 12,Internet: 6)

Mountain Lion (10.8.2) 18(Generic: 12,Internet: 6) 18(Generic: 12,Internet: 6)

7. Further Research

The keychaindump module from volafox shows multiple master key candidates, which might lead false master

keys to make an attempt. This happens because we do not have accurate extraction process. Although it provides

small number of candidate keys, it is necessary to organize this part for further analysis.

Chain Breaker has been designed to mostly extract user credential, since it is most frequently used information.

We have a plan to add features to parse other information as well, such as Apple-issued certificate. Although our

tool might not work for new Mac OS X version, we believe to improve both features and performances. Based on a

demystified Keychain structure including table structure and records, Chain Breaker will support additional features

in the future.

8. Conclusions

Historical digital forensics has been mainly focused on Microsoft windows systems with high market share. Yet,

even today, digital forensics in Mac OS X has been conducted in a limited scope other than memory forensics such

as disk forensics technology with common API and/or existing technique reuse. Additionally, it is necessary to have

advanced analysis of Mac OS X artifacts.

Mac OS X as well as other OS maintains a variety of artifacts. In particular, application accounts – IDs and

passwords - could be major artifacts in practice in order to gather significant evidence such as e-mail, individual

notes (e.g. evernote) and so on. A Keychain, the Password Management System on Mac OS X, holds user credential

as integrated management system. Because this system encrypts all information based on user password, application

needed password lively whenever getting access to a Keychain at all times in Snow Leopard or earlier. Change has

been made since Mac OS X Lion and ML or later for user convenience, and this allows application to gain access to

a Keychain with one mouse click instead of typing user password. Technically speaking, this means the master key

of a Keychain is loaded into somewhere in memory so that Mac OS X can use it repetitively when needed.

Based on this idea, this paper suggested a brand new method to extract master key with memory forensics and

thereby to decrypt user credential in a Keychain file with disk forensics. This allows investigators to perform

forensic analysis on a separate Mac OS X.

At first, we extracted master key candidates from dumped memory image and choose one. Using keychaindump

module from volafox helped to extract master key candidates. Then database key was decrypted with master key,

and subsequently each record key was decrypted with database key. Using Chain Breaker helped to learn record key.

Finally, user credential was decrypted with record key in sequence. We wrote keychaindump module and Chain

Breaker to achieve our goal. As a result, it was feasible to decrypt user credential in a Keychain.

By utilizing the technique of this paper, it is practicable to acquire external evidence from other services because

it allows to investigate the accounts user registered. Taking cloud service boosting into account, we have no doubt

that our technique will assist investigators to examine further evidence.

Acknowledgments

This research was supported by Agency for Defense Development (ADD).

References

[1] Desktop Top Operating System Share Trend. April 2012 to February 2013.

http://www.netmarketshare.com/operating-system-market-

share.aspx?qprid=9&qpcustomb=0.

[2] Mobile/Tablet Top Operating System Share Trend. April 2012 to February 2013.

http://www.netmarketshare.com/operating-system-market-

share.aspx?qprid=9&qpcustomb=1.

[3] Keychain Access. Security Overview.

https://developer.apple.com/library/mac/documentation/security/conceptual/securit

y_overview/Security_Overview.pdf. 2012.

[4] OS X Security. Apple Technical White Paper.

http://training.apple.com/pdf/wp_osx_security.pdf. 2012.

[5] security(1) OS X Manual Page, Mac Developer Library.

http://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/m

an1/security.1.html.

[6] Keychain Access, Wikipedia. http://en.wikipedia.org/wiki/Keychain_Access.

[7] Matt Johnston. extractkeychain.

http://www.ucc.gu.uwa.edu.au/~matt/src/extractkeychain-0.1; 2004

[8] Juuso Salonen. Breaking into the OS X keychain.

http://juusosalonen.com/post/30923743427/breaking-into-the-os-x-keychain; 2012

[9] Security Server and Security Agent, Mac Developer Library.

https://developer.apple.com/library/mac/#documentation/Security/Conceptual/Securi

ty_Overview/Architecture/Architecture.html.

[10] 6 things that can be done to secure a Mac.

http://www.sas.upenn.edu/~jasonrw/6ssym.html.

[11] volafox – Mac OS X Memory Analysis Toolkit. http://code.google.com/p/volafox.

[12] Kyeongsik Lee, Sangjin Lee. Research on Mac OS X Physical Memory Analysis. Korea

Institute of Information Security & Cryptology; 21; 4:S89-100.

[13] volafox: Support New OS!! Mountain Lion xD(Korea Language). n0fate’s forensic

space. http://forensic.n0fate.com/2012/08/volafox-support-new-os-mountain-lion-

xd.html.

[14] Jonathan Levin. Chapter 12: Commit to Memory: Mach Virtual memory. Mac OS X and

iOS Internals: To the Apple’s Core. Wrox. 2012. P. 447-465

[15] volafox: decrypting the keychain file using volafox(Korea Language). n0fate’s

forensic space. http://forensic.n0fate.com/2012/09/volafox-decrypting-keychain-

file-using.html.

[16] AppleDatabase.h. Apple Open Source.

http://www.opensource.apple.com/source/libsecurity_filedb/libsecurity_filedb-

55016/lib/AppleDatabase.h.

[17] DbVersion::open(). AppleDatabase.cpp.

http://www.opensource.apple.com/source/libsecurity_filedb/libsecurity_filedb-

55016/lib/AppleDatabase.cpp.

[18] AppleFileDL Record Types. Apple Open Source.

http://www.opensource.apple.com/source/libsecurity_cssm/libsecurity_cssm-

6/lib/cssmapple.h.

[19] CSSM DB Record Types. Apple Open Source.

http://www.opensource.apple.com/source/libsecurity_cssm/libsecurity_cssm-

6/lib/cssmtype.h

[20] ssblob.h, Apple Open Source.

http://www.opensource.apple.com/source/libsecurityd/libsecurityd-

36988/lib/ssblob.h.

[21] BLOBFORMAT, Apple Open Source,

http://www.opensource.apple.com/source/securityd/securityd-55137.1/doc/BLOBFORMAT.

[22] wrapKeyCms.cpp, Apple Open Source,

http://www.opensource.apple.com/source/Security/Security-

28/AppleCSP/AppleCSP/wrapKeyCms.cpp.

[23] Keychain Services Programming Guide, Apple Developer, 2012. P. 18-19.

[24] Schema.m4, Apple Open Source,

http://www.opensource.apple.com/source/Security/Security-

55179.1/include/security_cdsa_utilities/Schema.m4.

[25] Inception – Known bugs, http://www.breaknenter.org/projects/inception/#Known_bugs.

[26] Hajime Inoue, Frank Adelstein, Robert A. Joyce, Visualization in testing a

volatile memory forensic tool. Digital Investigation; 8:S42-51.

