

For Mary

Want to learn more?

We hope you enjoy this McGraw-Hill eBook! If you d like

and websites, please click here.
more information about this book, its author, or related books

,

Copyright © 2002 by The McGraw-HIll Companies, Inc. All rights reserved. Manufactured in the United States of
America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior
written permission of the publisher.

0-07-222405-3

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occur-
rence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark
owner, with no intention of infringement of the trademark. Where such designations appear in this book, they
have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for
use in corporate training programs. For more information, please contact George Hoare, Special Sales, at
george_hoare@mcgraw-hill.com or (212) 904-4069.

TERMS OF USE
This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all
rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act
of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse
engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish
or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your
own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work
may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES
OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE
OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED
THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WAR-
RANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not
warrant or guarantee that the functions contained in the work will meet your requirements or that its operation
will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for
any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom.
McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no cir-
cumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, conse-
quential or similar damages that result from the use of or inability to use the work, even if any of them has been
advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatso-
ever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0072228164

GCC:
The Complete Reference

Arthur Griffith

McGraw-Hill/Osborne
New York Chicago San Francisco

Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

About the Author

Arthur Griffith has been involved with the
development of compilers, interpreters, linkers,
and assemblers since his first programming job
in 1977, where he worked as a team member
developing an assembler and linker for
special-purpose computers. He then joined
the maintenance group for a compiler of the
PL/EXUS language, which had an underlying
structure very similar to GCC. The next project
was to write an interactive interpreter and
compiler for a language named SATS.

The projects that followed these included
the development of a Forth interpreter,
extensions to a COBOL compiler, and the
development of some special-purpose
interpretive languages for machine control.
One of these was an interactive command
language providing multistation ground-based
control of industrial satellite communications
systems.

For the past few years, Arthur Griffith has
turned to writing computer books, teaching
programming online, and developing some
software in Java. The programming books he
has written range from Java, XML, and Jaxp to
COBOL for Dummies. He has used GCC for
many software-development projects, and
with the inclusion of Java as one of the GCC
languages, writing this book became his project
of choice.

vii

Contents at a Glance
Part I

The Free Software Compiler

1 Introduction to GCC . 3

2 Acquiring and Installing the Compiler 17

Part II

Using the Compiler Collection

3 The Preprocessor . 45

4 Compiling C . 67

5 Compiling C++ . 103

6 Compiling Objective-C . 125

7 Compiling Fortran . 137

8 Compiling Java . 157

viii G C C : T h e C o m p l e t e R e f e r e n c e

9 Compiling Ada . 183

10 Mixing Languages . 215

11 Internationalization . 243

Part III

Peripherals and Internals

12 Linking and Libraries . 259

13 Using the GNU Debugger . 281

14 Make and Autoconf . 299

15 The GNU Assembler . 317

16 Cross Compiling and the Windows Ports 337

17 Embedded Systems . 347

18 Output from the Compiler . 357

19 Implementing a Language . 371

20 Register Transfer Language . 387

21 Machine-Specific Compiler Options 419

Part IV

Appendixes

A GNU General Public License . 493

B Environment Variables . 501

C Command-Line Cross Reference 505

D Command-Line Options . 515

E Glossary . 599

Contents

Acknowledgments . xix
Introduction . xxi

Part I

The Free Software Compiler

1 Introduction to GCC . 3
GNU . 4
Measuring a Compiler . 4
Command-Line Options . 5
Platforms . 6
What the Compiler Does . 7
The Languages . 8

C Is the Fundamental Language . 9
C++ Was the First Addition . 9
Objective-C . 9
Fortran . 9
Java . 10

ix

Ada . 10
The Chill Is Gone . 10

Parts List . 11
Contact . 15

2 Acquiring and Installing the Compiler 17
Binary Download . 18
FTP Source Download . 20
CVS Source Download . 21

Previous Releases . 23
The Experimental Version . 23

Compiling and Installing GCC . 24
Installation Procedure . 24
Configuration Options . 26

The binutils . 36
Win32 Binary Installation . 38

Cygwin . 38
Installation . 39

Running the Test Suite . 40

Part II

Using the Compiler Collection

3 The Preprocessor . 45
Directives . 46

#define . 46
#error and #warning . 50
#if, #elif, #else, and #endif . 51
#ifdef, #else, and #endif . 52
#include . 53
#include_next . 54
#line . 55
#pragma and _Pragma . 56
#undef . 57
. 57

Predefined Macros . 58
Including a Header File Only Once . 62
Including Location Information in Error Messages 62
Removing Source Code in Place . 63
Producing Makefiles . 63
Command-Line Options and Environment Variables 64

x G C C : T h e C o m p l e t e R e f e r e n c e

4 Compiling C . 67
Fundamental Compiling . 68

Single Source to Executable . 69
Source File to Object File . 70
Multiple Source Files to Executable 70
Preprocessing . 71
Generating Assembly Language . 71
Creating a Static Library . 71
Creating a Shared Library . 73
Overriding the Naming Convention 75

Standards . 75
C Language Extensions . 76

Alignment . 76
Anonymous Unions . 77
Arrays of Variable Length . 78
Arrays of Zero Length . 78
Attributes . 80
Compound Statements Returning a Value 86
Conditional Operand Omission . 88
Enum Incomplete Types . 88
Function Argument Construction . 88
Function Inlining . 90
Function Name . 91
Function Nesting . 91
Function Prototypes . 93
Function Return Addresses and Stack Frames 93
Identifiers . 94
Integers . 94
Keyword Alternates . 94
Label Addresses . 95
Labels Declared Locally . 96
Lvalue Expressions . 96
Macros with Variable Arguments . 97
Strings . 98
Pointer Arithmetic . 98
Switch/Case . 99
Typedef Name Creation . 99
Typeof References . 100
Union Casting . 101

5 Compiling C++ . 103
Fundamental Compiling . 104

Single Source File to Executable . 104

C o n t e n t s xi

Multiple Source Files to Executable 106
Source File to Object File . 107
Preprocessing . 107
Generating Assembly Language . 108
Creating a Static Library . 108
Creating a Shared Library . 110

Extensions to the C++ Language . 113
Attributes . 113
Header Files . 114
Function Name . 114
Interface and Implementation . 115
Operators <? and >? . 116
Restrict . 117

Compiler Operation . 118
Libraries . 118
Mangling Names . 119
Linkage . 122
Compiling Template Instantiations . 123

6 Compiling Objective-C . 125
Fundamental Compiling . 126

Single Source to Executable . 126
Compiling an Object . 127
Creating a Static Library . 129
Creating a Shared Library . 132

General Objective-C Notes . 133
Predefined Types . 133
Creating an Interface Declaration . 133
Naming and Mangling . 135

7 Compiling Fortran . 137
Fundamental Compiling . 138

Single Source to Executable . 138
Multiple Source Files to Executable 140
Generating Assembly Language . 140
Preprocessing . 141
Creating a Static Library . 142
Creating a Shared Library . 144

Ratfor . 144
GNU Fortran Extensions and Variations . 146

Intrinsics . 146
Source Code Form . 146
Comments . 147

xii G C C : T h e C o m p l e t e R e f e r e n c e

Dollar Signs . 147
Case Sensitivity . 147
Specific Fortran 90 Features . 150

8 Compiling Java . 157
Fundamental Compiling . 158

Single Source to Binary Executable . 158
Single Source to Class File . 159
Single Source to Binary Object File . 160
Class File to Native Executable . 160
Multiple Source Files to Binary Executable 161
Multiple Input Files to Executables 162
Generating Assembly Language . 163
Creating a Static Library . 164
Creating a Shared Library . 165
Creating a Jar File . 166

The Java Utilities . 166
gij . 166
jar . 168
gcjh . 170
jcf-dump . 172
jv-scan . 173
jv-convert . 174
grepjar . 176

RMI . 177
rmic . 177
rmiregistry . 179

Properties . 180

9 Compiling Ada . 183
Installation . 184
Fundamental Compiling . 186

Single Source to Executable . 187
Multiple Source to Executable . 189
Source to Assembly Language . 190

Options . 191
Ada Utilities . 197

gnatbind . 197
gnatlink . 200
gnatmake . 201
gnatchop . 205
gnatxref . 205
gnatfind . 207

C o n t e n t s xiii

xiv G C C : T h e C o m p l e t e R e f e r e n c e

gnatkr . 208
gnatprep . 209
gnatls . 211
gnatpsys and gnatpsta . 211

10 Mixing Languages . 215
Mixing C++ and C . 216

Calling C from C++ . 216
Calling C++ from C . 218

Mixing Objective-C and C . 218
Calling C from Objective-C . 219
Calling Objective-C from C . 219

Mixing Java and C++ . 221
Creating a Java String and Calling a Static Method 222
Loading and Instantiating a Java Class 223
Exceptions . 226
Data Types of CNI . 226

Mixing Java and C . 227
A Java Class with a Native Method 227
Passing Arguments to Native Methods 230
Calling Java Class Methods from C 231

Mixing Fortran and C . 233
Calling C from Fortran . 234
Calling Fortran from C . 235

Mixing Ada and C . 237
Calling C from Ada . 237
Calling C from Ada with Arguments 239

11 Internationalization . 243
A Translatable Example . 244
Creating a New .po File . 246
Use of the gettext() Functions . 250

Static Strings . 250
Translation from Another Domain . 251
Translation from Another Domain in

a Specified Category . 251
Plurality . 251
Plurality from Another Domain . 252
Plurality from Another Domain Within a Category 252

Merging Two .po Files . 252
Producing a Binary .mo File from a .po File 254

Part III

Peripherals and Internals

12 Linking and Libraries . 259
Object Files and Libraries . 260

Object Files in a Directory . 260
Object Files in a Static Library . 261
Object Files in a Dynamic Library . 264

A Front End for the Linker . 264
Locating the Libraries . 265

Locating Libraries at Link Time . 265
Locating Libraries at Runtime . 266

Loading Functions from a Shared Library . 266
Utility Programs to Use with Object Files and Libraries 269

Configuring the Search for Shared Libraries 269
Listing Symbols Names in Object Files 271
Removing Unused Information from Object Files 274
Listing Shared Library Dependencies 276
Displaying the Internals of an Object File 277

13 Using the GNU Debugger . 281
Debugging Information Formats . 282

STABS . 282
DWARF . 283
COFF . 283
XCOFF . 284

Compiling a Program for Debugging . 284
Loading a Program into the Debugger . 287
Performing a Postmortem . 291
Attaching the Debugger to a Running Program 292
Command Summary . 295

14 Make and Autoconf . 299
Make . 300

Internal Definitions . 302
How to Write a Makefile . 304
The Options of Make . 305

Autoconf . 310

15 The GNU Assembler . 317
Assembling from the Command Line . 318
Absolute, Relative, and Boundaries . 320

C o n t e n t s xv

xvi G C C : T h e C o m p l e t e R e f e r e n c e

Inline Assembly . 322
The asm Construct . 322

Assembler Directives . 325

16 Cross Compiling and the Windows Ports 337
The Target Machines . 338
Creating a Cross Compiler . 339

Installing a Native Compiler . 339
Building binutils for the Target . 340
Installing Files from the Target Machine 341
The Configurable Library libgcc1.a . 341
Building the Cross Compiler . 342
Running the Cross Compiler . 343

MinGW . 343
Cygwin . 344

Compiling a Simple Cygwin Console Program 344
Compiling a Cygwin GUI Program 345

17 Embedded Systems . 347
Setting Up the Compiler and Linker . 348
Choosing a Language . 349
GCC Embedding Facilities . 350

Command-Line Options . 350
Diagnostics . 351
Assembler Code . 351

Libraries . 352
Trimming the Standard Library . 352
A Library Designed for Embedded Systems 353

The GNU Linker Scripting Language . 353
Script Example 1 . 354
Script Example 2 . 355
Some Other Script Commands . 356

18 Output from the Compiler . 357
Information about Your Program . 358

The Parse Tree . 358
Header Files . 359
The Memory Required by the Program 360
Time Consumed . 361
The C++ Intermediate Tree . 362
The C++ Class Hierarchy . 363

Information for the Makefile . 363

Information about the Compiler . 365
Time to Compile . 365
Subprocess Switches . 366
Verbose Compiler Debugging Information 366

Information about Files and Directories . 370

19 Implementing a Language . 371
From Front to Back . 372
Lexical Scan . 373

A Simple Lex . 374
Lex with Regular Expressions . 374

Parsing . 375
Creating the Parse Tree . 381
Connecting the Back to the Front . 383

20 Register Transfer Language . 387
RTL Insns . 388

The Six Fundamental Expression Codes 388
The Type and Content of Insns . 388

Modes and Mode Classes . 411
Flags . 415

21 Machine-Specific Compiler Options 419
The Machine List . 420
The GCC Command-Line Options . 421

Alpha Options . 421
Alpha/VMS Options . 426
ARC Options . 426
ARM Options . 427
AVR Options . 433
CRIS Options . 433
D30V Options . 437
H8/300 Options . 437
HPPA Options . 438
IA-64 Options . 440
Intel 386 and AMD x86-64 Options . 441
Intel 960 Options . 446
M32R/D Options . 448
M680x0 Options . 449
M68HClx Options . 452
M88K Options . 452
MCore Options . 456
MIPS Options . 457

C o n t e n t s xvii

MMIX Options . 462
MN10200 Options . 464
MN10300 Options . 464
NS32K Options . 464
PDP-11 Options . 467
RS/6000 and PowerPC Options . 468
RT Options . 478
S/390 and zSeries Options . 478
SH Options . 479
SPARC Options . 481
System V Options . 486
TMS320C3x/C4x Options . 486
V850 Options . 489
VAX Options . 490
Xstormy16 Options . 490

Part IV

Appendixes

A GNU General Public License . 493
Preamble . 494

B Environment Variables . 501

C Command-Line Cross Reference 505
Cross Reference . 506

D Command-Line Options . 515
Option Prefix . 516

The Order on the Command Line . 517
The File Types . 518

Alphabetic List of Options . 519

E Glossary . 599

Index. 623

xviii G C C : T h e C o m p l e t e R e f e r e n c e

Acknowledgments

Imust thank Wendy Rinaldi at McGraw-Hill/Osborne for giving me the opportunity
to write this book, and for her patience in the early days when it looked like it was
going to take forever.
I want to thank Katie Conley for keeping me on track and heading in the right

direction. She has a unique ability for keeping track of the status of the various parts
of the book as it moves through the editing process. Bart Reed and I have a completely
different take on the English language—his is both readable and correct. I want to
thank Paul Garland for checking the technical accuracy of the book and pointing out
the places where my imagination overtook the facts.

I must thank Margot Maley at Waterside for keeping my feet on the ground and
my hands on the keyboard.

My understanding of how compilers work was a necessity for writing this book.
I want to thank Dave Rogers for introducing me to the C language many years ago,
and for drafting me to write a compiler for it. I also need to thank Ron Souder and
Travis Mitchell for throwing me into some very strange projects that caused me to
become immersed in some of the more obscure nooks and crannies of language
processing and object code generation.

Perhaps most of all, I owe a great deal of thanks to the late Fred Lewis for
introducing me to the fascinating world of compilers, assemblers, and linkers.

xix

This page intentionally left blank.

Introduction

It can be argued that the current free-software movement is the most important
thing happening in computing today. We are in the midst of a major shift from
all software being proprietary and closely held by individual companies to a large

body of software that can be freely acquired and used by anyone for any purpose.
Free software now includes not only programming language compilers and linkers,
but numerous utilities, graphical user interface environments, and even entire
operating systems.

Add all this to the fact that virtually all free software is compiled by GCC, and
it can be argued that GCC is the most important piece of software in the world. Of
course, programs are written in many languages, and there are compilers for these
languages, but for the most part these compilers are written and compiled using GCC.
At some point, all free software harks back to GCC. Some computer companies have
begun to drop support for their own compilers and simply install GCC instead. It’s
free for the taking and is constantly being extended and maintained.

With the addition of the two latest languages to the GCC family—Java and Ada—
the GCC compiler is spreading its wings even further. This brings the total number
of active languages in GCC to six: C, C++, Objective-C, Fortran, Java, and Ada.
Development is in progress on other languages, such as COBOL, and they will be
added to GCC if there is enough support behind them.

xxi

Milestones
The GNU Project was launched in 1984 for the purpose of developing a free operating
system. Richard Stallman is the founder of the GNU Project and the original author
of GCC.

The initial release of the first beta of GCC, release number 0.9, was on March 22, 1987.
The first actual release, version 1.0, was on May 23, 1987. In all there have been 108
releases from the very beginning to the release on which this book is based—version
3.1, released on May 5, 2002. That’s an average of one release every 1.7 months for
the last 15 years.

What’s Inside?
The purpose of this book is to provide information to those wishing to use GCC for
software development. A good bit of information can be found about GCC internals
that can be used to get you started in the direction of working inside the compiler, but
the main idea behind this book is to guide you through the steps of installing and using
the compiler to develop software. Any way that you care to measure software, GCC is
huge. And like most huge software systems, it contains useful features that you can use
only if you discover that they exist, determine exactly what it is they do, and figure out
how to use them. That’s the primary purpose of this book.

The book is divided into three parts. Part I, “The Free Software Compiler,” serves as
an introduction to the fundamentals of the compiler and includes instructions you can
follow to download and install it. Part II, “Using the Compiler Collection,” contains
detailed instructions for using the compiler. A chapter is dedicated to each of the six
programming languages, with several examples of each. Special chapters are included
to describe the preprocessor and techniques for linking objects produced from different
languages. Part III, “Peripherals and Internals,” includes chapters on linking, debugging,
cross-compiling, makefiles, and the GNU assembler. Part III also contains information
on the inner workings of both the front end and back end of the compiler.

GCC is the world’s champion in the number of command-line options available.
These options are listed alphabetically in Appendix D and cross-referenced in
Appendix C. Chapter 21 contains even more command-line options—the ones that have
to do with the specific computer hardware for which the compiler is generating code.

To give you a better idea of the topics covered in this book, here’s a short
description of each chapter:

� Chapter 1 is a general introduction to the fundamental concepts of GCC,
including a list of its parts and the languages it compiles.

� Chapter 2 contains procedures you can use to install GCC.

� Chapter 3 describes the workings of the preprocessor and how you can employ
it to process the source code of a language.

xxii G C C : T h e C o m p l e t e R e f e r e n c e

� Chapter 4 contains examples of compiling and linking C.

� Chapter 5 contains examples of compiling and linking C++.

� Chapter 6 contains examples of compiling and linking Objective-C.

� Chapter 7 contains examples of compiling and linking Fortran.

� Chapter 8 contains examples of compiling and linking Java.

� Chapter 9 contains examples of compiling and linking Ada.

� Chapter 10 contains examples of mixing two languages to create a single
executable.

� Chapter 11 explains how the internationalization facilities can be employed
in your compiled program to allow its displayed strings to be modified to fit
a locale.

� Chapter 12 contains examples of producing and using static and shared
libraries.

� Chapter 13 explains the fundamentals of using the GNU debugger.

� Chapter 14 describes the use of make and its associated utilities.

� Chapter 15 discusses the GNU assembler and describes how you can use it in
conjunction with GCC.

� Chapter 16 describes the process required to configure GCC to compile and link
programs to be executed on another computer.

� Chapter 17 describes how GCC can be used to produce code for an embedded
system.

� Chapter 18 contains examples of generating useful output from the compiler
other than object code.

� Chapter 19 describes the rudiments of using lex and yacc to create a language
front end for GCC.

� Chapter 20 describes the content of the intermediate language produced by the
compiler front end and read by the compiler back end.

� Chapter 21 contains a list of the command-line options that apply versions of
GCC running on specific hardware.

� Appendix A contains a copy of the GNU Public License.

� Appendix B lists the environment variables that effect GCC.

� Appendix C is a cross-reference of the command-line options by category.

� Appendix D is an alphabetical listing of the command-line options.

� Appendix E is a glossary.

I n t r o d u c t i o n xxiii

This page intentionally left blank.

Part I
The Free Software Compiler

This page intentionally left blank.

Chapter 1
Introduction to GCC

3

The GNU Compiler Collection (GCC) is the most important piece of open source
software in the world. Virtually all other open software is based on it at some level
or another. Even other languages, such as Perl and Python, are written in C, which

is compiled by the GNU compiler.
The GCC compiler has had a very interesting history. Its history is more than just

a list of dates and events. This piece of software is more fundamental to the entire free
software movement than any other. In fact, without it or something like it, there would
be no free software movement. Linux is possible because of GCC.

This introduction provides an overview of what is in the compiler collection and
what the tools are that surround it. Along with compiling are the tools that track the
source code and the programs to edit files, control the compilation process, and provide
information for debugging.

This introduction concludes with a parts list and a process description. The list
contains descriptions of the files and programs that make up the compiler collection.
The list is followed by a step-by-step description of the process of moving source files
into a linked and executable program.

GNU
GCC is a product of the GNU Project. This project began in 1984 with the goal in mind
of developing a complete UNIX-like operating system as free software. Like any project
of this size, the GNU Project has taken some twists and turns, but the goal has been
achieved. Today there is indeed a fully functional UNIX-like operating system, named
Linux, abroad in the world and is being used with great success by countless companies,
governments, and individuals. And this system, with all its utilities and applications,
is based on the GNU Compiler Collection.

The range of free software available for Linux, and for other systems, is enormous
and is growing every day. Software developed as part of the overall GNU Project to create a
free UNIX is listed in the Free Software Directory at http://www.gnu.org/directory.

Thousands of programmers have contributed to the various GNU projects, as well
as to other free software projects, and virtually all of them at some level are based on GCC.

Measuring a Compiler
Compilers can be compared in terms of speed of compilation, speed of the generated
code, and the size of the generated code. It’s hard to measure much else. Some numbers
can be produced, but it’s difficult to attach much meaning to them. For example, a count
of the number of source files (makefiles, configuration files, header files, executable code,
and so on) shows that there are well over 15,000 files of various types. Compiling the
source files into object files, libraries, and executable programs increases the count by
several thousand more. Counting the lines of code—the number of lines of text in

4 G C C : T h e C o m p l e t e R e f e r e n c e

the 15,000+ files—produces a number greater than 3,700,000. By any criteria you want
to use, that’s a large program.

The quality of the code varies widely because so many programmers have been
involved in development. Also, the largest portion of the internal documentation consists
of comments embedded in the code, so the quantity and quality of documentation also
varies. Fortunately, the large number of programmers working on the code has, over
time, improved both the code and the comments. Fortunately, it is not necessary for you
to read the embedded comments to be able to use the compiler. However, if you decide
to work on the compiler itself, you will find yourself spending time reading comments
embedded in the code.

The only way to measure the quality of a compiler is to ask the people that use it.
The number of users around the world will never be known (free software has that
characteristic), but the number of users has to be enormous. It is used on some versions
of UNIX where a native compiler is present and supported by the vendor of the UNIX
system. In fact, I know of one large UNIX vendor that uses GCC for many of its own
in-house projects, even though this vendor has its own very fine compiler.

The compiler is never still. As described in Chapter 2, you can install a released version
of GCC by downloading the source code for a specific release, or you can download the
latest (and experimental) version. The experimental version is never still for more than
a few minutes—it is constantly being changed. Some of the corrections are bug fixes,
some add new languages and features, and some remove things that no longer apply.
If you have worked with GCC in the past and find yourself returning to it after being
away for a while, you will definitely notice some changes.

Command-Line Options
Each command-line option begins with either a hyphen or a pair of hyphens. For
example, the following command line will compile the ANSI standard C program
named muxit.c and produce an unlinked object file named muxit.o:

gcc -ansi -c muxit.c -o muxit.o

The single-letter options that have a name following them can optionally include a
space between the letter and the name. For example, the option -omuxit.o is the same
as -o muxit.o.

The following command uses -v for verbosity and --help to print the available
options, and it will print a verbose list of all the command-line options, including those
that are specific to each language:

gcc -v --help

C h a p t e r 1 : I n t r o d u c t i o n t o G C C 5
TH

E
FR

EE
S

O
FTW

A
R

E
C

O
M

P
ILER

It is possible to construct command lines in such a way that nothing happens. For
example, the following command feeds an object file to the compiler and then specifies
-c to prevent the linker from being invoked:

gcc -c brookm.o

All the command-line options fall roughly into three categories:

� Language specific The GCC compiler is capable of compiling several languages,
and some options apply to only one or two of them. For example, the -C89
option only applies to C to specify that the 1989 standard be used.

� Platform specific The GCC compiler can generate object code for several
platforms, and some options only apply when code is being created for a specific
platform. For example, if the output platform is Intel 386, the -fp-ret-in-387
option can be used to specify that floating-point values returned from function
calls be stored in the hardware floating-point registers.

� General Many of the options have meaning for all languages and all platforms.
For example, the -O option instructs the compiler to optimize the output code.

Specifying an option unknown to the compiler will always result in an error message.
Specifying an option that does not apply to the target platform will also result in an
error message.

The gcc program itself processes all options that are known to it and blindly passes
the remaining options on to the process that is to compile a specific language. If the option
passed to a language-specific process is unknown, an error will be reported.

Options are available to direct gcc to perform only certain actions (such as linking
or preprocessing) and nothing else, which means that other flags that would normally
be valid simply serve no purpose. Unless the -W option is used to generate extra warnings,
flags that are recognized but do not apply are silently ignored.

Platforms
The GCC set of compilers runs on many platforms. A platform is a combination of
a specific computer chip and the operating system running on it.

Although GCC has been ported to thousands of these hardware/software
combinations, only a few fundamental platforms are used for testing to determine
the correctness of a release. These fundamental targets, listed in Table 1-1, have been
selected because they are the most popular and because they are representative of other
platforms supported by GCC.

Care is taken to make certain GCC runs correctly for the primary platforms shown
in Table 1-1, and a good deal of attention is paid to the secondary platforms, listed in
Table 1-2.

6 G C C : T h e C o m p l e t e R e f e r e n c e

The reason for primary and secondary testing on such a limited number of platforms
is a matter of manpower. If your platform is not represented here, you may still find
that the compiler runs perfectly on your system. Also, a complete test suite comes with
the source code of the compiler, so you will easily be able to verify that the compiler
works properly. Another approach would be to volunteer to run tests on your platform
so the compiler can be verified for it before each release.

What the Compiler Does
A compiler is a translator. It reads a set of instructions written in one form (usually
the text of a programming language) and translates it into a set of instructions (usually
a collection of binary hardware instructions) that can be executed by a computer.

Roughly, the compiler is divided into two parts: the front end and the back end.
The front end reads the source of the program and transforms what it finds into

TH
E

FR
EE

S
O

FTW
A

R
E

C
O

M
P

ILER
C h a p t e r 1 : I n t r o d u c t i o n t o G C C 7

Hardware Operating System

Alpha Red Hat Linux 7.1

HPPA HPUX 11.0

Intel x86 Debian Linux 2.2, Red Hat Linux 6.2, and FreeBSD 4.5

MIPS IRIX 6.5

PowerPC AIX 4.3.3

Sparc Solaris 2.7

Table 1-1. Primary GCC Evaluation Platforms

Hardware Operating System

PowerPC Linux

Sparc Linux

ARM Linux

Intel x86 Cygwin

Table 1-2. Secondary GCC Evaluation Platforms

8 G C C : T h e C o m p l e t e R e f e r e n c e

a memory-resident table in the form of a tree. Once the tree has been constructed, the
back end of the compiler reads the information stored in the tree and converts it into
assembly language for the target machine.

The following is a bird’s-eye view of the steps taken to perform the translation of
your source into an executable program:

� Lexical analysis is at the very beginning of the compiler’s front end. It reads
the characters from the input and decides which ones belong together to make
symbols, numbers, and punctuation.

� The parsing process reads the stream of symbols coming from the lexical scanner
and, following a set of rules, determines the relationships among them. The output
of the parser is the tree structure that is passed to the back end of the compiler.

� The parse tree structure is translated into a psuedo-assembly language named
Register Transfer Language (RTL).

� The back end of the compiler begins by analyzing the RTL code and performing
some optimizations. Redundant and unused sections of code are removed. Some
portions of the tree may be moved to other locations in the tree to prevent
statements from being executed more often than necessary. All in all, there are
more than a dozen optimizations, and some of them have more than one pass
through the code.

� The RTL is translated into assembly language for the target machine.

� The assembler is invoked to translate the assembly language into an object file.
This file is not in an executable format—it contains executable object code, but
not in a form that it can actually be run. Besides, it more than likely contains
unresolved references to routines and data in other modules.

� The linker combines object files from the assembler (some of which may be
stored in libraries filled with object files) into an executable program.

Note the complete separation of the front end from the back end. Any language with
a parser that can be used to produce the tree structure can be compiled with GCC.
Similarly, any machine for which a program has been written to translate the tree structure
into assembly language is capable of compiling programs from any of the languages
handled by the front end.

It is actually not as simple as this description makes it sound, but it works.

The Languages
GCC compiles several languages, but there is a fundamental relationship among them
all. The parsers are all entirely different because the syntax of each language is unique,
but with each step of the compilation process, more and more of the code becomes

common among all the languages. As described in the previous sections, the GNU
Compiler Collection can accept input in the form of any one of a number of programming
languages and produce output that will run on one of a number of different platforms.

C Is the Fundamental Language
The fundamental language of GCC is C. The entire compiler system began as a C compiler
and, over time, the other languages were added to it. This was fortunate because C is
a system-level language capable of dealing directly with the elementary elements of
computer programs, which, in turn, makes it a relatively easy task to build other language
compilers on top of its internals.

If you are programming in a language other than C, as you become more familiar
with GCC you will find that many of the things you work with are in terms of the C
language. You can think of C as sort of the underlying assembly language of the GCC
compiler. Most of the compiler itself is written in C.

C++ Was the First Addition
The C++ language is a direct extension (with minor modifications) of the C language,
so it was a perfect candidate for the first language to be added to GCC. Everything that
can be done in C++ can also be done in C, so there was no need to modify the back end
of the compiler—it was only necessary to load the front end with a new parser and
semantics analyzer. Once the intermediate language is generated, the rest of the compiler
is exactly the same as the C compiler.

Objective-C
Objective-C is not as popular or as well known as C or C++, but it is another language
that was derived from (and is based on) the C language. It is referred to as “C with objects”
and, as you learn it, you realize that’s exactly what it is. For the most part, you can write
a C program and compile it as Objective-C and have it run. A special syntax that is
distinctively different from the fundamental C syntax is used to define objects, so there
is no confusion or conflict with any of the parts that are pure C code.

Fortran
Fortran does one thing that C does not do: math. The standard Fortran function library
(known as the Fortran intrinsics because they act as if they are a part of the language)
is extensive and has been perfected and extended over many years. Fortran is used
extensively today in scientific computing because of its fundamental ability to perform
complex calculations rapidly and correctly. Fortran even has complex numbers as one
of its primitive data types, and the primitive numeric data types can be declared with
extended accuracy.

C h a p t e r 1 : I n t r o d u c t i o n t o G C C 9
TH

E
FR

EE
S

O
FTW

A
R

E
C

O
M

P
ILER

10 G C C : T h e C o m p l e t e R e f e r e n c e

The structure of the language is a bit more cumbersome than some of the more
modern languages, but it contains the facilities for subroutines and functions that are
needed for structured programming. The latest Fortran standard has expanded these
capabilities to the point that the new Fortran is really quite a modern language.

Java
Java is the youngest of the languages included in GCC. The Java language, like C++, is
based on C, but it takes a somewhat different approach to the syntax of writing classes.
Where C++ is more flexible, Java removes the ambiguities of C++ by restricting object
construction, destruction, and inheritance to some strictly unambiguous forms.

Java is very different from other languages included in GCC because of the form of
its object code. Java compiles into a special format of object code, known as bytecodes, that
can be executed by an interpreter (known as a Java Virtual Machine). All Java programs
were executed this way until the GCC compiler added the option of generating native
executable code by hooking a Java front end onto the existing GCC back end for code
generation. In addition, another front end was added that is capable of reading Java
bytecodes as the source code used to produce a binary native executable.

Ada
The newest addition to the GCC family is Ada. It was added as a fully functional compiler
originally developed separately by Ada Core Technologies as the GNAT Ada 95 compiler,
and donated to GCC in October of 2001.

The front end of the Ada compiler is different from the others, in that it is written in
Ada. This is fine once you have some sort of Ada compiler installed, but it will require
a special bootstrapping procedure on some systems. All the other languages are written
in C and C++, so they are almost universally portable.

Ada is a language specifically designed for use by multiple programmers writing
large programs. When an Ada program is compiled, it cross-references with the source
code of the other portions of the program to verify correctness. The syntax of the language
requires each function and procedure to be declared as being a member of a package, and
the package configuration is compared against this declaration. C and C++ use prototypes
to declare externally referenced functions, and Java uses a file naming convention to
locate package members, but neither of these techniques is as stringent as Ada.

The Chill Is Gone
With version 3.0, the Chill language became an unsupported part of GCC. Then, just
prior to the release of version 3.1, the source code of the Chill language was removed
from GCC. However, GCC is very complicated, and the Chill language has been an
integral part of it for quite some time, so you will see Chill language references throughout
the GCC online documentation and in various locations in the source code. This book
was written during the transition period, so you will find references to Chill compiler
options and file types.

Parts List
GCC is made up of many components. Table 1-3 lists the parts of GCC, but not all of
them are always present. Some of them are language specific, so if a particular language
has not been installed, certain files will be missing from that system.

C h a p t e r 1 : I n t r o d u c t i o n t o G C C 11
TH

E
FR

EE
S

O
FTW

A
R

E
C

O
M

P
ILER

Part Description

c++ A version of gcc that sets the default language to C++ and
automatically includes the standard C++ libraries when linking.
This is the same as g++.

cc1 The actual C compiler.

cc1plus The actual C++ compiler.

collect2 On systems that do not use the GNU linker, it is necessary to run
collect2 to generate certain global initialization code (such
as constructors and destructors in C++).

configure A script in the root directory of the GCC source tree. It is used
to set configuration values and create the makefiles necessary
to compile GCC.

crt0.o The initialization and shutdown code is customized for each
system and compiled into this file, which is then linked to each
executable to perform the necessary program startup and
shutdown activities.

cygwin1.dll A shared library for Windows that provides an API that emulates
UNIX system calls.

f77 The driver program used to compile Fortran.

f771 The actual Fortran compiler.

g++ A version of gcc that sets the default language to C++ and
automatically includes the standard C++ libraries when linking.
This is the same as c++.

gcc The driver program that coordinates execution of compilers
and linkers to produce the desired output.

gcj The driver program used to compile Java.

gnat1 The actual Ada compiler.

Table 1-3. Various Installed Parts of GCC

Table 1-4 lists software that works in conjunction with GCC to aid in the compilation
process. Some are absolutely essential (such as as and ld), where others can be useful
but are not strictly required. Although many of these tools are available as native utilities
on various UNIX systems, you can get most of them as a GNU package known as
binutils. The procedure for installing binutils is described in Chapter 2.

12 G C C : T h e C o m p l e t e R e f e r e n c e

Part Description

gnatbind A utility used to perform Ada language binding.

gnatlink A utility used to perform Ada language linking.

jc1 The actual Java compiler.

libgcc This library contains routines that could be considered part
of the compiler because they are linked with virtually every
executable. They are special routines that are linked with an
executable program to perform fundamental tasks such as
floating point arithmetic. The routines in this library are often
platform dependent.

libgcj The runtime library containing all the core Java classes.

libobjc The runtime library necessary for all Objective-C programs.

libstdc++ The runtime library contains all the C++ classes and functions
defined as part of the standard language.

Table 1-3. Various Installed Parts of GCC (continued)

Tool Description

addr2line Given an address inside an executable file, addr2line uses the
debug information in the file to translate the address into a source
code file name and line number. This program is part of the
binutils package.

Table 1-4. Software Tools Used with GCC

C h a p t e r 1 : I n t r o d u c t i o n t o G C C 13
TH

E
FR

EE
S

O
FTW

A
R

E
C

O
M

P
ILER

Tool Description

ar A program to maintain library archive files by adding, removing,
and extracting files from the archive. The most common use for
this utility is to create and manage object library archives used
by the linker. This program is part of the binutils package.

as The GNU assembler. It is really a family of assemblers because it
can be compiled to work with one of several different platforms.
This program is part of the binutils package.

autoconf Produces shell scripts that automatically configure a source code
package to compile on a specific version of UNIX.

c++filt The program accepts names that have been mangled by the C++
compiler (which it does for overloading) and translates the mangled
names to their original form. This program is part of the binutils
package.

f2c A Fortran-to-C translation program. It is not a part of GCC.

gcov A profiling tool used with gprof to determine where the greatest
amount of time is being spent during the execution of your program.

gdb The GNU debugger, which can be used to examine the values and
actions inside a program while it is running.

GNATS The GNU Bug Tracking System. An online system for tracking
bugs for GCC and other GNU software.

gprof This program will monitor the execution of a program that has
been compiled with profiling code built into it and reports the
amount of time spent in each function, providing a profile from
which routines can be optimized. This program is part of the
binutils package.

ld The GNU linker. This program combines a collection of object
files into an executable program. This program is part of the
binutils package.

libtool A generic library support script used in makefiles to simplify
the use of shared libraries.

Table 1-4. Software Tools Used with GCC (continued)

14 G C C : T h e C o m p l e t e R e f e r e n c e

Tool Description

make A utility that reads a makefile script to determine which parts
of a program need compiling and linking and then issues the
commands necessary to do so. It reads a script (named makefile
or Makefile) that defines file relationships and dependencies.

nlmconv Converts a relocatable object file into a NetWare Loadable Module
(NLM). This program is part of the binutils package.

nm Lists the symbols defined in an object file. This program is part
of the binutils package.

objcopy Copies and translates an object file from one binary format
to another. This program is part of the binutils package.

objdump Displays several different kinds of information stored inside one
or more object file. This program is part of the binutils package.

ranlib Creates and adds an index to an ar archive file. The index is the
one used by ld to locate modules in the library. This program is
part of the binutils package.

ratfor The Ratfor preprocessor can be invoked by GCC but is not a part
of the standard GCC distribution.

readelf Displays information from an ELF formatted object file. This
program is part of the binutils package.

size Lists the names and sizes of each of the sections in an object file.
This program is part of the binutils package.

strings Reads through a file of any type and extracts the character strings
for display. This program is part of the binutils package.

strip Removes the symbol table, along with any other information
required for debugging, from an object file or an archive library.
This program is part of the binutils package.

vcg The Ratfor viewer reads information from a text file and displays
it as a graph. The vcg utility is not distributed as part of GCC, but
the -dv option can be used to generate optimization data in the
format understood by vcg.

windres A compiler for Window resource files. This program is part of the
binutils package.

Table 1-4. Software Tools Used with GCC (continued)

Contact
The home website for GNU is http://www.gnu.org, and the home website of the GCC
project is http://gcc.gnu.org.

The GCC compiler scales very well—from simple batch utility programs to
multimillion-line systems. Generally, as a software project gets larger or becomes
specialized in some way, situations arise where odd problems are uncovered. Some
of these are bugs and some are peculiarities, but there inevitably comes a time when
you need clarification—or at least a nudge in the right direction. Fortunately, help is
available, along with everything you would like to know about GCC.

The primary source of information is through mailing lists. An open mailing list
(one in which all the members are able to both send and receive) has the advantages
of being immediate and making it easy for a dialogue to take place. If it is help you are
after, I would suggest subscribing to the gcc-help mailing list. A dialogue on an open
list can continue until the situation is clarified and the problem is solved. Table 1-5
contains brief descriptions of all the GCC open mailing lists. The read-only mailing lists
are listed in Table 1-6.

C h a p t e r 1 : I n t r o d u c t i o n t o G C C 15
TH

E
FR

EE
S

O
FTW

A
R

E
C

O
M

P
ILER

List Name Description

gcc A general discussion area for the development of GCC. If you
only subscribe to one list, this should be the one. It should keep
you abreast of the latest news and developments. This is a high
volume list.

gcc-bugs Discussions of bugs and bug reports. This is a high volume list.

gcc-help This list is for use by people searching for answers to questions.
This is a high volume list

gcc-patches Source code patches and discussions of patches are submitted
to this list. This is a high volume list.

gcc-testresults Test results and discussions of testing and test results are
posted to this list.

java The discussion list for the development and maintenance of the
Java front end of GCC, as well as the Java runtime library.

java-patches Source code patches for the Java front end and the Java runtime
library are posted to this list as well as the gcc-patches list.

libstdc++ The discussion list for the development and maintenance of the
standard C++ library.

Table 1-5. The Open GCC Mailing Lists

All the mailing lists can be accessed at the website http://www.gnu.org/software/
gcc/lists.html. Entries can be made on this page to subscribe and unsubscribe to the
lists. Also, each list has its own website that can be used to search and read through
the archived messages of the list. The name of the list preceded by gcc.gnu.org/ml/ is
the name of the website. For example, to locate the gcc-announce archive website, go to
http://gcc.gnu.org/ml/gcc-announce.

16 G C C : T h e C o m p l e t e R e f e r e n c e

List Name Description

gccadmin This mailing list receives the messages issued from the
cron jobs run by the gccadmin account at gcc.gnu.org.

gcc-announce A low volume mailing list for announcements of new
releases and other events of importance to GCC.

gcc-cvs A message is sent to this list for each check-in to the CVS
repository.

gcc-cvs-wwwdocs A message is sent to this list each time there is a check-in
to the CVS repository of the HTML documentation.

gcc-prs A message is sent to this list each time a problem report
is entered into the GNATS database.

gcc-regression Messages are posted to this list containing the results
of running regression testing of GCC.

java-announce A low volume mailing list for announcements relating
to the Java front end or the Java runtime routines.

java-cvs A message is sent to this list (and the gcc-cvs list) for each
check-in to the Java compiler and runtime sections of the
CVS repository.

java-prs A message is sent to this list (and the gcc-prs list) each time
a Java related problem report is entered into the GNATS
database.

libstdc++-cvs A message is sent to this list each time there is a check-in
to the libstc++ part of the CVS repository.

Table 1-6. The Read-Only GCC Mailing Lists

Chapter 2
Acquiring and Installing
the Compiler

17

18 G C C : T h e C o m p l e t e R e f e r e n c e

While ready-to-run binary versions of GCC are available, the most common
installation procedure is to download the source code and compile it. The
process of compiling GCC has become quite stable and mature because it has

been refined over several years. The same basic installation process is used for installing
all GNU software. In simple terms, the steps are as follows:

1. Download the source code and store it in a directory of its own.

2. Create a separate working directory to be used for compiling the source.

3. From the working directory, execute the configure script, which creates
a directory tree with a collection of platform-dependent files to control the
compilation process.

4. Enter the command make to compile the source into an object.

5. Enter the command make install to install the newly compiled programs
and libraries on your system.

There are two ways to get the source code: You can get compressed tar files by using
FTP, or you can get the individual compressed files using CVS. Using FTP you can get
released and stable versions of the compiler. Using CVS gives you access to the released
versions as well as the current experimental version. The FTP form is more tuned for
a user of the compiler, where the CVS form is designed for use by the maintainers of
GCC, but the installation procedure is almost the same for them both.

If you are on a computer that does not have other GNU software installed, you will
probably find it necessary to install binutils first. Included in the binutils package
are several utility programs used by GCC, including an assembler and linker that have
been designed to work directly with GCC. It is possible to use native assemblers and
linkers, but the GNU assembler and linker have been designed to work with the GNU
compilers. The installation procedure is basically the same as for GCC, but the binutils
installation process can be performed easily on a machine without binutils already
installed, whereas a GCC installation may require the presence of binutils.

Like almost all GNU software, the compiler is written in C, so a C compiler must
already be present on the computer before you can compile a new one. If you want to
install GCC for a computer that does not already have a C compiler, it is necessary to
cross-compile the compiler from the compiler installed on another machine that was
specifically configured and compiled for this purpose. Chapter 16 explains the procedure
of compiling for another machine.

Binary Download
If you do not already have a C compiler, you can do one of two things: You can download
the source onto another computer that has a C compiler and cross compile a version for

your target machine, or you can download a precompiled version. GNU does not provide
precompiled versions of the compiler, but a few are available from other locations.
There are too many different kinds of computers and operating systems for there to be
a binary version available for every computer, but Table 2-1 lists a few that are available.

Each of these sites has download and installation instructions. The GCC compiler is
portable, but the portability is designed to work across UNIX operating systems. The
DOS version of the compiler is a simple port and needs only to be loaded onto a DOS
machine to be run, but it is limited to only the C and C++ compilers. The Windows
compiler of the Cygwin Project is a complete port that includes not only the compiler
but also a set of utilities that provide a complete UNIX work environment.

C h a p t e r 2 : A c q u i r i n g a n d I n s t a l l i n g t h e C o m p i l e r 19
TH

E
FR

EE
S

O
FTW

A
R

E
C

O
M

P
ILER

Platform Name and Location

AIX Bull’s Large Freeware and Shareware Archive for AIX at
http://freeware.bull.net
The University of Southern California’s Public Domain Software
Library for AIX at http://aixpdslib.seas.ucla.edu

DOS DJGPP at http://www.delorie.com/djgpp

HP-UX The Computer-Aided Engineering Center of the University of
Wisconsin at http://hpux.cae.wisc.edu
The HP-UX Porting and Archive Center in Utah at
http://hpux.cs.utah.edu
The HP-UX Porting and Archive Center in the United Kingdom at
http://hpux.connect.org/uk
SunSITE Central Europe at
ftp://sunsite.informatik.rwth-aachen.de/pub/packages/gcc_hpux

Solaris 2 Solaris Freeware Project (both Intel and Sparc) at
http://www.sunfreeware.com

SGI SGI Freeware at http://freeware.sgi.com

UnixWare Skunkware at ftp://ftp2.caldera.com/pub/skunkware/
w7/Packages

Windows The Cygwin Project at http://sources.redhat.com/cygwin

Table 2-1. Precompiled Versions of the GCC Compiler

FTP Source Download
A number of sites provide anonymous FTP access to the GCC source files. It is possible
to download the full compiler collection or select only the language (or languages) you
wish to install. The files are listed in Table 2-2, but it is not necessary to download all of
them. You have two choices:

� You can choose to download only the core and then select any of the languages
you would like to include with it.

� You can download the entire compiler, which is the same as downloading
the core, all the languages, and the test suite.

The test suite is optional. It is a collection of source code programs that you can use
to verify whether the compiler you have downloaded and compiled is working properly.

The following steps can be used to download the source code and install it, making
it ready to be compiled:

1. Select an FTP site. The GNU FTP site is ftp.gnu.org/gnu, but you should
probably choose from among the hundreds of mirror sites located around
the world. You can find a current list of mirror sites at http://www.gnu.org/
order/ftp.html. To make your download as smooth as possible, you should
choose a mirror site close to you.

20 G C C : T h e C o m p l e t e R e f e r e n c e

File Name Contains

gcc-3.1.tar.gz The entire compiler, including the core and all
the components.

gcc-ada-3.1.tar.gz The Ada compiler.

gcc-core-3.1.tar.gz The core contains the C compiler and the modules that
are common to all compilers.

gcc-g++-3.1.tar.gz The C++ compiler.

gcc-g77-3.1.tar.gz The Fortran compiler.

gcc-java-3.1.tar.gz The Java compiler.

gcc-obj-3.1.tar.gz The Objective C compiler.

gcc-testsuite-3.1.tar.gz The test suite.

Table 2-2. The FTP Files Containing the Source of GCC

2. Download the files into a work directory. This may be the same directory that
you will use to compile GCC, but it is usually a temporary directory because
these files can be deleted after the source has been extracted from them. It is
important that you download the files with the FTP option set to binary, not
text. These are compressed files, and the FTP text mode will destroy them by
misinterpreting the content and converting certain values into ASCII characters.

3. Select or create a directory to be used to contain the source tree directory. When
you unpack GCC, it will create its own directory in the current directory, so you
can select a directory in which other source directories have been installed. For
example, if you elect to install the source in a directory named /usr/local/src,
unpacking all the files from that location will cause the GCC source tree to be
installed as /usr/local/src/gcc-3.1.

4. Unpack the files. If your tar utility supports the gzip format (the z option), you
can unpack a file as follows:

cd /usr/local/src

tar -xvzf /tmp/download/gcc-core-3.1.0.tar.gz

5. If your version of tar does not support gzip, you will need to add an extra step
to the procedure, as follows:

cd /usr/local/src

gunzip /tmp/download/gcc-core-3.1.0.tar.gz

tar -xvf /tmp/download/gcc-core-3.1.0.tar

This will create a directory named /usr/local/src/gcc-3.1 that contains the source.
If you have chosen to download more than one file, you will need to use the
same command for each of them. In the unlikely event that you don’t have
a copy of gunzip, you can get a ready-to-run copy of it for your system at http://
www.gzip.org.

CVS Source Download
In some respects a Concurrent Versions System (CVS) download is easier than an FTP
download. It is certainly more flexible because it allows you to download different
versions of GCC. The CVS system is used by the developers of GNU software to retrieve
the latest experimental versions and keep track of any updates. And because CVS is a
source code archive, you can use its facilities to retrieve any version of the compiler,
including the current release.

There are Some slight differences in the form of the download of the tar source files
and the CVS source files. To compile from CVS source, you will need to have the Bison
parser and version 4 or later of Texinfo installed to produce some intermediate files.
These generated files are included with the tar files but are not included among the CVS

C h a p t e r 2 : A c q u i r i n g a n d I n s t a l l i n g t h e C o m p i l e r 21
TH

E
FR

EE
S

O
FTW

A
R

E
C

O
M

P
ILER

22 G C C : T h e C o m p l e t e R e f e r e n c e

files. Another difference is that the defaults for some of the configuration options are
set to provide more diagnostics in the CVS download.

The CVS repository tracks every change made to the source code. When the time
comes to make a release, a tag is created to mark the release. The tag is associated with
the current (or selected) version of every source module in the repository. When you
wish to download a version of the compiler, you specify the tag name to your local cvs
utility, and it will retrieve all the source files for you. The source files are downloaded
to you in a compressed form (if you specify the proper command-line option) and are
uncompressed and stored in the correct directory as they arrive. The result is that you
get the same set of directories and files that you get from an FTP download.

The following steps describe a procedure you can follow to download a specific
version of GCC:

1. Verify that you have the cvs utility installed on your system by entering the
following command:

cvs -v

This should display the version number along with some other information.
If you do not have a copy of cvs or if the version you have is 1.10.4 or older,

you will need to get a copy of the latest version, which you can do at http://
www.cvshome.org.

2. Specify the name of the remote CVS repository. The simplest way to do this is to
define the name as an environment variable with the following command:

CVSROOT=:pserver:anoncvs@subversions.gnu.org:/cvsroot/gcc

export CVSROOT

This is the location of the CVS repository. The cvs utility will look for the
environment variable if the -d option is not specified on the command line.
If you prefer, you can use the -d option to specify the address with every cvs
command, but it must be the first option on the command line, as follows:

cvs -d :pserver:anoncvs@subversions.gnu.org:/cvsroot/gcc

3. Log into CVS. With the CVSROOT environment variable set, you can log directly
into the repository with the following command:

cvs login

You will be prompted for a password, so to log in anonymously with read-only
access, just press RETURN. If the login completes successfully, the command-line
prompt will reappear for you to enter your next cvs command.

4. Download the source files. Change to the parent directory of the one that you
would like to contain the GCC source tree. Entering the following command
will download all the source of the named release and store it in a new directory
named gcc:

cvs -z 9 checkout -r gcc_3_1_0_release gcc

TH
E

FR
EE

S
O

FTW
A

R
E

C
O

M
P

ILER

The -z 9 option is important because it instructs cvs to compress the files, which
shortens the time required to get all the files. Whether you compress the files or
not, the end result is the same because cvs expands them as it stores them on
the local disk.

5. Using the same tag as before, you can also retrieve the documentation that matches
that particular version of the compiler. It is in the form of a set of HTML files stored
in a directory named wwwdocs. The command to download the documentation
is very much like the one you used to download the source files:

cvs -z 9 checkout -r gcc_3_1_0_release wwwdocs

Previous Releases
Normally you will want to get the latest release of the compiler from your CVS download,
but there are tag names for a number of releases if you need a different one. The tag
names listed in the following table can be used to retrieve earlier releases.

gcc_3_0_3_release gcc_2_95_2-release egcs_1_1_release

gcc_3_0_2_release gcc_2_95_1-release egcs_1_0_3_release

gcc_3_0_1_release gcc_2_95-release egcs_1_0_2_release

gcc_3_0_release egcs_1_1_2_release egcs_1_0_1_release

gcc_2_95_3 egcs_1_1_1_release egcs_1_0_release

The Experimental Version
If you don’t specify a tag name, you will get a snapshot of the latest experimental version
of GCC. The following command will download the experimental version :

cvs -z 9 checkout gcc

The source code you get this way is the newest experimental version of the compiler,
so it may not work correctly. In fact, there is no guarantee you will even be able to
compile it.

Once you have a copy of the latest version of all the files, you can keep them current
by using cvs to update them whenever you wish. The cvs command will compare the
version of the files in the repository with the version you have on the local disk and
download only the ones needed to make everything current. The update command
looks like this:

cvs -z 9 update

C h a p t e r 2 : A c q u i r i n g a n d I n s t a l l i n g t h e C o m p i l e r 23

As this command updates your local directories, it lists each file name preceded
by a single character indicating the action taken. The letter P indicates that you already
have the latest version. The letter U indicates that a new version of the file has replaced
an old one. A question mark appears when there is a file in the local directory that does
not match anything in the repository.

As the GCC software is being developed, the documentation is being updated to
match it. You can download the latest version of it in a similar fashion:

cvs -z 9 checkout wwwdocs

If you elect to download the documentation, it will also be updated when you use
cvs to update the source files.

Compiling and Installing GCC
The installation procedure of GCC has been performed thousands of times over a period
of several years and on many different platforms, so it has become very mature and
stable. If you intend to both compile and install GCC on the same machine, the process
can be very simple. However, if you need to do something special, you have plenty of
options available.

Installation Procedure
The following list is made up of the major steps required to install GCC.

1. Make certain that your current C compiler is available. Either cc or gcc should
be on your path, or the CC environment variable must be set to the name of the
compiler. You can verify the presence of the compiler by entering cc or gcc
from the command line.

2. Verify that you have GNU make installed. It is possible for other versions of
make to work properly, but it is quite likely that you will run into problems.
If you elect to use another version of make and find that you get some strange
error messages, you should install GNU make and try again. To verify that you
have GNU make, you can enter the following command, which causes GNU
make to identify itself:

make -v

3. Create a configuration directory. This directory is to be the root of a tree of
directories that will contain all the makefiles and object files they generate. It is
highly recommended that you do not compile GCC anywhere in the directory
tree containing the source files.

24 G C C : T h e C o m p l e t e R e f e r e n c e

TH
E

FR
EE

S
O

FTW
A

R
E

C
O

M
P

ILER

4. Select the options you wish to use on the configure script. There are many
options to choose from, and they are all described in the next section. Each option
has a default value, so you will only need to specify options for special situations.

The most commonly used option is --prefix, to specify the name of the root
directory of the GCC binary installation. After the installation is complete,
the named prefix directory contains all the GCC executables and other files in
subdirectories named bin, include, info, lib, man, and share. The default
prefix is /usr/local.

One of the most interesting things about the configure script is its
almost infallible ability to guess the exact operating system and hardware it is
running on. It does this by calling on a script named config.guess. If you
wish, you can execute this script from the command line and see that it properly
identifies your system.

5. Execute the configure script from inside the working directory. Because
you are executing the script from another directory, it is necessary to specify
its full path name. For example, if you have downloaded the source tree into
/opt/gnu/gcc, your object directory is named /opt/build, and if you want
to store the final executables and libraries in /opt/usr/local, you can
execute the configure script as follows:

cd /opt/build

/opt/gnu/gcc/configure --prefix=/opt/usr/local

6. Compile GCC. If the configure script ran successfully, several files and
directories are in the object directory, including one file named Makefile.
To compile everything, enter the following command:

make

As the compilation proceeds, you will see some error messages displayed, but
this is normal as long as make ignores them and the compiler moves on to the
next file. Some errors and warnings are expected—only the ones that halt
the process are of any concern.

7. Test the compiler. Running the test suite is an optional step and may even require
you to download some extra software to do it. If you decide to run the test suite,
you can find the procedure for doing so at the end of this chapter, in the section
titled “Running the Test Suite.”

8. Install the compiler. With everything compiled, you can install GCC with the
following command:

make install

9. Set the path. To be able to use the compilers directly, it is necessary to include
the directory containing the executables in the PATH environment variable.
Unless you made some changes to the location by specifying some of the
directory name options with the configure script, your PATH variable is
probably already set correctly.

C h a p t e r 2 : A c q u i r i n g a n d I n s t a l l i n g t h e C o m p i l e r 25

10. If you want to create a cross compiler (that is, a compiler that runs on one
system to compile programs that run on another), you should first build
the native compiler and then follow the procedure in Chapter 16 for creating
a cross compiler.

11. If you want to build the Ada compiler—which is not completely built by the
steps described here—you will need to follow the procedure in Chapter 9.

Configuration Options
The installation options are the ones specified on the command line of the configure
script. This script generates the files that control compiling and installing. Every option
has a default that is correct for creating a compiler (or set of compilers) for your local
machine, but there are circumstances where adjustments must be made. The following
is a description of these options:

� Enable and disable Options that have names beginning with --enable all
have corresponding option names beginning with --disable. Which one of
these is the default will vary from one platform to the next. In the following
alphabetical listing of the options, these are all listed under the names that begin
with --enable.

� With and without Options that have names beginning with --with all have
corresponding option names beginning with --without. Which of the two is
the default will vary from one platform to the next. The following alphabetical
listing of the options shows all the names beginning with --with.

� Languages By default, the configure script will prepare to compile all the
languages you have installed, but you can specify which languages are actually
compiled with the --enable-languages option.

� Prefix directory name The parts of the compiler are installed into a set of
directories with fairly standard names, but you can specify the names to be
anything you like. Even when you do elect to change the directory names, you
will seldom need to use any option other than --prefix, because the prefix
directory is the root name of all the installation directories. You should be aware
that using the same directory tree as both the source and object files is not
recommended because it can lead to some conflicts that cause problems.

� File names It is possible to specify modifications to be made to the names
of the files that make up the compiler. This is particularly useful if you are
developing your own experimental compiler or want to install more than one
version of GCC.

� Libraries Part of GCC is the libraries that contain the runtime functions employed
by the various languages. Both shared and static libraries are created as part of
the GCC installation. Some of the libraries are required and some are optional.

26 G C C : T h e C o m p l e t e R e f e r e n c e

� Assembler and Linker A collection of options can be used to specify the names
and locations of the assembler and linker to be employed. If you do not use the
options to specify their location, two steps are taken by the configuration
procedure to try to locate them:

1. The configuration script looks in the directory named exec-prefix/
lib/gcc-lib/target/version, where exec-prefix defaults to /usr/local,
unless it has been change by either the --prefix or --exec-prefix
option for setting directory names. The target is the name of the target
system, and the version number refers to GCC.

2. The configure script looks in the directories that are specific to the
operating systems (such as /usr/ccs/bin for Solaris and /usr/bin
for Linux).

� Code generation There are two categories of code generation options: One
specifies the type of object code to be included as part of the compiler itself,
and the other specifies the kind of code to be produced from the compiler.

� Platform The platform is also called the target or the host. Some options
apply to specific hardware running specific operating systems. Although the
config.guess script can almost always guess which platform you are using,
there are certain hardware options it cannot detect. Some systems appear to be
identical when, actually, slight variations exist.

--bindir=directory
The default is exec-prefix/bin. This is the name of the directory to contain the
executables. The PATH environment variable normally contains this directory name,
so the compiler names can be entered directly from the command line.

--build=host
Generates the configuration to be run on the specified host. The default is to be the same
platform as the one set by the --host option, which defaults to the output of the
script config.guess.

--cache-file=filename
The configure script performs numerous tests to determine the configuration and
capabilities of the local machine. The named file will contain the results of the test.

--datadir=directory
The default is prefix/share. This is the name of the directory to contain data files, such
as locale information.

--enable-altivec
Specifies that the target platform is a PowerPC that supports AltiVec vector enhancements.
This option causes the generation of AltiVec code when appropriate.

TH
E

FR
EE

S
O

FTW
A

R
E

C
O

M
P

ILER
C h a p t e r 2 : A c q u i r i n g a n d I n s t a l l i n g t h e C o m p i l e r 27

28 G C C : T h e C o m p l e t e R e f e r e n c e

--enable-checking=check[,check,...]
This option will enable the generation of code that performs some internal checks of
the compiler. The checks will generate diagnostic output and increase compilation time,
but they have no other effect on output from the compiler. This option is set by default
when compiling from a CVS download, but it is not set when compiling a released version.

You can specify the list of checks you want by choosing among misc, tree, gc,
rt1, and gcac. If you omit the list and just specify --enable-checking, the list will
default to only misc, tree, and gc. The checks rt1 and gcac are very expensive.

--enable-cpp
Specifies that the user accessible version of cpp (the C preprocessor) be installed. This is
normally the default. Also see --with-cpp-install-dir.

--enable-languages=language[,language,...]
Specifies that only the named languages are to have compilers built for them. The
available language names are ada, c, c++, f77, java, objc, and CHILL. Without
this option specified, all languages are compiled. Some extra steps are required to
compile Ada, as described in Chapter 9. The CHILL language is no longer supported
and will not compile properly except in older versions of GCC.

--enable-libgcj
Specifies that the runtime library for Java be built. This is the default. Specifying
--disable-libgcj makes it possible to create a Java compiler but use a runtime
library from another source.

--enable-maintainer-mode
Specifies that the file named gcc.pot be regenerated from the source code. This file is
the master message catalog containing all the error and warning diagnostic messages
generated by the compiler. This file is used for internationalization, as described in
Chapter 11.

For this to work correctly, you will need the complete source tree and a recent version
of gettext.

--enable-multilib
This is the default on most systems. This option specifies that multiple libraries for the
target machine be built. These libraries are normally built to support the different target
variants, floating point emulation, function calling conventions, and so on. Instead of
suppressing the generation of all the libraries, for the platforms listed in Table 2-3 you
can suppress certain libraries by name. For example, for the platform arc-*-elf*, you can
use the option --disable-biendian to suppress the creation of that one library.

--enable-nls
Specifies that Native Language Support (NLS) be included as part of the compiler to
allow for the display of warning and error messages in languages other than American
English. Also see --with-included-gettext and --with-catgets.

C h a p t e r 2 : A c q u i r i n g a n d I n s t a l l i n g t h e C o m p i l e r 29
TH

E
FR

EE
S

O
FTW

A
R

E
C

O
M

P
ILER

--enable-shared
This is the default. Specifying --disable-shared will build only static libraries.

--enable-shared[=package[,package ...]]
For GCC versions 2.95 and earlier, this option is necessary to have shared libraries
built. In later versions, shared libraries are built by default for all platforms that
support them.

Specifying a list of package names will instruct that shared libraries be built only
for the named packages. The recognized package names are libgcc, libstdc++,
libffi, zlib, boehm-gc, and libjava.

--enable-target-optspace
Specifies that the libraries should be optimized for size instead of speed.

--enable-threads
For some platforms, this is the default. It specifies that the target supports threads. This
affects the libraries for Objective C and exception handling for C++ and Java. If there
are no threads for the target system or if the compiler is not able to generate threaded
code for the target system, the option --disable-threads is equivalent to
--enable-threads=single.

--enable-threads=library
Specifies that the named library is the thread support library. Table 2-4 lists the possible
library names.

--enable-version-specific-runtime-libs
Specifies that the header files for certain runtime libraries are installed in a directory
named for the target and version instead of the usual places. The libraries are installed

Platform Library Name

arc-*-elf* Biendian

arm-*-* fpu, 26bit, underscore, interwork, biendian, nofmult

m68*-*-* softfloat, m68881, m68000, m68020

mips*-*-* single-float, biendian, softfloat

powerpc*-*-* aix64, pthread, softfloat, powercpu, powerpccpu, powerpcos,
biendian, sysv, aix

rs6000*-*-* aix64, pthread, softfloat, powercpu, powerpccpu, powerpcos,
biendian, sysv, aix

Table 2-3. Variant Library Suppression by Platform

in libdir/gcc-lib/target/version. The include files for libstdc++ are installed in
libdir/gcc-lib/target/version/include/g++, unless you specify the location
with the --with-gxx-include-dir option.

--enable-win32-registry
Specifies that a Win32 version of GCC is not to use the Registry to locate installation
paths of the compiler and its libraries by using the following Registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Free Software Foundation\key

The value of key defaults to the GCC version number. The value of the key can be
set with the option --enable-win32-registry.

--enable-win32-registry=key
Specifies that a Win32 version of GCC locate the installation paths in the Windows
Registry using the following Registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Free Software Foundation\key

30 G C C : T h e C o m p l e t e R e f e r e n c e

Library Description

aix AIX thread support.

dce DCE thread support.

mach The generic MACH thread support. This option requires that
you provide a copy of the gthr-mach.h header file.

no Same as single.

posix Standard POSIX thread support.

rtems RTEMS thread support.

single Disables thread support.

solaris Sun Solaris 2 thread support.

vxworks VxWorks thread support.

win32 Microsoft Win32 thread support.

Table 2-4. Names Used to Select Thread Support

C h a p t e r 2 : A c q u i r i n g a n d I n s t a l l i n g t h e C o m p i l e r 31
TH

E
FR

EE
S

O
FTW

A
R

E
C

O
M

P
ILER

If you do not specify this option, the default is to use the GCC version number as
the key. Using the Registry this way makes it possible to install and use different versions
of GCC in different locations.

--exec-prefix=directory
The default is prefix. This is the name of the top level directory to hold any architecture-
dependent files.

--help
This option will print a list of the command-line options and will cause the configure
script to terminate without doing anything else. The option list is organized by category.

--host=host
The name of the host computer. The default is the output of the script config.guess.
GCC runs on a wide variety of hosts.

--includedir=directory
The default is prefix/include. This is the name of the directory to contain the
C header files.

--infodir=directory
The default is prefix/info. This is the name of the directory in which to store
documentation in the info format.

--libdir=directory
The default is exec-prefix/lib. This is the name of the directory to contain the
static libraries and other internal parts of GCC.

--libexecdir=directory
The default is exec-prefix/libexec. This is the name of the directory to contain
certain program executables associated with libraries.

--localstatedir=directory
The default is prefix/etc. This is the name of the directory to contain modifiable
data specific to a single machine. Also see sysconfdir.

--mandir=directory
The default is prefix/man. This is the name of the directory to contain the man pages.

--nfp
Specifies that the machine does not have a floating point unit. This option only applies
to m68k-sun-sunos* and m68k-isi-bsd.

--no-create
The configuration script will run but will not create the output files necessary to
compile the code.

--norecursion
The source tree contains a separate configure script for each directory. Executing
one configure script will also cause the execution of the configure scripts in all
the subdirectories, unless this option is specified.

--prefix=directory
The default is /usr/local. This is the top level directory used for the entire installation
of GCC. The default is to place all the other directories inside the prefix directory with
the names bin, include, info, lib, man, and share. Specifying the prefix name
specifies the path name to each of the other directories, unless one of the other
naming options is used to specifically change it.

--program-prefix=prefix
The default is not to use a prefix. The prefix name is placed on the front of all the file
names placed in the bin directory. For example, to change the installed name of the
Java compiler from gcj to stim-gcj, you would use the following option:

--program-prefix=stim-

--program-suffix=suffix
The default is not to use a suffix. The suffix name is added to the end of all the file
names placed in the bin directory. For example, to change the installed name of the
Java compiler from gcj to gcj-v4, you would use the following option:

--program-suffix=-v4

--program-transform-name=pattern
The pattern is a sed script to be applied to the names of the files placed in the bin
directory. Using sed scripts this way makes it possible to modify the name of each of
the executable files individually. For example, to change the name of the Java compiler
gcj to gjava, and to change the name of g++ to gcplus, and leave all the other names
as they are, you would use the following option:

--program-transform-name='s/^gcj$/gjava/; s/^g++$/gcplus/'

This option can be used in combination with the prefix and suffix options because
--program-prefix and --program-suffix are always applied to the name before
the pattern scripts of this option are applied. This option cannot be used when creating
a cross compiler.

--sbindir=directory
The default is exec-prefix/sbin. This is the name of the directory to contain the
system executables.

32 G C C : T h e C o m p l e t e R e f e r e n c e

TH
E

FR
EE

S
O

FTW
A

R
E

C
O

M
P

ILER

--silent
This option suppresses output from configure script, which normally lists all the
tests it makes. This option is the same as --quiet.

--srcdir=directory
The named directory is expected to contain the file configure.in, which provides
configure with specific information about the names and locations of the source files.

--sysconfdir=directory
The default is prefix/etc. This is the name of the directory to contain read-only data
specific to a single machine. Also see localstatedir.

--target=host
The target machine (the one on which the compiler is to run) defaults to the output
from the script config.guess.

--tmpdir=directory
Specifies the name of the directory to be used by the configure script to store its
temporary work files.

--version
Prints the version number of the autoconf utility used to create the configure scripts;
it takes no further action.

--with-as=pathname
Specifies the full path name of the assembler. This option is needed if the assembler
cannot be found by following the default search procedure of the configure script, or if
there is more than one assembler on the system and you need to specify which one to use.

--with-catgets
If NLS is enabled by --enable-nls but the host does not have settext installed,
the compiler will use the host’s catgets.

--with-cpp-install-dir=directory
Specifies that a copy of cpp (the C preprocessor) be installed as prefix/directory/
cpp in addition to being installed as cpp in the directory specified by the --bindir
option (which defaults to exec-prefix/bin). Also see --disable-cpp.

--with-cpu=cpu
Specifies a CPU for the target platform. If a specific CPU for a platform is selected, GCC
has the opportunity to produce better code than it does when producing code for a
family of processors. Table 2-5 lists the CPU names recognized for this version of GCC.
New CPU names are being constantly added; therefore, if you don’t find the one you
need in the table, look in the configuration file config.gcc.

C h a p t e r 2 : A c q u i r i n g a n d I n s t a l l i n g t h e C o m p i l e r 33

--with-dwarf2
Specifies that the debugging information produced by the compiler be, by default,
in the DWARF 2 format.

--with-gnu-as
Specifies that whatever assembler is found, it is assumed to be the GNU assembler. On
a system sensitive to this situation, there could be problems if this option is specified
and the actual assembler found is not the GNU assembler. Problems could also arise if
this option is specified and the assembler found is the GNU compiler. The following is
a list of platforms on which this matters:

hppa1.0-*-* m68k-sony-bsd

hppa1.1-*-* m68k-altos-sysv

i386-*-sysv m68000-hp-hpux

i386-*-isc m68000-att-sysv

i860-*-bsd *-lynx-lynxos

m68k-bull-sysv mips-*

m68k-hp-hpux

If you have more than one assembler on your system, you should specify which
one to use with the --with-as option. On the following systems, if you use
the GNU assembler, you must also use the GNU linker (and specify it with the
--with-ld option):

34 G C C : T h e C o m p l e t e R e f e r e n c e

Platform CPU Names

arm*-*-* xarm2, xarm3, xarm6, xarm7, xarm8, xarm9, xarm250, xarm600,
xarm610, xarm700, xarm710, xarm7m, xarm7dm, xarm7dmi,
xarm7tdmi, xarm9tdmi, xarm7100, xarm7500, xarm7500fe,
xarm810, xxscale, xstrongarm, xstrongarm110, xstrongarm1100

powerpc*-*-* xcommon, xpower, xpower2, xpower3, xpowerpc, xpowerpc64,
xrios, xrios1, xrios2, xrsc, xrsc1, xrs64a, x401, x403, x405, x505,
x601, x602, x603, x603e, x604, x604e, x620, x630, x740, x750, xx801,
x821, x823, x8607400, x7450, xec603e

sparc*-*-* supersparc, hypersparc, ultrasparc, v7, v8, v9

Table 2-5. CPUs That Can Be Specified by Name

TH
E

FR
EE

S
O

FTW
A

R
E

C
O

M
P

ILER

i386-*-sysv m68k-altos-sysv

i860-*-bsd m68000-hp-hpux

m68k-bull-sysv m68000-att-sysv

m68k-hp-hpux *-lynx-lynxos

m68k-sony-bsd mips-* (except mips-sgi-irix5-*)

--with-gnu-ld
The same as the option --with-gnu-as, except it is for the linker.

--with-gxx-include-dir=directory
The default is prefix/include/g++-v3. This is the name of the directory for the
g++ header files. Also see --enable-version-specific-runtime-libs.

--with-headers=directory
Specifies the directory that contains the header files of the target when building a cross
compiler. This is a required option if the directory prefix/target/sys-include
does not exist. The header files will be copied into the GCC installation directory and
modified so they will be compatible. Also see --with-newlib and --with-libs.

--with-included-gettext
If NLS is enabled by --enable-nls, this option specifies that the build process try
using its own copy of gettext before using the version installed on the system.

--with-ld=pathname
The same as the option --with-as, except it is for the linker.

--with-libs=“directory [directory ...]”
This option is for building a cross compiler. The libraries in the named directories
will be copied into the GCC install directory. Also see --with-headers and
--with-newlib.

--with-local-prefix=directory
The default is /usr/local. This is the prefix of the include directory that will be
searched by the compiler for locally installed include files. This option should be
specified only if your system already has an established convention of using some
directory other than /usr/local/include for locally installed header files. This
option must not be set to /usr because the installed header files will be intermixed
with the system header files, and the conflicts will cause some programs not to compile.

Specifying the --prefix option has no effect on the prefix for this option. The
--prefix option specifies where to install GCC, while this option tells the compiler
where to look for header files when it is running.

C h a p t e r 2 : A c q u i r i n g a n d I n s t a l l i n g t h e C o m p i l e r 35

36 G C C : T h e C o m p l e t e R e f e r e n c e

--with-newlib
This option is for building a cross compiler. The library newlib is used as the C library
of the target machine. The function __eprintf is not included in libgcc.a on
the assumption that it will be provided in newlib. Also see --with-headers and
--with-libs.

--with-slibdir=directory
The default is libdir. This is the name of the directory to contain the shared libraries.

--with-stabs
Specifies that the debugging information produced by the compiler be, by default, in
the stabs format instead of the standard format of the host system. Normally GCC
defaults to producing debugging information in the ECOFF format, but using this flag
will change the default to BSD-style stabs. This option sets the default built into the
compiler, which can be overridden by using the option -gcoff or -gstabs on
the compiler’s command line.

The ECOFF format does not contain enough information to debug languages other
than C. The stabs format of debugging information carries more information but will
usually require the use of the gdb debugger.

--with-system-zlib
Specifies that the compiler should use the installed zlib instead of creating a new one.
This option only applies to Java.

--with-x
Specifies that the X Window System is to be used.

--x-includes=directory
The name of the directory containing the X include files.

--x-libraries=directory
The name of the directory containing the X libraries.

The binutils
Although it is possible to use GCC with native compilers and linkers, the compiler works
best, and is most compatible, with the GNU assembler, linker, and other utilities. All
the binutils are briefly described, along with the rest of GCC tools, in the tools list in
Table 1-4. The following is a list of the names of the utilities in the binutils package:

addr2line grpof objcopy size

ar ld objdump strings

as nlmconv ranlib strip

c++filt nm readelf windres

Several of these utilities read and write information inside object files. This is done
through the facilities provided by the Binary File Descriptor (BFD) Library, which is
also provided as part of the binutils source code. This library provides a collection
of functions that are aware of several different formats of object code and can be called
on to manipulate them. This makes it possible for each of the utilities to be compiled to
run the same on several different platforms.

The following steps can be used to download the source code and install it so that
it’s ready to be compiled:

1. Select an FTP site. The GNU FTP site is ftp.gnu.org/gnu, but you should
probably choose from among the hundreds of mirror sites located around the
world. You can find a current list of mirror sites at http://www.gnu.org/
order/ftp.html. To make your download as smooth as possible, you should
choose a mirror site close to you.

2. Download the file named binutils-2.9.tar.gz into a work directory. The
version number will probably be different because this package is being constantly
improved and updated. It is important that you download the file with the FTP
option set to binary, not text. This is a collection of compressed files, and the
FTP text mode will destroy them by misinterpreting the content and converting
certain values into ASCII characters.

3. Select the options you wish to use on the configure script. The options
available are basically the same as the ones for the GCC script. Just as with
the GCC script, the binutils configure script can be run without any options,
but it is easiest to use the --prefix option to specify the name of the directory
that will contain the binary installation of the utilities. The directory named as
prefix will contain the subdirectories bin, include, info, man, and share. If
no directory is named, the default prefix is /usr/local.

4. Execute the configure script from inside the working directory. Because you
are executing the script from another directory, it is necessary to specify its full
path name. For example, if you have downloaded the source tree into /opt/gnu/
binutils, your object directory is named /opt/bubuild, and you want to
store the final executables and libraries in /opt/usr/local, you can execute
the configure script as follows:

cd /opt/bubuild

/opt/gnu/binutils/configure --prefix=/opt/usr/local

5. If it has not already been done, include the new bin directory in the PATH
environment variable so that the utilities can be located.

As an alternative to FTP, you can get a copy of the current working version of
binutils by using CVS. This is normally used only by programmers intending to make
modifications to the source, but it is also the only way to keep up with current

C h a p t e r 2 : A c q u i r i n g a n d I n s t a l l i n g t h e C o m p i l e r 37
TH

E
FR

EE
S

O
FTW

A
R

E
C

O
M

P
ILER

developments. The CVS access procedure is the same as described earlier for GCC.
First, set CVSROOT as follows:

CVSROOT=:pserver:anoncvs@sources.redhat.com:/cvs/src

export CVSROOT

Then log in with the following command and respond with anoncvs as
the password:

cvs login

The following command will download the entire source tree:

cvs -z 9 checkout binutils

Once you have everything checked out, you can retrieve updates at any time by
logging in and entering the following command:

cvs -z 9 update

Win32 Binary Installation
If you wish to run GCC on a Windows operating system, you can get a version that is
compiled and ready to run. You can find out more about the Cygwin compiler at the
following Web site:

http://cygwin.com

Cygwin
The GNU software development tools can be run on Windows because of a shared
library named cygwin1.dll, which contains an API that emulates a UNIX environment.
It works on all versions of Windows from 95 on (except for Windows CE). Using these
tools makes it possible to write both console and Win32 GUI applications. Writing a
GUI application requires the use of the Win32 API, but command-line applications can
be written based solely on the Cygwin library.

Although it is free software, the licensing of Cygwin is a mixed bag. Parts of it are
covered by the GNU license, parts by the standard X11 license, and parts are public
domain. None of it is shareware, so you never have to pay anyone for noncommercial

38 G C C : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 : A c q u i r i n g a n d I n s t a l l i n g t h e C o m p i l e r 39
TH

E
FR

EE
S

O
FTW

A
R

E
C

O
M

P
ILER

use, but you need to be aware of some licensing requirements if you are going
to use it for a commercial product (that is, if you are going to sell software that depends
on the library). You can find out how to get a commercial license by sending a query to
sales@cygwin.com.

Two kinds of programs run on Windows: the console type (those that are run from
the command line and do not display windows) and the GUI type (which can be started
from the console but are designed to be windowing programs). There is a slightly
different process for compiling each of these.

The following command will compile and link a console program:

gcc helloworld.c -o helloworld.exe

It is also possible to use the GCC compiler, along with the Windows API and
appropriate Cygwin utilities, to create Windows programs and DLLs. The process is
described in Chapter 16.

Installation
A special installation program named setup.exe can be used not only for the initial
download and installation but also to download and install updates as new versions
become available. One of the main reasons for the download utility is the fact that the
package has become very large and not everyone needs every piece of it. The setup.exe
program manages the download and lets you choose which parts to download and
specify how you would like to have the software installed.

The following list of steps are a general description of the installation process. The
procedure is mostly automated and, once you get things started, you will be prompted
for input:

1. Create an installation directory. There is much more that just GCC available
from Cygwin, so you should probably name the directory something like
c:\cygwin, which is the default. The installation creates a number of directories
(such as bin and etc), so you are actually creating the root of a directory tree.

2. Download setup.exe into the new directory. Go to the Web site http://
cygwin.com/download.html, where you will find the latest information or use
the link to http://cygwin.com/setup.exe, which will cause your browser to
prompt for a location for the download. On this same page, you will see a link
to other sites that can be used for the download, which could be convenient
depending on your location.

3. Execute the setup.exe program. You will be given the option of installing
the software from the Internet or downloading the software and storing it in
a directory. You will also find an option for installing the software from a
directory if you have already downloaded a copy of the software. You can elect
to install the software directly from the Internet or download it first and install
it later.

4. Select a mirror site. You will be shown a list of mirror sites, and you will need to
select one near you. Your selection may be rejected because a download site is
too busy. If this is the case, you should select another one.

5. Select your downloads. You will be provided a list of categories of utilities. All
these programs are included in the Cygwin package, and all are compiled and
ready to run. You can select as many utilities from as many categories as you
like, but selecting the Devel category will provide you with a list of software
development utilities, including GCC. The default is for most of the packages to
be labeled Skip, which means they will not be downloaded. Selecting Skip with
the mouse will toggle among the various options—if you want to download the
binary version of a program, simply toggle to the version number you would
like. If you select a version number, a box will appear that you can check if you
also want to download the source code.

6. If you have elected to install the software directly from the Internet, you
are done. If you only downloaded the files from the Internet, you will need
to run setup again and request them to be installed using the files in your
download directory.

Running the Test Suite
Before you finally install a newly compiled version of GCC, you can run a suite of tests
on it to verify that it works properly. This is an optional step because, generally speaking,
if you are able to compile GCC so it runs at all, it will run correctly. These tests are
mainly for developers to use to make certain that fixing a bug or adding a feature did
not introduce another bug or remove another feature.

There are a few simple steps you can follow to run the tests on your system:

1. If you have not already done so, download and install the test suite in the same
directory as the rest of the GCC source code. You can verify that it has been
downloaded by the presence of the directory gcc/testsuite.

2. Install the latest version of DejaGnu. Be sure you have the latest version because
an older version (1.3 or older) will not work.

3. Set the environment variables. If the installation of DejaGnu places runtest
and expect in directories that are included in the PATH setting, you will probably
not need to set these variables. If not, and assuming that DejaGnu has been
installed in /usr/local, the following two environment variables will need
to be set:

TCL_LIBRARY=/usr/local/tcl8.0

DEJAGNULIBS=/usr/local/dejagnu

40 G C C : T h e C o m p l e t e R e f e r e n c e

4. Run the test. Change to the same directory you use to compile GCC and run
whichever tests you like. If you want to run the entire test suite (which can take
a very long time), enter the following command:

make -k check

The -k option instructs the make command to ignore failure conditions and
continue with the next test. To run only the tests for the C front end of the
compiler, enter the following command:

make -k check-gcc

To run only the tests for C++, enter the following command:

make -k check-g++

5. Check the results of the test. After you have run the tests, you will find that
some new files have been created in the test suite subdirectories. The files with
the .log suffix contain detailed listings of the actions taken by the tests. The
files with the .sum suffix contain summaries of the test results, with each result
being designated by one of the result codes listed in Table 2-6.

C h a p t e r 2 : A c q u i r i n g a n d I n s t a l l i n g t h e C o m p i l e r 41
TH

E
FR

EE
S

O
FTW

A
R

E
C

O
M

P
ILER

Result Description

PASS The test was expected to pass, and it passed.

XPASS The test was not expected to pass, but it passed.

FAIL The test was expected to pass, but it failed.

XFAIL The test was expected to fail, and it failed.

UNSUPPORTED The test is not supported on this platform.

ERROR A problem was detected while running the test.

WARNING A possible problem was detected while running the test.

Table 2-6. Test Result Summary Codes

This page intentionally left blank.

Part II
Using the Compiler Collection

This page intentionally left blank.

Chapter 3
The Preprocessor

45

The concept of the preprocessor was originally devised as part of the C programming
language. The preprocessor reads the source code and responds to directives
embedded in it to produce a modified version of the source, which is fed to the

compiler. The preprocessor is still an important part of C, C++, and Objective-C, but it
also can be used (with limitations) to preprocess the source code of other languages.
For example, it can be used to implement conditional compilation for Fortran and Java.

In GNU terminology, the preprocessor is referred to as CPP. The GNU executable
program is named cpp.

Directives
The instructions to the preprocessor appear in the source as directives and can be easily
spotted in the source code because they all begin with a hash (#) character, appearing
as the first nonblank character on a line. The hash character usually appears on column
1 and is immediately followed by the directive keyword. All the directives are listed in
Table 3-1 and described in the paragraphs that follow the table. It is possible for the
preprocessor to modify source lines other than the ones with directives, but only if there
is a directive instructing it to do so.

#define
The #define directive creates the definition of a macro. The macro has a name that,
when found elsewhere in the text, is replaced with the string of characters defined as
the value of the macro. It is possible to specify parameters that are to be used as part
of the macro expansion.

Most macro definitions are, in effect, named constants. These names are traditionally
in all uppercase letters. For example, the following definition creates a macro named
ARRAY_SIZE that will cause the insertion of the value 512 wherever it is used in the
source code:

#define ARRAY_SIZE 512

This macro can subsequently be used to declare an array of the specified size,
as follows:

int valarray[ARRAY_SIZE];

The following is a well-known macro that uses parameters to create an expression
that returns the minimum of two values:

#define min(a,b) ((a) < (b) ? (a) : (b))

46 G C C : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 3 : T h e P r e p r o c e s s o r 47
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Directive Description

#define Defines a name as a macro that the preprocessor will expand
in the code every place the name is used.

#elif Provides an alternative expression to be evaluated by an
#if directive.

#else Provides an alternative set of code to be compiled if an
#if, #ifdef, or #ifndef is false.

#error Produces an error message and halts the preprocessor.

#if Compiles the code between this directive and its matching
#endif only if evaluating an arithmetic expression results
in a nonzero value.

#ifdef Compiles the code between this directive and its matching
#endif only if the named macro has been defined.

#ifndef Compiles the code between this directive and its matching
#endif only if the named macro has not been defined.

#include Searches through a list of directories until it finds the named
file; then it inserts the contents of the file just as if it had been
inserted by a text editor.

#include_next The same as #include, but this directive begins the search
for the file in the directory following the one in which the
current file was found.

#line Specifies the line number, and possibly the file name, that
is reported to the compiler to be used to create debugging
information in the object file.

#pragma A standard method of providing additional information
that may be specific to one compiler or one platform.

#undef Removes a definition previously created by a #define
directive.

#warning Produces a warning message from the preprocessor.

The concatenation operator, which can be used inside
a macro to combine two strings into one.

Table 3-1. The Directives Understood by the GNU Preprocessor

This macro can then be expanded in the source code by using its name and values
to be substituted for a and b:

result = min(44,uplim);

The code expanded from this macro will look like this:

result = ((44) < (uplim) ? (44) : (uplim));

The following is a list of characteristics and rules that apply to macro definitions:

� A macro definition is contained on one line. If you need to write it on multiple
lines for clarity or because of its length, you can do so by using the backslash as
a line continuation character, as in the following example, which is an expression
returning a random int value in the specified range:

#define ran(low,high) \

((int)random() % (high-low+1)) \

+ low

� The preprocessor processes the text in order and will only make macro
substitutions after the macro has been defined. For example, in the following
four lines of code, the macro B is used once before it has been defined and
once after:

#define A 100

sum = A + B;

#define B 200

sum = A + B;

The result of preprocessing these four lines is as follows:

sum = 100 + B;

sum = 100 + 200;

� Substitutions are recursive, so they can be nested one inside the other. That is,
once a substitution has been made, the preprocessor will process the same text
again to make further substitutions. The following example shows how one
macro can be substituted for another:

#define TANKARD TSIZE

#define TSIZE 100

tank1 = TANKARD;

#define TSIZE 200

tank2 = TANKARD

48 G C C : T h e C o m p l e t e R e f e r e n c e

Preprocessing these five lines results in the following:

tank1 = 100;

tank2 = 200;

� To change the definition of a macro, it is necessary to delete it and define it
again, as in the following example:

#define MLKEYVAL 889

#undef MLKEYVAL

#define MLKEYVAL 890

� For a macro to be defined as having parameters, there must be no spaces
between the name of the macro and the parentheses. The following example
shows one macro defined with parameters and one with a simple string
substitution:

#define showint(a) printf("%d\n",a)

#define incrint (a) a++

showint(300);

incrint(bbls);

The following is the result of preprocessing the previous lines:

printf("%d\n",300);

(a) a++(bbls)

� Macro names are not substituted inside strings, as in the following example:

#define BLOCK 8192

printf("The BLOCK number.\n");

The output looks like the following:

The BLOCK number.

� An argument passed to a macro can be “stringized” by preceding its name with
a hash (#) character. In the following example, the macro named MONCK contains
a stringized version of its argument, which is combined with other strings (by
being placed adjacent to them):

#define MONCK(ARGTERM) \

printf("The term " #ARGTERM " is a string\n")

MONCK(A to B);

The output looks like the following:

The term A to B is a string

C h a p t e r 3 : T h e P r e p r o c e s s o r 49
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

� A macro can be defined without a value. Although the macro has no value
associated with it, it is still defined and can be used as a flag for testing by
#ifdef and #ifndef.

� A variadic macro is one with a variable number of arguments. The arguments,
represented by an ellipsis (three dots), are all stored as a single comma-separated
string in a variable named __VA_ARGS__ that will be expanded inside the
macro. For example, the following macro accepts any number of arguments:

#define err(...) fprintf(stderr,__VA_ARGS__)

err("%s %d\n","The error code: ",48);

The following is the output of the preprocessor after processing these two lines:

fprintf(stderr,"%s %d\n","The error code ",48);

A variadic macro can include named parameters as long as the variable-length
list of parameters comes last. The following is an example of a macro that has
two fixed arguments followed by a variable list:

#define errout(a,b,...) \

fprintf(stderr,"File %s Line %d\n",a,b); \

fprintf(stderr,__VA_ARGS__)

The following is an example of using this macro:

errout(__FILE__,__LINE__,"Unexpected termination\n");

In all the previous forms of variadic macros, at least one parameter is required
to be present to satisfy the requirements of the variable list of parameters, because
__VA_ARGS__ is preceded by a comma where it is used in the fprintf()
function call inside the macro. As a special case of the concatenation operator,
you can request that the preceding comma be removed when __VA_ARGS__ is
empty by inserting it in the argument list, like this:

fprintf(stderr, ##__VA_ARGS__)

#error and #warning
The #error directive will cause the preprocessor to report a fatal error and halt. This
can be used to trap conditions where there is an attempt to compile a program in some
way that is known not to work. For example, the following will only compile successfully
if the macro __unix__ has been defined:

#ifndef __unix__

#error "This section will only work on UNIX systems"

#endif

50 G C C : T h e C o m p l e t e R e f e r e n c e

The #warning directive works the same as the #error directive, except the
condition is not fatal and the preprocessor continues after issuing the message.

#if, #elif, #else, and #endif
The #if directive evaluates an arithmetic expression and examines the result. If the
result of the evaluation is not zero, it is considered to be true and the conditional code
is compiled. Otherwise, the expression is considered to be false and the code is not
compiled. For example, the following string is declared only if the value of the COUNT
macro has not been defined as zero:

#if COUNT

char *desc = "The count is non-zero";

#endif

The following is a list of characteristics and rules that apply to the expression and to
the conditional directives:

� The expression can include integer constants and macro names if the macro
name has been declared with a value.

� Parentheses can be used to specify the order of evaluation of the expression.

� The expression can include arithmetic in the form of the +, -, *, /, <<, and >>
operators, which work much the same as the corresponding integer arithmetic
operators in C. All arithmetic is performed as the largest integer size available
on the platform, which is normally 64 bits.

� The expression can include the comparison operators >, <, >=, <=, and ==,
which work the same as the corresponding operators in C.

� The expression can include the logical operators && and ||.

� The not (!) logical operator can be used to reverse the result of an expression.
For example, the following is true only if LIMXP is not greater than 12:

#if !(LIMXP > 12)

� The defined operator can be used to determine whether a macro has been
defined. For example, the following is true only if a macro named MINXP has
been defined:

#if defined(MINXP)

The not (!) operator is often used in conjunction with the defined operator to
test for a macro having not been defined, as in the following example:

#if !defined(MINXP)

C h a p t e r 3 : T h e P r e p r o c e s s o r 51
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

52 G C C : T h e C o m p l e t e R e f e r e n c e

� An identifier that has not been defined as a macro always results in zero. The
-Wundef option can be used to produce a warning in this circumstance.

� Macro names defined as having arguments always evaluate to zero. The
-Wundef option can be used produce a warning in this circumstance.

� An #else directive can be used to provide alternate code that will be compiled,
as in the following example:

#if MINTXT <= 5

#define MINTLOG 11

#else

#define MINTLOG 14

#endif

� An #elif directive can be used to provide one or more alternative expressions,
as in the following example:

#if MINTXT <= 5

#define MINTLOG 11

#elif MINTXT == 6

#define MINTLOG 12

#elif MINTXT == 7

#define MINTLOG 13

#else

#define MINTLOG 14

#endif

#ifdef, #else, and #endif
The lines of code following the #ifdef directive are compiled only if the named macro
has been defined. The #ifdef directive is terminated by an #endif. For example, the
following array is declared only if the macro MINTARRAY has been defined:

#ifdef MINTARRAY

int xarray[20];

#endif /* MINTARRAY */

The comment on the line with the #endif is not required, but it has been shown to
be helpful in reading the code.

The inverse of the #ifdef directive is the #ifndef directive, which will compile
the conditional code only if the macro has not been defined.

An #else directive can be used following an #ifdef to provide an alternative. In
the following example, if MINTARRAY has been defined, the array will be of type int;
otherwise, it will be of type char:

C h a p t e r 3 : T h e P r e p r o c e s s o r 53
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

#ifdef MINTARRAY

int xarray[20];

#else

char xarray[20];

#endif /* MINTARRAY */

Other directives can be included as part of the code that is conditionally compiled.
This includes #ifdef, #ifndef, and #if, but each one must be properly paired with
its own #endif.

#include
The include directive searches for the named file and inserts its contents into the text
just as if it had been inserted there by a text editor. A file that is included this way is
generally referred to as a header file and carries a .h suffix, but it can be any text file
with any name.

The include directive has two forms. The one most used for system header files
surrounds the name with a pair of angle brackets, with the form for user header
files being surrounded by quotes, as follows:

#include <syshead.h>

#include "userhead.h"

The following is a list of characteristics and rules that apply to the #include
directive:

� The angle brackets surrounding the file name cause the search to begin in any
directories that were specified by using a -I option and then continue by
looking through the standard set of system directories.

� A pair of quotes surrounding the file name causes the search to begin in the
current working directory (the one containing the source file being processed)
and then continue with the directories that would normally be searched by
a directive with the angle brackets.

� On a UNIX system, the standard set of system directories is as follows:

/usr/local/include

/usr/lib/gcc-lib/target/version/include
/usr/target/include
/usr/include

� Two separate lists of directories are searched to locate header files. The standard
system header files are in the second list. The -I command-line option adds
directories to the list that is searched first. The options -prefix, -withprefix,
and -idirafter all manipulate the directory names in the second list searched.

� If GCC is compiling a C++ program, the directory /usr/include/g++v3 is
searched by the preprocessor before any of the other standard system directories.

� A relative path name can be used as the name of the file. For example, if you
specify #include <sys/time.h>, the file time.h will be sought in
a subdirectory named sys of all the standard directories.

� The slash character is always interpreted as a path separator, even on systems
that use a different character (such as a backslash) as the path separator. This
way, it is always portable to use a slash for the path names.

� The file name is taken literally. No macros are expanded and no characters have
special meanings. If the name specified contains an asterisk or backslash character,
the name of the file must contain a literal asterisk or backslash character.

� A #define directive can be used to specify the name of a header file, as in the
following example:

#define BOGHEADER "bog_3.h"

#include BOGHEADER

� It is an error to have anything other than a comment on the same line as the
#include directive.

� For the purposes of searching for files, the #line directive does not change
the current working directory.

� The -I- option can be used to modify how the -I options specify which
directories are to be searched. See Appendix D for more information.

#include_next
The #include_next directive is used only for special situations. It is used inside one
header file to include another one, and it causes the search for the new header file to
begin in the directory following the one in which the current header was found.

For example, if the normal search for a header file is to look in directories A,
B, C, D, and E, and if the current header file has been found in directory B, an
#include_next directive in the current header file will cause a search for the
newly named header file in directories C, D, and E.

This directive can be used to add or modify definitions to system header files
without making modifications to the files themselves. For example, the system header
file /usr/include/stdio.h contains a macro definition named getc that reads a
single character from an input stream. To change this one macro definition to a dummy
that always returns the same character, but leave the rest of the header as it is, you can
create your own version of the stdio.h header file containing the following:

54 G C C : T h e C o m p l e t e R e f e r e n c e

#include_next "stdio.h"

#undef getc

#define getc(fp) ((int)'x')

Using this header will cause the system version of stdio.h to be included and
then have the getc macro redefined.

#line
Debuggers need to be able to associate file names and line numbers with data items
and executable code, so the preprocessor inserts this information into its output to the
compiler. It is necessary to track the original names and numbers this way because
the preprocessor combines several files into one. The compiler uses these numbers when
it builds the tables it inserts into the object code.

Normally, allowing the preprocessor to determine the line numbers by counting
them is exactly what needs to happen, but it is also possible that some other processing
can cause these line numbers to be off. For example, a common method of implementing
SQL statements is to write them as macros and a have a special processor expand the
macros into the detailed SQL function calls. This expansion can run to several lines and
cause the line count to be different. The SQL process will correct this by inserting
#line directives in its output so that the preprocessor will follow the line numbering
of the original source code.

The following is a list of characteristics and rules that apply to the #line directive:

� Specifying the #line directive with a number causes the preprocessor to
replace its current line count with the specified number. For example, the
following directive sets the current line number to 137:

#line 137

� Specifying #line directive with both a number and a file name instructs the
preprocessor to change both the line number and the name of the current file.
For example, the following directive will set the current position to the first line
of a file named muggles.h:

#line 1 "muggles.h"

� The #line directive modifies the content of the predefined macros __LINE__
and __FILE__.

� The #line directive has no effect on the file names or directories searched by
the #include directive.

C h a p t e r 3 : T h e P r e p r o c e s s o r 55
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

56 G C C : T h e C o m p l e t e R e f e r e n c e

#pragma and _Pragma
The #pragma directive provides a standard method of specifying information that may
be specific to the compiler. According to the standard, a compiler may attach any
meaning it wishes to a #pragma directive.

All the GCC pragmas are defined as two words—the first being GCC and the
second being the name of the specific pragma.

#pragma GCC dependency
The dependency pragma tests the timestamp of the current file against the timestamp
of another named file. If the other file is newer, a warning message is issued. For
example, the following pragma tests the timestamp of a file named lexgen.tbl:

#pragma GCC dependency "lexgen.tbl"

If lexgen.tbl is newer than the current file, a message like the following is
produced by the preprocessor:

warning: current file is older than "lexgen.tbl"

Other text can be added to the pragma directive and it will be included as part of
the warning message, as in the following example:

#pragma GCC dependency "lexgen.tbl" Header lex.h needs to be updated

This would create the following warning messages:

show.c:26: warning: current file is older than "lexgen.tbl"

show.c:26: warning: Header lex.h needs to be updated

#pragma GCC poison
The poison pragma can be used to cause a message to be issued whenever a specified
name is used. You can use this, for example, to guarantee that certain function calls are
never made. The following pragma will issue a warning whenever either of the memory-
to-memory copy functions is called:

#pragma GCC poison memcpy memmove

memcpy(target,source,size);

This code will produce the following warning message from the preprocessor:

show.c:38:9: attempt to use poisoned "memcpy"

C h a p t e r 3 : T h e P r e p r o c e s s o r 57
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

#pragma GCC system_header
The code beginning with the system_header pragma and continuing to the end of
the file is treated as if it were the code in a system header. System header code is
compiled slightly differently because runtime libraries cannot be written so they are
strictly C standard conforming. All warnings (except on the #warnings directive)
are suppressed. In particular, certain macro definitions and expansions are immune
to warning messages.

_Pragma
A normal #pragma directive cannot be included as part of a macro expansion, so the
_Pragma operator was devised to generate #pragma directives inside macros. To create
a poison pragma inside a macro, write it this way:

_Pragma("GCC poison printf")

The backslash character is used as the escape character, so a quoted string can be
inserted to create a dependency pragma this way:

_Pragma("GCC dependency \"lexgen.tbl\"")

#undef
The #undef directive is used to remove the definition of a macro previously created by
a #define directive. This can be done if the macro definition is no longer needed, or if
it needs to be redefined with a new value.

##
The concatenation directive can be used inside a macro to join two source code tokens
into one. This can be used to construct names that would otherwise be misinterpreted
by the parser. For example, the following two macros will perform concatenation:

#define PASTE1(a) a##house

#define PASTE2(a,b) a##b

result = PASTE1(farm);

result = PASTE1(ranch);

result = PASTE2(front,back);

The following is the code resulting from preprocessing these five lines:

result = farmhouse;

result = ranchhouse;

result = frontback;

Predefined Macros
The GCC compiler predefines a large number of macros. Exactly which ones are defined,
and what values they contain, depends on the language being compiled, the command-
line options specified, the platform being used, the target platform, which version of the
compiler is running, and what environment variables have been set. You can use the -dM
option on the preprocessor to view the entire list by entering a command like the following:

cpp -E -dM myprog.c | sort | more

The list output by this command contains #define directives for every macro that
became defined in the preprocessor after processing the specified input source file and
all the headers it included.

Table 3-2 lists the macros that are almost always defined, along with a description
of the contents of each one.

58 G C C : T h e C o m p l e t e R e f e r e n c e

Macro Description

__BASE_FILE__ A quoted string containing the full path
name of the source file specified on the
command line (not necessarily the file
in which the macro is used). Also see
__FILE__.

__CHAR_UNSIGNED__ This macro is defined to indicate that the
char data type is unsigned on the target
machine. This is used by limits.h to
determine the values of CHAR_MIN and
CHAR_MAX.

__cplusplus Defined only when the source code is a C++
program. It is defined as 1 if the compiler
does not fully conform to a standard;
otherwise, it is defined with the month
and year of the standard in the same
manner as __STDC_VERSION__ for C.

__DATE__ An 11-character quoted string containing
the date the program was compiled. It
has the form "May 3 2002".

Table 3-2. The Basic Set of Predefined Macros

C h a p t e r 3 : T h e P r e p r o c e s s o r 59
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Macro Description

__FILE__ A quoted string containing the name of the
source file in which the macro is used. Also
see __BASE_FILE__.

__func__ The same as __FUNCTION__.

__FUNCTION__ A quoted string containing the name of the
current function.

__GNUC__ This macro is always defined as the major
version number of the compiler. For example,
if the compiler version number is 3.1.2, this
macro is defined as 3.

__GNUC_MINOR__ This macro is always defined as the minor
version number of the compiler. For example,
if the compiler version number is 3.1.2, this
macro is defined as 1.

__GNUC_PATCHLEVEL__ This macro is always defined as the revision
level of the compiler. For example, if the
compiler version number is 3.1.2, this macro
is defined as 2.

__GNUG__ Defined by the C++ compiler. This macro is
defined whenever both __cplusplus and
__GNUC__ are also defined.

__INCLUDE_LEVEL__ An integer value specifying the current depth
level of the include file. The value at the
base file (the one specified on the command
line) is 0 and is increased by 1 inside each file
input by an #include directive.

__LINE__ The line number of the file in which the
macro is used.

__NO_INLINE__ This macro is defined as 1 when no functions
are to be expanded inline, either because
there is no optimization or inlining has
been specifically disabled.

__OBJC__ This macro is defined as 1 if the program is
being compiled as Objective-C.

Table 3-2. The Basic Set of Predefined Macros (continued)

60 G C C : T h e C o m p l e t e R e f e r e n c e

Macro Description

__OPTIMIZE__ This macro is defined as 1 whenever any
level of optimization has been specified.

__OPTIMIZE_SIZE__ This macro is defined as 1 if optimization is
set for size instead of speed.

__REGISTER_PREFIX__ This macro is a token (not a string) that is
the prefix for register names. It can be used
to write assembly language that’s portable to
more than one environment.

__STDC__ Defined as 1 to indicate that the compiler is
conforming to standard C. This macro is not
defined when compiling C++ or Objective-C,
and it is also not defined when the
-traditional option is specified.

__STDC_HOSTED__ Defined as 1 to signify a “hosted”
environment (one that has the complete
standard C library available).

__STDC_VERSION__ A long integer specifying the standards
version number in terms of its year and
month. For example, the 1999 revision of the
standard is the value 199901L. This macro
is not defined when compiling C++ or
Objective-C, and it is also not defined when
the -traditional option is specified.

__STRICT_ANSI__ Defined if and only if either -ansi or -std
has been specified on the command line. It is
used in the GNU header files to restrict the
definitions to those defined in the standard.

__TIME__ A seven-character quoted string containing
the time the program was compiled. It has
the form "18:10:34".

__USER_LABEL_PREFIX__ This macro is a token (not a string) that is
used as the prefix on symbols in assembly
language. The token varies depending on
the platform, but it’s usually an underscore
character.

Table 3-2. The Basic Set of Predefined Macros (continued)

Table 3-3 lists a collection of C++ keywords that can be used as the names of operators
normally written with punctuation characters. They are treated by the preprocessor as
if they were macros created by the #define directive. If you want to have these same
operators available in C or Objective-C, they are defined in the header file iso646.h.

C h a p t e r 3 : T h e P r e p r o c e s s o r 61
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Macro Description

__USING_SJLJ_EXCEPTIONS__ This macro is defined as 1 if the mechanism
for handling exceptions is setjmp
and longjmp.

__VERSION__ The complete version number. There is no
specific format for this information, but it
will at least include the major and minor
release numbers.

Table 3-2. The Basic Set of Predefined Macros (continued)

Operator Name Equivalent Punctuation Form

and &&

and_eq &=

bitand &

bitor |

compl ~

not !

not_eq !=

or ||

or_eq |=

xor ^

xor_eq ^=

Table 3-3. The Named Form of the Logical Operators

62 G C C : T h e C o m p l e t e R e f e r e n c e

Including a Header File Only Once
Because header files will include other header files, it is very easy to have a program
that includes the same header file more than once. This can lead to error messages
because items that have already been defined are being defined again. To prevent this
from happening, a header file can be written to detect whether it has already been
included. The following is an example of how this can be done:

/* myheader.h */

#ifndef MYHEADER_H

#define MYHEADER_H

/* The body of the header file */

#endif /* MYHEADER_H */

In this example, the header file is named myheader.h. The first line tests whether
MYHEADER_H has been defined. If it has, the entire header file is skipped. If MYHEADER_H
has not been defined, it is immediately defined and the header file is processed.

The system header files all use this technique. The names defined in them all begin
with an underscore character to prevent them from interfering with any names you
define. The convention is for the defined name to be in all uppercase and to contain the
name of the file.

The GNU preprocessor recognizes this construction and keeps track of the header
files that use it. This way, it can optimize processing the headers by recognizing the file
name and not even reading header files that have already been included.

Including Location Information
in Error Messages
The predefined macros can be used to automate the construction of error messages that
contain detailed information about the location at which the error occurred. The predefined
macros __FILE__, __LINE__, and __func__ contain the information, but they must
be used at the point the message is created. Therefore, if you write a function that contains
them all, error messages will be reported as happening in that function.

The perfect solution is to define a macro that contains them. That way, when the
preprocessor expands the macros, they will all be in the correct place and have the correct
information. The following is an example of an error macro that writes messages to
standard error:

#define msg(str) \

fprintf(stderr,"File: %s Line: %d Function: %s\n%s\n", \

__FILE__,__LINE__,__func__,str);

To invoke this macro from any place in the code, it is only necessary to specify
a string describing the error:

C h a p t e r 3 : T h e P r e p r o c e s s o r 63
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

msg("There is an error here.");

Another advantage of doing it this way is that your method for handling error
conditions can be changed by simply changing the macro. It could be converted to
throw exceptions or log the error messages to a file. The message produced from this
example will look something like the following:

File: hamlink.c Line: 822 Function: hashDown

There is an error here

Removing Source Code in Place
During software development, it often becomes necessary to remove blocks of code in
such a way that they can be restored later, if needed. The code can be surrounded by
comments, but this can cause problems because comments in C don’t nest inside one
another, and there could be a number of comments included in the code that is to be
removed. A clean and safe way to omit the code is by using the preprocessor’s #if
directive as follows:

#if 0

/* The code being removed */

#endif

Not only will this cleanly handle the comments, it is quite obvious that the code
was intentionally removed.

Producing Makefiles
The preprocessor can be used to read a source file and produce the dependency line that
goes in a makefile. For example, the following command uses the -E to instruct the
compiler to invoke the preprocessor and then halt without compiling or linking.
The -M option instructs the preprocessor to output a complete dependency line:

gcc -E -M trick.c

The source file trick.c contains include statements for the system file <stdio.h>
and the local file "barrow.h", but the dependency list includes not only these files but
every file they cause to be included. The resulting dependency line looks like the following:

trick.o: trick.c /usr/include/stdio.h /usr/include/features.h \

/usr/include/sys/cdefs.h /usr/include/gnu/stubs.h \

/usr/lib/gcc-lib/i386-redhat-linux/2.96/include/stddef.h \

/usr/include/bits/types.h /usr/include/bits/pthreadtypes.h \

64 G C C : T h e C o m p l e t e R e f e r e n c e

/usr/include/bits/sched.h /usr/include/libio.h /usr/include/_G_config.h \

/usr/include/wchar.h /usr/include/bits/wchar.h /usr/include/gconv.h \

/usr/lib/gcc-lib/i386-redhat-linux/2.96/include/stdarg.h \

/usr/include/bits/stdio_lim.h barrow.h

As described in Appendix D, the options -MD, -MMD, -MF, -MG, -MP, -MQ, and -MT
can be used to create dependencies in different ways and in different formats than -M.
Examples of using these options to create makefiles can be found in Chapter 14.

Command-Line Options
and Environment Variables
A number of command-line options can be used to specify the way the preprocessor
operates. These options are listed here and described in detail in Appendix D.

-A --include-with-prefix-after

-A- --include-with-prefix-before

--assert -iprefix

-C -isystem

-D -iwithprefix

--define-macro -iwithprefixbefore

--dependencies -M

-fident -MD

-fpreprocessed -MF

-H -MG

-I -MM

-I- -MMD

-idirafter -MP

-imacros -MQ

-include -MT

--include-barrier —no-line-commands

--include-directory --no-standard-includes

--include-directory-after -nostdinc

--include-prefix -nostdinc++

--include-with-prefix -P

--preprocess --user-dependencies

--print-missing-file-dependencies -Wp

-remap --write-dependencies

--trace-includes --write-user-dependencies

-trigraphs -Wsystem-headers

-U -Wundef

-undef -Wunknown-pragmas

--undefine-macro

The following is a list of the environment variables that can be set to pass instructions
to the preprocessor. The environment variables are described in Appendix B.

C_INCLUDE_PATH, CPATH, CPLUS_INCLUDE_PATH, DEPENDENCIES_OUTPUT,
OBJC_INCLUDE_PATH, SUNPRO_DEPENDENCIES

C h a p t e r 3 : T h e P r e p r o c e s s o r 65
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

This page intentionally left blank.

Chapter 4
Compiling C

67

This chapter describes the commands and options that can be used to compile C
programs into object files, executable programs, and libraries. The chapter includes
a general description of the various C standards supported by GCC along with

a description of each of the C language extensions that are unique to GCC.
The original C compiler on UNIX is named CC (C Compiler). From this, the original

GNU C compiler was named GCC (GNU C Compiler). The acronym has remained the
same, but its meaning has been changed to GNU Compiler Collection because the compiler
has grown to encompass a number of languages. However, the basic underlying structure
of GCC is still the C programming language. Fortunately, the structure of the C language
lends itself to representing very low-level hardware-like operations which makes it
possible to build other language compilers on top of the code generating software of
the C language base.

Fundamental Compiling
Table 4-1 lists the file name suffixes that have to do with compiling and linking
C programs. A table listing all the suffixes recognized by GCC can be found in
Appendix D.

68 G C C : T h e C o m p l e t e R e f e r e n c e

Suffix File Contains

.a Static object library (archive).

.c C source code that is to be preprocessed.

.h C source code header file.

.i C source code that is not to be preprocessed. This type of file is
produced as an intermediate step in compilation.

.o An object file in a format appropriate to be supplied to the linker.
This type of file is produced as an intermediate step in compilation.

.s Assembly language code. This type of file is produced as an
intermediate step in compilation.

.so Shared object library.

Table 4-1. File Name Suffixes in C Programming

C h a p t e r 4 : C o m p i l i n g C 69
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Single Source to Executable
The following is the source code of a very simple “hello, world” program:

/* helloworld.c */

#include <stdio.h>

int main(int argc,char *argv[])

{

printf(“hello, world\n”);

return(0);

}

The simplest and most straightforward way to compile this program into an executable
is to store the source code in a file named helloworld.c and enter the following
command:

$ gcc helloworld.c

The compiler determines that the file named on the command line is a C source file
by examining the suffix of the file name. The default action of GCC is to compile the
source file into an object file, link the object into an executable, and then delete the object
file. The command does not specify the name of the resulting executable file, so the
compiler uses the default name a.out in the current directory. Entering the name of
the program from the command line will cause it to run and display its output:

$ a.out

hello, world

The -o option can be used to specify the name of the executable program output
from the compiler. The following command will produce an executable program
named howdy:

$ gcc helloworld.c -o howdy

Entering the name of the program on the command line will run it, as shown here:

$ howdy

hello, world

Source File to Object File
The -c option instructs GCC to compile the source code but not to leave the object file
on disk and skip the step that links the object into an executable. In this case, the default
output file name is the same as the input source file name, but with the .o suffix. For
example, the following command will produce an object file named helloworld.o:

$ gcc -c helloworld.c

The -o option can be used to override the name of the object file produced. The
following command will produce an object file named harumph.o:

$ gcc -c helloworld.c -o harumph.o

In the construction of object libraries, or just for the creation of a collection of object
files to be linked later, a single command can be used to create object files from several
source files. The following command will produce object files named arglist.o,
ponder.o, and listsort.o:

$ gcc -c arglist.c ponder.c listsort.c

Multiple Source Files to Executable
The GCC compiler handles linking automatically, even if more than one source file
is being compiled. For example, the following source is stored in a file named
hellomain.c and calls a function named sayhello():

/* hellomain.c */

void sayhello(void);

int main(int argc,char *argv[])

{

sayhello();

return(0);

}

The following source is stored in a file named sayhello.c and defines the
sayhello() function:

/* sayhello.c */

#include <stdio.h>

void sayhello()

70 G C C : T h e C o m p l e t e R e f e r e n c e

{

printf(“hello, world\n”);

}

The following command compiles the two programs into object files, links them
into an executable program named hello, and deletes the object files:

$ gcc hellomain.c sayhello.c -o hello

Preprocessing
The -E option instructs the compiler to run only the preprocessor. The following command
will preprocess the helloworld.c source file and list it to the standard output:

$ gcc -E helloworld.c

The -o option can be used to direct the preprocessed code to a file. As shown
earlier in Table 4-1, C source code that does not need to be processed is stored in a file
with a .i extension, which can be achieved this way:

$ gcc -E helloworld.c -o helloworld.i

Generating Assembly Language
The -S option instructs the compiler to generate assembly language and then stop. The
following command will create an assembly language file named helloworld.s from
the C source file helloworld.c:

$ gcc -S helloworld.c

The form of the assembly language depends on the target platform of the compiler.
If multiple source files are compiled, an assembly language module is produced for
each one of them.

Creating a Static Library
A static library is a collection of .o files produced by the compiler in the usual way.
Linking a program with the object files in the library is the same as linking it with the
object files in a directory. Another name for a static library is an archive, and the utility
that manages the content of such an archive is named ar.

C h a p t e r 4 : C o m p i l i n g C 71
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

To construct a library, it is first necessary to compile object modules that go
into it. For example, the following two source files are named hellofirst.c
and hellosecond.c:

/* hellofirst.c */

#include <stdio.h>

void hellofirst()

{

printf(“The first hello\n”);

}

/* hellosecond.c */

#include <stdio.h>

void hellosecond()

{

printf(“The second hello\n”);

}

These two source files can be compiled into object files with the following command:

$ gcc -c hellofirst.c hellosecond.c

The ar utility can be used with the -r option to create a new library and insert the
object files into it. The -r option will create the library, if it does not exist, and will add
(by replacing, if necessary) the named object modules to the archive. The following
command creates a library named libhello.a that contains the two object modules
of this example:

$ ar -r libhello.a hellofirst.o hellosecond.o

The library is now complete and ready to be used. The following program, named
twohellos.c, calls both of the functions in the new library:

/* twohellos.c */

void hellofirst(void);

void hellosecond(void);

int main(int argc,char *argv[])

{

hellofirst();

hellosecond();

return(0);

}

72 G C C : T h e C o m p l e t e R e f e r e n c e

The twohellos program can be compiled and linked in a single command by
specifying the library on the command line as follows:

$ gcc twohellos.c libhello.a -o twohellos

The naming convention for static libraries is to begin the name with the three
letters lib and end the name with the suffix .a. All the system libraries use this naming
convention, and it allows a sort of shorthand form of the library names on the command
line by using the -l (ell) option. The following command line differs from the previous
one only in the location gcc expects to find the library:

$ gcc twohellos.c -lhello -o twohellos

Specifying the full path name causes the compiler to look for the library in the named
directory. The library name can be specified as either an absolute path (such as /usr/
worklibs/libhello.a) or a path relative to the current directory (such as ../lib/
libhello.a) The -l option does not provide the capability of specifying a path, but
instead instructs the compiler to look for the library among the system libraries.

Creating a Shared Library
A shared library is a collection of object files produced by the compiler in a special way.
All the addresses (variable references and function calls) inside each of the object
modules are relative instead of absolute, which allows the shared modules to be
dynamically loaded and executed while the program is running.

To construct a shared library, it is first necessary to compile the object modules that
go into it. For example, the following two source files are named shellofirst.c and
shellosecond.c:

/* shellofirst.c */

#include <stdio.h>

void shellofirst()

{

printf(“The first hello from a shared library\n”);

}

/* shellosecond.c */

#include <stdio.h>

void shellosecond()

{

printf(“The second hello from a shared library\n”);

}

C h a p t e r 4 : C o m p i l i n g C 73
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

These two source files can be compiled into object files with the following command:

$ gcc -c -fpic shellofirst.c shellosecond.c

The -c option is specified to instruct the compiler to produce .o object files. The
-fpic option causes the output object modules to be generated using relocatable
addressing. The acronym pic stands for position independent code.

The following gcc command uses the object files to construct the shared library
named hello.so:

$ gcc -shared shellofirst.o shellosecond.o -o hello.so

The -o option names the output file, and the .so suffix on the file name tells GCC
that the object files are to be linked into a shared library. Normally the linker locates
and uses the main() function as the entry point of a program, but this output module
has no such entry point, and the -shared option is necessary to prevent an error message.

The compiler recognizes that a file with the .c suffix is the C source code of program,
and it knows how to compile it into an object file. Because of this, the two previous
commands can be combined into one, and the modules can be compiled and stored
directly into the shared library with the following command:

$ gcc -fpic -shared shellofirst.c shellosecond.c -o hello.so

The following program, in the file named stwohellos.c, is the mainline of a program
that calls the two functions in the shared library:

/* stwohellos.c */

void shellofirst(void);

void shellosecond(void);

int main(int argc,char *argv[])

{

shellofirst();

shellosecond();

return(0);

}

This program can be compiled and linked to the shared library with the
following command:

$ gcc stwohellos.c hello.so -o stwohellos

74 G C C : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 4 : C o m p i l i n g C 75
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

The program stwohellos is now ready to run, but to do so it must be able to
locate the shared library hello.so, because the routines stored in the library must be
loaded at runtime. Information on the location of shared libraries can be found in
Chapter 12.

Overriding the Naming Convention
If circumstances require that you name your C source file using something other than
with a .c suffix, you can override the default by using the -x option to specify the
language. For example, the following command will compile the C source code from
the file helloworld.jxj and create an executable program named helloworld:

$ gcc -xc helloworld.jxj -o helloworld

Normally, without the -x option, any source files with unknown extensions are
assumed to be known to the linker, and the names are passed to it unchanged. The -x
option applies to unknown extensions for all files following it on the command line.
For example, the following command assumes that both align.zzz and types.xxx
are C source files:

$ gcc -c -xc align.zzz types.xxx

Standards
By using command-line options, you can compile any C program from the original
syntax (now often referred to as traditional) to the latest standard language with GNU
extensions. By default, GCC compiles the source using the rules of the latest standard,
and it has all GNU extensions enabled. The available options are listed in Table 4-2.
Appendix D contains a more detailed description of each of these options.

The most fundamental difference between a standards compliant and noncompliant
C program is the form of the arguments on a function call and the presence or absence
of function prototypes. To help in overcoming this problem, the GCC compiler has
the -aux-info option, which can be used to automatically generate prototypes for the
functions. For example, the following command will create a header file named slmwrk.h
that contains the prototypes for all the functions defined in a source file named
slmwrk.c:

$ gcc slmwrk.c -aux-info slmwrk.h

The following command can be used to create a header file named prototypes.h
that contains prototypes for the functions of the C source files in an entire directory:

$ gcc *.c -aux-info prototypes.h

76 G C C : T h e C o m p l e t e R e f e r e n c e

The functions of a C program can be converted to ANSI standard form by using the
protoize utility, which is described in Chapter 14.

C Language Extensions
The C compiler can be set to compile according to the rules of one of the C standards
by using options such as -ansi and -std, but several extensions can also be used.
Many of the GCC extensions in past versions have been specified as part of the new C
standards, but the list of extensions described in the following sections are only those
that are not part of any C standard. Except for a few special cases, they are unique to GCC.

Specifying the -pedantic option (as well as some other options) will cause warning
messages to be issued when using a C language extension, but you can suppress
the warning messages by preceding the extended expression with the keyword
__extension__.

Because of the internal structure of GCC, many of the extensions described here
apply to both C++ and Objective-C as well as C. The C++ and Objective-C compilers
use parts of the C compiler, so making an addition to C or the preprocessor will, in
some cases, make the same additions to the other languages. However, some of the
extensions conflict with fundamental language definitions, so they are disabled or
take some other form in C++ or Objective-C.

Alignment
The __alignof__ operator returns the boundary alignment of a data type or a specific
data item. The following program displays the alignments of each of the data types:

Option Description

-ansi Compiles programs that are standards compliant as well as
the GNU extensions

-pedantic Issues warnings required by strict standards compliance

-std=c89 The ISO C89 standard

-std=C99 The ISO C99 standard

-std=gnu89 The ISO C89 standard with GNU extensions and some
C99 features

-traditional Compiles with the original C syntax

Table 4-2. Options Controlling the C Language Version

C h a p t e r 4 : C o m p i l i n g C 77
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

/* align.c */

#include <stdio.h>

typedef struct {

double dvalue;

int ivalue;

} showal;

int main(int argc,char *argv[])

{

printf(“__alignof__(char)=%d\n”,__alignof__(char));

printf(“__alignof__(short)=%d\n”,__alignof__(short));

printf(“__alignof__(int)=%d\n”,__alignof__(int));

printf(“__alignof__(long)=%d\n”,__alignof__(long));

printf(“__alignof__(long long)=%d\n”,__alignof__(long long));

printf(“__alignof__(float)=%d\n”,__alignof__(float));

printf(“__alignof__(double)=%d\n”,__alignof__(double));

printf(“__alignof__(showal)=%d\n”,__alignof__(showal));

return(0);

}

The actual alignments vary from one hardware system to the next, because it is the
machine that sets the requirements. The alignment can either be an absolute hardware
requirement or a boundary suggestion to make data access more efficient.

Anonymous Unions
Within a struct, a union can be declared without a name, making it possible to address
the union members directly, just as if they were members of the struct. The following
example provides two names and two data types for the same four bytes:

struct {

char code;

union {

char chid[4];

int numid;

};

char *name;

} morx;

The members of this struct can be addressed as morx.code, morx.chid,
morx.numid, and morx.name.

78 G C C : T h e C o m p l e t e R e f e r e n c e

Arrays of Variable Length
An array can be declared in such a way that its size is determined at runtime. This is
achieved by using an expression as the declaring subscript. For example, the following
function accepts two strings and combines them into a single string with a space inserted
between them:

void combine(char *str1,char *str2)

{

char outstr[strlen(str1) + strlen(str2) + 2];

strcpy(outstr,str1);

strcat(outstr," “);

strcat(outstr,str2);

printf(”%s\n",outstr);

}

An array of variable length can be passed in as an argument, as in the
following example:

void fillarray(int length,char letters[length])

{

int i;

char character = ‘A’;

for(i=0; i<length; i++)

letters[i] = character++;

}

The order of the arguments can be reversed by making a forward declaration
so that the type of length is known at the time the letters array is read, as in
the following:

void fillarray(int length; char letters[length], int length)

You can have as many of these forward declarations as you need (separated by
commas or semicolons), as long as the last one is followed by a semicolon.

Arrays of Zero Length
GNU C allows the declaration of arrays of zero length to facilitate the creation of
variable-length structures. This only makes sense if the zero-length array is the last
member of a struct. The size of the array can be specified by simply being allocated
the amount of space necessary. The following program demonstrates the technique:

C h a p t e r 4 : C o m p i l i n g C 79
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

/* zarray.c */

#include <stdio.h>

typedef struct {

int size;

char string[0];

} vlen;

int main(int argc,char *argv[])

{

int i;

int count = 22;

char letter = ‘a’;

vlen *line = (vlen *)malloc(sizeof(vlen) + count);

line->size = count;

for(i=0; i<count; i++)

line->string[i] = letter++;

printf(“sizeof(vlen)=%d\n”,sizeof(vlen));

for(i=0; i<line->size; i++)

printf(“%c ”,line->string[i]);

printf(“\n”);

return(0);

}

The printf() statement in this example prints the value 4 because the sizeof
operator can only detect the size of the int value in the struct. The output from the
zarray program looks like the following:

sizeof(vlen)=4

a b c d e f g h i j k l m n o p q r s t u v

The same thing can be achieved by defining the array as an incomplete type. This
approach not only has the advantage being standard C, but can also be used in exactly
the same way as the previous example. As an added benefit the size of the array can be
specified in the initializers, as in the following example where the size of the array is
set to four characters:

/* incarray.c */

#include <stdio.h>

typedef struct {

80 G C C : T h e C o m p l e t e R e f e r e n c e

int size;

char string[];

} vlen;

vlen initvlen = { 4, { ‘a’, ‘b’, ‘c’, ‘d’ } };

int main(int argc,char *argv[])

{

int i;

printf(“sizeof(vlen)=%d\n”,sizeof(vlen));

printf(“sizeof(initvlen)=%d\n”,sizeof(initvlen));

for(i=0; i<initvlen.size; i++)

printf(“%c ”,initvlen.string[i]);

printf(“\n”);

return(0);

}

The output from this example is as follows:

sizeof(vlen)=4

sizeof(initvlen)=4

a b c d

Attributes
The __attribute__ keyword can be used to assign an attribute to a function or data
declaration. The primary purpose of assigning an attribute to a function is to make it
possible for the compiler to perform optimization. The attribute is assigned to a function
in the declaration of the function prototype, as in the following example:

void fatal_error() __attribute__ ((noreturn));

. . .

void fatal_error(char *message)

{

fprintf(stderr,"FATAL ERROR: %s\n",message);

exit(1);

}

In this example, the noreturn attribute tells the compiler that this function does
not return to its caller, so any code that would normally be executed on the function’s
return can be omitted by the optimizer.

C h a p t e r 4 : C o m p i l i n g C 81
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Multiple attributes can be assigned in the same declaration by including them in a
comma-separated list. For example, the following declaration assigns attributes to assure
the compiler that it does not modify global variables and that the function must never
be expanded inline:

int getlim() __attribute__ ((pure,noinline));

Attributes can be assigned to variables and to members of structs. For example,
to guarantee that a field has a specific alignment within a struct, it could be declared
as follows:

struct mong {

char id;

int code __attribute__ ((align(4)));

};

Table 4-3 lists the set of function attributes, Table 4-4 lists the attributes available
for data declarations, and Table 4-5 lists the attributes that can be assigned to data
type declarations.

Attribute Description

alias A function definition with this attribute causes the definition
to become a weak alias of another function. It can be used in
combination with the weak attribute to define a weak alias, as
in the following example, where centon() is created as a weak
alias for __centon():
int __centon() { return(100); }
void centon() __attribute__
((weak,alias(“__centon”)));
In C++ the mangled name of the target must be specified. This
attribute is not supported on all machines.

always_inline A function that’s declared as being inline, and has this attribute,
will always be expanded as inline code, even when no optimization
has been specified. Normally functions are only inlined during
optimization. The following is an example of the prototype
of a function that will always be expanded inline:
inline void infn() __attribute__ ((always_inline));

Table 4-3. Attributes That Can Be Used in Function Declarations

82 G C C : T h e C o m p l e t e R e f e r e n c e

Attribute Description

const A function with this attribute is the same as pure, but it also does
not read any values from global memory. This gives the optimizer
more freedom than pure because there is no need to make certain
that all global values are updated before the function is called.

constructor A function with this attribute is called automatically before the call
is made to main(). Also see the destructor attribute.

deprecated A function with this attribute will cause the compiler to issue
a warning message whenever it is called. The warning message
includes the location of the deprecated function to guide the user
to more information about it.

destructor A function with this attribute is called automatically after main()
has returned or exit() has been called. Also see the
constructor attribute.

format A function with this attribute has one argument that is a format
string and a variable number of arguments for the values to be
formatted. This makes it possible for the compiler to check the
format content against the list of arguments to verify that the types
match the formatting. There are different types of formatting, so it is
also necessary to specify whether validation is to be for the printf,
scanf, strftime, or strfmon style. For example, the following
attribute specifies that the second argument passed to the function is
the formatting string, the formatting string is expected to be of the
printf type, and the variable-length argument list begins with
the third argument:
int logprintf(void *log, char *fmt, ...)

__attribute__ ((format(printf,2,3)));
Warning messages are issued when a format string is found to be
invalid only if the -Wformat option is specified.

format_arg A function with this attribute accepts a formatting string as one
of its arguments and makes a modification to the string so that the
result can be passed on to a printf(), scanf(), strftime(),
or strfmon() type function. This attribute will suppress warning
messages issued when the option -Wformat-nonliteral is set
to detect nonconstant formatting strings. The following example
demonstrates the setting of this attribute for a function that has
such a format string as its second argument:
void fedit(int ndx,const char *fmt)

__attribute__ ((format_arg(2)));

Table 4-3. Attributes That Can Be Used in Function Declarations (continued)

U
S

IN
G

TH
E

C
O

M
P

ILER
C

O
LLEC

TIO
N

C h a p t e r 4 : C o m p i l i n g C 83

Attribute Description

malloc A function with this attribute informs the compiler that it can
be treated as if it were the malloc() function. For purposes of
optimization, the compiler is to assume the returned pointer
cannot alias anything.

no_instrument_
function

A function with this attribute will not be instrumented and will
not have profiling code inserted into it by the compiler, even if
the -finstrument-functions option is set.

noinline A function with this attribute will never be expanded as inline code.

noreturn A function with this attribute does not return to its caller.

pure A function with this attribute has no side effects whatsoever, except
with respect to its return value. That is, there will be no changes to
global values, locations addressed by arguments, or the contents
of files. Unlike the const attribute, this function may read global
values. This makes it possible for the compiler to perform common
subexpression optimization because all the values are guaranteed
to be stable.

section A function with this attribute will have its assembly language
code placed into the named section instead of the default text
section. The following is an example of a function being put
into a section named specials:
void mspec(void) __attribute__((section(“specials”)));
This attribute will be ignored on systems that do not support
sectioning. Also see -ffunction-sections in Appendix D.

used A function with this attribute causes the compiler to generate code
for the function body, even if the compiler determines the function
is not being used. This can be useful for functions that are called
only from inline assembly.

weak A function with this attribute has its name emitted as a weak
symbol instead of a global name. This is primarily for the naming
of library routines that can be overridden by user code.

Table 4-3. Attributes That Can Be Used in Function Declarations (continued)

84 G C C : T h e C o m p l e t e R e f e r e n c e

Attribute Description

aligned A variable with this attribute is aligned on a memory address that is an
even multiple of the number specified for the alignment. For example,
the following declaration will align alivalue at a 32-bit address:
int alivalue __attribute__ ((aligned(32)));
Alignment can be convenient on some systems to accommodate certain
assembly language instructions. It can also be useful with fields in
a struct that need to accommodate the data format found in a file.
If no alignment number is specified, the compiler will align the item
to the largest alignment used for any data item for the hardware, as in
the following example:
short shlist[312] __attribute__ ((align));

deprecated A variable with this attribute will cause the compiler to issue a warning
every place it is referenced.

mode A variable with this attribute is sized to match the size of the specified
mode. The mode can be set to byte, word, or pointer. The mode
attribute determines the data type. For example, the following creates
an int that is the size of a single byte:
int x __attribute__ ((mode(byte)));

nocommon A variable with this attribute is not allocated as common but is instead
allocated its own space. The variable is provided with an initial value
of all zeroes. Specifying the command-line option -fno-common will
cause this attribute to be applied to all variables.

packed A variable with this attribute has the smallest possible alignment. A
variable will be separated no more than one byte from its predecessor
field. In a struct, a field with this attribute will be allocated with no space
between it and the field before it. For example, in the following struct,
the start of the array named zar is aligned exactly one byte from the
top of the struct:
struct zrecord {
char id;
int zar[32] __attribute__ ((packed));
};
Also see the options -fpack-struct and -Wpacked in Appendix D.

section A variable with this attribute will be placed into the named section
instead of the default data or bss section. The following is an example
of a function being put into a section named domx:
struct domx __attribute__ ((section(“domx”))) = { 0 };
int trigger __attribute__ ((section(“MONLOG”))) = 0;
Because of the way the linker handles data, data declared in its own
section must have initial values. This attribute will be ignored on
systems that do not support sectioning. Variable initialization can
be forced by the command-line option -fno-common.

Table 4-4. Attributes That Can Be Used in Data Declarations

U
S

IN
G

TH
E

C
O

M
P

ILER
C

O
LLEC

TIO
N

C h a p t e r 4 : C o m p i l i n g C 85

Attribute Description

unused A variable with this attribute tells the compiler that the variable may
not be used, and no warning should be issued.

vector_size A variable with this attribute is allocated the total amount of space
specified as the size of the vector. For example, the following declares
a vector of float data types:
float fvec __attribute__ ((vector_size(32));
Assuming a float data type is 4 bytes long, this declaration creates
a block containing 8 float variables for a total size of 32 bytes.
This attribute is only valid for integer and real scalars.

weak A variable with this attribute has its name emitted as a weak symbol
instead of as a global name. This is primarily for the naming of library
variables that can be overridden by user code.

Table 4-4. Attributes That Can Be Used in Data Declarations (continued)

Attribute Description

aligned A type declared with this attribute is aligned on a memory address that is an even
multiple of the number specified for the alignment. For example, instances of the
following struct will be aligned at a 32-bit address boundary:
struct blockm {

char j[3];
} __attribute__ ((aligned(32)));
It is possible to affect this same alignment by applying the aligned attribute to
the first member of the struct. The aligned attribute can only be used to increase
the alignment, not reduce it. Some linkers may force the compiler to limit the
maximum alignment value.
This attribute can also be applied to types created by typedef:
typedef int alint __attribute__ ((aligned(8));
If no alignment number is specified, the compiler will align the item to
the largest alignment that is used for any data item for the hardware, as
in the following example:
typedef short alshort __attribute__ ((align));

deprecated A type declared with this attribute causes a warning message to be issued
each time the type is used in a declaration. The message includes location
information for the type declaration.

packed A struct or union declared with this attribute will take up the minimum amount
of space possible. This is equivalent to specifying the packed attribute for each
member of the struct or union.
This attribute can be specified following the closing brace on an enum declaration.
The command-line option -fshort-enum is the same as using the packed
attribute on all enum declarations.

Table 4-5. Attributes That Can Be Used in Data Type Definitions

86 G C C : T h e C o m p l e t e R e f e r e n c e

Compound Statements Returning a Value
A compound statement is a block of statements enclosed in braces. A compound
statement has its own scope level and can declare its own local variables, as in the
following example:

Attribute Description

transparent_
union

A union declared with this attribute and used as the data type of a parameter on
a function declaration will enable that function to accept, as an argument, any of
the types defined in the union. The following example uses a transparent union
to demonstrate calling the same function with three different argument types:
/* transp.c */
#include <stdio.h>
typedef union {

float *f;
int *i;

} fourbytes __attribute__ ((transparent_union));

void showboth(fourbytes fb);

int main(int argc,char *argv[])
{

int ivalue = 2562;
float fvalue = 898.44;
fourbytes fb;
fb.i = &ivalue;

showboth(&ivalue);
showboth(&fvalue);
showboth(fb);

return(0);
}

void showboth(fourbytes fb)
{

printf(“The int value: %d\n”,*fb.i);
printf(“The float value: %f\n”,*fb.f);

}
The function showboth() is declared as requiring the union fourbytes
as an argument, but because the union has been declared with the attribute
transparent_union, any of the types declared in the union can also be
passed to the function. This example contains calls to the function passing
the address of a float, the address of an int, and the address of the union itself.

unused A type declared with this attribute causes any of the data items of that type to
appear to be unused, so no warning messages will be issued for them.

Table 4-5. Attributes That Can Be Used in Data Type Definitions (continued)

{

int a = 5;

int b;

b = a + 5;

}

In GNU C, by surrounding a compound statement with parentheses, it produces
a return value, as in the following example, which returns the value 8:

rslt = ({

int a = 5;

int b;

b = a + 3;

});

The return value is the result type and value of the last statement in the block.
This construct can be useful when writing macros. A problem occurs with a macro

when the expression provided as an argument is calculated more than once. For example,
the following macro returns an even number equal to or larger than the one specified,
incrementing the value only if necessary:

#define even(x) (2*(x / 2) == x ? x : x + 1)

This will work unless there is a side effect to evaluating the expression x. For example,
the following statement would produce an undefined result:

int nexteven = even(value++);

The following macro performs the same function, but it does so by only evaluating
the expression once and storing the result in a local variable:

#define evenint(x) \

({ int y = x; \

(2*(y / 2) == y ? y : y + 1); \

})

It should be noted that this extension does not work well with C++, so it could
cause problems if you use it in header files that are to be included in C++ programs.
The problem comes from the destructors for the temporaries inside the macro being
run earlier than they would be for an inline function.

C h a p t e r 4 : C o m p i l i n g C 87
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Conditional Operand Omission
In a conditional expression, the true or false condition is determined by the result of an
expression being zero or nonzero, so it can happen that the test value and the resulting
value are the same. For example, in the following statement, x will be assigned the value
of y only if y is something other than zero:

x = y ? y : z;

The expression y will be evaluated a second time if it is determined to be nonzero
the first time it is evaluated. This second evaluation can be omitted by forming the
expression as follows:

x = y ? : z;

This becomes especially useful if the expression y has side effects and should not
be evaluated more than once.

Enum Incomplete Types
An enum tag can be declared without specifying its list of values, in the same way that
the name of a struct can be declared without specifying its content. An incomplete
enum can be used in function prototypes and to declare pointers.

The following is an example of the declaration of an incomplete enum followed by
the actual declaration:

enum color_list;

. . .

enum color_list { BLACK, WHITE, BLUE };

Function Argument Construction
The following three built-in functions can be used to pass the arguments of the current
function directly through to another function and then return the results to the original
caller. It is not necessary for the function the arguments are being passed through to
know anything about the arguments.

The following function retrieves and records the argument’s descriptive information:

void *__builtin_apply_args(void);

88 G C C : T h e C o m p l e t e R e f e r e n c e

Once the argument information is recorded, the following function can be used to
construct the stack information required for the call and to make the call to the function:

void *__builtin_apply(void (*func)(),void *arguments,int size);

The first argument is the address of the function passed as the address of a function
that has no arguments and does not return a value. The second argument is the result
of the recording process performed by __builtin_apply_args(). The size
argument is the number of bytes to be copied from the current stack frame into the
new stack frame, and it must be large enough to include all the arguments being
passed along with the return address.

After the function has been called by __builtin_apply(), the return value of the
called function is positioned on the stack. The following function adjusts the stack frame
and returns to the original caller:

__builtin_return(void *result);

The following example program calls the function passthrough(), which uses
the built-in functions to call the average() function and return the value from it:

/* args.c */

#include <stdio.h>

int passthrough();

int average();

int main(int argc,char *argv[])

{

int result;

result = passthrough(1,7,10);

printf(“result=%d\n”,result);

return(0);

}

int passthrough(int a,int b,int c)

{

void *record;

void *playback;

void (* fn)() = (void (*)())average;

record = __builtin_apply_args();

C h a p t e r 4 : C o m p i l i n g C 89
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

90 G C C : T h e C o m p l e t e R e f e r e n c e

playback = __builtin_apply(fn,record,128);

__builtin_return(playback);

}

int average(int a,int b,int c) {

return((a + b + c) / 3);

}

Notice that the function passthrough() only has knowledge of the arguments
and return value because they are the ones it uses itself. The passthrough() function
could be converted to a wrapper around a generalized function call if an ellipsis were
used to create a variable-length argument list and the return value were a void pointer.
The passthrough() function could then be used to pass an arbitrary set of arguments
to a function known only by its address, and the return value could be of any type.

To write a generalized wrapper, it will be necessary to ensure that the value of
size passed to __builtin_apply() is large enough to contain all the arguments
actually passed.

Function Inlining
A function can be declared inline, and its code will be expanded much like a macro
at the point it is called. A function can be declared as an inline function by using the
inline keyword, as follows:

inline int halve(double x)

{

return(x / 2.0);

}

The following is a list of rules and characteristics having to do with function inlining:

� No functions are actually expanded inline unless you use -O to specify some
level of optimization. It is done this way to simplify the use of a debugger.
A function can be forced to be expanded inline by assigning it the
always_inline attribute.

� The result of declaring a function inline could make the code either larger or
smaller, depending on the size of the function, the complexity of setting up the
call frame, and the number of times the function is called.

� Certain functions cannot be expanded inline. Among these are functions that
use a variable number of arguments, alloca, variable-size arrays, a non-local
goto, or a nested function. Problems also arise when a function is recursive or
there is a reference to its address. The command-line option -Winline will
issue a warning when a function declared as inline cannot be expanded inline.

C h a p t e r 4 : C o m p i l i n g C 91
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

� In the ISO C program you can use the __inline__ keyword in place of the
inline keyword.

� The -finline-functions command-line option can be used to instruct
the compiler to automatically select functions that are appropriate for being
expanded inline.

� If an inline function is not declared as static, its body must also be generated
by the compiler because it could be called from another module. Declaring
a function as both inline and static will cause all occurrences of the function
to be expanded inline, and the code for the function itself is never generated.
The command-line option -fkeep-inline-functions will override this
behavior and cause the function body to always be created.

� Defining a function in a header file as both extern and inline is almost the same
as declaring a macro. Another copy of the function, without extern and inline,
can be compiled and stored in a library so that non-inline references to it can
be resolved.

Function Name
The identifier __FUNCTION__ holds the name of the function in which it appears. It is
in the form of a string literal and can be concatenated with other string literals, in the
same way as __FILE__ and __LINE__. The following example constructs a single line
of text containing all three location macros:

char *here = “Line ” __LINE__ “ of ” __FILE__ “ in ” __FUNCTION__;

Defined in the ISO C99 standard, the identifier __func__ contains the name of the
current function, but instead of a character literal it is in the form of a char array.

The semantics of __FUNCTION__ is deprecated and is to be modified to match the
semantics of __func__.

The identifier __PRETTY_FUNCTION__ holds the same name as __FUNCTION__
in C, but the two contain the name in different forms in C++.

Function Nesting
Functions can be nested inside one another. The inner function can only be called from
inside its parent function. The following function contains a nested function named
randint() that returns a pseudo-random int value within a specified range:

void rangers()

{

int randint(int low,int high) {

return(((int)random() % (high-low+1)) + low);

}

printf(“0 to 100: %d\n”,randint(0,100));

printf(“5 to 10: %d\n”,randint(5,10));

printf(“-1 to 1: %d\n”,randint(-1,1));

}

The following is a list of rules and characteristics having to do with nesting functions:

� A nested function is created on the stack in much the same way as variables, so it
can be declared in a block before the first executable statement of the block—in
the same location local variables are declared.

� The address of a nested function cannot be returned to the caller because, just
as any other local variable, it disappears when the parent function returns.

� A nested function cannot be declared extern.

� It is possible to pass the address of a nested function to other functions and
have it called from there, just as it is possible to pass the address of other
local variables.

� A nested function has direct access to all the same variables as the parent
functions, but local variables can only be accessed if they are declared before the
nested function.

� A nested function can use the goto statement to jump to a label outside itself
but in its parent function.

� The prototype of a nested function can be declared by declaring it as auto, as in
the following example:

void right()

{

auto double hypotenuse();

double a = 3.0;

double b = 4.0;

double hypotenuse(double x,double y) {

return(sqrt(x * x + y * y));

}

printf(“Long side of %lf and %lf is %lf\n”,

a,b,hypotenuse(a,b));

}

92 G C C : T h e C o m p l e t e R e f e r e n c e

Function Prototypes
A new style function prototype will override the definition of a function with the old
style argument list declaration, if the promotion of the old style argument is matched
by the prototype. For example, the following is a valid prototype for the function
because the short argument is automatically promoted to an int in the function call:

int trigzed(int zvalue);

. . .

int trigzed(zvalue)

short zvalue;

{

return(zvalue == 0);

}

If the function had been declared with the new syntax of int trigzed(short
zvalue), the compiler would have generated an error message because of the conflict
between the int and the short.

Function Return Addresses and Stack Frames
The following built-in function retrieves the address to be used by a function to return
to its caller:

void *__builtin_return_address(unsigned int level);

Specifying a level value of 0 retrieves the return address to be used by the current
function. A level value of 1 retrieves the return address to be used by the function
that called the current one, a level value of 2 retrieves the address from the previous
function, and so on, until the call stack is exhausted. The function
__builtin_frame_address() can be used to determine when the top of the stack is
reached. Also, level must be specified as a constant, not a variable.

On some systems, it is not possible to retrieve the return address of any function
other than the current one. On such a system, the retrieved value is either zero or
a random value (depending on the platform).

The following function retrieves the address of the function’s stack frame:

void *__builtin_frame_address(unsigned int level);

Specifying a level value of 0 retrieves the address of the stack frame of the current
function. A level value of 1 retrieves the address of the stack frame of the function
that called the current one, a level value of 2 retrieves the address from the previous

C h a p t e r 4 : C o m p i l i n g C 93
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

function, and so on, until the call stack is exhausted. The function __builtin_frame_
address() can be used to determine when the top of the stack is reached.

The stack frame is a block of memory that contains the registers saved by the calling
function as well as the values of the arguments that were passed in the call. The exact
format will vary, depending on the calling convention and the platform.

On some systems, it is not possible to retrieve the stack frame address of any function
other than the current one. On such a system, the retrieved value is zero. A return value
of zero also occurs if the list of stack frames has been exhausted.

Identifiers
Identifiers may contain dollar signs. This is for compatibility with many traditional
C compilers and a large body of C programs that have dollar signs in variable and
function names. Dollar signs are not valid for all systems because some assemblers
don’t accept them.

Integers
The C99 standard defines integer data types that are up to 64 bits long. As an
extension, GCC supports them in earlier versions of C and in C++. Examples of
the declarations are as follows:

long long int a; // Signed 64-bit integer

unsigned long long int b; //Unsigned 64-bit integer

Constants can be declared for each of these types, as follows:

a = 855LL; // Signed 64-bit constant

b = 855ULL; // Unsigned 64-bit constant

The arithmetic operations of addition, subtraction, and the bitwise boolean operations
can be performed on these types on all machines. Multiplication, division, and shifts
are not supported by all hardware and may require the use of special library routines.

If you are going to use these data types as function arguments, it is important that
you use prototypes to define the argument types. Without a function prototype, the
size and position of the variables in the calling stack frame could be wrong.

Keyword Alternates
The command-line options -std and -ansi disable the keywords asm, typeof, and
inline, but the alternate forms __asm__, __typeof__, and __inline__ can be
used in their place.

94 G C C : T h e C o m p l e t e R e f e r e n c e

Label Addresses
It is possible to take the address of a label, store it in a pointer, and then use the goto
statement to branch to it. The address is retrieved by using the && operator and is stored
in a void pointer. The goto statement will branch to any address resulting from an
expression producing a void pointer.

The following simple example demonstrates how this can be done:

/* gotoaddr.c */

#include <stdio.h>

#include <time.h>

int main(int argc,char *argv[])

{

void *target;

time_t now;

now = time((time_t *)NULL);

if(now & 0x0001)

target = &&oddtag;

else

target = &&eventag;

goto *target;

eventag:

printf(“The time value %ld is even\n”,now);

return(0);

oddtag:

printf(“The time value %ld is odd\n”,now);

return(0);

}

The current time is used as a pseudo-random number to determine which label
address is stored in target. The goto statement then accepts the address in the void
pointer as a valid destination for a jump. It is not valid to branch into another function.

Because any expression resulting in a void pointer can be used by the goto
statement, it is possible to create an array of label addresses and branch to them
according to an index, as follows:

void *loc[] = { &&label1, &&label2, &&label3, &&label4 };

. . .

goto *loc[i];

C h a p t e r 4 : C o m p i l i n g C 95
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Labels Declared Locally
It is possible to declare a label in such a way that it is only defined within a specific scope.
The __label__ keyword is used at the top of the scope to declare that the label is to
be local, and the label can then be declared and used within the scope. The following
program demonstrates the declaration of the use of two labels within a scope:

/* loclabel.c */

#include <stdio.h>

int main(int argc,char *argv[])

{

int count = 0;

{

__label__ restart;

__label__ finished;

restart:

printf(“count=%d\n”,count);

if(count > 5)

goto finished;

count++;

goto restart;

finished:

count += 10;

}

return(0);

}

The labels can be declared one to a line, as in this example, or more than one can be
declared on a line by using commas, as follows:

__label__ restart, finished;

Labels of this sort can be useful inside code that is expanded from macros because,
by adding braces to create scoping, the same label can be used more than once within
a function.

Lvalue Expressions
A compound expression can be used on the left side of an assignment operator (that
is, an lvalue). This is true as long as the result of the compound expression is something
that can have its address taken. The usual form of an lvalue is the name of a specific

96 G C C : T h e C o m p l e t e R e f e r e n c e

variable, as in the following example, where the variable a is the name of a location in
memory where the value 5 is stored:

a = 5;

Another form of lvalue actually appears on the right side of a statement, but it is
an lvalue because it is the address of a location instead of its value. In the following
example, the variable a is used as an lvalue:

ptr = &a;

Under certain specific circumstances a compound expression can be used as an
lvalue. The following is a list of rules and characteristics for creating lvalue expressions:

� A compound expression serves as an lvalue if the last member of the compound
expression can have its address taken. For example, the two following statements
are identical:

(fn(), b) = 10;

fn(), (b = 10);

� A compound statement can have its address taken. The address will be that of
the last member of the compound statement. In the following statement, the
address of b (that is, the lvalue of b) is stored in ptr:

ptr = &(fn(), b);

� A conditional expression can be used as an lvalue provided that both the true
and false selections are valid for use as an lvalue. For example, the following
statement assigns the value of 100 to b if a is greater than 5; otherwise, 100 is
assigned to c:

((a > 5) ? b : c) = 100;

� An lvalue can be cast to another type. In the following example, the char pointer
chptr is cast to an int value to have the absolute address 894 stored in it:

char *chptr;

(int)chptr = 894;

Macros with Variable Arguments
Two techniques exist for creating macros with a variable number of arguments because
GCC implemented one technique as an extension and the ISO standard of 1999 specified
a slightly different technique. GCC supports both. The two techniques are actually the
same, but the syntax is slightly different.

C h a p t e r 4 : C o m p i l i n g C 97
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

98 G C C : T h e C o m p l e t e R e f e r e n c e

The following is an example of the ISO standard method for creating a macro with
a variable number of arguments:

#define errout(fmt,...) fprintf(stderr,fmt,__VA_ARGS__)

Any list of arguments specified after fmt will be substituted for __VA_ARGS__
wherever it appears in the macro body. Using the GNU syntax, the same macro can be
defined as follows:

#define errout(fmt,args...) fprintf(stderr,fmt,args)

You will find more information on macros and macro expansion in Chapter 3.

Strings
Newline characters can be embedded in a string without using the \n escape character.
They can be included literally in the source code. The following two strings are equivalent:

char *str1 = “A string on\ntwo lines”

char *str2 = “A string on

two lines”

The ‘\e’ character is the ASCII ESC character. The sequence \e can also be used
in strings.

As always, the backslash character at the end of a line will join the two lines into
one, as in the following example:

char *str3 = “This string will \

be joined into one line.”;

This is standard C. The GNU extension is a relaxing of the rule that the newline
character must follow immediately behind the backslash escape character. With GCC
any number of spaces are allowed following the backslash; the extra spaces are
removed and the two lines are joined into one, but a warning message is issued from
the preprocessor.

Pointer Arithmetic
Addition and subtraction is supported for void and function pointers. A pointer is
incremented or decremented by the size of the item it points to, and GCC void and
function pointers are incremented or decremented by 1. The consequence of this is that
the sizeof operator on a void or function pointer has a value of 1.

The -Wpointer-arith option can be used to issue a warning if this extension is used.

C h a p t e r 4 : C o m p i l i n g C 99
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Switch/Case
A range of values can be specified on a case statement by using ellipses. The following
is the standard way of selecting four values for a single case:

case 8:

case 9:

case 10:

case 11:

The same thing can be written by using a three-dot ellipsis, this way:

case 8 ... 10:

It is important that the three dots be surrounded by spaces to prevent the parser
from confusing the ellipsis with decimal points on the constants. Just as with single
constant values, duplicate values are detected by the compiler—the following two
conflicting case statements will produce an error message:

case 8 ... 15:

. . .

case 12 ... 32: // Error

This technique is especially useful for ranges of character constants:

case ‘a’ ... ‘m’:

Typedef Name Creation
The typedef keyword can be used to create a name for the data type of an expression.
The defined name can be used to declare or cast variables of the same type as the
expression. The new type name is defined as follows:

typedef name = expression;

For example, the following statements define smallreal as the float type and
largereal as the double type:

typedef smallreal=0.0f;

typedef largereal=0.0;

These new names can be used to declare variables of the types they represent.
The following statements declare real1 as float and real2 as double:

smallreal real1;

largereal real2;

One place this can be useful is inside a macro definition to make it possible to apply
the macro to multiple data types. The following macro makes no prior assumption about
the types of its arguments, other than that they are the same types and can have their
values swapped:

#define swap(a,b) \

({ typedef _tp=a; \

_tp temp = a; \

a = b; \

b = temp; })

The data type of the first argument is used to define _tp as a new local type that is
the same as the first argument. A local variable named temp is constructed as the
temporary holding location, making it possible to swap the two values regardless of
their type.

Typeof References
The typeof keyword results in the type of an expression. It is used like sizeof,
but the result is a type instead of a size, as in the following example:

char *chptr; // A char pointer

typeof (*chptr) ch; // A char

typeof (ch) *chptr2; // A char pointer

typeof (chptr) chparray[10]; // Ten char pointers

typeof (*chptr) charray[10]; // Ten chars

typeof (ch) charray2[10]; // Ten chars

In this example, chptr is declared as a char pointer. Using typeof to determine
the type pointed to by chptr, ch is declared as a char data type. In turn, using the data
type of ch, chptr2 is declared as a pointer to a char type. The variable chparray is
declared as an array of ten pointers to type char. The array charray is based on the
type pointed to by chptr, which is the declaration of an array of ten char types.
Another array of ten char types is based on ch.

The following declares a variable that is the type returned from a function:

100 G C C : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 4 : C o m p i l i n g C 101
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

char func();

typeof (func) retval;

The function func() returns a char, so the typeof expression declares retval as
type char.

You can use a type name directly in a typeof expression. For example, the following
two statements are equivalent:

char *charptr;

typeof (char *) charptr;

Using typeofmakes it possible to create macros that can be used to declare variables.
The following example defines a macro and then uses it to create arrays of ten double
and ten float variables:

#define array(type,size) typeof(type[size])

array(double,10) dblarray;

array(float,10) fltarray;

Union Casting
A data item that is the same type as the member of a union can be cast to the union. For
example, the following program casts a double data item to a union that contains
a double and then accesses each byte through a union reference:

/* unioncast.c */

#include <stdio.h>

union dparts {

unsigned char byte[8];

double dbl;

};

int main(int argc,char *argv[])

{

int i;

double value = 3.14159;

for(i =0; i<8; i++) {

printf(“%02X ”,((union dparts)value).byte[i]);

}

printf(“\n”);

return(0);

}

A union cast can also be used as an argument in a function call, as follows:

void procun(union dparts);

. . .

procun((union dparts)value);

A cast to a union is a bit different from other casts. It is actually a constructor, so it
does not create an lvalue. This makes the following statement invalid:

(union dparts)value.dbl = 1.2; // Error

102 G C C : T h e C o m p l e t e R e f e r e n c e

Chapter 5
Compiling C++

103

104 G C C : T h e C o m p l e t e R e f e r e n c e

The GNU C++ compiler is a fully functional compiler that generates executable
object code as its output. The original C++ compiler from AT&T was named
cfront and was actually a translator of C++ code into C code, and there are still

some compilers that work this way. The GCC compiler was originally a C compiler,
and C++ was added as an optional mode of compilation.

Fundamental Compiling
Table 5-1 lists the file name suffixes that are involved in compiling and linking C++
programs. A complete list of all the file suffix names can be found in Appendix D.

Single Source File to Executable
The following is the source code of a simple C++ program stored in a file named
helloworld.cpp:

/* helloworld.cpp */

#include <iostream>

int main(int argc,char *argv[])

{

std::cout << "hello, world\n";

return(0);

}

This program uses cout, defined in the header file iostream, to write a simple
string to the standard output. This program can be compiled into an executable with
the following command:

$ g++ helloworld.cpp

The g++ compiler recognizes the file by the suffix on its name as being a C++ source
file. The default action is to compile the source into an object file, link the object file
with the necessary routines from the library libstdc++, and produce an executable
program file. The object file is then deleted. No output file name was specified on the
command line, so the default name a.out is used. The program can be run as follows:

$ a.out

hello, world

It is more common to specify the name of the executable file with the -o command.
The following command will produce an executable named helloworld:

$ g++ helloworld.cpp -o helloworld

C h a p t e r 5 : C o m p i l i n g C + + 105
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Entering the program name on the command line will execute it:

$ helloworld

hello, world

The g++ program is a special version of gcc that sets the default language to C++,
causing it to automatically link using the standard C++ library instead of defaulting to
the standard C library. By following the source file naming convention and specifying
the name of the library, it is possible to compile and link C++ programs using gcc, as
in the following example:

$ gcc helloworld.cpp -lstdc++ -o helloworld

The -l (ell) option alters the name following it by tacking on the prefix lib and the
suffix .a, making the library named libstdc++.a. It then looks for the library in the
standard places. The compilation process and the output file from gcc is identical to g++.

On most systems, the installation of GCC installs a program named c++. If
installed, the program is identical with g++ and can be used the same way, as in the
following example:

$ c++ helloworld.cpp -o helloworld

Suffix File Contains

.a Static object library (archive file).

.C, .c++,

.cc, .cp,

.cpp, .cxx

C++ source code that is to be preprocessed.

.h C or C++ header file.

.ii C++ source code that is not to be preprocessed. This type of file is
produced as an intermediate step in compilation.

.o An object file in a format appropriate to be supplied to the linker.
This type of file is produced as an intermediate step in compilation.

.s Assembly language source code. This type of file is produced as
an intermediate step in compilation.

<none> The standard C++ system header files have no suffix.

Table 5-1. File Name Suffixes in C++ Programming

Multiple Source Files to Executable
If more than one source file is listed on the g++ command, they are all compiled and
linked together into a single executable. The following is a header file, named speak.h,
containing a class definition that contains only one function:

/* speak.h */

#include <iostream>

class Speak

{

public:

void sayHello(const char *);

};

The following is a listing of the file speak.cpp, which contains the body of the
sayHello() function:

/* speak.cpp */

#include "speak.h"

void Speak::sayHello(const char *str)

{

std::cout << "Hello " << str << "\n";

}

The file hellospeak.cpp contains a program that uses the Speak class:

/* hellospeak.cpp */

#include "speak.h"

int main(int argc,char *argv[])

{

Speak speak;

speak.sayHello("world");

return(0);

}

A single command can be used to compile and link both of these source files into
a single executable:

$ g++ hellospeak.cpp speak.cpp -o hellospeak

106 G C C : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 5 : C o m p i l i n g C + + 107
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Source File to Object File
The -c option can be used to compile the source code but suppress the linker and output
an object file instead. The default name is the same as the base name of the source file
with the suffix changed to .o. For example, the following command will compile the
source file hellospeak.cpp and produce the object file hellospeak.o:

$ g++ -c hellospeak.cpp

The g++ command also recognizes the .o files as input files to be fed to the linker.
The following sequence of commands will compile the two source files into object files
and then link the two object files into a single executable:

$ g++ -c hellospeak.cpp

$ g++ -c speak.cpp

$ g++ hellospeak.o speak.o -o hellospeak

The -o option is not just for naming executables. It can also be used to name the
other files output by the compiler. For example, the following series of commands
produces the same executable as the previous series, except the intermediate object
files have different names:

$ g++ -c hellospeak.cpp -o hspk1.o

$ g++ -c speak.cpp -o hspk2.o

$ g++ hspk1.o hspk2.o -o hellospeak

Preprocessing
Specifying the -E option instructs g++ to pass the source code through the preprocessor
and take no further action. The following command preprocesses the helloworld.cpp
source code and writes the results to standard output:

$ g++ -E helloworld.cpp

The source code for helloworld.cpp, listed earlier in this chapter, is only six lines
long and does nothing other than display a line of text, but the preprocessed version is
over 1,200 lines long. This is largely because the iostream header file is included, and
it includes several other header files as well as defines several large classes that deal
with input and output.

108 G C C : T h e C o m p l e t e R e f e r e n c e

The GCC suffix for preprocessed C++ code is .ii, which can be produced by using
the -o option, as follows:

$ gcc -E helloworld.cpp -o helloworld.ii

Generating Assembly Language
The -S option instructs the compiler to compile the program into assembly language,
output the assembly language source, and then stop. The following command produces
the assembly language file named helloworld.s from the C++ source file:

$ g++ -S helloworld.cpp

The assembly language generated depends on the target platform of the compiler,
but if you examine it, you will see not only the executable code and data storage
declarations but also the tables of addresses necessary for inheritance and linkage in
a C++ program.

Creating a Static Library
A static library is an archive file containing a collection of object files produced by the
compiler. The members of the library can contain regular functions, class definitions,
and objects that are instances of class definitions. Anything, in fact, that can be stored
in a .o object file can also be stored in a library.

The following example creates two object modules and uses them to create a static
library. A header file contains the information necessary for a program to use the
function, class definition, and object stored in the library.

The header file say.h contains the prototype of the function sayHello() and
the definition of a class named Say:

/* say.h */

#include <iostream>

void sayhello(void);

class Say {

private:

char *string;

public:

Say(char *str)

{

string = str;

}

void sayThis(const char *str)

{

C h a p t e r 5 : C o m p i l i n g C + + 109
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

std::cout << str << " from a static library\n";

}

void sayString(void);

};

The following source file is named say.cpp and is the source of one of the two
object files to be inserted into the library. It contains the definition of the body of the
sayString() function of the Say class. It also contains the declaration of librarysay,
which is an instance of the Say class:

/* say.cpp */

#include "say.h"

void Say::sayString()

{

std::cout << string << "\n";

}

Say librarysay("Library instance of Say");

The source file sayhello.cpp is the source code of the second module that is
to be included in the library. It contains the definition of the function sayhello(),
which follows:

/* sayhello.cpp */

#include "say.h"

void sayhello()

{

std::cout << "hello from a static library\n";

}

The following sequence of commands compiles the two source files into object files,
and the ar command stores them into a library:

$ g++ -c sayhello.cpp

$ g++ -c say.cpp

$ ar -r libsay.a sayhello.o say.o

The ar utility used with the -r option will create a new library named libsay.a
and insert the listed object files into it. Used this way, ar will create a new library if
one does not exist or, if the library does exist, it will replace any existing object modules
with the new version.

110 G C C : T h e C o m p l e t e R e f e r e n c e

The following is the mainline of a program named saymain.cpp that uses the
code stored in libsay.a:

/* saymain.cpp */

#include "say.h"

int main(int argc,char *argv[])

{

extern Say librarysay;

Say localsay = Say("Local instance of Say");

sayhello();

librarysay.sayThis("howdy");

librarysay.sayString();

localsay.sayString();

return(0);

}

This program is compiled and linked with the following command, where g++
resolves any references made in saymain.cpp by looking in the library libsay.a:

$ g++ saymain.cpp libsay.a -o saymain

The external reference to librarysay is a reference to the object declared
in say.cpp and stored in the library. Both librarysay.sayThis() and
librarysay.sayString() are calls to the methods of the object in the library.
Also, sayhello() is a call to the function in sayhello.o, which is also stored
in the library. When the program is run, it produces the following output:

hello from a static library

howdy from a static library

Library instance of Say

Local instance of Say

Creating a Shared Library
A shared library is an archive that contains a collection of object files, but the object files
must use relative addressing so the code can be loaded anywhere in memory and run
from there without an extensive relocation process. This allows the code to be loaded
from the shared library while the program is running instead of being directly attached
to the executable by a linker.

The following header file, named average.h, defines the class to be stored in the
shared library:

C h a p t e r 5 : C o m p i l i n g C + + 111
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

/* average.h */

class Average {

private:

int count;

double total;

public:

Average(void) {

count = 0;

total = 0.0;

}

void insertValue(double value);

int getCount(void);

double getTotal(void);

double getAverage(void);

};

The source file to be compiled and stored in the shared library contains the bodies
of the functions defined in the class:

/* average.cpp */

#include "average.h"

void Average::insertValue(double value)

{

count++;

total += value;

}

int Average::getCount()

{

return(count);

}

double Average::getTotal()

{

return(total);

}

double Average::getAverage()

{

return(total / (double)count);

}

The following two commands first compile the source into an object file and then
use it to create a library:

$ g++ -c -fpic average.cpp

$ gcc -shared average.o -o average.so

112 G C C : T h e C o m p l e t e R e f e r e n c e

The first command uses the -c option so that the compiler will produce the object
file average.o without trying to link it into an executable. The option -fpic (position
independent code) instructs the compiler to produce code suitable for inclusion in a
shared library—code that calculates its internal addresses in relation to the point the
code is loaded into memory. The second command uses the -shared option to cause
the creation of a shared library that, by being specified on the -o option, is named
average.so. The second command could just has well have been g++ in place of gcc
because there is nothing specific to C++ about creating a shared library. Creating a
shared library containing more than one object module is simply a matter of listing
all the object files on the same command line.

The two previous commands can be combined into a single command that compiles
the source into object files and uses them to create a shared library:

$ g++ -fpic -shared average.cpp -o average.so

The following program uses the class definition stored in the shared library
to instantiate an object that is used to keep a running total of four values and return
their average:

/* showaverage.cpp */

#include <iostream>

#include "average.h"

int main(int argc,char *argv[])

{

Average avg;

avg.insertValue(30.2);

avg.insertValue(88.8);

avg.insertValue(3.002);

avg.insertValue(11.0);

std::cout << "Average=" << avg.getAverage() << "\n";

return(0);

}

The following command compiles and links the program with the shared library,
producing an executable named showaverage:

$ g++ showaverage.cpp average.so -o showaverage

To run this program, the shared library must be installed in a directory that will be
found at execution time, as described in Chapter 12.

Extensions to the C++ Language
This section describes some GNU-specific extensions to the C++ language. The C++
compiler is very complicated, and the standard definition document is quite large, so
there are certainly more extensions and differences from the standard than the ones
listed here. Also, because the C++ compiler shares much of its code with the C compiler,
many of the extensions listed in Chapter 4 for the C compiler will also apply to C++.

Attributes
Chapter 4 describes a list of attributes that can be used in C. While those attributes can
also be used in C++ programs, there are some attributes that apply only to C++. An
attribute is applied by using the __attribute__ keyword and enclosing the name
of the attribute in parentheses. Table 5-2 contains the attributes designed specifically for
use with C++.

C h a p t e r 5 : C o m p i l i n g C + + 113
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Attribute Description

init_priority Standard C++ specifies that objects be initialized in the order
in which they appear within a compilation unit, but there is
no specification for the order across compilation units. The
init_priority attribute makes it possible to specify the
order of object initialization within a given namespace by
assigning priority numbers to the object declarations.The
priorities are assigned numerically, with the smaller numbers
having priority over larger numbers. For example, the
following three objects will be initialized in the order B, then
C, then A, no matter what source modules they are found in:
SpoClassA__attribute__((init_priority(680)));
SpoClassB__attribute__((init_priority(220)));
SpoClassC__attribute__((init_priority(400)));
The values used have no particular meaning, except in the
way they relate to one another.

java_interface This attribute specifies that the class is to be defined as
a Java interface. It can only be applied to classes defined
inside an extern "Java" block. Calls to methods of a class
defined this way use the GCJ interface table instead of the
C++ virtual table.

Table 5-2. The Attributes Defined for the C++ Language

114 G C C : T h e C o m p l e t e R e f e r e n c e

Header Files
All system header files are, by default, included as if they were enclosed in an extern
"C" { ... } block. This can cause problems where C++ code exists in a system header
file, but the problem can be solved with the following pragma:

#pragma cplusplus

When this pragma is found in a header file, the rest of the code in the file is compiled
as if it were included in an extern "C++"{ ... } block.

Using this pragma inside an explicit extern "C" { ... } block is an error.

Function Name
The identifier __FUNCTION__ holds the name of the current function in both C and
C++. In C++ the identifier __PRETTY_FUNCTION__ also contains the function name,
but in a form that carries a bit more information. The following example shows the
use of these identifiers as well as the __func__ identifier specified in the C standard:

/* showfuncname.cpp */

#include <iostream>

class Xyz

{

public:

void NameShow(int i,double d)

{

std::cout << "__FUNCTION__\n "

<< __FUNCTION__ << "\n";

std::cout << "__PRETTY_FUNCTION__\n "

<< __PRETTY_FUNCTION__ << "\n";

std::cout << "__func__\n "

<< __func__ << "\n";

}

};

int main(int argc,char *argv[])

{

Xyz xyz;

xyz.NameShow(5,5.0);

return(0);

}

C h a p t e r 5 : C o m p i l i n g C + + 115
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

The output from running this program looks like the following:

__FUNCTION__

NameShow

__PRETTY_FUNCTION__

void Xyz::NameShow (int, double)

__func__

NameShow

The identifiers __FUNCTION__ and __func__ are both defined as strings that
contain the simple name of the current function. The identifier __PRETTY_FUCNTION__
contains the complete function name, including the return type, the name of the class,
and a list of parameter types.

Interface and Implementation
The interface and the implementation of a class can be combined into one. That is, there
is no need to maintain a separate prototype definition of a class because the code that
completely implements a class can also be used as the interface definition.

This is achieved by using #pragma interface to specify that the class definition
is to be used as an interface definition only and by using #pragma implementation
to instruct GCC to compile the class functions and data into object code.

This is a very convenient feature, but it is subject to change. A future version of GCC is
likely to do away with this pair of pragmas and use some other mechanism to achieve the
same result.

To implement this pair of pragmas, you can take the following steps:

1. Create a header file that contains the complete class implementation. For
example, the header file for a class named MaxHolder could be called
maxholder.h.

2. Inside the header file, and before the class definition, insert the following line:

#pragma interface

3. In any source file that refers to the MaxHolder class, include the header as normal.

4. In one source file (usually the mainline of the program), insert the following
#pragma directive before the #include directive:

#pragma implementation "maxholder.h"

#include "maxholder.h"

The files that include the header file in the normal way will only be including
the interface definition for the class, while the one source file with the #pragma
implemention directive will be including the complete class definition to be compiled
into object code. This means that there will be only one copy of the backup copies
of inline functions, debugging information, and the internal tables that implement
virtual functions.

� If the header file has the same base name as the implementation file, there is
no need to specify the file name on the pragma. For example, if the file named
maxholder.cpp includes the header file named maxholder.h, the pragma
can be written as simply #pragma implementation.

� If a header file includes header files from another directory, they can be named on
the interface pragma as #pragma interface "subdirectory/filename.h".
If this is done, the same file name must appear on the implementation pragma.

� An #include statement must always be used to include the header files
because they are not included by the pragma.

� The effect of the interface pragma on functions in the class is that they are all
declared as extern. The only time the body of a function is used is when the
code is expanded inline.

� Use of #pragma implementation causes all inline functions to have
non-inline versions compiled in case some of the function calls were not inlined
in other modules. This action can be suppressed with the command-line option
-fno-implement-inlines.

Operators <? and >?
Special operators are available to return the minimum value of two arguments.
The following expression results in the minimum value of a and b:

minvalue = a <? b;

Similarly, the following expression results in the maximum of the two values:

maxvalue = a >? b;

� The operators are primitives in the language, so they can be used without any
side effects. The following statement results in the minimum value of x and y
and then increments each one of them only once:

int minvalue = x++ <? y++;

� The >? and <? operators can be overloaded to operate on classes, as
demonstrated by the following example, which defines the Iholder class

116 G C C : T h e C o m p l e t e R e f e r e n c e

with the >? operator used to return a copy of the object containing the largest
int value. The Iholder class also uses the >? operator internally to compare
the two int values:

/* minmax.cpp */

#include <iostream>

class Iholder

{

friend Iholder operator>?(Iholder&,Iholder&);

protected:

int value;

public:

Iholder(int v)

{

value = v;

}

int getValue(void)

{

return(value);

}

};

Iholder operator>?(Iholder& ih1,Iholder& ih2)

{

return(Iholder(ih1.getValue() >? ih2.getValue()));

}

int main(int argc,char *argv[])

{

Iholder ih1 = Iholder(44);

Iholder ih2 = Iholder(34);

Iholder imax = ih1 >? ih2;

std::cout << "The maximum is " << imax.getValue() << "\n";

return(0);

}

Restrict
The restrict keyword of standard C99 for the C language was rejected by the
standards committee for C++, but GCC has implemented it as the keyword
__restrict__. Any pointer declared __restrict__ is guaranteed to have exclusive
access to the location in memory to which it points. The fact that the compiler can be
assured that there are no alias references to a memory location means that more
efficient code can be generated.

U
S

IN
G

TH
E

C
O

M
P

ILER
C

O
LLEC

TIO
N

C h a p t e r 5 : C o m p i l i n g C + + 117

118 G C C : T h e C o m p l e t e R e f e r e n c e

The __restrict__ keyword can be used as a qualifier like const or volatile,
as in the following example:

double *__restrict__ avg;

� The __restrict__ keyword is only valid for pointers and references. Unlike
const or volatile, the __restrict__ qualifier applies only to a pointer
and never to the data being addressed.

� Function pointer arguments can be qualified as restricted. In the following
example, the function is assured that pointers bp1 and bp2 do not overlap:

void copy(char *__restrict__ bp1,

char *__restrict__ bp2, int size) {

for(int i=0; i<size; i++)

bp1[i] = bp2[i];

}

� Function reference arguments can be restricted using the same syntax that is
used for pointers, as in this example:

void icopy(int &__restrict__ ip1,

int &__restrict__ ip2) {

ip1 = ip2;

}

� The __restrict__ keyword is ignored in function matching, so the
__restrict__ keyword is unnecessary in the prototype.

� The this pointer can be restricted by using the __restrict__ keyword on
the member function declaration, as follows:

void T::fnctn() __ restrict__ { ... }

Compiler Operation
This section describes some of the internal operations of the C++ compiler that you
may need to be aware of in special circumstances. Usually you will only need to use the
g++ command to compile and link your C++ programs, but there are some internal
operations that you should be aware of so you can handle special situations.

Libraries
The standard C++ library is named libstdc++.a, and it contains all the standard
C++ routines. The library is quite large and, although this usually doesn’t matter, a
statically linked C++ program can include many routines that are not actually used.
This is a consequence of the fact that if you need a single routine that is part of an
object file in the library, the entire object file is linked as part of your program.

If you need to statically link a program and you are not using library routines, you
can link with libsupc++.a instead and include only routines that are part of the
fundamental language definition. To make the change, it is only necessary to specify
the library name on the g++ command line as -lsupc.

Mangling Names
Both C++ member functions and Java methods can be overloaded by specifying
different data types in the parameter list. For example, the following three lines are
prototypes for entirely different functions:

int *cold(long);

int *cold(struct schold *);

int *cold(long, char *);

The compiler has no problem determining which one you call because the argument
types are distinct. The only problem that arises is from the linker, because linkers
blindly match the names referenced in one module with the names defined in another
module without regard to their type. The solution is to have the compiler change the
names in such a way that the argument information is not lost and the linker is able to
match them up. The process of changing the names is called mangling.

A mangled name is made up from the following pieces of information, in this order:

1. The base name of the function

2. A pair of underscore characters

3. A possibly zero-length list of codes indicating any function qualifiers, such
as const

4. The number of characters in the name of the class of which the function is
a member

5. The name of the class

6. A list of codes indicating the data types of the parameters

For example, the function void cname::fname(void) is encoded as
fname__5cname. The function int cname::stname(long frim) const is encoded
as stname__C5cnamel, where C indicates the function is const and the trailing l
(ell) indicates a single parameter of type long. A constructor is encoded by omitting
the function name. For example, the constructor cname::cname(signed char) is
encoded as __5cnameSc, where the Sc pair indicates a signed char parameter.

The codes for the various types and qualifiers are listed in Table 5-3. The meanings
of some of the codes depend on how and where they are used in the encoding string,
but with the entries in the table and a little practice you will be able to demangle the
names in object files well enough to match the names with the source.

C h a p t e r 5 : C o m p i l i n g C + + 119
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

120 G C C : T h e C o m p l e t e R e f e r e n c e

Code
Letter Meaning

<number> The number of characters in a custom data type name. For example,
the function Mph::pdq(char, drip, double) encodes as
pdq__3Mphc4dripd. Optionally, the number can be preceded
by the letter G—that is, pdq__3Mph4drip is equivalent to
pdq_3MphG4drip.

A An array. In C++ the arrays always decay to pointers, so this type
is never actually seen. In Java, an array is encoded as a pointer to
a JArray type.

b A C++ bool data type or a Java boolean data type.

c The C++ char data type or the Java byte data type.

C A modifier indicating a const parameter type or member function.

d The double data type.

e Extra arguments of unknown types. For example, the function
Mph::pdq(int,...) encodes as pdq__3Mphie.

f The float data type.

G See <number>.

H A template function.

i The int data type.

I A special integer data type containing a nonstandard number of
bits. For example, the function Mph::pdq(int, int60_t, char)
with a 60-bit integer type as its second argument will be encoded
as pdq__3MphiI_3C_c. A hexadecimal number surrounded by
underscore characters is used to specify the number of bits in the
integer. The hexadecimal number may not be delimited by underscore
characters if the surrounding characters are not ambiguous.

J The C++ complex data type.

l (ell) The C++ long data type.

L The name of a local class.

Table 5-3. Code Letters Used in Name Mangling

C h a p t e r 5 : C o m p i l i n g C + + 121
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Code
Letter Meaning

p A pointer. It is always followed by an indicator of the pointer type.
Same as P.

P A pointer. It is always followed by an indicator of the pointer type.
Same as p.

Q A qualified name, such as arises from a nested class.

r The C++ long double data type.

R A C++ reference. It is always followed by an indicator of the type
being referenced. For example, the function Mph::pdq(ostream&)
is encoded as pdq__3MphR7ostream.

s The short data type.

S If S is used to precede the name of a class, it implies static. For
example, Mph::pdq(void) static is encoded pdq__S3Mph. If
S is used to precede a char data type indicator, it implies signed.
For example, the function Mph::pdq(signed char) is encoded
pdq__3MphSc.

t A C++ template instantiation.

T A back reference to a previously seen parameter type.

u The type qualifier for a restricted pointer.

U A modifier indicating an unsigned integer data type. It is also
used as a modifier for a class or namespace name to indicate
Unicode encoding.

v The void data type.

V A modifier indicating a volatile data type.

w The C++ whcar_t data type or the Java char data type.

x The C++ long long data type or the Java long data type.

X A template type parameter.

Y A template constant parameter.

Table 5-3. Code Letters Used in Name Mangling (continued)

A demangler named c++filt is part of the binutils package. You can enter a
mangled name on the command line, and it will present you with a demangled version
of the name, as shown in the following example:

$ c++filt pdq__3MphiUsJde

Mph::pdq(int, unsigned short, __complex double, ...)

The c++filt utility is capable of demangling more that one scheme. The scheme
will vary from one platform to another and from one language to another. Among the
options that can be set by using the -s option are lucid, arm, hp, and edg. Two of
the language -s options are java for Java and gnat for Ada.

The mangling schemes used by GCC for C++ and Java, while compatible with one
another, are not compatible with other compilers. Each compiler uses its own mangling
scheme, but this is not altogether bad. Each compiler also uses its own scheme for laying
out classes, implementing multiple inheritance, and in the technique for handling
virtual functions. If a compatible mangling scheme were used, it would be possible to
link your GCC object with modules and libraries produced by other compilers, but the
programs still would not run.

Linkage
Some things appear in the object file that are not strictly a part of the executable code,
but they can be important for certain optimizations and for resolving references. Some
of this type of information are categorized as vague linkage because they are something
other than the normal (and simpler) process of associating a specific name with a specific
address. The following is a description of the C++ vague linkage items.

Virtual Function Table
A virtual table is a list of the addresses of the virtual functions in a class. If class A
contains a virtual function, and the function is overridden by the subclass B, then the
address of the new function replaces the address of the original function in the virtual
function table, or vtable. This is done because of the requirements of polymorphism—if
an object of class B has been cast as being an object of class A, then a call to the virtual
function uses the table and will actually be a call to the function in B, not the one in A.

Runtime Type Identification
In C++ each object contains identity information for the implementation of
dynamic_cast, typeid, and exception handling. For classes with virtual functions,
the information is included along with the vtable so that the type can be determined at
runtime by dynamic_cast. If there is no vtable (that is, the class is not polymorphic),
the information is only included in the object code where it is actually used (on
a typeid statement or where an exception is thrown).

122 G C C : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 5 : C o m p i l i n g C + + 123
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

COMDAT
A declaration in a header file can cause a copy of the generated code to be included
as part of the object file of every compilation unit that includes the header file. This
involves such things as global data declarations and member functions with bodies
declared as part of the class definition. On systems that support it (the GNU linker on
an ELF system, such as Linux or Solaris, and on Microsoft Windows and others), the
linker will discard all but one copy of the code to be placed in the final executable.

In the documentation of linkers, you will see this referred to as folding, comdat
folding, identical comdat folding, comdat discarding, or even transitive comdat elimination.

Inline Functions
An inline function is generally declared in a header file that is included by every
module that needs to call the function. Even though it may be declared as inline,
an instance of the function itself is also created in case it is needed in a situation
where it cannot be expanded inline, such as when its address is taken.

Compiling Template Instantiations
Including a template definition in a header file and including the header file in multiple
modules creates multiple copies of the compiled template. This approach will work,
but, in a large program with a large number of templates, a compiled copy of every
template is included in every object file. This can make the compile time very long and
can create very large object files. Here are some alternatives:

� The #pragma interface and #pragma implementation directives can be
used in the source files (as described earlier in this chapter), which causes the
creation of only one version of the compiled template.

� An approach similar to using the two pragmas is to use the command-line
option -falt-external-templates to compile all the source. This instructs
the compiler to include a compiled template instance only if the module actually
uses it. One important characteristic of this approach is that the header file must
be identical for each module using it.

� Compile the code using the -frepo command-line option. This causes the
creation of files with the suffix .rpo, each listing the template instantiations
to be found in its corresponding object file. The link wrapper utility, named
collect2, will then be invoked to update the .rpo files with instructions to the
linker as to the placement of the template instances in the final program. The only
difficulty with this approach has to do with libraries—unless the associated .rpo
files are also present, linking template instantiations stored in a library will fail.

� Compile the code using -fno-implicit-templates, which disables implicit
template instantiation and explicitly instantiates the ones you want. This
approach requires that you know exactly which template instantiations you
are using, but it does cause the source code to be more explicit and clear.

This page intentionally left blank.

Chapter 6
Compiling Objective-C

125

Objective-C is C with classes added to it. Another way of looking at it is that
Objective-C is the result of mixing C and Smalltalk. It is a much simpler
language than C++. Objective-C, as implemented by GCC, is the same as

standard C with the added ability to define classes, to use the classes to instantiate objects,
and to send messages (call functions) of the objects. Messages are sent to objects using
syntax very similar to Smalltalk.

Unlike the other languages compiled by GCC, Objective-C has no standard definition.
The GCC implementation of Objective-C is quite similar to the one developed for and
used in the NeXTStep system.

Fundamental Compiling
Table 6-1 lists the file name suffixes that have to do with compiling and linking
Objective-C programs. A table listing all the suffixes recognized by GCC can be
found in Appendix D.

Single Source to Executable
An Objective-C program can be written, in every way, exactly like a C program. That is,
you can write Objective-C without objects and it will have the same syntax and form as
a C program. The following is an example of a simple program that can be compiled
and run as Objective-C:

/* helloworld.m */

#import <stdio.h>

int main(int argc,char *argv[])

{

printf("hello, world\n");

return(0);

}

This program is identical to a C program in every way, except the preprocessor
directive #import is used in place of #include. The two directives achieve the same
purpose, with the added benefit that a header file specified on an #import directive
will not be included more than once in the same compilation unit. The same thing is
usually achieved for files read by the #include directives by using conditional
compilation inside the header files, as described in Chapter 3. You can use whichever
technique you would like.

This program can be compiled into an executable with the following command:

$ gcc -Wno-import helloworld.m -lobjc -o helloworld

126 G C C : T h e C o m p l e t e R e f e r e n c e

The option -Wno-import is needed to suppress a warning message stating that
the program uses #import instead of #include for the header files. Because you
have the source of GCC, you can change the default setting of the command-line
option in the file cppinit.c by removing the following line:

CPP_OPTION (pfile, warn_import) = 1;

The -lobjc option specifies that the library libobjc.a (the Objective-C object
library) is to be used, but it is not really necessary because there are no objects included
in the code of this simple program. The compiler recognizes the source file as being
Objective-C because of the .m suffix on the file name, and the -o option specifies the
name of the output file. The default name of the output file is a.out.

Compiling an Object
A class definition is made up of two source files. The Objective-C language is designed
for a .h header file to contain the interface definition of the class and a .m source file to
contain the implementation of the methods of the class. In the following example, the
header file Speak.h specifies the interface of a class named Speak that is capable of
storing a character string internally and then displaying it to standard output on request:

/* Speak.h */

#import <objc/Object.h>

@interface Speak : Object

{

char *string;

C h a p t e r 6 : C o m p i l i n g O b j e c t i v e - C 127
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Suffix File Contains

.a A library (archive file) containing object files for static linking

.h A header file

.m An Objective-C source file that is to be preprocessed

.mi An Objective-C source file that is not to be preprocessed

.o An object file in a format appropriate to be supplied to the linker

.so A library containing object files for dynamic linking

Table 6-1. File Name Suffixes in Objective-C Programming

128 G C C : T h e C o m p l e t e R e f e r e n c e

}

- setString: (char *) str;

- say;

- free;

@end

The #import directive is used to read the header file named Object.h, which
contains the definition of the Object class. The Object class is the super class of all
Objective-C classes. The definition of the Speak class is surrounded by the compiler
directives @interface and @end. Inside the definition is a block set off with braces
where the data definitions are stored (in this example, the only data is the pointer to the
string). The data block is followed by the list of methods defined for the class. Each
method is specified by a minus sign, the name of the method, and the list of the types
of arguments passed to it (if any).

The actual method bodies of the Speak class are defined in file Speak.m, as follows:

/* Speak.m */

#import "Speak.h"

@implementation Speak

+ new

{

self = [super new];

[self setString: ""];

return self;

}

- setString: (char *)str

{

string = str;

return self;

}

- say

{

printf("%s\n",string);

return self;

}

- free

{

return [super free];

}

The Speak.h header file is imported so that the definitions of all the data and
methods are available. The @implementation compiler directive specifies that this
source file contains the implementation of the methods of the Speak class. Method

U
S

IN
G

TH
E

C
O

M
P

ILER
C

O
LLEC

TIO
N

C h a p t e r 6 : C o m p i l i n g O b j e c t i v e - C 129

body definitions preceded by a minus sign are instance methods and can only be called
after an object already exists, and those preceded by a plus sign are class variables and
can be called any time.

The form of declaration of a method matches the one in the header file, with the
addition of a method body inside a pair of braces. Unless some specific data type is
being returned by a method, the return type is always assumed to be an id (the data
type that represents a generic Objective-C object). Because of this, the methods mostly
return self, which is the way an object refers to itself.

The following program uses a Speak object to write the "hello, world" string to
the standard output:

/* helloobject.m */

#import <objc/Object.h>

#import "Speak.h"

main()

{

id speak;

speak = [Speak new];

[speak setString: "hello, world"];

[speak say];

[speak free];

}

This program can be compiled by compiling each of the source files into object files
and then linking them together, as follows:

$ gcc -Wno-import -c helloobject.m -o helloobject.o

$ gcc -Wno-import -c Speak.m -o Speak.o

$ gcc -helloobject.o Speak.o -lobjc -o helloobject

Alternatively, all three steps can be performed in a single command, as follows:

$ gcc -Wno-import helloobject.m Speak.m -lobjc -o helloobject

Creating a Static Library
A collection of .o object files produced from compiling Objective-C can be stored in
a library (archive) of object files. The following example creates a library named
libcat.a containing the implementation code of a class named Cat. The class has
methods that will accept a sequence of character strings and concatenate them into
a single string.

The file Cat.h is the header file defining the interface of the Cat class:

/* Cat.h */

#import <objc/Object.h>

@interface Cat : Object

{

char *string;

}

- add: (char *) str;

- (char *) get;

- init;

- free;

@end

The file Cat.m contains the implementation of the Cat class. The add method
is used to add characters onto the end of the string, and get retrieves the current
concatenated string. The init method is meant to be called just once when a new
Cat object is created.

/* Cat.m */

#import "Cat.h"

@implementation Cat

+ new

{

self = [super new];

[self init];

return self;

}

- init

{

string = NULL;

return self;

}

- add: (char *)str

{

int length;

char *newstring;

if(string == NULL) {

length = strlen(str) + 1;

string = (char *)malloc(length);

strcpy(string,str);

130 G C C : T h e C o m p l e t e R e f e r e n c e

} else {

length = strlen(str) + strlen(string) + 1;

newstring = (char *)malloc(length);

strcpy(newstring,string);

strcat(newstring,str);

free(string);

string = newstring;

}

return self;

}

- (char *) get

{

return string;

}

- free

{

if(string != NULL)

free(string);

return [super free];

}

The Cat.m file is compiled into the object file Cat.o with the following command:

$ gcc -c -Wno-import Cat.m -o Cat.o

The object file is then used to construct a library with the following command:

$ ar -r libcat.a Cat.o

The -r option replaces any existing version of the named object files with the
newer version, or it will create a completely new library file if none already exists.

The following is a sample program that uses the Cat class to concatenate two
strings into one, then extracts the result and displays it:

/* docat.m */

#import <objc/Object.h>

#import "Cat.h"

main()

{

C h a p t e r 6 : C o m p i l i n g O b j e c t i v e - C 131
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

id cat;

char *line;

cat = [Cat new];

[cat add: "Part one"];

[cat add: " and part two"];

line = [cat get];

printf("%s\n",line);

}

This program is compiled into an executable named docat with the following
command:

$ gcc -Wno-import docat.m libcat.a -libobjc -o docat

Creating a Shared Library
Object files produced by compiling Objective-C can be stored in a shared library. To
construct a shared library it is necessary to compile the source into a form of object
code that can be loaded into any location in memory and executed from there. To do
this, it is necessary to specify the -fpic (position-independent code) option on the
command line. The following line will create such an object file from the class defined
in Cat.m:

$ gcc -fpic -Wno-import -c Cat.m -o Cat.o

The following command line will use the object file to create a shared library:

$ gcc -shared Cat.o -o cat.so

The two command lines can be combined and the shared library can be produced
directly from source, as follows:

$ gcc -Wno-import -fpic -shared Cat.m -o cat.so

The following program uses an instance of the Cat class to combine three strings
into one and then display the result:

/* showcat.m */

#import <objc/Object.h>

132 G C C : T h e C o m p l e t e R e f e r e n c e

#import "Cat.h"

main()

{

id cat;

char *line;

cat = [Cat new];

[cat add: "The beginning"];

[cat add: ", the middle"];

[cat add: ", and the end."];

line = [cat get];

printf("%s\n",line);

}

The following command will compile the showcat.m program and link it so that
it will run using the shared library:

$ gcc -Wno-import showcat.m cat.so -lobjc -o showcat

To be able to execute an application that relies on a shared library, it is necessary for
the program to locate the library, as discussed in Chapter 12.

General Objective-C Notes
Objective-C has no standard that specifies what it should not contain. When you write
Objective-C code, don’t expect it to be portable to another compiler. The items mentioned
in this section are peculiar to the GCC version of Objective-C and may not pertain to any
other version. Because the GCC Objective-C compiler is built in with a complete and
standard C compiler, you can generally count on all the standard C and preprocessor
facilities being available.

Predefined Types
Table 6-2 lists the data types that are defined in the header file Object.h. These same
types exist in most Objective-C compilers, but the names may be different.

Creating an Interface Declaration
The gcc option -gen-decl can be used to facilitate the update of an interface for the
class found in the source file. This can be useful to make certain that the header file (the
interface definition) and the class source file (the implementation) stay the same. If a new
method is added to the implementation, or if an existing method has its calling sequence

C h a p t e r 6 : C o m p i l i n g O b j e c t i v e - C 133
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

changed, the GCC can be run with the -gen-decl option to produce a correct insert
to replace the method definitions in the existing interface.

For example, the class named Speak from the previous examples can have a new
interface definition generated with the following command:

$ gcc -Wno-import -gen-decls -c Speak.m

The -gen-decls option does not keep the compiler from attempting to compile and
link. It is necessary to use the -c option to prevent gcc from attempting to link the newly
compiled class definition. The result is a file named w.decl with the following contents:

@interface Speak : Object

- free;

- say;

- setString:(char *)str;

+ new;

@end

134 G C C : T h e C o m p l e t e R e f e r e n c e

Type Description

BOOL A Boolean data type that can only assume the value of YES or NO.
The fundamental data type will vary depending on the platform,
but NO is zero and YES is nonzero, so a BOOL type will work as
expected in a C style conditional statement.

id A pointer to any type of Objective-C object.

IMP A reference to the method of an object by address.

nil, Nil A null pointer to an Objective-C object.

SEL A reference to the method of an object by name. The name SEL is
short for selector, because it is a variable that can be used to select
a method.

STR A typedef of a char *.

Table 6-2. The Predefined Types of Objective-C

Naming and Mangling
Method definitions in Objective-C are designated either by a plus (+) or minus (-) sign
as being a class method or an instance method, respectively. For example, the following
class interface definition contains the class methods new and copy along with the
instance methods reset and sort:

@interface TinyList : Object

+ new;

+ copy;

- reset;

- sort;

@end

For purposes of debugging, you may need to be able to recognize the names in
their mangled form in the object code. A class method is preceded by the letter c and
the name of the class, with underscoring used to separate the parts of the name. An
instance method is preceded by the letter i and follows the same format. The four
methods of the previous example would be named as follows:

_c_TinyList__new

_c_TinyList__copy

_i_TinyList__reset

_i_TinyList__sort

A method that accepts more than one parameter can have more than one name.
For example, the following method accepts two char pointers—one named string
and the other named desc—and the method has the two names accept and as:

- accept: (char *) string as: (char *) desc

The following is an example of calling this method of a class named Lister in an
instance named lister:

[lister accept: "Herbert" as: "name"]

In the object code, the mangled name of this instance method is as follows:

_i_Lister__accept_as

C h a p t e r 6 : C o m p i l i n g O b j e c t i v e - C 135
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

This page intentionally left blank.

Chapter 7
Compiling Fortran

137

138 G C C : T h e C o m p l e t e R e f e r e n c e

Fortran is renowned for its ability to handle intricate mathematical computations.
This has caused it to remain an important language in the scientific community.
In some scientific circles, such as physics, Fortran is the predominant language.

The GNU Fortran compiler is primarily based on the ANSI standard definition of
Fortran 77, but it is by no means limited to that. It contains many (but not all) features
and characteristics defined in the Fortran 90 and Fortran 95 standards documents. The
Fortran language is as much a tradition as it is a standard, and the standards documents
themselves leave a lot in the hands of the implementers of the compilers. Every Fortran
compiler works primarily the same way, but each supports its own dialect of the language.

Fundamental Compiling
Table 7-1 lists the file name suffixes that are involved with compiling and linking
Fortran programs. A table listing all the suffixes recognized by GCC can be found in
Appendix D.

Single Source to Executable
A traditional Fortran program is written using all uppercase, and the first six character
positions of each line are reserved for special purposes. The first column is reserved for
the character C to indicate that the entire line is a comment. The second through sixth
columns are reserved for labels. The code begins in the seventh column. The following
example is a program formatted in the traditional Fortran format:

C helloworld.f

C

PROGRAM HELLOWORLD

WRITE(*,10)

10 FORMAT('hello, world')

END PROGRAM HELLOWORLD

The GCC compiler does not require that the source be all uppercase, but, unless
specified otherwise, the fixed format is required. The following command will compile
the program into an executable:

$ g77 helloworld.f -o helloworld

The g77 command is a front end for gcc and sets up the basic environment
requirements of a Fortran program. The same result can be achieved by using a gcc
command as follows:

$ gcc helloworld.f -lfrtbegin -lg2c -lm -shared-libgcc -o helloworld

C h a p t e r 7 : C o m p i l i n g F o r t r a n 139
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

The library libfrtbegin.a (invoked by the command line option -lfrtbegin)
contains the startup and exit code necessary to start a Fortran program running and to
terminate it cleanly. The library libg2c.a contains the necessary Fortran runtime
routines for such fundamental capabilities as input and output. The library libm.a is
the system math library. The -shared-libgcc option specifies that the shared version
of the standard library libgcc be used.

GCC also allows Fortran code to be compiled in a free form format. Comments are
formed beginning with an exclamation point (!) character and continuing to the end of
the line. A free-form version of the previous program can have the statements, and
labels, begin in any column, as follows:

! helloworldff.f

!

Program Helloworld

write(*,10)

10 format('hello, world')

end Program Helloworld

This program can be compiled the same as the previous one by adding the
-ffree-form option to the command line, as follows:

$ g77 -ffree-form helloworldff.f -o helloworldff

Because of some of the fundamental differences between the two syntactic forms,
programs are written in either free form or fixed form format—it is difficult to write
a program that will compile in either form because of differences in the syntax of the
comments and the general layout rules.

Suffix File Contains

.a Static object library (archive)

.f, .for, .FOR Fortran source code that is not to be preprocessed

.F, .fpp, .FPP Fortran source code that is to be preprocessed

.o An object file in a format appropriate to be fed to the linker

.r Fortran source code to be preprocessed by Ratfor

.so Shared object library

Table 7-1. File Name Suffixes in Fortran Programming

Multiple Source Files to Executable
The g77 command is capable of compiling and linking multiple Fortran source files into
a single executable. The following listing is the mainline of a simple program, stored in
a file named caller.f, that makes a single function call and displays the result:

C caller.f

C

PROGRAM CALLER

I = Iaverageof(10,20,83)

WRITE(*,10) 'Average=', I

10 FORMAT(A,I5)

END PROGRAM CALLER

The function named Iaverage is defined in a separate source file named called.f,
as follows:

C called.f

C

INTEGER FUNCTION Iaverageof(i,j,k)

Iaverageof = (i + j + k) / 3

RETURN

END FUNCTION Iaverageof

These two source files can be compiled and linked into an executable named caller
with the following statement:

$ g77 caller.f called.f -o caller

The same result can be achieved in three separate steps by first creating an object
file for each of the source files and then linking the object files into an executable,
as follows:

$ g77 -c caller.f -o caller.o

$ g77 -c called.f -o called.o

$ g77 caller.o called.o -o caller

Generating Assembly Language
The -S option instructs g77 to generate assembly language from the source code and
then stop. To generate assembly language of the helloworld.f example used earlier
in this chapter, enter the following command:

140 G C C : T h e C o m p l e t e R e f e r e n c e

$ g77 -S helloworld.f

The resulting assembly language file is named helloworld.s. The exact form of
the assembly language depends on the target platform.

Preprocessing
Compiling a Fortran program with a file suffix of .F, .fpp, or .FPP will cause the
source to be preprocessed before it is compiled. This is the preprocessor, described in
Chapter 3, originally designed to work with the C programming language. The following
example is a Fortran free form program that uses the preprocessor to include a function
into the main program:

! evenup.F

!

#define ROUNDUP

#include "iruefunc.h"

!

program evenup

do 300 i=11,22

j = irue(i)

write(*,10) i,j

300 continue

10 format(I5,I5)

end program evenup

The source code of the function irue() is in the file named iruefunc.h, and it
will compile differently depending on whether the macro ROUNDUP has been defined.
The function will round any odd number to an even number. By default, it will round
down, but if ROUNDUP has been defined, the function will round up to get an even
number. The body of the irue() function is as follows:

integer function irue(i)

k = i / 2

k = k * 2

if (i .EQ. k) then

irue = i

else

#ifdef ROUNDUP

irue = i + 1

#else

irue = i - 1

C h a p t e r 7 : C o m p i l i n g F o r t r a n 141
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

#endif

end if

end function irue

The following command line will compile this program into an executable:

$ g77 -ffree-form evenup.F -o evenup

It is not necessary to write a program in free form format to be able to use the
preprocessor. Because the preprocessor discards the directives and passes only
the resulting code to the compiler, the following program is also valid:

C adder.F

C

#define SEVEN 7

#define NINE 9

C

program adder

isum = SEVEN + NINE

write(*,10) isum

10 format(I5)

end program adder

Creating a Static Library
A library of object modules can be created by compiling Fortran source code into .o files
and then using the ar utility to store the object files into an archive file, which is another
name for a static library.

The following example demonstrates the creation of a library containing a pair of
simple functions that are both called from the same mainline program. The first function
is named imaximum() and returns the largest of the three integers passed to it:

C imaximum.f

C

INTEGER FUNCTION imaximum(i,j,k)

iret = i

IF (j .gt. iret) iret = j

IF (k .gt. iret) iret = k

imaximum = iret

RETURN

END FUNCTION imaximum

142 G C C : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 7 : C o m p i l i n g F o r t r a n 143
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

The second function is very much like the first, except that it returns the smallest of
the three integers passed to it:

C iminimum.f

C

INTEGER FUNCTION iminimum(i,j,k)

iret = i

IF (j .lt. iret) iret = j

IF (k .lt. iret) iret = k

iminimum = iret

RETURN

END FUNCTION iminimum

The following three commands compile these two functions and store them in
the library:

$ g77 -c iminimum.f -o iminimum.o

$ g77 -c imaximum.f -o imaximum.o

$ ar -r libmima.a imaximum.o iminimum.o

The -c option on g77 instructs the compiler to compile the source into an object file
but not to invoke the linker. The ar utility with an -r option will create a library named
libmima.a if it does not already exist. If the library does exist, any object files inside it
will be replaced by the ones named on the command line.

The following program calls the two functions stored in the library and displays
the result:

C minmax.f

C

PROGRAM MINMAX

WRITE(*,10) 'Maximum=', imaximum(10,20,30)

WRITE(*,10) 'Minimum=', iminimum(10,20,30)

10 FORMAT(A,I5)

END PROGRAM MINMAX

This program can be compiled and linked to the functions stored in the library with
the following command:

$ g77 minmax.f libmima.a -o minmax

The compiler recognizes minmax.f as Fortran source, so it compiles the source into
an object file and then links the program into an executable by passing the name of the
library libmima.a to the linker.

Creating a Shared Library
The creation of a shared library is much the same as the creation of a static library, but
object files to be stored in the library must be compiled with either the -fpic or -fPIC
option so that the code can be loaded into memory and executed while the program is
running. (PIC stands for position independent code.)

Using the same source code as used in the static library example, the two object files
and the shared library can be created with the following commands:

$ g77 -c -fpic iminimum.f -o iminimum.o

$ g77 -c -fpic imaximum.f -o imaximum.o

$ g77 -shared iminimum.o imaximum.o -o libmima.so

The -c option is necessary to instruct the compiler to produce .o object files, and
-fpic is required to have the object files produced in the correct format for being loaded
from a shared library at runtime. The -shared option combines all the object files on
the command line into a shared library named libmima.so. For the library to be used
by an application, it is necessary for the program to locate the library when it starts
running, as described in Chapter 12.

To compile and link the program to use the shared library, it is only a matter of
including the name of the shared library on the command line as the program is linked:

$ g77 minmax.f -lmima -o minmax

The -l option specifies the library name as mima, which the compiler expands to
libmima.so and searches for a library by that name in the places the system is configured
to look for all shared libraries.

Ratfor
Ratfor is an acronym for Rational Fortran. It is a publicly available preprocessor of source
code that allows Fortran to be written with C-like syntax and then be converted into
standard Fortran to be compiled.

The original Ratfor translator was implemented by Kernighan and Plauger in
1976. Since its inception at AT&T, there have been a number of versions of Ratfor.
The two latest ones can be freely downloaded from a number of locations, including
http://sepwww.stanford.edu/software/ratfor.html for ratfor77 and http://sepwww.
standord.edu/software/ratfor90.html for ratfor90. The downloads are very small, and
installation is quite simple. The installation procedure that comes with them will install
the executable as either ratfor77 (which is a C program that compiles into a binary
executable) or ratfor90 (a Perl script). Either of these can be used to generate Fortran
code for input into the GCC compiler.

144 G C C : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 7 : C o m p i l i n g F o r t r a n 145
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

The two versions of Ratfor are different enough that you will need to select one and
stay with it. Ratfor90 is not a direct extension of Ratfor77. It is very easy to write simple
programs that will compile with one but will not compile with the other.

The source code of a Ratfor program is Fortran and can be written as pure Fortran,
but there are many C constructs available. The following simple example demonstrates
the form and appearance of a Ratfor program:

ratdemo.r

program ratdemo {

integer i;

integer counter;

counter = 10;

for(i=0; i<10; i=i+1) {

counter = counter + 5;

write(*,10) i, counter;

}

10 format(I5,I5);

}

end program ratdemo

This code can be processed through ratfor77 and compiled into an executable
with the following two commands:

$ ratfor77 <ratdemo.r >ratdemo.f

$ g77 ratdemo.f -o ratdemo

The file ratdemo.f, output from the Ratfor translator, is Fortran and looks like
the following:

C Output from Public domain Ratfor, version 1.0

program ratdemo

integer i

integer counter

counter = 10

i=0

23000 if(.not.(i.lt.10))goto 23002

counter = counter + 5

write(*,10) i, counter

23001 i=i+1

goto 23000

23002 continue

10 format(i5,i5)

end program ratdemo

GNU Fortran Extensions and Variations
The GCC compiler supports the ANSI Fortran 77 standard, along with some special
GNU extensions. It supports some, but not all, of the features defined in Fortran 90.

Intrinsics
The GNU Fortran compiler includes hundreds of intrinsic functions. They are all
documented on the GNU website and include implementations not only of a large
set of GNU specific intrinsics, but also intrinsics defined in other places.

The ANSI FORTRAN 77 language specification defines a set of both generic and
specific intrinsics that are included. A specific intrinsic is one that has a specific return
data type defined for it. A generic intrinsic’s return type will vary depending on how it
is used—usually the return type is determined by the type of one of its argument values.

The GCC Fortran compiler is more restrictive than some other compilers in the
requirements for arguments passed to intrinsic functions, so you may find a program
that compiles and runs with another compiler, but g77 balks and refuses to compile it.
For example, if the variable X is declared as INTEGER*8, the ABS() intrinsic may not
accept it because it is written to accept INTEGER*4 and will refuse to discard the extra
precision. It will be necessary to make an adjustment to the source, which could be to
simply force the conversion.

GCC Fortran supports the MIL-STD 1753 intrinsics BTEST, IAND, IBCLR, IBITS,
IEOR, IOR, ISHIFT, ISBFTC, MVBITS, and NOT.

The intrinsics found in both f77 and f2c are available in g77. These include the
bit-manipulation intrinsics AND, LSHIFT, OR, RSHIFT, and XOR. Among the other
intrinsics supported are CDABS, CDCOS, CDEXP, CDLOG, CDSIN, CDSQRT, DCMPLX,
DCONJG, DFLOAT, DIMAG, DREAL, IMAG, ZABS, ZCOS, ZEXP, ZLOG, ZSIN, and ZSQRT.

In all, there are 402 documented Fortran intrinsics supported by GCC.

Source Code Form
As shown in the examples earlier in this chapter, GNU Fortran accepts source in ANSI
Fortran 77 format and in a free form format. The free form format is very much like the
Fortran 90 format, but GNU Fortran is a bit more forgiving with things such as tabs.
The following list summarizes the special situations of both the free form and fixed
form formats:

� Carriage returns Any carriage return characters in the source are ignored.

� Tabs Each tab is expanded into the appropriate number of spaces to expand to
an eight-character boundary.

� Ampersands An ampersand in column 1 of the fixed form format designates
that the line is a continuation of the previous line.

146 G C C : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 7 : C o m p i l i n g F o r t r a n 147
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

� Short lines The line length has no meaning in the free form format, but
fixed form lines are all 72 characters long. A line shorter than 72 characters is
automatically padded with spaces on the right to fit the 72-character requirement.
This can only have an effect on continued characters and Hollerith constants. This
fixed line requirement can be modified or eliminated by using the command-line
option -ffixed-line-length.

� Long lines Lines longer than the designated length are truncated without
warning. This is mostly to accommodate legacy Fortran code that may have
other information in columns 73 through 80 (usually source code sequence
numbers). The fixed-line requirement can be modified or eliminated by using
the command-line option -ffixed-line-length.

Comments
The characters /* and */ can be used to create a comment block only if the code is to
be preprocessed, because the preprocessor will remove the comment block so it will
not be seen by the compiler. The form // cannot be used to specify a comment line
because these characters already have meaning (concatenation) in the Fortran language.
In GNU Fortran, the ! character can be used to designate the rest of the current line as
being a comment, whether or not the code is being preprocessed. Of course, in fixed
format, the letter c or C in the first column designates the rest of the line as being
a comment.

Dollar Signs
You can use dollar signs in names as long as one is not the leading character of the
name and the option -fdollar-ok is specified on the command line.

Case Sensitivity
A large number of option combinations are available to be used to specify the rules to
be followed for upper- and lowercase letters. By default, there are no case restrictions
on the input source code—both upper and lower case letters are accepted and are treated
as if they are the same case. Setting any of the options to limit or adjust the case has no
effect on comments, character constants, or Hollerith fields.

Table 7-2 lists the options that can be used to set the requirements for the cases of
the input source. There are separate settings for the Fortran keywords, the intrinsics,
and the symbols defined in the program. Table 7-3 describes each of the four options
(any, upper, lower, and initcap) shown in Table 7-2.

Three settings can be used to determine the case of the output of symbols written to
the assembly language, as shown in Table 7-4. Care must be taken when setting these
options because external references must match up properly with library routines.

148 G C C : T h e C o m p l e t e R e f e r e n c e

Keyword Intrinsic Symbol

-fmatch-case-any -fintrin-case-any -fsymbol-case-any

-fmatch-case-upper -fintrin-case-upper -fsymbol-case-upper

-fmatch-case-lower -fintrin-case-lower -fsymbol-case-lower

-fmatch-case-initcap -fintrin-case-initcap -f symbol-case-initcap

Table 7-2. Options Used to Specify Upper and Lower Case Requirements

Option Description

any There is no restriction on specifying case, and all combinations
will match. For example, Function, FUNCTION, function,
and FuncTion are all the same.

upper All characters must be uppercase.

lower All characters must be lowercase.

initcap The initial letter must be uppercase and all other letters must be
lowercase. For example, Maximum, Function, Do, and Return.

Table 7-3. The Four Possible Case Requirements

Option Description

-fsource-case-preserve The output in the assembly language is in the
same case as the input to the compiler.

-fsource-case-upper All symbols output in the assembly language
are converted to uppercase.

-fsource-case-lower All symbols output in the assembly language
are converted to lower case.

Table 7-4. Control of Case Output to the Assembler

Certain combinations of the options in Tables 7-2 and 7-4 are common and can be
specified as one of the single options listed in Table 7-5.

C h a p t e r 7 : C o m p i l i n g F o r t r a n 149
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Option Description

-fcase-initcap This option requires that everything begin
with initial capital letters, except comments and
character constants. This is the same as specifying
all three initcap options from Table 7-2 and also
specifying -fsource-case-preserve.

-fcase-lower This is the “canonical” UNIX model where all
source is translated to lowercase. This is the same
as specifying all three any options from Table 7-2
and also specifying -fsource-case-lower.

-fcase-preserve This option allows any case input pattern, and
the input case is preserved in the output assembly
language. This is the same as specifying all three
any options from Table 7-2 and also specifying
-fsource-case-preserve.

-fcase-strict-upper This is the “strict” ANSI FORTRAN 77 requirement
that everything be in uppercase, except comments
and character constants. This is the same as
specifying all three upper options from Table 7-2
and also specifying -fsource-case-preserve.

-fcase-strict-upper This option requires that everything be in lowercase
except comments and character constants. This is
the same as specifying all three lower options from
Table 7-2 and also specifying
-fsource-case-preserve.

-fcase-upper This is the “classic” ANSI FORTRAN 77 model
where all source is translated to uppercase. This is
the same as specifying all three any options from
Table 7-2 and also specifying -fsource-case-upper.

Table 7-5. Single Options That Specify Input and Output Case Combinations

Specific Fortran 90 Features
This section contains brief descriptions of some of the more useful Fortran 90 features
supported by g77. The list is almost certainly not complete because the language
specifications are large and complex, but the following features exist in g77 and can
be used without any special flags or settings.

Character Strings
Character string constants may be surrounded by double quotes as well as single quotes.
That is, the string "hello world" is the same as 'hello world'. Inside a string defined
with double quotes, a single double-quote character is defined by a pair of double-quote
characters.

A character constant may be zero length (contain no characters). Also, it is possible
to declare a substring in the form 'hello world'(7:4), which as the value 'worl'.

Construct Name
A construct name can be used to specify the block of executable statements controlled by
an IF, DO, or SELECT CASE statement. The following example uses the construct name
cname as an identifier at the top and bottom of an IF block:

C conname.f

C

PROGRAM conname

key = 12

cname: IF(key .gt. 10) THEN

key = key - 1

WRITE(*,10) key

END IF cname

10 FORMAT('Key=',I5)

END PROGRAM conname

CYCLE and EXIT
An EXIT statement can be used to immediately abandon the execution of a loop and jump
to the statement following it. That is, executing an EXIT statement inside a loop is the
same as executing a GOTO statement that jumps to the statement immediately following
the loop. (If you are familiar with C syntax, EXIT is to Fortran what break is to C.)

ACYCLE statement can be used to immediately abandon the execution of a loop and
jump to the bottom of the loop to start another iteration. That is, executing a CYCLE
statement inside a loop is the same as executing a GOTO statement that jumps to
a CONTINUE statement that is the last statement of the loop. (If you are familiar with
C syntax, CYCLE is to Fortran what continue is to C.)

The following example demonstrates both the EXIT and CYCLE statements:

150 G C C : T h e C o m p l e t e R e f e r e n c e

C cycle.f

PROGRAM cycle

DO 10 i=1,3

IF (i .EQ. 2) CYCLE

WRITE(*,30) i

10 CONTINUE

DO 20 i=1,3

IF (i .EQ. 2) EXIT

WRITE(*,30) i

20 CONTINUE

30 FORMAT('i=',I5)

END PROGRAM cycle

The following is the output from this program:

i= 1

i= 3

i= 1

The first loop writes the number 1 on its first iteration, skips the WRITE statement
(by skipping to the bottom of the loop) on the second iteration, and writes 3 on the third
iteration. The second loop writes the number 1 on its first iteration and then abandons
the loop while in its second iteration.

DO WHILE
The DO WHILE statement can be used with a logical expression and terminated by an
END DO to form a loop, as in the following example:

C dowhile.f

PROGRAM dowhile

k = 5

DO WHILE (k .gt. 0)

WRITE(*,20) k

k = k - 1

END DO

20 FORMAT('k=',I5)

END PROGRAM dowhile

DO Forever
By using a DO statement with nothing else on the line, a loop is constructed that will
continue to iterate until the program is terminated or a specific exit is made from the

C h a p t e r 7 : C o m p i l i n g F o r t r a n 151
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

152 G C C : T h e C o m p l e t e R e f e r e n c e

loop. The following example iterates until the value of the counter reaches 8 and the
GOTO statement jumps out of the loop:

C doforever.f

PROGRAM doforever

k = 0

DO

WRITE(*,20) k

if (k .ge. 8) GOTO 100

k = k + 1

END DO

20 FORMAT('k=',I5)

100 CONTINUE

END PROGRAM doforever

IMPLICIT NONE
The IMPLICIT NONE statement will prevent the automatic declaration of variables and
require that each one be explicitly declared as to type. For example, the following
program automatically defines and assumes the type of the loop counter:

PROGRAM imp

DO 10 k=1,5

PRINT *,k

10 CONTINUE

END PROGRAM imp

Adding an IMPLICIT NONE statement at the top of the program requires that
everything be declared before it is used, including the loop counter, as in the following
example:

PROGRAM imp

IMPLICIT NONE

INTEGER k

DO 10 k=1,5

PRINT *,k

10 CONTINUE

END PROGRAM imp

INCLUDE
The INCLUDE directive is defined in the standard as having the following syntax:

INCLUDE filename

The meaning of filename is left to the implementation. The GNU compiler interprets
filename as the name of a file either in the current directory or in any directory
named by an -I option on the command line. Therefore, the INCLUDE directive works
the same as the #include preprocessor directive described earlier in this chapter,
except there is no preprocessing required for the INCLUDE directive.

Integer Constants
Integer constant values can be expressed in base 2, 8, 10, or 16. The following example
declares the same value in each of these bases. A base 2 (binary) number is preceded with
the letter B. A base 8 (octal) constant is preceded by the letter O. A base 16 (hexadecimal)
constant is preceded by either the letter X or the letter Z, and each hexadecimal digit
can be in either upper- or lowercase.

The following example demonstrates the syntax of a constant being declared in each
of the bases by having the same value declared in each one:

C bases.f

C

PROGRAM bases

M = 18987

PRINT *,M

M = X'4A2b'

PRINT *,M

M = Z'4A2b'

PRINT *,M

M = O'45053'

PRINT *,M

M = B'0100101000101011'

PRINT *,M

END PROGRAM bases

Comparison Operators
Table 7-6 lists the characters that can be used in place of the traditional comparison
operators.

C h a p t e r 7 : C o m p i l i n g F o r t r a n 153
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Kinds of Data
A special notation has been devised that allows for making modifications to the
fundamental variable types. For example, the syntax for defining an INTEGER
value of KIND 3 is as follows:

INTEGER(KIND=3)

The possible values for KIND are 0, 1, 3, 5, and 7. The syntax is valid for all the
generic types (INTEGER, REAL, COMPLEX, LOGICAL, and CHARACTER), although not
all values are valid for all types. Table 7-7 describes each value along with how (and
whether) it applies to each of the data types for GCC. The exact meaning of the KIND
value will vary from one platform to the next because of differences in hardware, as
do the sizes and ranges of the default types.

154 G C C : T h e C o m p l e t e R e f e r e n c e

Original Alternative Means

.GT. > Greater than

.LT. < Less than

.GE. >= Greater than or equal to

.LE. <= Less than or equal to

.NE. /= Not equal to

.EQ. == Equal to

Table 7-6. Alternative Characters for the Original Comparison Operators

C h a p t e r 7 : C o m p i l i n g F o r t r a n 155
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

KIND Value Description

0 This value currently has no effect but is reserved for future use.
There are plans to have the resulting type be context sensitive
and adjust its semantics depending on how it is used.

1 This is the default setting. The result is the same as if no KIND
value had been specified. This is typically REAL*4, INTEGER*4,
LOGICAL*4, and COMPLEX*8.

2 These types occupy twice the space of the default. In GNU,
variables of this KIND are equivalent to the Fortran 90 standard
for double precision. That is, REAL(KIND=2) is equivalent to
DOUBLE PRECISION, which, in turn, is typically REAL*8. Also,
COMPLEX(KIND=2) is equivalent to DOUBLE COMPLEX, which,
in turn, is typically COMPLEX*16.
INTEGER(KIND=2) and LOGICAL(KIND=2) are not supported
on every GNU implementation.

3 These types occupy as much space as a single
CHARACTER(KIND=1) type. These are typically INTEGER*1
and LOGICAL*1. This KIND is not necessarily implemented for
all types on all GNU implementations.

5 These types occupy half as much space as the default type
(as specified by KIND=1). These are typically INTEGER*2
and LOGICAL*2. This KIND is not necessarily implemented
for all types on all GNU implementations.

7 This is valid only for INTEGER(KIND=7) and is the same
size as the smallest possible pointer that can hold a unique
address of a CHARACTER*1 variable. On a 32-bit system, this
is equivalent to INTEGER*4, while on a 64-bit system it is
equivalent to INTEGER*8.

Table 7-7. The Numbers Defined for the KIND Notation

This page intentionally left blank.

Chapter 8
Compiling Java

157

158 G C C : T h e C o m p l e t e R e f e r e n c e

Although there is no standard definition of the Java language in the same way
that an official standards body has published a document for C, C++, and Ada,
there is a single and very clear definition of the Java language. Sun Microsystems

has complete control of the language definition and has assumed the responsibility of
maintaining and extending the language. The syntax and fundamental operation of the
language itself has changed very little, but the API (the system classes) has been updated
regularly and has grown to several times its original size.

As far as the compiler is concerned, Java is a bit different from the other languages
because it has two distinct forms of object code for each platform. Just as with C, C++,
or any other compiled language, the compiler can be used to generate binary executable
object files that can be run natively on the target machine. The Java compiler is also
capable of producing an object file in the Java bytecode format that can be executed by
any Java Virtual Machine (JVM). The Java compiler is also capable of using Java bytecode
as input to produce a native executable object.

Fundamental Compiling
Table 8-1 lists the file name suffixes that have to do with compiling and linking Java
programs. A table listing all the suffixes recognized by GCC can be found in Appendix D.

Single Source to Binary Executable
For a Java class to be executable, it must be public and it must contain a public
method named main(), as in the following example:

/* HelloWorld.java */

public class HelloWorld {

public static void main(String arg[]) {

System.out.println("hello, world");

}

}

To compile a Java program, it is necessary to use the gcj command, which is the
Java front end to the gcc compiler. The Java language allows every class to have its
own main() method and thus be executable. This works fine for the Java interpreter,
where the class name is specified on the command line when you run the program, but
when dealing with an executable program, there must be a single starting point specified.
The following command compiles and links HelloWorld.java into a native executable
program. The --main option specifies that the program should use the main() method of
the HelloWorld class as the starting point of the program:

$ gcj --main=HelloWorld -Wall HelloWorld.java -o HelloWorld

The -o option is used to name the executable HelloWorld, which would otherwise
default to being named a.out. To execute this program, simply enter its name from
the command line, as follows:

$ HelloWorld

Because this file is a binary executable, it is free from the naming restrictions required
of the interpreted Java class files. The executable can be named anything you would
like, as in the following example, which compiles the same HelloWorld.java into an
executable file named howdy:

$ gcj --main=HelloWorld -Wall HelloWorld.java -o howdy

But this relaxation only applies to the binary executable file. The source file of a public
class must be the same name as the file that contains it. That is, a public class by the
name of HelloWorld must be defined in a source file named HelloWorld.java.

Single Source to Class File
The GNU compiler can be used to produce a Java .class file that can be executed by
a Java Virtual Machine. The following command uses the -C option to create the file
HelloWorld.class from the source file HelloWorld.java:

$ gcj -C -Wall HelloWorld.java

C h a p t e r 8 : C o m p i l i n g J a v a 159
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Suffix File Contains

.a A library (archive file) containing object files for static linking

.class An object file containing bytecodes in a format that can be executed
by a Java Virtual Machine

.java Java source code

.o A binary object file in a format appropriate to be supplied to a linker

.s Assembly language source code

.so A shared library containing object files for dynamic linking

Table 8-1. File Name Suffixes in Java Programming

The -o option is not available in combination with the -C option, so the output
.class file will always have the same base name as the input .java file. The class
HelloWorld contains the required public static void main() method, so it can
be executed by the Java Virtual Machine from the command line as follows:

$ gij HelloWorld

The class file is compatible with other Java interpreters. The same program can be
executed by Sun’s Java Virtual Machine as follows:

$ java HelloWorld

Single Source to Binary Object File
The following command uses the -c option to suppress linking and produce a binary
object file that can be either linked into an executable or stored in a static library to be
linked later:

$ gcj -c HelloWorld.java

This command will produce an object file named HelloWorld.o. Optionally,
the name of the object file can be specified by using the -o option, as in the
following example:

$ gcj -c HelloWorld.java -o hello.o

The gcj command can be used to link the hello.o file into an executable. The
hello.o file contains the definition of the class named HelloWorld, and that class
contains the static main() method that is to be used as the entry point of the program,
so it must be specified on the command line as follows:

$ gcj --main=HelloWorld hello.o -o hello

There is seldom a need to change the names of the object files this way. It was done
in this example to point out the fact that the --main option requires the name of a class,
not the name of a file.

Class File to Native Executable
The gcj command can be used to compile Java bytecodes directly into a native binary
executable. The file with the .class suffix is treated on the command line just as if it
were a source file with the .java suffix. In the following example, the first command

160 G C C : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 8 : C o m p i l i n g J a v a 161
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

compiles the source into a class file, and the second command compiles the class file
into an executable:

$ gcj -C HelloWorld.java

$ gcj HelloWorld.class -o HelloWorld

Multiple Source Files to Binary Executable
Compiling a collection of Java source files into a single executable is a matter of compiling
the individual source files and then linking them into a single executable while
specifying the one that contains the main() method. The following simple example
has a mainline that uses another class to construct a string and yet another class to
display the string. The SayHello class contains the mainline:

/* SayHello.java */

public class SayHello {

public static void main(String arg[]) {

WordCat cat = new WordCat();

cat.add("Hello");

cat.add("cruel");

cat.add("world");

Say say = new Say(cat.toString());

say.speak();

}

}

The add() method of the WordCat class accepts one word, which it appends to its
internal string. The toString() method of WordCat returns the resulting string, which
is passed to the speak() method of an object of the Say class, causing the string to be
displayed. The following is the WordCat class, which builds strings one word at a time:

/* WordCat */

public class WordCat {

private String string = "";

public void add(String newWord) {

if(string.length() > 0)

string += " ";

string += newWord;

}

public String toString() {

return(string);

}

}

The Say class is constructed containing a character string and has the speak()
method, which can be used to display the string:

/* Say.java */

public class Say {

private String string;

Say(String str) {

string = str;

}

public void speak() {

System.out.println(string);

}

}

These three classes can be compiled into a native executable in several ways.
The most straightforward is to do it in a single command line, as follows:

$ gcj --main=SayHello Say.java SayHello.java WordCat.java -o SayHello

This command will compile all three source files into object files and link the object
files into a single executable named SayHello (establishing the main() method of
SayHello as the program’s entry point). The same result can be achieved by using
a sequence of commands to compile the individual object files and then linking them
together into an executable:

$ gcj -c SayHello.java

$ gcj -c Say.java

$ gcj -c WordCat.java

$ gcj --main=SayHello Say.o SayHello.o WordCat.o -o SayHello

It is possible to first compile the source files into class files and then compile and
link them into an executable, as described in the next section.

Multiple Input Files to Executables
Using the same source code examples as in the previous section, the following command
can be used to compile three source files into three class files:

$ gcj -C SayHello.java Say.java WordCat.java

The result is a set of class files that can be executed by using the Java Virtual Machine,
as follows:

162 G C C : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 8 : C o m p i l i n g J a v a 163
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

$ java SayHello

All the Java source code in the current directory can be compiled into class files
with the following single command:

$ gcj -C *.java

Java class files can be treated as if they were source code files that can be compiled and
linked into a native executable. In the following example, the first command compiles
the source into a collection of class files, and the second command compiles the class
files into a native executable program:

$ gcj -C SayHello.java Say.java WordCat.java

$ gcj --main=SayHello Say.class WordCat.class SayHello.class -o SayHello

The gcj command determines what to do with an input file named on the command
line by looking at the file name suffix. If the suffix is .java, the compiler knows that it
is a Java source code file that must be compiled. If the suffix is .class, the file is assumed
to be Java bytecodes that are to be compiled. The .o suffix indicates a native object file
that can be linked directly into the native executable. Because of this, it is possible to mix
the input and have a program compiled and linked from a combination of source, class,
and object files, as in the following example:

$ gcj -c SayHello.java -o SayHello.o

$ gcj -C WordCat.java

$ gcj --main=SayHello SayHello.o Say.java WordCat.class -o SayHello

Generating Assembly Language
The following class, when executed, creates an instance of itself that it uses to display
a string on standard output:

/* Jasm.java */

public class Jasm {

public static void main(String arg[]) {

Jasm jsm = new Jasm();

jsm.speak();

}

public void speak() {

System.out.println("Jasm speaks");

}

}

This class is a complete application and can be compiled and run. It can also be
compiled into native assembly language with the following command:

$ gcj -S Jasm.java

The output from this command is a file named Jasm.s with the assembler code
that can be used to create an executable.

An alternate method of producing an assembly language file is to use a class file as
input. The two following commands create a class file from Jasm.java and use it to
generate an assembly language file:

$ gcj -C Jasm.java

$ gcj -S Jasm.class

The output files from these commands are named Jasm.class and Jasm.s.

Creating a Static Library
A static library is a collection of .o files stored in a single file, called a static library or an
archive file. Linking a program with the contents of the library is the same as linking
a program with the individual object files.

Using the example source files from earlier in this chapter, the following command
will create the object files WordCat.o and Say.o to be stored in a library:

$ gcj -c WordCat.java Say.java

The ar utility is used to construct and maintain static libraries. Using ar with the
-r option will cause the named library file to be created from the named object files, or
if the library already exists, the -r option will update the library with newer versions
of the object files. The following command creates a library named libsay.a that contains
the two object files:

$ ar -r libsay.a WordCat.o Say.o

To use the object files stored in the library, it is only necessary to include the name
of the library on the gcj command line, as in the following example, which produces
an executable program named libhello:

$ gcj --main=SayHello SayHello.java libsay.a -o libhello

164 G C C : T h e C o m p l e t e R e f e r e n c e

Specifying the library name on the command line this way requires that the library
be in the current directory. If the library is in a directory that gcj searches to find libraries,
you can use the -l option for specifying the library name, as in the following example:

$ gcj --main=SayHello SayHello.java -lsay -o libhello

More information on the location of libraries can be found in Chapter 12.

Creating a Shared Library
A shared library is a collection of object files stored inside a single file, in much the
same way as a static library, with two main differences. First, the object files inside the
shared (also called dynamic) library are loaded and linked to the program at the time
the program starts running. Second, the object files must be compiled in a special way
so they can be executed without modification wherever they happen to be loaded into
memory. The following example uses the source files described earlier in this chapter.

To create the object files to be stored in the shared library, they must be compiled
with the -fpic option to produce position independent code. This is code that uses only
relative addressing for internal references and branching, which precludes the necessity
of an extensive relocation process every time the code is loaded into memory. The
following command will produce object files in the desired format:

$ gcj -fpic -c WordCat.java Say.java

The gcj command is used with the -shared option to link the object files into a new
shared library named libsay.so, as follows:

$ gcj -shared WordCat.o Say.o -o libsay.so

The source file SayHello.java can be compiled into an executable program named
shlibhello that uses the object files stored in the library by including the library name
on the command line as follows:

$ gcj --main=SayHello SayHello.java libsay.so -o shlibhello

The actual content of libsay.so is not included inside the shlibhello executable.
What is included in the executable are the instructions necessary to load the required
object modules from a shared library with the correct name. For this to happen, the
executable must be able to locate the library whenever it is run. Information on
the location of shared libraries can be found in Chapter 12.

C h a p t e r 8 : C o m p i l i n g J a v a 165
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Creating a Jar File
The Java language has a special kind of archive file that contains class files. The Java
archive file is known as a jar file. The format of a jar file is the same as a zip file, but a
jar file also contains a special manifest that contains descriptive information. All external
references in Java are based on class names, so it is only necessary for a Java program
to locate the correct jar file (or files), and it will search through the manifest to find any
class it needs. The following example uses the sample source files found earlier in
this chapter.

To create a jar file, it is first necessary to compile the source into class files, as in the
following example:

$ gcj -C WordCat.java Say.java

The jar utility with the c option will create a jar file. The f option indicates that
the name of the jar file is the next argument on the command line. The rest of the command
line is made up of the names of the class files to be stored in the jar file. The following
command creates a jar file named libsay.jar containing the two class files and
a manifest:

$ jar cf libsay.jar WordCat.class Say.class

The class files stored in a jar file can be compiled and linked directly into an executable
program, the same as jar files stored in a directory. The following command compiles
the Java mainline class SayHello.java into an executable named jarlibhello by
compiling it and linking it with the classes in the jar file libsay.jar:

$ gcj --main=SayHello libsay.jar SayHello.java -o jarlibhello

The Java Utilities
Besides the gcj compiler, the GCC distribution includes a number of utility programs
for dealing with Java source and object files.

gij
The gij utility is a Java Virtual Machine that interprets and executes the bytecodes
found in Java class files. The command line contains the name of either the class file or
the jar file to be executed. For example, the following Java program echoes whatever it
finds on the command line:

166 G C C : T h e C o m p l e t e R e f e r e n c e

/* ListOptions.java */

public class ListOptions {

public static void main(String arg[]) {

for(int i=0; i<arg.length; i++) {

System.out.println(arg[i]);

}

}

}

The program can be compiled into a class file and the class file can be executed with
the following commands:

$ gcj -C ListOptions.java

$ gij ListOptions

Any arguments appearing on the command line following the name of the class are
passed to the program being run. The ListOptions class echoes the options to standard
output, so executing the class file from the command line results in the following:

$ gij ListOptions apple butter --help

apple

butter

--help

Table 8-2 lists the options that can be used on the command line of gij. Any options
that appear on the command line before the class name or jar file name are assumed to
be for gij.

The -jar option makes it possible to execute a class stored in a jar file. The jar file
must be constructed to contain a manifest file specifying the attribute Main-Class as
the name of the class to be executed. For example, in the jar file sayhello.jar, if the
class file SayHello.class is the one with the main() method to be the entry point of
the program, the manifest file must contain the following line:

Main-Class: SayHello

The following command will execute the jar file:

$ gij -jar sayhello.jar

C h a p t e r 8 : C o m p i l i n g J a v a 167
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

168 G C C : T h e C o m p l e t e R e f e r e n c e

jar
A jar (Java archive) file contains a collection of Java class files, and possibly other files,
in a form that can be read and executed directly by a Java Virtual Machine. The jar
utility can be used to create jar files, as well as view and modify their contents. Table 8-3
lists the command-line options of jar.

Option Description

-Dname[=value] The name becomes a defined system property name with
the specified value. If the value is omitted, the name is
defined with a value of a zero-length string.

--help Prints this list of options and quits.

-jar The name on the command line is interpreted as the name
of a jar file instead of a class file.

-ms=number The number is the initial size of the heap.

-mx=number The number is the maximum size of the heap.

--version Prints the version number of gij and quits.

Table 8-2. The Command-Line Options Available for gij

Option Description

-@ Reads the list of files named from standard input.

-c Creates a new jar file.

-C dir file Retrieves the file named file from the directory named dir.

-E dir Specifies that no files from the directory named dir are to
be included.

-f file The named file is the jar file.

--help Prints this list of options and some other brief help information.

-m file The named file is a file containing manifest information to
be included.

Table 8-3. The Command-Line Options of jar

C h a p t e r 8 : C o m p i l i n g J a v a 169
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

The command-line options of jar are very similar to those of the UNIX tar utility.
The option letters can be specified at the beginning of the command line without
a preceding hyphen. For example, the following command creates a jar file named
sayhello.jar containing all the class files in the current directory:

$ jar cvf sayhello.jar *.class

To create the same jar file and also specify that the manifest file include the information
from the text file hello.manifest, use the following command:

$ jar cvfm sayhello.jar hello.manifest *.class

The name of the jar file and the name of the manifest file must come in the same
order as the f and m options. The following command is the same as the previous one,
except the file names are reversed on the command line:

$ jar cvmf hello.manifest sayhello.jar *.class

The same result can be achieved by using hyphens in front of the option letters,
as in the following example:

$ jar -c -v -f sayhello.jar -m hello.manifest

Option Description

-M Specifies that no manifest file is to be created.

-O Stores the files in the jar file without using compression.

-t Lists the contents of the jar file.

-u Updates an existing jar file.

-v Displays verbose output to standard output describing the
actions being taken.

-V Same as --version.

--version Displays the version number of the jar utility.

-x Extracts files from a jar file.

Table 8-3. The Command-Line Options of jar (continued)

170 G C C : T h e C o m p l e t e R e f e r e n c e

The following command will list the contents of the jar file sayhello.jar:

$ jar tvf sayhello.jar

The contents of a jar file can be simply files, but it can also be an entire directory tree.
The manifest file is always named MANIFEST.MF and stored in the jar file in a sub-
directory named META-INF.

gcjh
Native methods for Java can be written in either CNI (a C++ interface) or JNI (a C
interface). The gcjh utility reads Java class files and generates CNI and JNI header files
and stub files used to implement native methods. A CNI header file is for inclusion in a
C++ program, and a JNI file is valid for inclusion in a C program. The -stubs option
can be used to generate starter C and C++ files to be used for implementing native methods
using JNI or CNI. Table 8-4 lists the options available on the command line of gcjh.

Option Description

-add text Inserts the specified text into the C++ class body.
This option is ignored if -jni is specified.

-append text Inserts the specified text into the header file
following the C++ class declaration. This option
is ignored if -jni is specified.

--bootclasspath=path Overrides the built-in classpath.

--classpath=path Specifies the path to be used to locate class files.

--CLASSPATH=path Specifies the path to be used to locate class files.

-d directory Specifies the output directory name.

-friend text Inserts the specified text into the C++ class
definition as a friend declaration. This option
is ignored if -jni is specified.

--help Lists the options in this table to standard output.

-Idirectory Appends the specified directory onto the end of
the classpath.

Table 8-4. The Command-Line Options of gcjh

The input to gcjh is one or more Java class files. For example, the following command
will read the class file named Spangler.class and create a header file named
Spangler.h that is suitable for implementing native C++ methods for the class:

$ gcjh Spangler

C h a p t e r 8 : C o m p i l i n g J a v a 171
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Option Description

-M Suppresses normal output and prints all
dependencies to standard output.

-MD Prints all dependencies to standard output.

-MM Suppresses normal output and prints non-system
dependencies to standard output.

-MMD Prints non-system dependencies to standard output.

-o file Specifies the name of the output file. This option
will produce an error if more than one file is to
be output.

-prepend text Inserts the specified text into the header file before
the C++ class declaration. This option is ignored
if -jni is specified.

-stubs Stub files are generated instead of header files.
The stub file has the same base name as the class
but with the file suffix .cc. If -jni is also specified,
the suffix is .c.

-td directory The name of the directory to use for temporary files.

-v Prints extra information during processing.
Same as --verbose.

--verbose Prints extra information during processing.
Same as -v.

--version Prints the version number and exits.

Table 8-4. The Command-Line Options of gcjh (continued)

The following command will read the file Spangler.class and produce the file
Spangler.cc, which can be edited and used as the C++ code that interfaces with the
Java class:

$ gcjh -stub Spangler

The following command will read Spangler.class and produce the file
Spangler.h, which is a header file suitable for implementing native methods in C:

$ gcjh -jni Spangler

The following command will read the file Spangler.class and produce the
file Spangler.c, which can be edited and used as the C code that interfaces with the
Java class:

$ gcjh -jni -stub Spangler

Chapter 10 contains examples of using gcjh to mix C and C++ with Java.

jcf-dump
The jcf-dump utility lists information about the contents of a class file. Included
with this information is a complete list of the values in the pool of constants, the
superclasses, and interfaces, fields, and methods. Table 8-5 lists the options available
for the jcf-dump utility.

172 G C C : T h e C o m p l e t e R e f e r e n c e

Option Description

--bootclasspath=path Overrides the built-in classpath setting.

-c Disassembles the bytecodes of the method bodies.

--classpath=path Specifies the path to be used to locate class files.

--CLASSPATH=path Specifies the path to be used to locate class files.

--help Prints this list of options and exits.

-Idirectory Appends the specified directory onto the end of
the classpath.

Table 8-5. The Command-Line Options for jcf-dump

U
S

IN
G

TH
E

C
O

M
P

ILER
C

O
LLEC

TIO
N

For example, the following command will dump to the internal information of the
class file SwmpMilin.class to the file sm.dump:

$ jcf-dump SwmpMilin.class -o sm.dump

jv-scan
The jv-scan utility reads and analyzes the contents of one or more Java source files
and then prints information about them. Table 8-6 lists the command-line options
available for jv-scan.

C h a p t e r 8 : C o m p i l i n g J a v a 173

Option Description

--javap Generates the output in the same format as javap.
The program javap is provided as part of the
standard Sun Microsystems Java distribution.

-o file Directs the output to the named file instead of to
standard output.

-v Prints extra information during processing.
Same as --verbose.

--verbose Prints extra information during processing.
Same as -v.

--version Prints the version number and exits.

Table 8-5. The Command-Line Options for jcf-dump (continued)

Option Description

--complexity Prints the cyclomatic complexity value of each class.
The number is calculated by analyzing the control flow
as a directed graph and counting the nodes, edges, and
the number of connected components.

--encoding=name Specifies the encoding name of the particular character
set to be used when reading the source. If a locale name
is set, it is used; otherwise, UTF-8 is assumed.

Table 8-6. The Command-Line Options for jv-scan

174 G C C : T h e C o m p l e t e R e f e r e n c e

jv-convert
The jv-convert utility converts from one form of character encoding to another. The
input defaults to being standard input but can also be the first file name listed on
the command line or the file named with the -i option. The output defaults to standard
output but can also be the second file named on the command line or the file named
with the -o option. Table 8-7 lists the command-line options. For example, the following
command will convert the contents of a file named PierNun.uni containing the Unicode
8-bit encoding format to a file named PierNun.java in the format of Java source
code with Unicode characters using \u escape sequences:

$ jv-convert --from UTF8 --to JavaSrc PierNun.uni PierNun.java

The command-line options for jv-convert are listed in Table 8-7, and the types of
encoding available are listed in Table 8-8.

There is no command that can be used to list the available conversion options.
Table 8-8 contains the encoding options that existed at the time of this writing, but
more are almost certain to be added over time. To find out which ones are available
for your compiler, look at the source code directory tree gcc/libjava/gnu/gcj/
convert for files with names of the form Input_*.c and Ouput_*.c, where the
asterisk is the name of an encoding scheme that can be used as input or output,
respectively. The conversion process uses Unicode as an internal, intermediate
form, so any input/output pairs can be used together. Some conversions are
platform dependent.

Option Description

--help Prints this list of options and exits.

--list-class Prints the names of the classes found in all the files on
the command line.

--list-filename When used in conjunction with --list-class, the
file name containing each class is also listed.

-o file The output is directed to the named file instead of to
standard output.

--print-main Prints the names of the classes containing a public
static void main() method.

--version Prints the version number and exits.

Table 8-6. The Command-Line Options for jv-scan (continued)

U
S

IN
G

TH
E

C
O

M
P

ILER
C

O
LLEC

TIO
N

C h a p t e r 8 : C o m p i l i n g J a v a 175

Option Description

--encoding name The name of the encoding scheme of the input data.
The default is the local computer’s locale encoding.
Same as --from.

--from name The name of the encoding scheme of the input data.
The default is the local computer’s locale encoding.
Same as --encoding.

--help Prints this list of options.

-i file The name of the input file.

-o file The name of the output file.

--reverse Reverses the specified --from and --to encodings.

-to name The name of the encoding scheme of the output data.
The default is JavaSrc, which is ASCII text with Java
\uXXXX hexadecimal encoding for non-ASCII characters.

--version Prints the version number of jv-convert.

Table 8-7. Command-Line Options for jv-convert

Encoding Name Description

8859_1 ISO-Latin-1 (8851-1) text.

ASCII The standard ASCII character set.

EUCJIS Extended UNIX Code for Japan.

JavaSrc The standard ASCII character set with embedded Java
hexadecimal \uXXXX encoding for Unicode characters.

SJIS Shift JIS, which is used on Japanese Microsoft Windows.

UTF8 A form of encoding Unicode characters that preserves
ASCII characters as 8-bit entities.

Table 8-8. Character Encodings Known to jv-convert

grepjar
The grepjar utility searches through the contents of a jar file to attempt to find a match
on a regular expression, and it prints the names of the files along with the actual string
that matched the regular expression. All files in the jar file are searched, including the
manifest. For example, the following command will list all the classes in the jar file
sayhello.jar that have a main() method:

$ grepjar main sayhello.jar

The following command will list the class specified as the Main-Class in the
manifest file:

$ grepjar Main-Class sayhello.jar

Table 8-9 lists the grepjar command-line options.

176 G C C : T h e C o m p l e t e R e f e r e n c e

Option Description

-b Prints the byte offset into the file of the match.

-c Prints the number of matches found instead of printing each
individual match.

-e This option can be used to specify the pattern to be matched,
if the position on the command line does not make it clear.

--help Prints this list of options.

-i Ignores case when determining a match.

-n Prints the line number in the file for each match.

-s Suppresses the printing of error messages.

--version Prints the version number of grepjar.

-w Specifies that the regular expression pattern only match
full words.

Table 8-9. Command-Line Options for grepjar

RMI
The Remote Method Invocation (RMI) facility allows a Java object executing in one virtual
machine to make a call to a method of an object in another virtual machine. The two
virtual machines may be on the same computer or on separate computers. Arguments
are serialized (a process known as marshaling) so they can be transmitted from the call to
the called method, and the return value is serialized to be transmitted back to the caller.

A central registry contains the name and location of the active methods that can be
called. The object making the call need not be aware of the fact that the method is remote.
The calling object calls the method by its name, and the local method called is known as a
stub. It is the stub that locates the actual method in the registry, marshals the arguments,
and transmits the arguments (along with the return address) to the skeleton method at the
other location. The transport uses TCP/IP, so the remote virtual machine can be located
anywhere. On the remote machine, the skeleton method unmarshals the arguments and
calls the actual method. The method returns the resulting value to its skeleton caller, which
marshals the result and transmits it back to the stub. The stub unmarshals the return
value and returns it to the original caller.

The virtual machine making the call is the client. The virtual machine receiving the
call is the server. Some special situations must be considered when handling remote
method calls:

� Because, during the remote calling process, objects can be created, marshaled,
and unmarshaled, it is necessary to handle automatic garbage collection on a
distributed system. The RMI uses a counter that increases with each reference
and decreases when a reference is dropped. It gets complicated because, for
one thing, remote objects returned to the caller can contain references to other
remote objects.

� The client virtual machine keeps a local count of the active references to each
remote object. A “referenced” message is sent to the remote virtual machine.
The count is incremented and decremented as references come and go, and each
change is sent to the remote virtual machine. When the count becomes zero, the
object can be garbage collected by the server.

� The server virtual machine keeps a list of all the client virtual machines and
the active object references for each one. If an object no longer has any remote
references, it can be removed. Also, a timer for each remote reference gets reset
each time the object is referenced, and if the timer expires, the reference counts
from that machine are set to zero.

rmic
The rmic utility is the RMI stub and skeleton compiler. The input to the compiler is a
compiled class file that implements the java.rmi.Remote interface, and the output
is the Java stub and skeleton source files and compiled class files.

C h a p t e r 8 : C o m p i l i n g J a v a 177
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

For example, the following is a very simple class that implements the
Remote interface:

/* HelloRemote.java */

public class HelloRemote implements java.rmi.Remote {

public void speak() {

System.out.println("hello from remote");

}

}

The following commands will produce the stubs and skeletons:

$ gcj -C HelloRemote.java

$ rmic HelloRemote

The output resulting from the first command is HelloRemote.class. The output from
the second command is HelloRemote_Stub.java, HelloRemote_Skel.java,
HelloRemote_Stub.class, and HelloRemote_Skel.class. The rmic compiler
invokes gcj to compile the stub and skeleton. Table 8-10 lists the command-line options

178 G C C : T h e C o m p l e t e R e f e r e n c e

Option Description

-classpath path The classpath to use for locating referenced classes.

-d directory The name of the directory to contain the generated stub
and skeleton files.

-depend Checks dependencies and recompiles any files that are
out of date.

-g Includes debugging information in the generated files.

-help Prints this list of options.

-J flag Passes the specified flag to the Java compiler for
compilation of the stub and skeleton classes.

-keep Retains the intermediate files instead of deleting them.
Same as -keepgenerated.

Table 8-10. Command-Line Options for rmic

for rmic. The options all use the single hyphen form, as shown in the table, but they
can also be written with a double hyphen.

rmiregistry
The rmiregistry is a daemon program that maintains a list of methods inside
the virtual machine available for remote invocation. It listens on a port (by default,
port number 1099) for incoming messages. If a port number other than the default is
desired, this can be entered on the command line. The only other options are those
shown in Table 8-11.

C h a p t e r 8 : C o m p i l i n g J a v a 179
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Option Description

--help Prints this list of options and exits.

--version Prints the current version number of rmiregistry and exits.

Table 8-11. Command-Line Options for rmiregistry

Option Description

-keepgenerated Retains the intermediate files instead of deleting them.
Same as –keep.

-nocompile Specifies not to compile the generated stub and skeleton
source files into class files.

-nowarn Suppresses warning messages.

-v1.1 Generates stubs for Java 1.1.

-v1.2 Generates stubs for Java 1.2.

-vcompan Generates stubs for both Java 1.1 and Java 1.2.

-verbose Prints descriptions of the steps taken to produce the stub
and skeleton files.

-version Prints the version number of the rmic compiler.

Table 8-10. Command-Line Options for rmic (continued)

Properties
Java has a set of predefined system properties that can be accessed from inside
a program. Each property consists of a key and a value, both of which are character
strings. To retrieve the value of a property, it is only necessary to know the key. For
example, the following method call can be used to determine the name of the user
running the program:

String username = System.getProperty("user.name");

The following program lists all the system properties:

/* AllProps.java */

import java.util.Properties;

public class AllProps {

public static void main(String arg[]) {

Properties properties = System.getProperties();

properties.list(System.out);

}

}

More than 30 properties are predefined. The list includes the name of the operating
system, the version of the Java compiler, the version of the operating system, the name
of the user, the path- and line-separator characters, and so on. In addition, you can define
properties of your own from either inside the program or on the command line.

The following program displays the values of three standard system properties named
java.vm.version, java.vm.vendor, and java.vm.name. The program also displays
the value of magic, if it is defined:

/* ShowProps.java */

public class ShowProps {

public static void main(String arg[]) {

System.out.println(

"vm.version="+System.getProperty("java.vm.version"));

System.out.println(

"vm.vendor="+System.getProperty("java.vm.vendor"));

System.out.println(

"vm.name="+System.getProperty("java.vm.name"));

String magic = System.getProperty("magic");

if(magic == null)

System.out.println("There is no magic");

else

180 G C C : T h e C o m p l e t e R e f e r e n c e

System.out.println("magic=" + magic);

}

}

The property magic can be defined on the command line with the -D option when
compiling the program into a binary executable, as follows:

$ gcj --main=ShowProps -Dmagic=xyzzy ShowProps.java -o showprops

Running the program results in a display that looks like the following:

$ showprops

vm.version=3.2 20020412 (experimental)

vm.vendor=Free Software Foundation, Inc.

vm.name=GNU libgcj

magic=xyzzy

The situation is different when compiling and running the program as a class file.
The property is defined when the program is run, not when it is compiled. For example,
the source file can be compiled into a class file with the following command:

$ gcj -C ShowProps.java

The following command will execute the class file with the property defined:

$ gij -Dmagic=xyzzy ShowProps

The output from executing the program as a class is the same as executing it as
a binary executable.

C h a p t e r 8 : C o m p i l i n g J a v a 181
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

This page intentionally left blank.

Chapter 9
Compiling Ada

183

184 G C C : T h e C o m p l e t e R e f e r e n c e

GNAT, which stands for GNU NYU Ada95 Translator or for simply GNU Ada
Translator, is the Ada compiler that has been integrated into, and is now a part
of, the GNU Compiler Collection.

Ada 95 is the latest Ada language standard, and the GCC compiler fully supports this
standard. It includes object oriented programming, inheritance, polymorphism, and
dynamic dispatching, along with the strong typing from Ada 83. The language standard
itself includes definitions for interfacing with programs written in C and Fortran.

Ada as a language, and as a compiler, has some unique requirements. Most notably,
the Ada object files can be traced back and verified against the source files that produced
them. Not only is this verification a normal part of the compiling and linking process,
but a number of utility programs can also be used from the command line to make these
comparisons and validations. Unlike the other GCC languages, Ada is written in Ada, so
there is a bit of bootstrapping that must take place to install it on your system.

Installation
The Ada front end is the newest addition to GCC. With the release of GCC 3.1, it has
been integrated into the compiler family well enough to produce executable code for
several platforms, but it is not easily ported to new systems. The Ada front end is
written in Ada, which is a perfectly reasonable way to do things, just as the C front end
of GCC is written in C, but this has made the porting situation for Ada different from
the other languages. Hopefully, over time the Ada language will be made as portable as
the other GCC languages, but for now it is necessary to have a minimal Ada compiler
installed on your system before you can compile the GCC Ada compiler.

To install the latest Ada compiler on your system, you will need to first install a
bootstrap Ada compiler. You can then use the regular GCC source code to compile
newer versions of your Ada compiler. The process for doing this is certainly going to
become simpler with time, and eventually the Ada compiler will be ported to as many
systems as the C compiler, but for now the following steps will work to get Ada
installed on any system to which it has been ported:

1. Download a binary executable copy of an Ada compiler to use as the bootstrap
compiler. Here are some places to look for a version for your computer:

� http://www.gnuada.org

� ftp://cs.nyu.edu/pub/gnat

� http://www.gnat.com

Alternatively, if you already have an Ada compiler installed, you will only
need to set the ADAC environment variable to its name and make sure that
the program by that name is somewhere on the PATH setting.

2. Follow the installation instructions that come with the download and install the
compiler on your computer. The exact installation procedure will vary depending
on the platform. The installation has two steps. First, the doconfig script explains
the installation procedure, asks questions about the style and location of the
installation, and constructs the actual installation script, named doinstall.
Second, executing the doinstall script will complete the installation.

3. Modify the PATH variable so the newly installed gcc will execute when entered
on the command line. If you already have a version of gcc installed, it is
important that this new directory (with the Ada compiler) come before the
previously installed version of gcc in the list of path directories. At this point,
you have a fully functional Ada compiler that can be used to write programs so,
if you wish, you can stop after this step and begin writing Ada programs.
However, if you want to be able to build your own Ada compiler from GNU
source, continue with the next step.

4. Execute the configure script as described in Chapter 2. The Ada and C
languages should both be specifically enabled. Even if you will be including
other languages later, it is best to start by including only these two, because the
compile times are very long, and if your experience is like mine, you may need
to restart more than once. The following is an example series of commands that
will work from the parent directory of the gcc source directory and will set up
the build configuration in a directory named mybuild. Because of the setting of
the --prefix option, this configuration will ultimately install the compiler’s
parts in the directories /usr/gnat/bin, /usr/include, /usr/info,
/usr/gnat/lib, /usr/man, and /usr/share:

$ DIR='pwd'

$ mkdir $DIR/mybuild

$ cd $DIR/mybuild

$ $DIR/gcc/configure --prefix=/usr --enable-languages=c,ada

You will probably find it to your advantage to put this series of commands in a
script. Also, no matter what you are doing, you always need to enable the C
language, because if you build a compiler without C enabled, you cannot
compile a new version of the compiler.

5. Force certain files in the source directory to be up to date to guarantee that the
bootstrap programs for Ada will be compiled. After the configuration script
has been executed, the touch command will update the date and time of the
files so they are guaranteed to be newer than other files they are compared to.
Again, it would probably be best to put this into a script:

$ cd $DIR/gcc/gcc/ada

$ touch treeprs.ada

$ touch einfo.h

$ touch sinfo.h

C h a p t e r 9 : C o m p i l i n g A d a 185
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

$ touch nmake.adb

$ touch nmake.ads

6. Compile the programs you will need to help you bootstrap your compiler:

$ cd $DIR/mybuild

$ make bootstrap

7. It may be necessary to compile gnatlib separately. If not, it won’t hurt
anything to enter the command. The following commands will compile
gnatlib:

$ cd $DIR/mybuild/gcc

$ make gnatlib

8. If everything has gone well up to now, you are ready to install Ada with one
final make command. Because this installation requires modification to some
system directories, you will likely need to have super user permissions:

$ su

Password: *******

$ cd $DIR/mybuild

$ make install

$ exit

If you explore the installation directories, you may find that some of the GCC
files are duplicated by the Ada installation. This is normal, and future releases
will certainly clear this up, but for now it is necessary.

9. Finally, restore the PATH variable. First, remove the temporary setting that you
put in place to compile the bootstrap and the other Ada components, and then
add the new bin directory:

$ PATH=$PATH:/usr/gnat/bin

Fundamental Compiling
Table 9-1 lists the file name suffixes that have to do with compiling and linking Ada
programs. A table listing all the suffixes recognized by GCC can be found in Appendix D.

186 G C C : T h e C o m p l e t e R e f e r e n c e

Suffix File Contains

.a A library (archive file) containing object files for static linking.

.adb An Ada body file, which is source code containing a library unit body.

Table 9-1. File Name Suffixes in Ada Programming

Single Source to Executable
The following three steps are required to create an executable program from an Ada
source file:

1. The Ada source file is compiled into an object file.

2. The object file (or files) must be processed by the Ada binder.

3. The object file (or files) is linked with the appropriate libraries to create
an executable.

The first and third steps in this sequence are the same as the ones performed when
compiling other languages, but the second step is unique to Ada. The binder examines
the object files and does the following:

� Checks for consistencies among the object files for such things as compatibilities
among the option settings and versions of the compiler used.

� Verifies that there is a valid order of elaboration for the program.

U
S

IN
G

TH
E

C
O

M
P

ILER
C

O
LLEC

TIO
N

C h a p t e r 9 : C o m p i l i n g A d a 187

Suffix File Contains

.adc A GNAT configuration file for dead code elimination.

.ads An Ada spec file, which is source code containing a library unit
declaration or a library unit renaming a declaration.

.adt A GNAT tree file for dead code elimination.

.ali An intermediate file that is produced by the compiler to contain
information necessary for consistency checks and for linking.

.atb A file containing a representation of the internal tree used by the
compiler to represent the content of an .adb file.

.ats A file containing a representation of the internal tree used by the
compiler to represent the content of an .ads file.

.o An object file in a format appropriate to be supplied to the linker.

.s Assembly language code. This type of file is produced as in
intermediate step in creating the object file.

.so A library containing object files for dynamic linking.

Table 9-1. File Name Suffixes in Ada Programming (continued)

� Generates a mainline program based on the determined order of elaboration.
This is a small C program that calls the elaboration functions in the correct
order and then calls the main program.

� Determines the complete set of object files that make up the program and includes
the information in the generated C program. This makes the information
available to gnatlink, which is used to link the program into an executable.

The following is the source code of a simple program that writes a line of text on
the display:

with Text_IO; use text_IO;

procedure HelloWorld is

begin

Put_Line("hello world");

end HelloWorld;

This program is stored in a file named helloworld.adb and is compiled into an
object file with the following command:

$ gcc -c helloworld.adb

The -c option specifies that the program is to be compiled into an object file but not
linked into an executable. The -c option is required for Ada because the linking process
is different from that for other languages. The next step is to use the gnatbind utility
to do the binding:

$ gnatbind helloworld.ali

The result of the command is a pair of temporary work files named
b~helloworld.adb and b~helloworld.ads. The file helloworld.ali is
unchanged, as is the original source file, helloworld.adb, so now there are
a total of four files on disk.

The final step is to invoke gnatlink as follows:

$ gnatlink helloworld.ali

The result is an executable program named helloworld. Also left on disk is the
original source file helloworld.adb, along with the helloworld.ali file and an
object file named helloworld.o.

188 G C C : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 9 : C o m p i l i n g A d a 189
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Ada programs can be compiled and linked in another way. The utility gnatmake
uses criteria similar to that of make to determine which files need to be compiled; then
it invokes the compiler, gnatbind, and gnatlink to produce the same results as you
would get issuing the three separate commands. The following single command will
result in the same four files as the previous three-command combination:

$ gnatmake helloworld.adb

To make it even simpler, if no file suffix is provided, the gnatmake utility will
automatically append an .adb suffix, so the same command can be entered as follows:

$ gnatmake helloworld

Multiple Source to Executable
A collection of procedures can be defined as a package. The file howdy.abs contains
the specification of a package named Howdy that contains the procedures Hello
and Goodbye:

package Howdy is

procedure Hello;

procedure Goodbye;

end Howdy;

The procedure bodies themselves are defined in a file named howdy.adb as follows:

with Text_IO; use Text_IO;

package body Howdy is

procedure Hello is

begin

Put_Line("Howdy from package");

end Hello;

procedure Goodbye is

begin

Put_Line("Goodbye from package");

end Goodbye;

end Howdy;

A program that uses the procedures of the Howdy package to display text is stored
in a file named howdymain.adb:

with Howdy;

procedure HowdyMain is

begin

Howdy.hello;

Howdy.goodbye;

end HowdyMain;

The gnatmake utility understands this organization and will compile the source
files necessary to complete a program. The following command will produce an
executable from the source:

$ gnatmake howdymain

This is exactly the same as entering the following sequence of commands:

$ gcc -c howdymain.adb

$ gcc -c howdy.adb

$ gnatbind -x howdymain.ali

$ gnatlink howdymain.ali

The result is the creation of new files named howdy.ali, howdymain.ali,
howdy.o, howdymain.o, and the executable program named howdymain. Executing
the program howdymain results in the following output:

Howdy from package

Goodbye from package

Source to Assembly Language
The -S option instructs gcc to generate assembly language from the source code and
then stop. The following command will produce an assembly language file named
helloworld.s from the Ada source file helloworld.adb:

$ gcc -S helloworld.adb

The content of the assembly language file depends on the platform targeted by the
compiler. If more than one source file is included on the command line, a separate
assembly language file is produced.

190 G C C : T h e C o m p l e t e R e f e r e n c e

Options
All the command-line options are listed in Appendix D, but there are a few that have
special meaning to Ada. Table 9-2 lists the command-line options that affect any
language being compiled but have a special meaning for Ada.

In addition to the general command-line options in Table 9-2 and the many other
options listed in Appendix D, Table 9-3 lists another set of options that apply only to
Ada. These Ada-specific options all begin with the five character sequence -gnat.

C h a p t e r 9 : C o m p i l i n g A d a 191
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Option Description

-c Specifies to compile the source into an object but not
to link to an executable. This option is required when
compiling Ada because gcc does not invoke
gnatbind and gnatlink.

-fno-linline Suppresses all function inlining, no matter what level
of optimization is set.

-g Includes debugging information in the object file,
which is copied by the linker into the executable and
is made available to the debugger.

-Idirectory Adds the named directory to the list of those that are
searched for source files of programs required by the
program being compiled.

-I- Specifies to not look for other source files in the same
directory as the source file named on the command
line to be compiled.

-O[n] The optimization levels for Ada are the same as for
other languages, as described in Appendix D,
including n=3, which enables automatic inlining.

-S Generates assembly language output.

-v Displays the current version of GCC and displays all
the commands generated by the gcc driver.

-Vversion Executes the named version of the gcc compiler.

-Wuninitialized Generates a warning message for each uninitialized
variable. This only works if -O is also specified.

Table 9-2. General Command-Line Options That Pertain to Ada

192 G C C : T h e C o m p l e t e R e f e r e n c e

Option Description

-gnat83 Specifies that the program is to be compiled to the Ada 83
standard. The primary use of this option is in the porting of
source code to an Ada 83 compiler. The default is -gnat95.

-gnat95 Compiles the source code according to the Ada 95 standard.
This is the default mode.

-gnata Enables pragma Assert and pragma Debug. If this option is
not specified, any of these pragma settings encountered in the
source files are ignored.

-gnatb Any errors will cause the brief form of the error message to be
sent to standard output as well as the verbose error messages
included in the listing.

-gnatc The compiler runs detailed semantics checks but generates no
output files, other than possible error and warning messages.

-gnatdxx This option can be used to extract information about the
compilation process for debugging the compiler itself. The value
xx is a combination of one or more letters or digits that specifies
the type of debugging information to be extracted. There are 65
available codes (the uppercase letters, lowercase letters, and the
digits 1 through 9). These are seldom used, and descriptions for
them can be found in the comments of the source file
debug.adb, which is part of the compiler.

-gnate Error messages are generated as they are encountered instead of
being saved up until the end and reported at the conclusion of
compilation. This can cause error messages to appear out of
sequence, but it does allow messages to be reported that would
otherwise be lost if the compiler crashes.

-gnatE Enables dynamic access checking before the elaboration of
subprogram calls and generic instantiations.

Table 9-3. Command-Line Options Specific to Ada

C h a p t e r 9 : C o m p i l i n g A d a 193
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Option Description

-gnatf The compiler issues error messages that could be redundant. For
example, an error message is normally only generated once when
a variable is found to be undefined, but this option will cause the
generation of a message every time the variable is referenced.

-gnatg Enforces the styles defined by the routines in the source file (part
of the compiler) named style.adb. The elements of the style
enforced are documented as comments in the file. Normally this
option is used only for compiling units of the compiler itself.

-gnatich The value of ch is a single character indicating the character set
recognized by the compiler. All characters from the chosen
character set may be used in character literals and in identifiers.
The value of ch may be any one of the following:
1: Latin-1 character set. The character values 0 through 127 are the
standard ASCII characters. The values 128 through 255 represent
additional European alphabetic characters, such as the German
vowels with umlauts and the Swedish A-ring. This is the default.
2: Latin-2 character set.
3: Latin-3 character set.
4: Latin-4 character set.
P: The IBM PC (code page 437) character set. This is similar to the
Latin-1 character set, but the encodings of the values 128 through
255 are different.
8: The IBM PC (code page 850) character set. This is a modification
of code page 437 extended to include all the Latin-1 letters, but not
with the usual Latin-1 encoding.
F: Any character code in the range 128 through 255 is valid, and each
of the values is considered distinct. This makes custom character sets
possible (it is typically used to represent Chinese characters).
H: None of the character values 128 through 255 are valid. This is
an Ada 83 compatible format.

Table 9-3. Command-Line Options Specific to Ada (continued)

194 G C C : T h e C o m p l e t e R e f e r e n c e

Option Description

-gnatjch The value of ch is a single character indicating the format of
wide characters appearing in string literals and in identifiers.
The value of ch may be any one of the following:
N: No wide character format is specified. This is the default.
H: Hex encoding. Each wide character is represented by a
five-character sequence. The first character is ESC, and the next
four are uppercase hexadecimal digits representing the 16-bit
character code value.
U: Upper half encoding. The first bit set to 1 indicates that it is
the first byte of a 16-bit-wide character value. The wide
characters, then, are the hexadecimal values 16#8000# through
16#FFFF#. Note that this prevents the use of the upper half of the
Latin-1 character set.
S: Shift JIS encoding. Similar to upper half encoding, except each
wide character is written as two separate characters. The first
value has its upper bit set, so it is in the range 16#80# through
16#FF#, and the second is in the range 16#00# through 16#FF#.
Note that this prevents the use of the upper half of the Latin-1
character set.
E: EUC encoding. Similar to upper half encoding, except each
wide character is written as two separate characters, and both
values have their upper bits set. The first and second values are
both in the range 16#80# through 16#FF#. Note that this prevents
the use of the upper half of the Latin-1 character set.

-gnatkn The value of n is a number in the range of 1 through 999 and
specifies the maximum allowable length of a file name (not
including the .ads or .adb extension).

-gnatl The entire source file is listed, with line numbers, and with any
error messages included within it in the format specified by the
-gnatv option.

-gnatmn Specifies the maximum number of error messages to be output
from the compiler. The value of n is in the range 1 to 999. For
example, -gnatm3 will allow three error messages to be output
before abandoning the compile. The default is an unlimited
number of messages.

Table 9-3. Command-Line Options Specific to Ada (continued)

C h a p t e r 9 : C o m p i l i n g A d a 195
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Option Description

-gnatn Enables inlining within the same unit and across compilation
units where pragma inline is specified. This has an effect only
if the -O optimization flag is also specified.

-gnatN The same as -gnatn, except that pragma inline is assumed
for every source file.

-gnato Enables runtime checking for overflow on integer operations.
The code is larger and slower because of the insertion of a test
for every integer overflow condition as well as division by zero.

-gnatp Suppresses the creation of the runtime checks just as though
pragma Suppress(all_checks) had been included in the
source. Improves performance at the expense of protection from
invalid data.

-gnatq This option forces the compiler to attempt to generate output
even in the presence of syntax errors in the source code. This
may lead to the exposure of more errors, but it can also crash the
compiler or generate code with undefined behavior.

-gnatr This option verifies that the layout of the source code matches
the source code layout conventions specified in the Ada
language reference manual. Violations of the conventions are
considered syntax errors.

-gnats Runs syntax checking on the source and then halts. No output is
generated. When this option is used, it is valid to specify more
than one source file on the command line (although it is still
necessary to specify the -c flag).

-gnatt The compiler will write the internal tree to a file. The file bears
the same base name as the source and has the extension .atb for a
body source file and .ats for a spec source file.

-gnatu The compiler prints, to standard output, a list of all units on
which the current compilation unit is dependent, either directly
or indirectly.

Table 9-3. Command-Line Options Specific to Ada (continued)

196 G C C : T h e C o m p l e t e R e f e r e n c e

Each option is defined by one or two characters and can be specified separately, as
in the following example, which specifies both verbose mode and the enabling of
dynamic checks:

$ gcc -gnatv -gnatE -c helloworld.adb

The same pair of options can be specified in combination, as follows:

$ gcc -gnatvE -c helloworld.adb

Option Description

-gnatv The error messages are formatted to contain more information.
The default format contains the file name, line number, column
number, and a descriptive message, as follows:
hlowrld.adb:2:01: incorrect spelling of the
keyword "procedure"
With the -gnatv option, the format is more like the following:
Compiling hlowrld.adb (source file time stamp
2002-05-13 20:00:29)
2. proccedure HelloWorld is
|
>>> incorrect spelling of keyword "procedure"

-gnatwe All warning messages are treated as errors. The message issued
does not change, but any warning will suppress the generation
of an object file.

-gnatwl Issues warning messages relating to the order of elaboration.

-gnatws Suppresses the output of all warning messages.

-gnatwu Issues warning messages for entities that are defined but never
referenced. A warning is issued if no members of a package are
referenced. Warnings are also issued for anything on a with
statement that is never referenced.

-gnatx Suppress the cross-reference information normally included in
the .ali file. Some space is saved, but the tools that need the
information, such as gnatfind and gnatxref, cannot be used.

Table 9-3. Command-Line Options Specific to Ada (continued)

Ada Utilities
A number of utility progams are included along with the Ada compiler. Some are
required for development, such as gnatbind and gnatlink, and others are needed
only for special circumstances. These utilities provide a variety of ways you can
analyze your Ada source code. These types of tools are particularly important when
working on large projects or exploring code written by someone else.

gnatbind
The gnatbind utility performs the Ada binding action, which consists of the following:

1. Checks for program consistency and will issue error messages for any
inconsistencies among the various modules.

2. Determines whether there is a consistent order of elaboration available and
issues an error message if no such order is found.

3. Generates a small C program to be used as the mainline of the finally linked
executable. This program first calls the elaboration routines that initialize the
packages and then calls the mainline of the Ada program.

4. Determines the list of object files that are to be combined into the final executable.
This list is inserted into the generated C program so that it becomes available
to gnatlink.

The gnatbind utility requires as input an .ali file, which is the product of the
compiler. The other .ali files, and source files, are scanned by gnatbind to verify
consistency throughout. If the source code of any of the files the program depends on
has been modified without having been compiled, the gnatbind utility will detect and
report the situation.

The result of binding all the modules of a program together results in the output of
the source code of the entire program. The default name of the program is the same as
that of the original input .ali file, except the two new Ada files begin with b~ and one
has an .ads suffix and the other has an .adb suffix. Alternatively, the -C option can be
used to cause the generation of a C source code file with a .c suffix.

Table 9-4 lists the command-line options available for gnatbind.
For gnatbind to perform its validation task, it must be able to locate all the source and

.ali files that make up the program. The search for each file is made in the following order:

� The directory of the .ali file named on the command line. This may or may
not be the current directory. If -I- is specified, this directory is skipped.

� All directories named on any -I options specified on the command line.

� For source files only (not .ali files), each directory listed in the environment
variable ADA_INCLUDE_PATH. This is a path of colon-separated directory
names (the same format as the PATH environment variable).

C h a p t e r 9 : C o m p i l i n g A d a 197
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

� For .ali files only (not source files), each directory listed in the environment
variable ADA_OBJECTS_PATH. This is a path of colon-separated directory
names (the same format as the PATH environment variable).

� The default installation directory of the Ada compiler, which was determined at
the time the compiler was installed.

198 G C C : T h e C o m p l e t e R e f e r e n c e

Option Description

-aI directory Specifies the name of the directory to be searched for the
source file.

-aO directory Specifies the name of the directory to be searched for .ali files.

-b Produces a brief error message to standard error, even when
the -v flag is set to redirect error messages to standard output.

-c No output file is produced, but the input files are processed
and all error messages are produced.

-C The output file is a C source file instead of an Ada source file.

-e Prints a complete list, to standard output, of the elaboration
order dependencies, including the reason for each
dependency.

-E Stores trace-back information in occurrences of
Exception objects.

-h Prints a brief description of this list to standard output.

-I directory Specifies the name of the directory to be searched for both
source and .ali files.

-I- Specifies to not look in the current directory for source files
and not to look for other .ali files in the directory
containing the .ali file named on the command line.

-K Prints to standard output the list of options that are to be
passed to the linker. This is the same list of options that
appears as part of the generated .adb file.

-l Prints the chosen elaboration order to standard output.

-Lxxx For a library build (an Ada program without a mainline),
the programs named adainit and adafinal are changed
to xxxinit and xxxfinal.

Table 9-4. Command-Line Options for the gnatbind Utility

C h a p t e r 9 : C o m p i l i n g A d a 199
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Option Description

-mnumber Limits the maximum number of error messages reported
to the specified number. The value of number can range
from 1 to 999. Once this number is reached, gnatbind
quits processing.

-Mxxx Renames the generated main program from main to xxx.

-n There is no main program. (That is, the main program is
not written in Ada.)

-nostdinc Specifies to not look for source files in the system
default directory.

-nostdlib Specifies to not look for library files in the system
default directory.

-o filename Specifies the name of the output file instead of allowing it to
default to b_name.c, where name is the base name of the
input file.

-O Prints a list of the objects required to complete the link.

-p Specifies to use the pessimistic (worst-case) elaboration order.

-r Prints to standard output a list of additional pragma
restrictions being applied.

--RTS=dir Specifies dir as the directory to be used as the default for
searching for source and object files.

-s All source files must be present and are checked for
consistency. Normally gnatbind will ignore any missing
source files, but this option requires the presence of source
files on which the main compilation unit is dependent.

-Sxx Specifies the way that scalar values are to be initialized.
Specifying xx as in will initialize them to values invalid for
the type. Specifying lo will initialize them to the lowest
value, and hi will initialize them to the highest value. Any
other pair of characters is interpreted as hexadecimal digits
to specify the per-byte initial value.

-shared Specifies to link using the shared runtime libraries.

-static Specifies to link using the static runtime libraries.

Table 9-4. Command-Line Options for the gnatbind Utility (continued)

200 G C C : T h e C o m p l e t e R e f e r e n c e

gnatlink
The gnatlink utility links Ada object files into executable programs. This program is
a front end for invoking the linker via the gcc program, providing it with the correct
list of object files and libraries. It uses the file output from gnatbind to determine how
the link is to proceed.

Most of the information required by gnatlink is stored in the output file from
gantbind, so there are very few command-line options, as shown in Table 9-5. The
order of appearance of the various elements on the gnatlink command line can be
important. The following is the general layout of the command line:

$ gnatlink [options] mainprog.ali [non-ada object] [linker options]

The gnatlink options come first, followed by the name of the .ali file of the
mainline of the program. This is followed by any object files produced from a language
other than Ada that are to be included as part of the final executable. Any command-line
options after this are passed directly to the linker as it constructs the final executable.

Option Description

-t Timestamp error messages are treated as warnings. In effect,
the file consistency checks are disabled.

-Tnnn Sets the time slice value to nnn microseconds, where nnn
is an integer value greater than zero.

-v Produces verbose error messages and redirects them to
standard output instead of the default, standard error.

-we Treats all warning messages as fatal errors.

-ws Suppresses all warning messages.

-x No source files are checked. Only the .ali files are checked
for consistency with one another. This runs faster, but it
is possible that a change to a source file could slip by
undetected. This is reasonable to use inside a makefile
because there should be no change to the source between the
compilation and the running of gnatbind. The gnatmake
utility uses this option to invoke gnatbind.

-z There is no main subprogram.

Table 9-4. Command-Line Options for the gnatbind Utility (continued)

C h a p t e r 9 : C o m p i l i n g A d a 201
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

gnatmake
The gnatmake utility is a program designed to work something like the standard make
utility but is customized for Ada and its special requirements. With gnatmake, you can
enter a single command naming the source file of the mainline of your program, and the
entire program will be compiled and linked into an executable. The source files are all
examined to determine which other source and object files are needed, and each object
file is checked against its source file to determine whether it also needs to be compiled.

The gnatmake utility has a large number of options, as shown in Table 9-6. Some of
these are used by gnatmake, but the majority of them are passed through to gcc,
gnatbind, or gnatlink. Note that the options -P, -vPx, and -Xnm refer to a project

Option Description

-A The gnatbind-generated intermediate source file is expected
to be an Ada program. This is the default.

-b target The source from gnatbind is to be compiled to run on the
specified target.

-B directory Loads the executables for compiling and linking from the
specified directory.

-C The gnatbind-generated intermediate source file is expected
to be a C program.

-f Prints a list of the object files being linked.

-g This option includes debugging information and does not
delete the temporary work files produced by gnatbind.

--GCC=name Specifies the name of the front end for compiling. The default
is gcc.

--LINK=name Specifies the name of the front end for linking. The default
is gcc.

-n Specifies to not compile the files produced by gnatbind.

-o The name of the executable file produced from the link.

-v Verbose mode. This option can be specified twice for an even
more verbose mode.

Table 9-5. The Command-Line Options of gnatlink

202 G C C : T h e C o m p l e t e R e f e r e n c e

Option Description

-a Considers all files for input, including any read-only .ali
files. By default, an .ali file that is write-protected is not
checked by gnatmake.

-aIdirectory The named directory is included in the list of those
searched for source files.

-aLdirectory The .ali files in the named directory are presumed to be
supplied from another source, and gnatmake does not
attempt to validate or compile them. This has the same
effect as having the .ali files write-protected.

-aOdirectory The named directory is included in the list of those
searched for library and object files.

-Adirectory The same as specifying both -aLdirectory and
-aIdirectory.

-bargs list The options following -bargs on the command line are
passed to gnatbind. These can be any of the options
listed in Table 9-4.

-c Specifies to compile only. Does not invoke gnatbind and
gnatlink. This is the default if the source file specified
on the command line is not a mainline.

-cargs list The options following -cargs on the command line
are passed to the compiler. These can be any of the
Ada-specific options listed in Table 9-2 and any of the
general-purpose options described in Appendix D.

-f Forces all source files to be recompiled with regard to the
timestamps on the object files.

--GCC=name Uses name as the front end for the compiler. The default
is gcc.

--GNATBIND=name Uses name as the binder command. The default
is gnatbind.

--GNATLINK=name Uses name as the linker command. The default
is gnatlink.

Table 9-6. The Command-Line Options for gnatmake

C h a p t e r 9 : C o m p i l i n g A d a 203
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Option Description

-i Specifies that all compilations are to be done in place,
replacing any existing .ali file. If no .ali file exists, one
will be created in the same directory as the source file. The
default is to create new files only in the current directory.

-Idirectory The same as specifying -aIdirectory and
-aOdirectory.

-I- Specifies to not look for other source files in the directory
containing the source file named on the command line.

-jnumber Uses up to number processes to carry out compilations and
recompilations. Messages from the various compilations
may become intertwined.

-k Specifies to continue compiling after error conditions.
An attempt will be made to compile all source files,
and a list summarizing those that failed is output before
gnatmake terminates.

-largs list The options following -largs on the command line are
passed to gnatlink. These can be any of the options
listed in Table 9-5.

-Ldirectory Adds the named directory to the list of those searched
for libraries.

-m Keeps the number of recompilations to a minimum.
This option ignores timestamp differences if the only
modifications made were to comments or text formatting.

-M Prints the file dependencies to standard output in a form
suitable for insertion into a makefile. Each file is listed by
an absolute or relative path name unless the -q option is
also specified. System dependencies are omitted unless
the -a option is also specified. Dependencies on external
libraries are not included.

-n Suppresses the compile, bind, and link steps. This option
only makes checks to determine whether all object files
are up to date. If they are not up to date, the name of the
first file needing compilation will be listed.

Table 9-6. The Command-Line Options for gnatmake (continued)

204 G C C : T h e C o m p l e t e R e f e r e n c e

file, which is a special feature of the Emacs editor (version 20.2 or later) that enables the
editing and maintaining of these project files to configure and control compilation.

Because the options -cargs, -bargs, and -largs can be followed by any number
of options associated with them, these must appear as the last members of the
command line. The general syntax of the gnatmake command line is as follows:

$ gnatmake [options] filename [-cargs ...] [-bargs ...] [-largs ...]

The file name on the command line can be specified with or without the .abs suffix.

Option Description

-nostdinc Specifies to not look for source files in the system
default directory.

-nostdlib Specifies to not look for library files in the system
default directory.

-o name Specifies the name of the executable file. The default is to
use the name of the input file.

-P name Uses the named project file.

-q Proceeds in quiet/terse mode. The commands issued by
gnatmake are not displayed.

-s Recompiles all files for which the compiler option settings
have been changed.

-u Compiles only the named file, ignoring any dependencies
that may be out of date.

-v Proceeds in verbose mode. Displays the reasons why all
compilations or recompilations are necessary.

-vPx Proceeds in verbose mode when using a project file to
control compilation.

-Xnm=value For this option, value is an external reference to be used
by the project file.

-z There is no main subprogram, so it is not possible to link
the object files into a final executable file.

Table 9-6. The Command-Line Options for gnatmake (continued)

Following the -cargs option is a list of any number of options to be passed to the
compiler. The list is terminated by the -bargs option, the -largs option, or the end
of the command line. These three can be in any order. The options following -bargs
are all passed to the binder, and the -largs options are all passed to the linker.

gnatchop
The gnatchop utility reads source files and writes each one to one or more new source
files that follow the strict GNAT Ada file naming convention. The compiler requires
that a file contain only one compilation unit, and there must be a strict correspondence
between the compilation unit name and the file name. The gnatchop utility allows
you to convert all your source files at once. Alternatively, you can set up a list of
compilation commands (as in a makefile) to make the file name conversions each time
you compile your program.

The command line for gnatchop has the following basic format:

$ gnatchop [options] file [file ...] [directory]

With the command, the named file (or files) is chopped and the resulting new file
(or files) is placed in the current directory, or in the named directory if one is specified.
The options are listed in Table 9-7.

gnatxref
The gnatxref utility reads and displays the information stored by the compiler in the
.ali file. The command-line syntax of gnatxref is as follows:

$ gnatxref [options] file [file ...]

C h a p t e r 9 : C o m p i l i n g A d a 205
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Option Description

-c Invokes compilation mode, and the configuration pragmas in
the chopped are configured to conform to the rules of the Ada
95 standard.

-gnatxxx Any specified -gnat option is passed on to the parser.

-k[number] The generated file names are to be no longer than number
characters. If number is not specified, it defaults to 8.

Table 9-7. Command-Line Options for gnatchop

Each file name in the list is an .ali file, and the output is an alphabetical listing of
each package and procedure, along with the location of its declaration, body, and all
references to it. The options are listed in Table 9-8.

206 G C C : T h e C o m p l e t e R e f e r e n c e

Option Description

-a Considers all files. Normally, the content from read-only .ali
files is not included.

-aIdirectory Includes the named directory in the list of those searched for
input source files.

-aOdirectory Includes the named directory in the list of those searched for
input library and object files.

Table 9-8. Command-Line Options for gnatxref

Option Description

-q Quiet mode suppresses the normal listing of the input and
output file names.

-r Includes Source_Reference pragmas in the output files.
This option can be used if the output files are temporary work
files—the compiler will use the pragma information in the
text of error and warning messages to refer to the original
source file instead of the chopped file. Debugging information
inserted into the object file with the -g option will also refer
to the original file.

-v Verbose mode, where all generated commands are echoed to
standard output.

-w Overwrites existing files if necessary to produce the output.
Normally gnatchop will not replace a file if it already exists.

-x Specifies to exit immediately on any error.

Table 9-7. Command-Line Options for gnatchop (continued)

gnatfind
The gnatfind utility reads the information in the .ali files and locates the item
specified on the command line. The output is a list of every location in which
the specified item is found. The syntax of the command line is as follows:

$ gnatfind [options] pattern[:filename[:line[:column]]] [file ...]

The specified pattern is a subset of the regular expression available in the grep
utility. It can include an asterisk (*) to represent any group of characters, a question
mark (?) to represent any single character, and the standard [...] bracket construct
to specify a match on any one of a specific set of characters. Also, as you can see from
the command-line syntax, you can restrict the search to one specific file, and even to a
specific line and column number. If one or more file names are listed on the command
line, they will be the only ones searched.

The command-line options are listed in Table 9-9.

C h a p t e r 9 : C o m p i l i n g A d a 207
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Option Description

-d Includes derived type information as part of the
cross reference.

-f The files listed in the cross reference are shown with their
complete path names, instead of the default of displaying
the simple file names.

-g Limits the symbols in the cross reference to only
library-level entities. Local entities are omitted.

-Idirectory The same as specifying both -aIdirectory and
-aOdirectory.

-pfilename The named file is used as the project file. By default,
gnatxref will try to locate a project file in the
current directory.

-u Includes only unused symbols in the output.

-v Instead of a cross reference, the text of the output is in the
form of a tags file that can be used with the vi editor.

Table 9-8. Command-Line Options for gnatxref (continued)

gnatkr
Given an Ada name, the gnatkr utility will produce a shortened form of the name.
Although a specific set of rules is followed by gnatkr to reduce the name, the

208 G C C : T h e C o m p l e t e R e f e r e n c e

Option Description

-a Considers all files. Normally, the content from read-only .ali
files is not included.

-aIdirectory Includes the named directory in the list of those searched
for input source files.

-aOdirectory Includes the named directory in the list of those searched
for input library and object files.

-d Includes derived type information as part of the output.

-e Accepts the full regular expression syntax beyond simply
the asterisk, question mark, and pair of brackets. The full
regular expression syntax includes the following character
set as the set of available operators:
[] . * + ? ^

-f The files listed in the output are shown with their complete
path names, instead of the default of displaying the
simple names.

-g Limits the symbols in the output to only library-level
entities. Local entities are omitted.

-Idirectory The same as specifying both -aIdirectory and
-aOdirectory.

-pfilename The named file is used as the project file. By default,
gnatxref will try to locate a project file in the c
urrent directory.

-r Locates and lists all references. The default is to list only
the declarations.

-s Prints the entire source line in which the item is found
instead of simply listing its location.

-t Prints the type hierarchy of each item found.

Table 9-9. Command-Line Options for gnatfind

shortened names are not guaranteed to be unique. The default length of the shortened
file name is eight characters, but it is possible to specify another length, as shown by
the following command syntax:

$ gnatkr name [length]

The name shortening is done by breaking the name into parts using hyphens and
underscores and then shortening each piece, in turn, until the desired length is reached.
Some examples follow:

$ gnatkr longer-names-can-be-crunched

lncabecr

$ gnatkr The_Ada_Names_Are_Long

tanaarlo

$ gnatkr The_Ada_Names_Are_Long 5

tanal

gnatprep
The gnatprep utility can be used as a simple preprocessor of Ada source code. The
command line requires that both the input and output file names be specified on
the command line, and all the preprocessing definitions must be defined in a third
file or specified on the command line. The syntax of the command is as follows:

$ gnatprep inputfile outputfile [definitionsfile] [options]

Both inputfile and outputfile are required, and the full file names (including
suffixes) must be specified. Because outputfile is usually the one that is going to be
compiled, it will normally have a suffix of .adb or .ads. The command-line options
are listed in Table 9-10. The optional definitionsfile should contain one or more
symbol definitions in the following form:

symbol := value

The value in the definition can be blank, a quoted string, or any set of valid Ada
characters. Unlike the C preprocessor, gnatprep does not substitute every match it
finds. The symbols to be substituted must be specifically marked with a dollar symbol.
For example, suppose the definitions file contains the following line:

bracklin := thermolimit

C h a p t e r 9 : C o m p i l i n g A d a 209
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

This will cause thermolimit to replace every occurrence of the string $bracklin
found in the input source. Also, the directives #if, #elsif, and #end if; can be used
to control conditional compilation by testing symbols that are defined as either true or
false, as follows:

#if condrep then

Put_Line("condrep is defined as true");

#else

Put_Line("condrep is defined as false");

#end if;

The logic of the previous statement can be reversed by the not operator, as follows:

#if not condrep then

Put_Line("condrep is defined as false");

#else

210 G C C : T h e C o m p l e t e R e f e r e n c e

Option Description

-b Replaces each preprocessor line with a blank line.
The default is to remove the line.

-c Retains the preprocessor lines as comments in the
output source file. Each of these lines is marked with
the string "-!".

-Dsymbol=value Defines symbol as the specified value, just as if it had
been included in a definitions file as symbol := value.

-r Generates a Source_Reference pragma so that all error
messages and debugging information will refer back to the
original file. Unless -c is also specified, this option implies
-b to keep the line numbers consistent.

-s Prints a sorted list of the defined symbol names and
their values.

-u On an #if directive, this option treats an undefined symbol
as if it had been defined as false.

Table 9-10. The Command-Line Options for gnatprep

Put_Line("condrep is defined as true");

#end if;

gnatls
The gnatls utility is a library browser that can be used to extract and display information
about compiled units. It displays the relationships among objects, unit names, and source
files. It can also be used to determine the source code dependencies of a compilation unit.
The input files can be either .ali or .o files produced by the compiler.

The default format of the output consists of four columns. The first column is the
name of the object file being analyzed, the second is the name of the principal unit of
the object file, the third is the status of the source file, and the fourth is the name of the
source file. The possible source file status values are listed in Table 9-11.

The command-line options for gnatls, shown in Table 9-12, allow you to customize
the content and form of the output, as well as specify the search paths.

gnatpsys and gnatpsta
The output from gnatpsys is the source code of an Ada package that contains all the
system-dependent sizes and characteristics of the system on which it is run. It includes
the system definitions of such things as the maximum and minimum values contained
in an integer, the number of digits of accuracy of a floating-point number, the default

C h a p t e r 9 : C o m p i l i n g A d a 211
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Status Definition

??? The source file was not found.

DIF At least one matching source code file was found, but no version
of source could be found that matches the object file.

HID A version of the source exactly matches the object, but at least
one other version of the source (found first) does not match.
The matching source file is effectively hidden.

MOK The source code has been slightly modified since the object
file was produced, but not in such a way that requires it to be
recompiled. The modifications could have been in the formatting
or in the comments.

OK The object file is up-to-date and completely matches the source file.

Table 9-11. The Status Codes gnatls Assigns to the Source Files

integer size of the hardware, the maximum size of addressable memory, and whether
the hardware is big endian or little endian.

The output from gnatpsta is the source code of an Ada package that contains the
values assigned to definitions that are implementation dependent. This includes the
maximum and minimum floating-point numeric values, the entire character set recognized
by the compiler, and the method used to represent wide characters.

No command-line options exist for either of these programs. It is simply a matter of
running each program, which dynamically determines the values for its output.

212 G C C : T h e C o m p l e t e R e f e r e n c e

Option Description

-a Adds to the output information about relevant predefined
units. All units are listed, including those in the predefined
Ada library.

-aIdirectory The named directory is added to those included in the
source file search path.

-aOdirectory The named directory is added to those included in the object
file search path.

-d Includes in the output list of file names the source files on
which the files specified on the command line have
compilation dependencies.

-h Prints this list of command-line options.

-Idirectory The same as specifying both -aIdirectory and
-aOdirectory.

-I- Specifies to not look for source or object files in the system
default directory.

-nostdinc Specifies to not look for source files in the system
default directory.

-o Limits the output to information about object files.

-Pname Uses the named project file.

-s Limits the output to information about source files.

-u Limits the output to information about compilation units.

Table 9-12. Command-Line Options for gnatls

C h a p t e r 9 : C o m p i l i n g A d a 213
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Option Description

-v Generates verbose output, including the complete path to
source and object files. Also, descriptive terms are attached
to the listed files, as follows:
Elaborate_Body: The unit contains the pragma
Elaborate_Body.
No_Elab_Code: No elaboration code has been generated
by the compiler for this unit.
Predefined: The unit is part of the predefined
environment and cannot be modified by the user.
Preelaborable: The unit is preelaborable, as defined by
the Ada 95 standard.
Pure: The unit is pure, as defined by the Ada 95 standard.
Remote_Call_Interface: The unit contains the pragma
Remote_Call_Interface.
Remote_Type: The unit contains the pragma
Remote_Type.
Shared_Passive: The unit contains the pragma
Shared_Passive.

-vPnumber Sets the level of verbosity for reporting from the project file
to 0, 1, or 2.

-Xsymbol=value Specifies an external value.

Table 9-12. Command-Line Options for gnatls (continued)

This page intentionally left blank.

Chapter 10
Mixing Languages

215

216 G C C : T h e C o m p l e t e R e f e r e n c e

Circumstances arise that call for portions of a program to be written in a different
language. This usually happens because an existing body of software in one
language needs to be made compatible with another body of software. This can

be the result of the merging of projects, departments, or even companies. Probably the
most common reason for combining languages is to have the capabilities of one language
available to another—quite often a higher level language will find it convenient to have
access to the system-level facilities of C. Another cause of the use of two languages in
the same program is plain old politics.

This chapter discusses mixing languages inside the GCC family. It is possible, but
more difficult, to mix languages by producing object code from different compilers,
but the solution to that problem lies in the peculiarities of the compilers involved. The
complexities of such a mixture can lead to an unstable situation. GCC, by using the same
back end to produce the object code for all its languages, makes it possible to mix
languages in such a way that even an upgrade to the compiler should not disturb the
proper operation of the resulting program. There is no guarantee along this line, of course,
because a compiler is a complicated thing, and a minor tweak can cause a major problem
with language mixing.

When mixing languages, some tricky situations can arise. There is more to it than
fitting the fundamental structure of one language up against the fundamental structure
of another. The programmer must be ready to deal with global naming conventions,
name mangling, argument passing, data type conversion, error handling, and mixing
the standard runtime libraries from two languages.

Mixing C++ and C
The C and C++ languages mix naturally because C++ was designed as an extension to
C, so the calling conventions are the same and the data types are fundamentally the
same. The only difference is in the names of the functions—the C language uses simple
function names without regard to the number or types of parameters, whereas the name
of a C++ function always includes the list of parameter types as part of the function
name. However, C++ provides a special facility for making declarations of C functions,
which means a C++ program can declare and call a C function directly.

Calling C from C++
The following example is a C++ program that calls a C function named csayhello().
This call can be made directly because the function is declared in the C++ program as
extern "C":

C h a p t e r 1 0 : M i x i n g L a n g u a g e s 217
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

/* cpp2c.cpp */

#include <iostream>

extern "C" void csayhello(char *str);

int main(int argc,char *argv[])

{

csayhello("Hello from cpp to c");

return(0);

}

The C function requires no special declaration and appears as follows:

/* csayhello.c */

#include <stdio.h>

void csayhello(char *str)

{

printf("%s\n",str);

}

The following three commands compile the two programs and link them into an
executable. The flexibility of g++ and gcc allow this to be done in different ways, but
this set of commands is probably the most straightforward:

$ g++ -c cpp2c.cpp -o cpp2c.o

$ gcc -c csayhello.c -o csayhello.o

$ gcc cpp2c.o csayhello.o -lstdc++ -o cpp2c

Notice that it is necessary to specify the standard C++ library in the final link because
the gcc command is used to invoke the linker instead of the g++ command. If g++ had
been used, the C++ library would have been implied.

It is most common to have the function declarations in a header file and to have the
entire contents of the header file included as the extern "C" declaration. The syntax
for this is standard C++ and looks like the following:

extern "C" {

int mlimitav(int lowend, int highend);

void updatedesc(char *newdesc);

double getpct(char *name);

};

Calling C++ from C
For a C program to call a function in a C++ program, it is necessary for the C++ program
to provide a function that uses the C calling sequence. The following example
demonstrates the syntax for creating a C function inside a C++ program:

/* cppsayhello.cpp */

#include <iostream>

extern "C" void cppsayhello(char *str);

void cppsayhello(char *str)

{

std::cout << str << "\n";

}

Although the function cppsayhello() is declared by extern "C" as being a
C function, the fact that it is part of the source code of a C++ program means that the
code inside the body of the function is actually C++ code. You can freely create and
destroy objects within this function. Also, if you were to call a C function from inside
cppsayhello(), it would be necessary to declare it as extern "C". Otherwise, the
compiler would assume a C++ function and change the function name accordingly.

The following is a C program that calls the C++ cppsayhello() function:

/* c2cpp.c */

int main(int argc,char *argv[])

{

cppsayhello("Hello from C to C++");

return(0);

}

The following commands compile and link the c2cpp program:

$ g++ -c cppsayhello.cpp -o cppsayhello.o

$ gcc -c c2cpp.c -o c2cpp.o

$ gcc cppsayhello.o c2cpp.o -lstdc++ -o c2cpp

Mixing Objective-C and C
Because the Objective-C language is nothing other than C with the addition of some
syntax that allows for the declaration of classes, it is very simple to mix modules from

218 G C C : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 0 : M i x i n g L a n g u a g e s 219
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

the two languages. The calling sequences are the same for both, so there is nothing to
be done but call the function.

Calling C from Objective-C
The following Objective-C program passes the address of a character string to a C function
named csayhello():

/* objc2c.m */

#import <stdio.h>

int main(int argc,char *argv[])

{

csayhello("Hello from Objective-C to C");

return(0);

}

The csayhello() function displays the string to standard output, as follows:

/* csayhello.c */

#include <stdio.h>

void csayhello(char *str)

{

printf("%s\n",str);

}

The following three statements compile and link the program into an executable.
When linking the program, it is necessary to specify -lobjc to include the runtime
library for Objective-C:

$ gcc -Wno-import -c objc2c.m -o objc2c.o

$ gcc -c csayhello.c -o csayhello.o

$ gcc objc2c.o csayhnello.o -lobjc -o objc2c

Calling Objective-C from C
The following is a C program that calls an Objective-C function named
objcsayhello():

/* c2objc.c */

int main(int argc,char *argv[])

{

220 G C C : T h e C o m p l e t e R e f e r e n c e

objcsayhello("Hello from C to Objective-C");

return(0);

}

The source code of the Objective-C function being called is as follows:

/* objcsayhello.m */

#import <objc/Object.h>

#import "SpeakLine.h"

void objcsayhello(char *str)

{

id speak;

speak = [SpeakLine new];

[speak setString: str];

[speak say];

[speak free];

}

The function objcsayhello creates a SpeakLine object, stores the line of text
into it, and then uses the Say method to display the string. The SpeakLine header file
and implementation file are as follows:

/* SpeakLine.h */

#import <objc/Object.h>

@interface SpeakLine : Object

{

char *string;

}

- setString: (char *) str;

- say;

- free;

@end

/* SpeakLine.m */

#import "SpeakLine.h"

@implementation SpeakLine

+ new

{

self = [super new];

return self;

}

- setString: (char *)str

{

string = str;

return self;

}

- say

{

printf("%s\n",string);

return self;

}

- free

{

return [super free];

}

The following four commands compile each of the source files into object files and
then link the two object files into an executable program:

$ gcc -Wno-import -c objcsayhello.m -o objcsayhello.o

$ gcc -Wno-import -c SpeakLine.m -o SpeakLine.o

$ gcc -c c2objc.c -o c2objc.o

$ gcc c2objc.o objcsayhello.o SpeakLine.o -lobjc -o c2objc

Mixing Java and C++
The Cygnus Native Interface (CNI) can be used to access Java classes from C++. The
two languages are quite different, but have certain fundamental similarities:

� Classes are declared by name as inheriting characteristics of other classes.

� Classes contain member functions that can be overloaded by parameter matching.

� Data types and expressions are patterned after the ones in C.

Because GCC compiles both Java and C++ classes in a similar manner, it is only
necessary for the most fundamental language incompatibilities to be avoided, or
adjusted, so that classes written in Java can be made available.

C h a p t e r 1 0 : M i x i n g L a n g u a g e s 221
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

222 G C C : T h e C o m p l e t e R e f e r e n c e

Creating a Java String and Calling a Static Method
The following example program creates an object of the Java class java.lang.String
and passes it to the method java.lang.System.out() to be displayed:

/* cnistrout.cpp */

#include <gcj/cni.h>

#include <java/lang/System.h>

#include <java/io/PrintStream.h>

int main(int argc, char *argv)

{

java::lang::String *str;

JvCreateJavaVM(NULL);

JvAttachCurrentThread(NULL,NULL);

str = JvNewStringLatin1("Hello from C++ to Java");

java::lang::System::out->println(str);

JvDetachCurrentThread();

}

This program can be compiled and linked with the following command:

$ g++ cnistrout.cpp -lgcj -o cniexception

The header file cni.h contains the prototypes of the function calls required to
activate the CNI interface. Also, there are include statements for C header files for both
the java.lang.System and java.io.PrintStream classes. It would not hurt to
include the header file for java.lang.String, but it and a few other system-level
headers are always included in cni.h.

Java uses pointers (called references) to keep track of its classes, so a pointer to a
java.lang.String object is declared to hold the address of the object. The full name
includes the C++ syntax of pairs of colons to fully qualify the name of the Java class.
This naming convention is required for every reference to a Java class name unless a
namespace is specified. For example, the String and System classes could have been
declared and used as follows:

using namespace java::lang;

String *str;

. . .

System.out->println(str);

C h a p t e r 1 0 : M i x i n g L a n g u a g e s 223
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

The call to the function JvCreateJavaVM() initializes the Java runtime. This
includes setting up the Java threading interface, garbage collecting, and exception
handling. This function must be called once in the application before any Java classes
are created or Java methods are called.

The call to the function JvAttachCurrentThread() registers the thread of this
program with the previously initialized Java runtime. This function also must be called
once before any Java classes are created or Java methods are called, but it can only be
called after the call to JvCreateJavaVM().

At the end of the program, the call to the function JvDetachCurrentThread()
drops the registration with the Java runtime that was made by the earlier calls to
JvCreateJavaVM() and JvAttachCurrentThread(). This call guarantees the
clean release of any resources being held by the application.

In the CNI interface, Java String objects are always constructed by calling one of
the following functions:

� JvNewString(const char *chars,jsize length) A String object
of the specified length is returned, containing the characters found in the
chars string.

� JvNewStringLatin1(const char *bytes,jsize length) A String
object of the specified length is returned, containing the values from the
bytes array.

� JvNewStringLatin1(const char *bytes) A String object is returned,
containing the values from the bytes array up to, but not including, the first
byte of value zero.

� JvNewStringUTF(const char *bytes) A String object is returned,
containing the UTF-encoded values from the bytes array up to, but not
including, the first byte of value zero.

Loading and Instantiating a Java Class
Using CNI makes it possible to freely mix C++ and Java classes in the same program.
The following example is made up of a simple C++ mainline program and a single
Java class that is loaded, instantiated into an object, and used to store and display a
string of characters.

The Java class is named Speak and is designed to contain and display a simple string:

/* Speak.java */

public class Speak {

String string;

Speak() {

string = "Uninitialized";

}

public void setString(String str) {

string = str;

224 G C C : T h e C o m p l e t e R e f e r e n c e

}

public void showString() {

System.out.println(string);

}

}

The constructor of the Speak class initializes the internal string with a default
setting, but this can be overwritten with a call to setString(). The showString()
method can be called to display the current string to standard output. This class must
be compiled into a Java .class file, which can be achieved with any standard Java
compiler or with the GCC compiler using a command like the following:

$ gcj -C Speak.java

The next step is to use the gcjh command and the Speak.class file to produce
the CNI header file named Speak.h, as follows:

$ gcjh Speak

The gcjh command can produce both JNI and CNI header files, but the default is
to produce a CNI header file, so no command-line options are necessary. The header
file output from the command is named Speak.h and looks like the following:

// DO NOT EDIT THIS FILE - it is machine generated -*- c++ -*-

#ifndef __Speak__

#define __Speak__

#pragma interface

#include <java/lang/Object.h>

extern "Java"

{

class Speak;

};

class ::Speak : public ::java::lang::Object

{

public: // actually package-private

Speak ();

public:

C h a p t e r 1 0 : M i x i n g L a n g u a g e s 225
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

virtual void setString (::java::lang::String *);

virtual void showString ();

public: // actually package-private

::java::lang::String *string;

public:

static ::java::lang::Class class$;

};

#endif /* __Speak__ */

As you can see, the Speak.h header file defines the Speak class in terms of
C++, so the header file can be included directly into a C++ program, as in the
following example:

/* cnispeak.cpp */

#include <gcj/cni.h>

#include "Speak.h"

int main(int argc, char *argv)

{

java::lang::String *str;

JvCreateJavaVM(NULL);

JvAttachCurrentThread(NULL,NULL);

Speak *speak = new Speak();

speak->setString(JvNewStringLatin1("Hello from CNI to Java"));

speak->showString();

JvDetachCurrentThread();

}

This program is fundamentally the same as the previous example, named
cnistrout.cpp. The CNI header file gcj/cni.h is included, followed by the header
files for any Java classes to be used. Once the Java Virtual Machine has been created and
this thread has been attached to it, Java classes can be loaded and executed. The keyword
new is used to invoke the constructor of the Speak class and return the address of a new
Speak object. The method setString() is called to store a new String object in Speak;
then the showString() method is called to display the string.

The following command will compile and link the program:

$ g++ cnispeak.cpp Speak.class -lgcj -o cnispeak

Exceptions
Exceptions can be thrown from Java classes and caught in a C++ program, as
demonstrated in the following example:

/* cniexception.cpp */

#include <gcj/cni.h>

#include <java/lang/System.h>

#include <java/io/PrintStream.h>

#include <java/lang/Exception.h>

using namespace java::lang;

int main(int argc, char *argv)

{

JvCreateJavaVM(NULL);

JvAttachCurrentThread(NULL, NULL);

try {

String *message = JvNewStringLatin1("Hello from CNI");

System::out->println(message);

} catch(Exception *e) {

e->printStackTrace();

}

JvDetachCurrentThread();

}

This example is the same as the other CNI examples in that it begins by initializing
a Java Virtual Machine and finishes by detaching the current thread from it. A using
statement is included to specify the java::lang namespace so references to the class
names String, System, and Exception will be automatically resolved without the
need of being fully qualified.

The try and catch blocks are written exactly as they would be in a Java class,
with a collection of statements inside the try block. If an Exception object is thrown
by a statement in the try block, it will be caught by the catch statement, and a stack
trace will be printed that describes the location from which the exception originated.

Data Types of CNI
The data types of C++ and Java are similar, but not exactly the same. Because the Java
data types are very specifically defined, it is possible to use the C++ typedef command
to declare types that exactly match the Java types. The defined types are listed in Table 10-1.

226 G C C : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 0 : M i x i n g L a n g u a g e s 227
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Mixing Java and C
The Java Native Interface (JNI) can be used to communicate between Java classes running
in a Java Virtual Machine and native executable modules written in C, C++, or assembly
language. This interface was designed for, and is most useful for, Java programs that
need access to some facility that is platform specific and therefore cannot be included
as part of Java because of its portability requirements. However, using the JNI interface
retains the portability of the Java code but can require the new C functions to be written
for different platforms.

A Java Class with a Native Method
One common method of blending Java and C is to create Java classes that contain
methods that are implemented in C. The same thing can be done with C++ and with
assembly language, but the most common approach is to use C. This example creates a
simple Java class that contains only one method, but that method is implemented in C.

The following class, named HelloNative, contains a main() method that uses a
native method to display a string of characters. The native method is declared as part
of the class, but its body is not included because the body is to be written in another
language. The class also contains a static initializer that uses the system method

Java Type C++ Type Name Description

char Jchar 16-bit Unicode character

boolean Jboolean Logical value of either true or false

byte Jbyte 8-bit signed integer

short Jshort 16-bit signed integer

int Jint 32-bit signed integer

long Jlong 64-bit signed integer

float Jfloat 32-bit IEEE floating-point number

double Jdouble 64-bit IEEE floating-point number

void Void No value

Table 10-1. The Java Primitive Types Defined for C++

228 G C C : T h e C o m p l e t e R e f e r e n c e

loadLibrary() to load a shared library. It is this library that contains the body of
the native method.

/* HelloNative.java */

public class HelloNative {

static {

System.loadLibrary("libspeak.so");

}

public static void main(String arg[]) {

HelloNative hn = new HelloNative();

hn.sayHello();

}

public native void sayHello();

}

The following command is used to compile HelloNative.java into the class file
HelloNative.class:

$ gcj -C HelloNative.java

A header file containing the prototype of the native function is created from the
HelloNative.class file by using the gcjh command with the -jni options as follows:

$ gcjh -jni HelloNative

The result of this command is a file named HelloNative.h that contains
the following:

/* DO NOT EDIT THIS FILE - it is machine generated */

#ifndef __HelloNative__

#define __HelloNative__

#include <jni.h>

#ifdef __cplusplus

extern "C"

{

#endif

extern void Java_HelloNative_sayHello (JNIEnv *env, jobject);

C h a p t e r 1 0 : M i x i n g L a n g u a g e s 229
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

#ifdef __cplusplus

}

#endif

#endif /* __HelloNative__ */

The name of the native function is constructed from the name of the class and the
name of the Java method. The name always begins with Java and an underscore
character, followed by the fully qualified class name, and ends with the method name
preceded by another underscore character. Therefore, the name of the C function is
written as Java_HelloNative_sayHello().

Two parameters appear on the prototype for the new function, even though there
were no parameters defined for it in Java. These two parameters are required for every
function to be called as a native method. The first parameter is the pointer to the interface
used in the body of the method to access any arguments passed to the method, and the
second parameter is a reference to the calling object (it is the this variable from
the HelloNative object).

The function is written according to the prototype found in the header file
HelloNative.h, as follows:

/* HelloNative.c */

#include <jni.h>

#include "HelloNative.h"

void Java_HelloNative_sayHello(JNIEnv *env,jobject this)

{

printf("A native JNI hello\n");

}

The JNI header file jni.h is included as well as the HelloNative.h header file,
which contains the prototype of the function. The function is implemented with exactly
the same name and parameters as specified in the prototype. The following two
commands compile a version of the function suitable for insertion into a shared library
and then use the object file to create a shared library:

$ gcc -fpic -c HelloNative.c -o HelloNative.o

$ gcc -shared HelloNative.c -o libspeak.so

The final step is to place the library libspeak.so somewhere on the search path
for shared libraries and to invoke the mainline program with the following command:

$ gij HelloNative

230 G C C : T h e C o m p l e t e R e f e r e n c e

Passing Arguments to Native Methods
Just as with any other Java method, it is possible to pass arguments to a native method,
and it is also possible for the caller to retrieve a return value. The data types for a C or
C++ program are the same as those for the CNI interface, which were listed earlier in
Table 10-1.

The following example is a class with a native method named sum() that accepts
four int values as arguments and returns an int value that is the sum of the four:

/* AddFour.java */

public class AddFour {

static {

System.loadLibrary("libaddfour.so");

}

public static void main(String arg[]) {

AddFour af = new AddFour();

int value = af.sum(1,2,3,4);

System.out.println("The sum of four is " + value);

}

public native int sum(int a,int b,int c,int d);

}

The implementation of the native method is as follows:

/* AddFour.c */

#include <jni.h>

#include "AddFour.h"

jint Java_AddFour_sum(JNIEnv *env,jobject this,

jint a,jint b,jint c,jint d)

{

jint total = a + b + c + d;

return(total);

}

The four new parameters are added to the end of the pair of default arguments. The
Java int data type is defined in the jni.h header file as jint and is used to define all
the parameter types as well as the type of the function and the value returned.

The following four commands compile and link the two source files into a form that
can be executed. The first command creates the file AddFour.class, which is the
mainline of the program. The second command creates the header file AddFour.h
containing the native method prototype. The third command compiles the native method
using the -fpic option, which makes it possible to insert the object file into a shared
library. The last statement creates the shared library named libaddfour.so.

C h a p t e r 1 0 : M i x i n g L a n g u a g e s 231
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

$ gcj -C AddFour.java

$ gcjh -jni AddFour

$ gcc -fpic -c AddFour.c -o AddFour.o

$ gcc -shared AddFour.o -o libaddfour.so

All that is left to do is to place the library in a location that will be found by the
loader and to execute the program with the following command:

$ gij AddFour

Calling Java Class Methods from C
It is possible for a native method to make a call back to the Java object by directly
calling a Java method. The following example, named EchoKeystroke, is a Java
class with one native method and one callback method. The native method, named
getKeystrokes(), reads characters from the keyboard and makes a callback to
characterCallback() with each character input:

/* EchoKeystrokes.java */

public class EchoKeystrokes {

static {

System.loadLibrary("libgetkeys.so");

}

public static void main(String arg[]) {

EchoKeystrokes ek = new EchoKeystrokes();

ek.getKeystrokes();

}

public native void getKeystrokes();

public void characterCallback(char character) {

System.out.println(character);

}

}

The native method uses the two arguments automatically passed to every
native method to get the information required to make the callback. The function
GetObjectClass() is called to return a Class object representing the class of the
object containing the method to be called. The function GetMethodID() is called to
retrieve a unique identifier of the method to be called. The method can then be called
repeatedly using the function CallVoidMethod(), as follows:

/* getkeystrokes.c */

#include <jni.h>

#include <stdio.h>

232 G C C : T h e C o m p l e t e R e f e r e n c e

#include "EchoKeystrokes.h"

void Java_EchoKeystrokes_getKeystrokes(JNIEnv *env,jobject obj)

{

jchar character = ' ';

jclass class = (*env)->GetObjectClass(env,obj);

jmethodID id = (*env)->GetMethodID(env,class,

"characterCallback","(C)V");

if(id != 0) {

while(character != '.') {

character = getchar();

(*env)->CallVoidMethod(env,obj,id,character);

}

}

}

The call to getMethodID() requires the name of the method, the return type,
and the list of parameter types so it can uniquely identify the method. The return and
parameter values are identified by a character string in the following format:

"(argument type list)return type"

The type indicators included in the string are shown in Table 10-2.
For example, if a method is passed one int and one double value, and it returns

a double, the specifier string would look like the following:

"(ID)D"

If the first parameter is an array of bytes and the second is a string, and the return is
void, the specifier string looks like the following:

"([BLjava/lang/String;)V"

The following sequence of commands will compile EchoKeystrokes.java
into the class file EchoKeystrokes.class, use the gcjh utility to read the
EchoKeystrokes.class file and produce the EchoKeystrokes.h header file
containing the prototype of the native method, compile getkeystrokes.c into the

C h a p t e r 1 0 : M i x i n g L a n g u a g e s 233
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

positional independent object file getkeystrokes.o, and use getkeystrokes.o
to construct the shared library libgetkeys.so:

$ gcj -C EchoKeystrokes.java

$ gcjh -jni EchoKeystrokes

$ gcc -fpic -c getkeystrokes.c -o getkeystrokes.o

$ gcc -shared getkeystrokes.o -o libgetkeys.so

Mixing Fortran and C
The GNU Fortran and C languages can be used together quite easily because either one
can make a direct function call to the other. As long as you are careful to make sure the
arguments passed during the call are of the correct type, functions from the two languages
can call back and forth, just as if they were from the same language.

Table 10-3 lists the Fortran data types and their C counterparts. This table works for
most platforms, but there are possible exceptions. It would be prudent to create a small

Indicator Java Data Type

Z boolean

B byte

C char

S short

I int

J long

F float

D double

V void

Lclassname; An object of the specified class

[type An array of the specified type

(arg type list) return type A method with the specified argument
and return types

Table 10-2. Return and Parameter Types for Callback Methods

test program (from the examples in this section) and test any data types you intend to
pass to make certain they are compatible.

Because Fortran always passes arguments by reference and C always passes arrays
by address, the passing of arrays is straightforward and requires no modification.
However, for arrays of more than one dimension, the subscript used in the different
languages will need to be reversed, because Fortran arrays are organized in column-
major order and C arrays are organized in row-major order.

Calling C from Fortran
The following Fortran program calls a C function, passing it a character string and
a floating-point number:

C f772c.f

C

PROGRAM F772C

C

CHARACTER*32 HELLO

REAL PI

C

HELLO = "Hello C from Fortran"

HELLO(21:21) = CHAR(0)

234 G C C : T h e C o m p l e t e R e f e r e n c e

C Type Fortran Type Description

signed char INTEGER*1 An 8-bit signed integer

short INTEGER*2 A 16-bit signed integer

int INTEGER A 32-bit signed integer

float REAL A 32-bit floating point number

double DOUBLE PRECISION A 64-bit floating point number

SUBROUTINE SUB() void sub_() A void C function is the
equivalent of a Fortran
subroutine.

REAL FUNCTION
FUN()

float fun_() A non-void C function is the
equivalent of a Fortran function.

Table 10-3. Compatible Data Types Between C and Fortran

PI = 3.14159

CALL SHOWHIPI(HELLO,PI)

END PROGRAM F772C

The CHARACTER data type named HELLO, which is large enough to hold 32 characters,
has a 21-character string stored into it, causing the remainder of the string to be filled
with spaces. To format the string so it will be in the standard form used by C, it is
necessary to insert a zero byte as a string terminator following the last byte of the
actual string. The REAL data type named PI is in the same format as a C float data
type, so it can be passed directly to the function.

It is important to note that Fortran arguments are passed by reference, so the
C function will always receive the address of the value being passed, as opposed
to the value itself. The following C function displays the string and the real number
passed to it from the Fortran program:

/* showhipi.c */

#include <stdio.h>

void showhipi_(char *string,float *pi)

{

printf("%s\nPI=%f\n",string,*pi);

}

There will be some variation from one platform to the next in the naming convention
and in the data type compatibility between the two languages. As you can see in this
example, it was necessary to append an underscore character to the end of the function
name, but the data passed to the function is in the correct format.

The following command will compile the two source files and link them into
a single executable:

$ g77 -c f772c.f -o f772c.o

$ gcc -c showhipi.c -o showhipi.o

$ g77 c2f77.o showhipi.o -o f772c

Calling Fortran from C
When calling a Fortran subroutine from a C program, it is necessary to pass the addresses
of the arguments as well as to format strings properly for Fortran. The following
example passes a character string and a floating-point value to a Fortran subroutine:

/* c2f77.c */

int main(int argc,char *argv[])

C h a p t e r 1 0 : M i x i n g L a n g u a g e s 235
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

236 G C C : T h e C o m p l e t e R e f e r e n c e

{

int i;

float e = 2.71828;

char hello[32];

int length = sizeof(hello);

strcpy(hello,"Hello Fortran from C");

for(i=strlen(hello); i<length; i++)

hello[i] = ' ';

showhie_(hello,&length,&e);

return(0);

}

In C, the length of strings is determined by the position of a null character, but in
Fortran all strings are a fixed length. Because there is no way for Fortran to determine
the length of the string passed to it, it is also necessary to include the actual length of
the string as an argument. In this example, the entire array is blank-filled, and the size
of the array is passed as the second argument. Notice that all three arguments are passed
as pointers to the actual data—this is because Fortran always expects addresses instead
of the actual data. It is usually necessary to add an underscore to the name of the
subroutine being called.

The following is the source code of the Fortran subroutine being called:

C showhie.f

C

SUBROUTINE SHOWHIE(HELLO,LENGTH,E)

CHARACTER*(*) HELLO

INTEGER LENGTH

REAL E

C

WRITE(*,100) HELLO(1:LENGTH),LENGTH,E

100 FORMAT(3X,A,2X,I3,4X,F6.4)

RETURN

END SUBROUTINE SHOWHIE

The following three commands compile the two source files into object files and
link them together into an executable:

$ g77 -c showhie.f -o showhie.o

$ gcc -c c2f77.c -o c2f77.o

$ gcc c2f77.o showhie.o -lfrtbegin -lg2c -lm -o c2f77

C h a p t e r 1 0 : M i x i n g L a n g u a g e s 237
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

The third command requires the presence of the Fortran libraries because the gcc
command was specified. The libraries are included automatically in the case of the
g77 command, so the last command could be shortened to the following:

$ g77 c2f77.o showhie.o -o c2f77

Mixing Ada and C
The Ada language contains the facilities necessary to call C and Fortran functions. This
is done by declaring the body of an Ada procedure using pragma import to specify
the external language and the name of the code that is the body of the function.

The data types used by Ada and C are quite compatible with one another, especially
when GCC is used to generate object code for both languages. Table 10-4 lists the data
types that are the same in both languages.

Calling C from Ada
This simple example demonstrates how the body of a procedure in an Ada package can
be implemented in C. The following is the mainline of the Ada program, which calls
the procedures hello and goodbye in the Howdy package:

-- ada2c.adb

with Howdy;

procedure Ada2C is

begin

Howdy.hello;

Howdy.goodbye;

end Ada2C;

The hello and goodbye procedures both display a line of text, but where goodbye
is written in Ada, the hello procedure is written in C. The members of the Howdy
package are specified in the file howdy.ads as follows:

-- howdy.ads

package Howdy is

procedure Hello;

procedure Goodbye;

end Howdy;

The implementation of the bodies of the procedures is in the file howdy.adb, which
contains the actual code for goodbye and declares an external reference for hello:

-- howdy.adb

with Text_IO; use Text_IO;

with Interfaces.C;

package body Howdy is

procedure Hello is

procedure sayhello;

pragma Import(C,sayhello);

begin

sayhello;

end Hello;

procedure Goodbye is

begin

Put_Line("Goodbye");

end Goodbye;

end Howdy;

The with Interfaces.C statement is used to set off the definitions for data types
that are compatible between C and Ada, but it is not strictly required here because
there are no parameters or return values on the C function being called. The procedure
named hello calls the C function sayhello, so the procedure and pragma Import
statements are necessary to specify that sayhello is an external C function.

238 G C C : T h e C o m p l e t e R e f e r e n c e

Ada Type C Type

Float float

Integer int

Long_Float double

Long_Integer long

Long_Long_Integer long long

Short_Float float

Short_Integer short

Short_Short_Integer signed char

Table 10-4. Ada Data Types and the Corresponding C Data Types

C h a p t e r 1 0 : M i x i n g L a n g u a g e s 239
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

The first argument to the Import pragma is the name of the language in which the
external procedure is written. The Ada standard states that the known languages are C,
C++, Fortran, and COBOL. The second argument is the name of the function as it will
be used locally in this program. If the actual function name is of a form that is not valid
for Ada, a third argument can be used to specify the actual external name. For example,
if you wish to call the remote function _stprob(), the leading underscore is not valid
for Ada, so you could specify the pragma as follows:

pragma Import(C,stprob,"_stprob")

This way, you can use the internal name stprob to refer to the external name
_stprob.

In this example, the C function being called is very simple and looks like
the following:

/* sayhello.c */

#include <stdio.h>

void sayhello()

{

printf("Hello C from Ada\n");

}

The following command sequence will compile the Ada and C source files and
link the object files into an executable:

$ gcc -c sayhello.c -o sayhello.o

$ gcc -c howdy.adb

$ gcc -c ada2c.adb

$ gnatbind ada2c.ali

$ gnatlink ada2c.ali sayhello.o

Calling C from Ada with Arguments
This example is much like the previous one, except arguments are passed to the
C functions that also return values. This example uses the UNIX system calls to start a
process running in the background and then stop it. The file adaspawn.adb contains
the mainline of the program:

-- adaspawn.adb

with Spawn;

procedure AdaSpawn is

pid : Integer;

240 G C C : T h e C o m p l e t e R e f e r e n c e

status : Integer;

begin

pid := Spawn.startProcess("flex");

status := Spawn.stopProcess(pid);

end AdaSpawn;

In the mainline, a call is made to startProcess() with the name of the program
to be executed. The return value is the process ID number, which is used in the call to
stopProcess() to halt the running program. The two functions are defined as
members of the Spawn package in the file spawn.ads:

-- spawn.ads

package Spawn is

function startProcess(name : String) return Integer;

function stopProcess(pid : Integer) return Integer;

end Spawn;

The data passed into and out of the Spawn functions are all Ada types. Inside these
functions, calls are made to the C functions, so there needs to be some data conversion
to guarantee compatibility. The body of the functions are defined in the file spawn.adb:

-- spawn.adb

with Interfaces.C;

package body Spawn is

function startProcess(name : String) return Integer is

function start(name : String) return Interfaces.C.int;

pragma Import(C,start);

begin

return Integer(start(name));

end startProcess;

function stopProcess(pid : Integer) return Integer is

function stop(pid : Integer) return Interfaces.C.int;

pragma Import(C,stop);

begin

return Integer(stop(pid));

end stopProcess;

end Spawn;

C h a p t e r 1 0 : M i x i n g L a n g u a g e s 241
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

The Ada functions startProcess() and stopProcess() act as wrappers
around the C functions start() and stop(). Some minor data conversion takes
place. Both start() and stop() return the C data type Interface.C.int, which
is converted to the Ada type Integer to make it possible to return the values from
startProcess() and stopProcess().

All that is left are the C functions themselves, which are stored in a file named
startstop.c, as follows:

#include <unistd.h>

#include <signal.h>

#include <errno.h>

int start(char *name)

{

int pid;

char *argv[4];

pid = fork();

if(pid == -1)

return(-1);

if(pid == 0) {

argv[0] = "sh";

argv[1] = "-c";

argv[2] = name;

argv[3] = 0;

execve("/bin/sh",argv,0);

exit(-1);

} else {

return(pid);

}

}

int stop(int pid)

{

if(kill(pid,SIGTERM) < 0)

return(errno);

return(0);

}

The start() function calls the fork() system call, which clones the current process.
The return value from fork() informs the process whether it is the original or the clone,
and the clone converts itself into a different process by calling execve(). The system
call execve() does not return because it immediately replaces itself with a new process
by having the shell start a program from the beginning. Only the original program
returns from start(), and it returns the PID of the newly started process.

This overall organization provides a wrapper of Ada functions around the C functions,
and the C functions make the actual system calls. This type of organization was used in
these examples to make each step as clear as possible, but it is not absolutely necessary
to do it this way. There is nothing to prevent you from making a direct call to execve(),
kill(), or any other system call from your Ada code in the same way the calls were
made to startProcess() and stopProcess().

242 G C C : T h e C o m p l e t e R e f e r e n c e

Chapter 11
Internationalization

243

Every program, including the GCC compiler itself, if written properly, can
be run in such a way that it adapts its interface to the local language and
conditions.

Internationalization is the inclusion of the ability to support multiple languages
within a program or set of programs acting as a package. These programs are written
using only one language, but the code inside the programs is organized in such a way
that the character strings in the programs can be dynamically replaced by strings in
another language.

Localization is the operation of using the facilities built into a program, or a set of
programs, to convert all its user-readable text to a different language. This is known as
setting the locale, which is done through system settings that are read and acted upon by
the programs when they are loaded.

Native language support (NLS) is the term used when referring to the overall operation
of internationalization and localization.

You will often see the term internationalization abbreviated as i18n. This is derived
from the fact internationalization begins with the letter i, followed by 18 letters, and ends
with the letter n. Using the same scheme, the term localization is sometime written as l10n.

In general, i18n is managed by programmers, whereas l10n is managed by translators
and users.

The examples and explanations in this chapter are in terms of the C language, but
the same process can be used with C++, Objective-C, Python, Lisp, EmacsLisp, Java,
and awk.

A Translatable Example
The following program contains the code necessary to have its strings translated:

/* starter.c */

#include <locale.h>

#include <libintl.h>

#define PACKAGE "starter"

#define LOCALEDIR "/usr/share/locale"

int main(int argc,char *argv[])

{

setlocale(LC_ALL,"");

bindtextdomain(PACKAGE,LOCALEDIR);

textdomain(PACKAGE);

printf("%s\n",gettext("This string will translate."));

}

244 G C C : T h e C o m p l e t e R e f e r e n c e

The header file locale.h contains some of the fundamental macro definitions that
are used to indicate the type of data that is to be localized as well as the data structures
involved with monetary conversions. The header file libintl.h contains the prototypes
of the functions required to configure and activate the internationalization process.

In the main() function, a call is made to setlocale() to specify which items are to
be internationalized. Specifying LC_ALL indicates that everything is to be internationalized,
but it may be that you wish to have only certain items internationalized. Instead of a
single call to setlocale() using LC_ALL, a program can make several calls to
setlocale() specifying the individual items listed in Table 11-1. The string returned
from setlocale() is the identity of the current locale setting.

C h a p t e r 1 1 : I n t e r n a t i o n a l i z a t i o n 245
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Locale Category Description

LC_ADDRESS The layout of the standard parts of an address, including firm
name, building name, department name, c/o address, house
number, postal code, country designation, and so on.

LC_ALL This is the same as specifying all the members of this list.

LC_COLLATE Regular expression matching. Determines the meaning
and range of expression characters.

LC_CTYPE Regular expression matching. Determines character
classification, conversion, case-sensitive comparison,
and the wide character functions.

LC_IDENTIFICATION Formatting of information such as name, address, telephone,
e-mail address, fax number, and so on.

LC_MEASUREMENT Localizes the units of measure to metric or the English system.

LC_MESSAGES Localizes the text natural language messages.

LC_MONETARY Formatting of monetary display strings.

LC_NAME Formats the presentation of a person’s name, including the
initial, salutation, salutation abbreviation, and the position
of the first and last names.

LC_NUMERIC Formatting of numeric values containing decimal points and
thousands separators.

LC_PAPER The standard paper size used for printing.

LC_TELEPHONE Formatting of telephone numbers, including prefixes and
country codes.

LC_TIME Formatting of time and date strings.

Table 11-1. Categories of Locales Known to setlocale()

246 G C C : T h e C o m p l e t e R e f e r e n c e

In this example the name of the package containing the program and the name of
the directory containing the locale directories are specified on a pair of #define
directive statements inside the program, but it is more normal for these to be named
in a config.h file or by a -D option in the command line generated by the makefile.

To translate a string from one language to another, a call is made to the function
gettext(). There is actually a family of gettext() functions, as described in the next
section, any one of which will trigger the xgettext utility, described later, to extract
a string. The original string (the one shown in the program listing) is used as a key to
locate the translation for the current locale. If no match is found, the original string is
used. The return value from the gettext() function is a character string. Therefore, in
the example, the printf() statement simply displays whatever string returns from the
call to gettext() without knowing whether an actual translation has taken place.

For convenience in programming and in converting existing programs, it is not
uncommon to use a short macro in place of the name gettext(). For example, the
function call can be shortened to a single underscore character using the following
macro definition:

#define _(a) gettext(a)

Using the macro, the printf() statement in the example becomes the following:

printf("%s\n",_("This string will translate"));

Using this technique, the call to the translating function is reduced to consuming
a total of three characters (the underscore and the two parentheses).

Creating a New .po File
Once all the strings that need to be translated in the text have been appropriately marked
by being included on calls to the gettext() function, it is necessary to begin the
construction of the file that uses the strings and keywords and supplies the translations
for each target locale. The project is begun by using the utility xgettext to extract the
lines of text and organize them in a new .po file. The following command will extract
the appropriate strings from starter.c and create a file named messages.po:

$ xgettext starter.c

The file messages.po contains some standard header information, and contains
the following:

msgid "This string will translate."

msgstr ""

For the file to be completed, it is only necessary for a translator to edit the .po file
and enter the translation in place of the empty string to the right of the msgstr tag. If
the program has a number of strings to be translated, they will all appear in this same file.

The xgettext utility can be used with a number of programming languages and
will combine the strings from all the input source files into a single .po file to be used
for the entire package. The command-line options for xgettext are listed in Table 11-2.

The following is a command that will generate a file named messages.po containing the
string or strings designated by calls to gettext() in the source file named starter.c:

$ xgettext starter.c

C h a p t e r 1 1 : I n t e r n a t i o n a l i z a t i o n 247
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Option Description

- Instead of reading a file, the source is read from
standard input.

-a If the language is C or C++, this option extracts
all strings.

--add-comments=tag Same as -c.

--add-location Same as -n.

-C Shorthand for --language=C.

-c tag Used to place a comment block with the specified tag in
the output file.

--c++ Shorthand for --language=C++.

--copyright-
holder=str

The str is the name of the copyright holder of the
package and therefore of the extracted strings. If this
is not specified, the default is the Free Software Foundation.

-d name The output file is named name.po (instead of the default,
messages.po). Also see -o.

-Ddirectory Adds the named directory to the list of those sought
for named source files.

--default-domain=name Same as -d.

--directory=directory Same as -D.

--exclude-file=file Same as -x.

--extract-all Same as -a.

Table 11-2. Command-Line Options for xgettext

248 G C C : T h e C o m p l e t e R e f e r e n c e

Option Description

-F Sorts output by file location.

-f file The input file names are read from file instead of
from the command line.

--files-from=file Same as -f.

--force-po Produces an output file even if no translatable strings
are found.

--foreign-user Omits the default output from --copyright-holder.

-h Displays this list of options and exits.

--help Displays this list of options and exits.

-i Uses indention when writing the .po file.

--indent Same as -i.

-j Joins the messages with those in an existing output file.

--join-existing Same as -j.

-k keywordspec If the language is C or C++, the keywordspec is an
additional keyword that will trigger the extraction of
a string. The format of keywordspec is named:num,
where num is the argument number for the string.
The default keywords are gettext, dgettext:
2, dcgettext:2, ngettext:1, dngettext:2,3,
dcngettext, and gettext_noop. If no keywordspec
is specified, the default keywords are not used.

-keyword=keywordspec Same as -k.

-L name The name of the language of the input files. It can be
C, C++, ObjectiveC, PO, Python, Lisp, EmacsLisp,
librep, Java, awk, YCP, Tcl, RST, or Glade.

--language=name Same as -L.

-m [string] Uses the specified string (or uses ““ if no string
is specified) as the prefix for all msgstr entries in the
output file. Also see -M.

-M [string] Uses the specified string (or uses ““ if no string
is specified) as the suffix for all msgstr entries in the
output file. Also see -m.

--msgstr-
prefix[=string]

Same as -m.

Table 11-2. Command-Line Options for xgettext (continued)

U
S

IN
G

TH
E

C
O

M
P

ILER
C

O
LLEC

TIO
N

C h a p t e r 1 1 : I n t e r n a t i o n a l i z a t i o n 249

One of the most important options for xgettext is the -j option, which will
generate a new messages.po file from the source, but will also read an older version

Option Description

-msgstr-
suffix[=string]

Same as -M.

-n Includes the comment lines indicating the source of the
string. This is the default.

--no-location Specifies to not include the comment lines indicating the
source of the string.

--no-wrap Long message lines are not to be split in the output file.

-o file The output file is named file (instead of the default,
messages.po). Also see -d.

--omit-header Omits the header, which is normally tagged with
a msgid ““ entry.

--output-
dir=directory

Same as -p.

--output-file=file Same as -o.

-p directory The output file will be placed in the named directory.

-s Generates the output in sorted order instead of the order
in which the strings are encountered in the source.

--sort-by-file Same as -F.

--sort-output Same as -s.

--strict Writes the .po file in strict Uniforum format. This format
does not support GNU extensions.

-T If the language is C, trigraphs will be recognized.

--trigraphs Same as -T.

-v Displays version information and exits.

--version Displays version information and exits.

-w number Specifies the output page width. Lines longer than this
width will be broken.

--width=number Same as -w.

-x file Entries from the named .po or .pot file are not extracted.

Table 11-2. Command-Line Options for xgettext (continued)

250 G C C : T h e C o m p l e t e R e f e r e n c e

of messages.po and retain any translations that have been inserted into the file by a
translator. This is very important because it automates the updating of the messages
file without throwing out any work that has already been done. For example, the
following command will read the file named starter.po and merge the translations
that are still valid with any new strings and then create a new version of starter.po:

$ xgettext -j -d starter starter.c

Use of the gettext() Functions
The simplest form of marking a string for translation is to use the string as an argument
to a call to gettext(). Situations exist where it is necessary to use a slightly different
approach, and other functions can be used to solve certain problems.

Static Strings
The following example shows how a string can be declared as the initial value of
a global variable and still be dynamically translated when the program runs:

/* statictrans.c */

#include <locale.h>

#include <libintl.h>

#define PACKAGE "starter"

#define LOCALEDIR "/usr/share/locale"

#define gettext_noop(a) (a)

char *glbl = gettext_noop("This is a global static string.");

int main(int argc,char *argv[])

{

setlocale(LC_ALL,"");

bindtextdomain(PACKAGE,LOCALEDIR);

textdomain(PACKAGE);

printf("%s\n",gettext(glbl));

}

The function name gettext_noop() is declared as a do-nothing macro that simply
results in the string itself, which will cause xgettext to see the name of the dummy

C h a p t e r 1 1 : I n t e r n a t i o n a l i z a t i o n 251
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

function and cause it to skip the string. The later call to gettext() is passed the address
of the actual string, so the translation will take place at the point the string is used. The
result is the same as if the string had been declared as a constant argument passed to
gettext(). If you use the global string in more that one place in the program, it will
be translated at each point of reference.

Translation from Another Domain
If you need to retrieve the translation of a string from another package, you can do so
by calling the function dgettext() and specifying the name of the other package. For
example, if there is a package named hrdomain and the key string "Daily average
catch" has been translated in that domain, you can specify that the translation of the
other domain be retrieved at runtime by using dgettext() this way:

dgettext("hrdomain","Daily average catch");

Executing xgettext will not extract this particular string because you have
specified that it has a translation in another location.

Translation from Another Domain in a Specified Category
Like dgettext(), the function dcgettext() makes it possible to retrieve a translation
string from another domain. It also makes it possible for you to select a category for the
translation. The category is one of the constant values defined in Table 11-1. For example,
the following can be used to translate a date according to the rules of a domain named
hrdomain:

dcgettext("hrdomain","12/04/03",LC_TIME);

Plurality
The ngettext() method takes plurality into consideration when translating the string.
Both the singular and plural forms of the original string are passed to the function, along
with the degree of plurality. Some languages have a singular form for one, a dual form
for two, and the plural form only applies to three or more. For example, the following
call would be made to translate the word “image” when it is a reference to two images:

ngettext("picture","pictures",2L);

In this example, the automatic translation process will need to select the target
language’s correct form of plurality to indicate two pictures.

Plurality from Another Domain
The function dngettext() works the same as ngettext(), except it will look for the
translation in another domain. The following example looks in the domain hrdomain
for the correct plural form to indicate a pair of images:

dngettext("hrdomain","picture","pictures",2L);

Plurality from Another Domain Within a Category
The function dcngettext() works the same as dngettext(), except it will look for
the translation according to the definitions of the specified category. The category is
one of the categories specified in Table 11-1. The following example looks in the domain
hrdomain for the correct plural form to indicate a pair of images:

dcngettext("hrdomain","Mr. Garcia","Messrs. Garcia",2L,LC_NAME);

In this example, the correct translation will be chosen, according to rules that are
applicable to formatting names, for two gentlemen with the last name Garcia.

Merging Two .po Files
Even though it is possible to use xgettext to simultaneously generate new translation
tables that are automatically merged with those in an existing .po file, you may find
yourself in the situation (or prefer to operate) with two separate .po files—an older,
existing .po file containing translations for a previous version of the program and a
new file containing entries generated for the newer version of the software. If this is the
case, the two can be merged by using the msgmerge utility as follows:

$ msgmerge oldfile.po newfile.po

In this example, oldfile.po contains all the existing translations, and they will all
be carried over to the newly created file as long as the strings also exist in newfile.po.
In addition, all the new strings in newfile.po that are not found in oldfile.po are
added to the output. The new data is written to standard output unless an output file is
specified as one of the command-line options. The options for msgmerge are listed in
Table 11-3.

252 G C C : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 1 : I n t e r n a t i o n a l i z a t i o n 253
U

S
IN

G
TH

E
C

O
M

P
ILER

C
O

LLEC
TIO

N

Option Description

--add-location Includes the comment lines specifying the location of
each string in the original source. This is the default.
See --no-location.

-D directory The named directory is added to the list of those
searched for the named input files.

--directory=directory The same as -D.

-e Specifies to not used C language escape sequences in the
text of the output. This is the default.

-E Uses C language escape sequences in the output text.

--escape Same as -E.

--force-po Writes the output file even if it is empty.

-h Displays this list of options and exits.

--help Same as -h.

-i Generates the output with indented text.

--indent Same as -i.

--no-location Suppresses the comment lines specifying the location of
each string in the original source. See --add-location.

-o file The output is written to the named file. The default is to
write the output to standard out.

--output-file=file Same as -o.

--strict Produces strict Uniforum output style, which omits GNU
extensions.

-v Produces more verbose output describing the processing.

-V Displays the version number and quits.

--verbose Same as -v.

--version Same as -V.

-w number The number is the maximum width. Lines longer than
number will be broken.

-width=number Same as -w.

Table 11-3. Command-Line Options for msgmerge

254 G C C : T h e C o m p l e t e R e f e r e n c e

Producing a Binary .mo File from a .po File
Once the translation text has been added to the .po file, the next step is to create the
.mo file. This binary file is used by the programs to make translations. The binary file
is created using the .po file as input to the msgfmt utility, as follows:

$ msgfmt starter.po

This command produces a binary file named starter. Recall from the beginning of
this chapter that the program starter.c begins with the following three function calls:

setlocale(LC_ALL,"");

bindtextdomain(PACKAGE,LOCALEDIR);

textdomain(PACKAGE);

The macro PACKAGE is defined as "starter" and LOCALEDIR is defined as
"/usr/share/locale". For the program to find the translation
tables for, say, Canadian English, it is only necessary to copy the binary file to
/usr/share/locale/en_CA/starter. Whenever the current local is set to en_CA,
the program will look for, and find, the appropriate translation tables. To create
translations for other languages, it is only necessary to edit a copy of starter.po to
insert the appropriate translation strings, create another binary file, and copy it to the
appropriate subdirectory.

The utility msgfmt has a few command-line options, which are listed in Table 11-4.

Option Description

-a number Aligns strings to the specified number of bytes.
The default is 1.

--alignment=number Same as -a.

-c Performs language-dependent checks on the
strings. This includes checking for the validity
of % formatting sequences in C strings and the
correctness of the information being inserted
in the header. It also checks that there
are no conflicts in the domain name and
--output-file option.

--check Same as -c.

Table 11-4. Command-Line Options for msgfmt

U
S

IN
G

TH
E

C
O

M
P

ILER
C

O
LLEC

TIO
N

C h a p t e r 1 1 : I n t e r n a t i o n a l i z a t i o n 255

Option Description

-D directory Adds the named directory to the list of those to
be searched for input files.

--directory=directory Same as -D.

-f Uses fuzzy entries on input.

-h Displays this list of options and exits.

--help Same as -h.

--no-hash The binary output file will not include the
hash table.

-o file Specifies the name of the output file as file.
The default is to use the base name of the input
file without an extension.

--output-file file Same as -o.

--statistics Displays statistical information on the
translation tables.

--strict Enables the strict Uniforum mode.

--use-fuzzy Same as -f.

-v Lists any anomalies found in the input.

-V Displays version information and quits.

--verbose Same as -v.

--version Same as -V.

Table 11-4. Command-Line Options for msgfmt (continued)

This page intentionally left blank.

Part III
Peripherals and Internals

This page intentionally left blank.

Chapter 12
Linking and Libraries

259

The compiler produces object files that contain executable code, but in virtually
every case the object file produced by the compiler is incomplete and needs to be
combined with other object modules to produce an executable program. Even a

simple “hello world” program employs a function from another object file to do the actual
work of displaying the string of characters.

This chapter discusses linking and the utilities that can be used to examine and
manipulate object files. An object file is the .o file produced by the compiler. Many of
the utilities described in this chapter can work with more than one object file, whether
they are stored in a directory as discrete files, in a static library (also known as an archive),
or in a shared library (also known as a dynamic library). Also, some of the utilities operate
on fully linked executable files.

Object Files and Libraries
When combining object modules together to create a single executable, the linker can
find the object modules as separate files in a directory, as object modules stored in a
static library, or as object modules stored in a shared library. A single link operation
can, and often does, involve object files from all three locations.

Object Files in a Directory
The simplest form of linking is to compile a collection of object files into a directory, or
set of directories, and then name them on the command line for the linker. This works
out quite well for object modules that are to be linked into only one or two programs.
For example, a C program consists of the source files main.c, inlet.c, outlet.c
and genspru.c. The following sequence of commands will compile them all into object
files and link them into an executable program named spinout:

$ gcc -c main.c -o main.o

$ gcc -c inlet.c -o inlet.o

$ gcc -c outlet.c -o outlet.o

$ gcc -c genspru.c -o genspru.o

$ gcc main.o inlet.o outlet.o genspru.o -o spinout

After this series of commands has been successfully executed, the disk contains the
four object files and one executable file. A simpler way to achieve the same thing is to let
the compiler manage the entire process with a command like the following:

$ gcc main.c inlet.c outlet.c genspru.c -o spinout

In either case, the final executable contains all the code from all four of the object
files, along with other code from the system that the linker determines to be necessary.

260 G C C : T h e C o m p l e t e R e f e r e n c e

Object Files in a Static Library
Object files can be stored in a static library and linked from there in much the same way
as they can be linked from separate files, except the linker will automatically search
through the contents of the library and include only the object files that are necessary. If
nothing in an object file is referenced from inside the program, it is not included as part
of the executable.

A static library containing object files is known as an archive file, and it’s constructed
and maintained by a utility named ar. The name of an archive file normally has a
prefix of lib and a suffix of .a. The following sequence of commands compiles three
object files and stores a copy of them in a library named libspin.a. Then the linker
uses the object file named main.o and the contents of the library to construct an
executable program named spinner:

$ gcc -c inlet.c outlet.c genspru.c

$ ar -r libspin.a inlet.o outlet.o genspru.o

$ gcc main.c libspin.a -o spinner

The first gcc command produces the three object files that are inserted into the static
library by the ar command. The last command compiles main.c into main.o and then
invokes the linker, which reads the contents of libspin.a to try to resolve external
function and data references made in main.o. A module stored in libspin.a is
included as part of the final executable file only if it contains a function or data item
referred to from a module that has already been included as part of the executable.
Because unnecessary object modules are not included, linking from a library can produce
smaller executable files than the ones produced by linking from a collection of object
files in a directory (which always includes all named files).

Inside the static library, along with the object modules, is an index that lists all the
names of global data and functions defined in the library. The linker uses this index to
determine which modules to include and which ones to ignore. Normally, this index is
created by the ar utility when the library is created or updated, but options are available
on the ar utility that can suppress the creation of the index. This can be useful when
maintaining a large library—multiple changes can be made without bothering to update
the index until the modifications have been completed. To create an index or to update
an existing index, you can use the ranlib utility. For example, the following pair of
commands use the -q option of ar to quickly append files to an existing archive without
updating the index, and then it uses ranlib to update the index to reflect the current
status of the archive:

$ ar -q libspin.a mongul.o strop.o klbrgr.o

$ ranlib libspin.a

C h a p t e r 1 2 : L i n k i n g a n d L i b r a r i e s 261
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

The order of appearance of the modules in the library can make a difference. If the
same symbol is defined in more than one module, then the linker will find and include
the first module if it is looking for that symbol. Further, different versions of the same
module can be stored in the same archive and, again, the linker will be satisfied with
finding the first one. Options on the ar utility can be used to add new modules in
specific positions and to change the order of the ones already in the archive.

The syntax of the ar command is as follows:

ar [options] [positionname] [count] archive objectfile [objectfile

...]

The ar command is one of the older UNIX utilities, and its syntax is similar to some
of the other older utilities, such as tar, in that all the option flags come first, the option
letters are all included in a group without spaces between them, and the options can
be expressed with or without the leading hyphen. The optional command-line entries
positionname and count can be present only if options that require them are also
present. The options on the ar command fall into two categories: the command options
tell ar what action is to be taken (there is only one of these options on a valid command
line), and the modifier options specify how the command option is to perform. The list
of command options for ar can be found in Table 12-1, and the modifier options are
listed in Table 12-2.

262 G C C : T h e C o m p l e t e R e f e r e n c e

Option Description

d Deletes from the archive the modules named as objectfiles.
With the v modifier, each module is listed as it is deleted.

m Moves modules inside an archive. By default, any members listed
as objectfiles will be moved to the end of the archive. The
modifiers a, b, and i can be used to move the named modules
to other locations.

p Prints the binary content of named objectfiles to standard
output. If no objectfiles are specified, they are all printed.
The v modifier will cause the name of each one to be listed before
its content is printed.

q Quickly appends the named objectfiles to the end of the archive
without checking for replacement possibilities. The index is not
updated, so ranlib must be used before the library can be linked.

Table 12-1. The ar Options That Specify the Action to Be Taken

C h a p t e r 1 2 : L i n k i n g a n d L i b r a r i e s 263
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

Option Description

r Inserts the named objectfiles into the archive. If any of the named
objectfiles are already in the archive, the old ones are replaced
by the new ones. If the named archive does not exist, it is created. By
default, new modules are appended to the end of the file, but the a,
b, or i modifier can be used to position the new modules.

t Displays a listing of the contents of the archive file. The v modifier
causes the list to include the timestamp, owner, group, and size of
each module. If no objectfiles are named, the entire archive
is listed.

x Extracts the named objectfiles to regular disk files. If no
objectfiles are named, all files are extracted.

Table 12-1. The ar Options That Specify the Action to Be Taken (continued)

Option Description

a Adds any new files immediately after the file named on the command
line as positionname.

b Adds any new files immediately before the file named on the command
line as positionname. This is the same as i.

c Creates the archive if necessary. A new archive is always created if
need be, but using this option suppresses the warning message.

f Truncates the file names inside the archive. Normally, ar allows file
names to be of any length, which may cause the creation of archives
that are not compatible with some systems.

i Adds any new files immediately before the file named on the command
line as positionname. This is the same as b.

N Uses the count parameter as a selector of the named objectfile
when there is more than one of that name in the archive.

o When files are being extracted from an archive, the original dates
are preserved.

Table 12-2. The ar Options That Modify the Action to Be Taken

264 G C C : T h e C o m p l e t e R e f e r e n c e

Object Files in a Dynamic Library
A dynamic library contains object files that are loaded into memory and linked with a
program only when the program starts to run. The two advantages of this are that the
program’s executable file is much smaller, and two or more programs are able to share
object modules loaded from the same dynamic library (which is the reason dynamic
libraries are also called shared libraries).

The object files stored in a dynamic library have a slightly different form than regular
object files that are intended for static linking. They are the same except for the way
internal addressing is handled inside the code generated from the compiler.

A Front End for the Linker
In an object oriented language such as C++, it is necessary for a program to have the
ability to execute static constructors before the mainline of the program begins execution.
Not all linkers have the capability of setting things up to do this, so it became necessary
to add a front end named collect2 to the linking process.

On almost every system, gcc invokes a utility program named collect2 that
assumes the responsibility of linking. The collect2 process detects static constructors
that must be executed before the mainline of the program begins. To make certain these
static constructors are executed, collect2 generates a special table of the constructors
in a temporary .c source file, compiles it, and includes it as part of the linked executable.
At the beginning of the main() function is a call to __main() to execute the static
constructors.

The collect2 program can be executed just as if it were the linker ld. It takes the
same set of arguments and passes the arguments on to ld to do the actual linking. In

Option Description

s Creates a new archive index even if no other change is made to the
archive. This modifier can be used alone as in ar s, which has
the same result as using ranlib.

u When files are being added to an archive, this option will cause only
files to be added that are newer than the ones already in the archive.
This modifier is only valid with the r option.

v Runs in verbose mode to display additional information as the
process runs.

V Displays the version information and quits.

Table 12-2. The ar Options That Modify the Action to Be Taken (continued)

C h a p t e r 1 2 : L i n k i n g a n d L i b r a r i e s 265
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

fact, it may need to link the program twice—once to determine the names of the static
constructors (which will be found in the linker’s output) and again to produce the final
executable file.

Not only does collect2 invoke ld the linker, it also uses nm to demangle and extract
names from object files, and it uses strip to remove symbols from the object files.

Locating the Libraries
For a program to link properly, the linker must be able to locate the libraries required to
resolve the external references. For a statically linked program where all the object files
are gathered together and stored in a single executable file, the executable is entirely
portable and can be executed on any compatible system, even if the original library no
longer exists. On the other hand, a shared library must be available at the time the
program is linked and again every time the program is run.

Locating Libraries at Link Time
Whenever the linker needs to find a library, it looks for it in a specific list of directories.
Which directories are included in the search path depends on which emulation mode ld
is using, how ld was configured when it was compiled, and which directories are
specified on the command line. Most often the system libraries are stored in the directories
/lib and /usr/lib, so these two directories are automatically searched. You can
specify other directories to be searched by using one or more -L options. For example,
the following command instructs the linker to look in both the current directory and the
directory named /home/fred/lib for any libraries that are not found on the default
search path:

$ gcc -L. -L/home/fred/lib prog.o

The linker searches for shared libraries before searching for static libraries. The
following command will search each directory for a library named libmilt.so and
then for libmilt.a:

$ gcc -lmilt prog.o

All the searching can be eliminated by specifying the exact name of the libraries
on the command line. The following example will use the library named libjj.a in
the current directory and the library named libmilt.so in the directory named /home/
fred/lib:

$ gcc libjj.a /home/fred/lib/libmilt.so prog.o

266 G C C : T h e C o m p l e t e R e f e r e n c e

Locating Libraries at Runtime
Once a program has been linked to use shared libraries, it must be able to find the shared
library when it runs. The libraries are located by name, not by directory, so it is possible
to link the program against one copy of the library and run it using another. This can,
of course, cause problems if you switch from one version of the library to another
without updating the program—which is the reason most libraries include a version
number as part of the name (for example, libm.so.6 or libutil-2.2.4.so).

Whenever a program loads and prepares to run, the shared libraries it needs are
sought in the following places:

� Each of the directories listed in the colon-separated list in the environment
variable LD_LIBRARY_PATH

� The list of libraries found in the file /etc/ld.so.cache, which is maintained
by the ldconfig utility

� The directory /lib

� The directory /usr/lib

If you want to find out which libraries are being loaded and used by a specific
application, you can use the ldd utility described later in this chapter.

Another environment variable, LD_PRELOAD, can contain a list of shared library
names (separated by spaces, tabs, or newlines) that will be preloaded before any other
library searching takes place. In this way, you can override the functions that would
normally be loaded from a shared library. For security reasons, some limitations are
imposed on this technique for setuid programs.

Loading Functions from a Shared Library
Functions in a shared library can be loaded and executed without ever having been linked
to the program. It is only necessary to load the shared library into memory and then call
the desired function or functions by name. The following example consists of two simple
functions stored in a shared library, and then a program dynamically loads and executes
each one.

The two functions in the library display strings to standard output to demonstrate
that they are actually being called. The first one, named sayhello, displays its own
internally declared string, as follows:

/* sayhello.c */

#include <stdio.h>

void sayhello()

{

printf("Hello from a loaded function\n");

}

C h a p t e r 1 2 : L i n k i n g a n d L i b r a r i e s 267
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

The second function, named saysomething, requires a string be passed to it:

/* saysomething.c */

#include <stdio.h>

void saysomething(char *string)

{

printf("%s\n",string);

}

These two functions are compiled as position-independent code and used to create
a shared library named libsayfn.so with the following command:

$ gcc -fpic -shared sayhello.c saysomething.c -o libsayfn.so

A program that will dynamically load these functions can be written using four
fundamental functions. A call to dlopen() loads the shared library into memory (if it
is not already there) and returns a handle that can be used to address it. Calls to dlsym()
return the addresses of the functions. A call can be made to dlcose() that detaches
the current program from the shared library. If no other programs are attached to it,
the dynamic library is unloaded from memory. The function dlerror() returns a
descriptive string describing the error that occurred on the most recent call to any one
of the other functions. The dlerror() function returns NULL if no error occurred.

The following program loads the shared library libsayfn.so and executes the
two functions it contains:

/* say.c */

#include <dlfcn.h>

#include <stdio.h>

int main(int argc,char *argv[])

{

void *handle;

char *error;

void (*sayhello)(void);

void (*saysomething)(char *);

handle = dlopen("libsayfn.so",RTLD_LAZY);

if(error = dlerror()) {

printf("%s\n",error);

exit(1);

}

268 G C C : T h e C o m p l e t e R e f e r e n c e

sayhello = dlsym(handle,"sayhello");

if(error = dlerror()) {

printf("%s\n",error);

exit(1);

}

saysomething = dlsym(handle,"saysomething");

if(error = dlerror()) {

printf("%s\n",error);

exit(1);

}

sayhello();

saysomething("This is something");

dlclose(handle);

}

The header file dlfcn.h is included because it contains the function prototypes
and some other definitions. At the top of the main() function are declarations for the
handle to be used to address the shared library, a string pointer to contain the address
of any error messages, and pointers to each of the functions that are to be found in
the library.

The command line to compile this example requires the inclusion of the library
containing the functions, as follows:

$ gcc say.c -ldl -o say

The call to dlopen() requires the name of the library to be loaded and a flag value
to indicate how the functions are to be loaded. The call to dlopen() searches for the
named library in the following places:

� If the name of the library begins with a slash (/) character, it is assumed that
the address is an absolute path name, so the name must be an exact match. If the
name does not begin with a slash, the search continues with the other locations
in this list.

� Each of the directories listed in the colon-separated list in the environment
variable LD_LIBRARY_PATH.

� The list of libraries found in the file /etc/ld.so.cache, which is maintained
through the ldconfig utility.

C h a p t e r 1 2 : L i n k i n g a n d L i b r a r i e s 269
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

� The directory /usr/lib.

� The directory /lib.

� The current directory.

The flag used as the second argument on the call to dlopen() can be RTLD_NOW,
which causes all the functions in the library to be loaded into memory and become
immediately available. The other option is to specify RTLD_LAZY, which will delay the
actual loading of each function until it is referenced on a call to dlsym(). Either of these
flags can be OR‘ed with RTLD_GLOBAL, which allows any external references in this
library to be resolved by calling functions found in other (also loaded) dynamic libraries.

The calls to dlsym() in the example, with the handle returned from dlopen()
and the name of a function, return the address of a function in the loaded library.
Once the function address is returned and stored in the appropriate pointer, it can
be called directly.

After the calls to dlopen() and dlsym(), calls to dlerror() are made so the
program will detect and report any error condition.

Utility Programs to Use with
Object Files and Libraries
Managing libraries and the object files stored in them can become quite a chore,
depending on the naming conventions and level of organization of your system. Even
with the object- and library-management capabilities of gcc and ar, there are times
when you need to examine the contents of binary files and reorganize things based
on what you find.

Configuring the Search for Shared Libraries
The ldconfig utility performs two fundamental functions dealing with shared libraries.
First, it creates links so that references to shared libraries are always to the latest version.
Second, it stores a complete list of the available shared libraries in the file /etc/
ld.so.cache.

The ldconfig utility reads the file /etc/ld.so.conf, which is a list of
directories containing shared libraries, and uses these directory names (along with
the directories /lib and /usr/lib) to locate the libraries to be linked and listed in
/etc/ld.so.cache. The directory names in the file /etc/ld.so.conf can be
separated by newlines, colons, tabs, or spaces. The contents of /etc/ld.so.cache
is not text and not intended to be edited.

Before constructing the /etc/ld.so.cache file, ldconfig analyzes the name and
content of the libraries and creates dynamic links so that the latest version of the libraries

will be loaded. For example, a program loading libdl.so.2 may actually be loading,
through a link, the library named libdl-2.2.4.so. When a new bug-fix version of the
library is released (for example libdl-2.2.5.so or libdl-2.3.0.so), the ldconfig
utility will update the link libld.so.2 to point to the new version. However, if a
major new release is made that could possibly break old programs, and it is named
libdl-3.0.0.so, the old link will be undisturbed and a new link named libdl.so.3
will be created. This naming convention makes it possible for programs using either the
old or new version of the shared library to run in the same environment.

Because of the privileged accesses required, it is necessary to log in as root to run
ldconfig. The following command will create all the new links necessary and generate
a new version of the file /etc/ld.so.cache:

% ldconfig -v

The -v option generates a list of all the links and other information about the
processing that takes place. The complete option list is described in Table 12-3.

270 G C C : T h e C o m p l e t e R e f e r e n c e

Option Description

-? Displays this option list and quits.

-C filename Uses the named file to hold the cache instead of the default,
/etc/ld.so.cache.

-c fmt Same as --format.

-f filename Uses the named file as the input configuration file instead
of the default, /etc/ld.so.conf.

--format=fmt Specifies the format of the content of /etc/ld.so.cache. The
available selections are old, new, and compat. The default
is compat.

--help Displays this option list and quits.

-n Links the libraries in the directories specified on the
command line and does not produce the cache file.

Table 12-3. Command-Line Options for ldconfig

C h a p t e r 1 2 : L i n k i n g a n d L i b r a r i e s 271
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

Listing Symbols Names in Object Files
The nm utility can be used to list all the symbols defined in (or referenced from) an object
file, a static archive library, or a shared library. If no file is named on the command line,
the file name a.out is assumed. Using the command-line options, the symbols can be
organized according their address, size, or name, and the output can be formatted in a
number of ways. The symbols can also be demangled and presented in the same form
as they appear in the original source code.

As an example, the following command will list the names of the object modules
along with all the symbols defined and referenced in the library named libc.a:

$ nm libc.a

Table 12-4 lists the command-line options of the nm command.

Option Description

-N Specifies to not rebuild the cache file.

-p Same as --print-cache.

--print-cache Displays an alphabetic listing of all the libraries in the cache
file, along with the full path name of the library to which
they are linked.

-r directory Changes to and uses the named directory as the root directory.

--usage Displays the syntax of the command line and quits.

-v Produces a verbose listing of the actions taken.

-V Displays the version information.

--verbose Produces a verbose listing of the actions taken.

--version Displays the version information.

-X Specifies to not create the library name links.

Table 12-3. Command-Line Options for ldconfig (continued)

272 G C C : T h e C o m p l e t e R e f e r e n c e

Option Description

-A Same as --print-file-name.

-a Same as --debug-syms.

-B Same as --format=bsd. This is the default.

-C [type] Same as --demangle.

-D Same as --dynamic.

--debug-syms Displays the symbols intended for use by the debugger.
Normally these do not display.

--demangle[=type] Demangles the symbol names back into the user-level
names found in the source code. If the type is specified,
it is one of the following: auto, gnu, lucid, arm, hp,
edg, gnu-v3, java, gnat, or compaq.

--dynamic For dynamic objects, such as shared libraries, this
option displays the dynamic symbols instead of the
normal symbols.

--extern-only Displays only symbols that have been defined as
being external.

-f fmt Same as --format.

--format=fmt Uses the specified output format to display the
symbols. The choices are bsd, sysv, and posix,
with bsd as the default.

-g Same as --extern-only.

-h Displays this list of options and quits.

--help Displays this list of options and quits.

-l Same as --line-numbers.

--line-numbers Uses the debugging information stored in the file
to determine the file name and line number for
each symbol.

-n Same as --numeric-sort.

--no-sort Specifies to not sort the symbols.

--numeric-sort Sorts the symbols numerically by their addresses.

Table 12-4. Command-Line Options of the nm Utility

C h a p t e r 1 2 : L i n k i n g a n d L i b r a r i e s 273
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

Option Description

-o Same as --print-file-name.

-p Same as --no-sort.

-P Same as --format=posix.

--portability Same as --format=posix.

--print-armap When listing the symbols from members of a static
library, this option includes the index information
along with the other information about the module
containing the symbols.

--print-file-name Tags each symbol with the name of its source file rather
than naming the source file only once at the top.

-r Same as --reverse-sort.

--radix=base Specifies the numeric base for printing symbol values.
The selection can be d for decimal, o for octal, or x
for hexadecimal.

--reverse-sort Reverses the sort, whether alphabetic or numeric.

-s Same as --print-armap.

--size-sort Sorts the symbols by size. The size is computed as the
difference between the address of the symbol with
the next highest address and the address of this
symbol. The size is listed in the output instead of
the usual address.

-t base Same as --radix.

--target=bfdname The bfdname is the name of an object file format
that is something other than the format for the current
machine. To get a list of the known format names, enter
the command objdump -i.

-u Same as --undefined-only.

--undefined-only Displays only the symbols that are referenced but not
defined in this file.

-V Same as --version.

--version Displays the version information and quits.

Table 12-4. Command-Line Options of the nm Utility (continued)

Removing Unused Information from Object Files
The strip utility removes the debugging symbol table information from the object
file or files named on the command line. The object file can be a static library, a shared
library, or a .o file produced by the compiler. Depending on how much debugging
information has been included in the file, stripping can dramatically reduce the size of
the file. As an example, the following command will strip all debugging information
from the object file main.o and all the object files in the library libglom.a:

$ strip main.o libglom.a

The strip utility replaces the existing file with the stripped version, so if you want
to be able to restore the original unstripped versions, you will need to save the files before
stripping them or use the -o option to produce the output in a different file.

The command-line options for strip are listed in Table 12-5. Several of the options
in the table refer to bfdname. This is the name of the format of the object file to be stripped,
and it will be necessary if the file is something other than the native format for the current
machine. To get a list of the available bfdnames, enter the command objdump -i.

274 G C C : T h e C o m p l e t e R e f e r e n c e

Option Description

--discard-all Removes all nonglobal symbols.

--discard-locals Removes the local symbols that were generated
by the compiler. These usually start with the
letter L or a period.

-F bfdname Same as --target.

-g Same as --strip-debug.

-h Displays this list of options and quits.

--help Displays this list of options and quits.

-I bfdname Same as --input-target.

--input-target=bfdname Treats the input object files as files in the
format of the named bfdname. Also see
--output-target and --target.

Table 12-5. The Command-Line Options for strip

C h a p t e r 1 2 : L i n k i n g a n d L i b r a r i e s 275
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

Option Description

-K name Same as --keep-symbol.

--keep-symbol=name Copies only the named symbols to the output
file. This option can be used more than once to
retain more than one name.

-N name Same as --strip-symbol.

-O bfdname Same as --output-target.

-o filename Instead of overwriting the original file,
the output is written to a new file named
filename. Using this option limits the
command to operate on a single file.

--output-target=
bfdname

Replaces the original file with a stripped file
in the format specified as bfdname. Also see
--input-target and --target.

-p Same as --preserve-dates.

--preserve-dates The newly stripped file will have the same
access times as the original input file.

-R name Same as --remove-section.

--remove-section=name Removes the named section from the object file.
This option may be used more than once to
remove more than one section.

-s Same as --strip-all.

-S Same as --strip-debug.

--strip-all Removes all symbols, including the relocation
information necessary for linking.

--strip-debug Removes only the symbols necessary
for debugging.

--strip-symbol=name Removes the named symbol. This option may
be used more than once and can be used along
with other strip options.

Table 12-5. The Command-Line Options for strip (continued)

Listing Shared Library Dependencies
The ldd utility reads through the object files in the binary executable or shared library
named on the command line and lists all the shared library dependencies. For example,
the following command lists the shared libraries used by the bash shell program on
a Linux system:

$ ldd /bin/bash

libtermcap.so.2 => /lib/libtermcap.so.2 (0x40027000)

libdl.so.2 => /lib/libdl.so.2 (0x4002b000)

libc.so.6 => /lib/libc.so.6 (0x4002f000)

/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

The first name listed on each line is the name of a shared library as it appears inside
the program, and the second is the path name of the actual library as it was found on the
disk. The address at which the library has been loaded into memory appears at the end
of the line. The bash shell uses the functions in libtermcap to display text on the screen,
and it uses libdl to load and execute functions in a shared library. The library libc
is the standard C function library. The file named ld-linux.so is the program ld.so,
which is the helper program for shared libraries and does the actual job of loading and
executing shared libraries.

It is convenient to use ldd to determine exactly which version of a shared library is
being used by a program. Another reason for using ldd is to determine any unresolved

276 G C C : T h e C o m p l e t e R e f e r e n c e

Option Description

--strip-unneeded Removes all symbols that are not necessary
to relocate the code.

--target=bfdname Sets both the input format and output format
to the specified bfdname. Also see
--input-target and --output-target.

-v Same as --verbose.

--verbose Produces a more verbose output by listing all
the files stripped.

-x Same as --discard-all.

-X Same as --discard-locals.

Table 12-5. The Command-Line Options for strip (continued)

references to shared libraries. For example, if the program stwohellos from Chapter 4
were to compile correctly, but the shared library compiled with it was not installed
properly, the output from ldd would look like the following:

$ ldd stwohellos

shello.so => not found

libc.so.6 => /lib/libc.so.6 (0x40027000)

libgcc_s.so.1 => /usr/lib/libgcc_s.so.1 (0x4015d000)

/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

Displaying the Internals of an Object File
The objdump utility can be used to extract information from object files, static libraries,
and shared libraries and then list this information in a human-readable form. It can be
used to dump the information from several different formats of object files. To determine
the object file formats recognized by objdump, enter the following command:

$ objdump -i

When executing objdump to extract information from a file, you must use one or
more of the options from Table 12-6 (each of which has both a short and long form) to
specify what information is to be extracted. Table 12-7 lists additional options that can
be used to refine the selection of incoming data or to format the output. For example, to
list both the file header and the section headers from the object file named helloworld.o,
and to assume the input code is big endian, enter the following command:

$ objdump -f -h -EB helloworld.o

C h a p t e r 1 2 : L i n k i n g a n d L i b r a r i e s 277
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

Short Long Displays

-a --archive-headers Archive header information

-d --disassemble Assembly language of the executable code

-D --disassemble-all Assembly language of the executable code
and data

-f --file-headers Contents of the overall file headers

-g --debugging Debugging information

Table 12-6. Short and Long Forms of Dump Selection Options for objdump

278 G C C : T h e C o m p l e t e R e f e r e n c e

Short Long Displays

-G --stabs Raw form of any STABS information

-h --section-headers Contents of the section headers

-H --help This list of options

-i --info A list of object formats and architectures
supported

-p --private-headers File header contents that are specific to
the object format

-r --reloc Relocation information

-R --dynamic-reloc Dynamic relocation information

-S --source Assembly language of the executable
with source code intermixed

-s --full-contents Assembly languages of all code with
source code intermixed

-t --syms Contents of the symbol table

-T --dynamic-syms Contents of the dynamic symbol table

-V --version Version information

-x --all-headers Contents of all headers

Table 12-6. Short and Long Forms of Dump Selection Options for objdump
(continued)

Option Description

--adjust-vma=offset Adds the specified offset value to all the
displayed section addresses.

--architecture=machine Specifies the format of the input object file
in terms of the hardware. To determine the
architecture types available, enter objdump -i.

-b bfdname Same as --target.

-C type Same as --demangle.

Table 12-7. Modifier Command-Line Options for objdump

C h a p t e r 1 2 : L i n k i n g a n d L i b r a r i e s 279
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

Option Description

--demangle=type The symbols are assumed to be of the specified
type and demangled back to the form they
appeared in the source code. The valid types
are auto, gnu, lucid, arm, hp, edg, gnu-v3,
java, gnat, and compaq.

--disassembler-
options=op

The specified op is one or more options to be
passed to the disassembler.

--disassemble-zeroes Specifies to not skip blocks of zeroes when
disassembling code.

-EB Same as --endian=big.

-EL Same as --endian=little.

--endian=which Specifies whether the input object file is big
endian or little endian. The word little
specifies little endian and big specifies
big endian.

--file-start-context When the -S option is used, this option will
include the context information from the start
of the file.

-j name Same as --section.

-l Same as --line-numbers.

--line-numbers Includes the line numbers and file names
in the output.

-M Same as –disassembler-options.

-m machine Same as –architecture.

--prefix-addresses Prints the entire address information adjacent
to each disassembled instruction.

--section=name Limits the displayed information to the named
section of the object file.

--show-raw-insn Displays hexadecimal opcodes along with the
mnemonic assembly language instructions.

--start-address=address Only processes data with an address greater
than the specified address value.

Table 12-7. Modifier Command-Line Options for objdump (continued)

280 G C C : T h e C o m p l e t e R e f e r e n c e

Option Description

--stop-address=address Only processes data with an address less than
the specified address value.

--target bfdname Specifies the format of the input object file.
To determine the formats available, enter the
command objdump -i.

-w Same as --wide.

--wide Formats the output for more than 80 columns.

-z Same as --disassemble-zeroes.

Table 12-7. Modifier Command-Line Options for objdump (continued)

Chapter 13
Using the
GNU Debugger

281

282 G C C : T h e C o m p l e t e R e f e r e n c e

The utility program gdb is the GNU debugger. It is a command-line debugger that
can be used to completely control and examine a running process.
Any program will respond to the commands issued to it from gdb, but only those

that have been compiled and linked with the appropriate options to contain information
relating to the original source code can provide you with the information you need to
trace the flow of execution. Probably the simplest way of starting an interactive debug
session is to name the program on the command line as gdb is started, although the
same result can be achieved by starting the debugger and loading the program later.
The debugger can also be instructed to attach itself to a running program, making it
possible to examine the processing inside a program that does strange things only after
it has been running for a time. A third use of gdb is to perform a postmortem on a program
that has crashed and determine the cause of the crash.

Debugging Information Formats
To be able to debug a program, it is necessary that information about the program be
included in the object file. Using this information, the debugger can relate the executable
code to the source code and deliver information about the program in a form that you
can read to determine exactly what the program is doing. Without this information, all
the debugger knows is the absolute binary addresses and the machine language opcodes
that are being executed—it is very difficult for you to relate this to the source code of
your program.

More than one format exists for storing this information in an object file. For a
debugger to be able to work, it must understand the format of the debugging data.
Fortunately the gdb debugger understands more that one of these formats, and it
also understands some special extensions that can be inserted into the code by gcc.

STABS
The STABS format for debugging information was originally devised for use by a
Pascal language debugger, but the format has proven to be quite useful and has
become fairly widespread.

The gcc compiler adds STABS (symbol table) debugging information to the assembly
language code it generates, and this information is then included with the object code
produced by the assembler. The assembler adds the STABS information to the symbol
table and string table appended to the end of each .o file. The linker combines the
.o files into an executable file, combining the tables into a single symbol table, which
is used by the debugger to identify sections of executable code.

The three assembler directives used to create the symbol tables take the
following forms:

.stabs "name:symdesc=typeinfo",type,other,description,value

.stabn type,other,description,value

.stabd type,other,description

Each directive has a type field that provides basic information (such as whether
this directive is a new definition or a reference to an existing definition). The type field
also indicates the meaning of the content of the other and description fields. The
value field is the value assigned to the definition.

The .stabs directive defines a character string that goes in the symbol table. Inside
the quotes, name is the name by which the symbol is inserted into the table. The symdesc
is a single character (such as F for a global function, G for a global variable, or t for a
type name) and a type number (which can actually be two numbers) that either define
the symbol as a new type or refer to a previously defined type number. The typeinfo
provides further information about the type, such as numeric ranges or size.

The .stabn directive defines a numeric value.
The .stabd directive defines a tag for the current address (the address at the location

of the directive). It has no value specified for it because that can be derived from the
location of the directive.

You can view a document describing the entire STABS format at http://
sources.redhat.com/gdb/onlinedocs/stabs.html.

DWARF
The DWARF format of debugging information is well into its second generation, called
DWARF2, and work is proceeding on the DWARF3 standard. Some encoding differences
exist among the versions such that they are not compatible with one another, but the
gdb debugger recognizes and reads both the original DWARF and DWARF2.

The debug information is generated in the assembly language in special sections of
code with names such as .debug_pubnames, .debug_aranges, .debug_info, or
just .debug. These special sections contain data and executable code that can be used
to identify and extract information from a running program. The linker groups the ones
with the same section names into single blocks in the object code, which can be used to
identify the location of items and establish relationships between object code addresses
and lines of source code.

You can view the DWARF2 specification at http://services.worldnet.fr/~stcarrez/
dwarf2.pdf.

COFF
The Common Object File Format (COFF), sometimes called the a.out format, is a
standard format of object files on UNIX System V and many of its derivative systems.
This is the object file format adopted by Microsoft for DOS and Windows. The Linux
variant of this format is called ELF.

The COFF format doesn’t contain information specifically designed for debugging—
the information is primarily for linking—but it does contain much of the information
required by a debugger. The symbol table contains every relocatable symbol, and the
relocation table contains references to the symbol table entries and information on the
data types. It also contains line number information that can be used to associate the

P
ER

IP
H

ER
A

LS
A

N
D

IN
TER

N
A

LS
C h a p t e r 1 3 : U s i n g t h e G N U D e b u g g e r 283

binary code with the original source code. The symbol table contains a full
description of each symbol, along with size and descriptive information.

The COFF format divides the object into sections. The .text section contains
executable code, the .data section contains variables with initial values, and the .bss
section contains uninitialized data. The fundamental reason for this division is that if
more than one instance of a program is running, they can share the same .text section
in memory, the .data section can be loaded into memory as a single block to set all
initial values, and the .bss section can exist in the file as only a single number (the size)
and can be expanded to the correct size when the program is loaded.

The information contained in this format is not as extensive as that contained in
STABS or DWARF, so you will often see a basic COFF file with STABS or DWARF
information inserted into it to allow for more extensive debugging.

XCOFF
The XCOFF object file format is an extension of the basic COFF format. The XCOFF
format provides tables and references appropriate for dynamic linking. Also, XCOFF can
contain object code for either the 32-bit or 64-bit model.

The fundamental format is the same as COFF, but the XCOFF format also includes
STABS strings stored in a .debug section rather than the COFF approach of storing
them in a string table. That is, the XCOFF format is a blend of COFF and STABS, with
some of the COFF pieces left out so there is no duplication of data, as is required when
STABS is inserted into the COFF format.

Compiling a Program for Debugging
For the debugger to be able to associate the binary executable code with the source
code—which is a requirement for displaying information in a human-readable form—
the compiler must be instructed to include information in the object code. You can do
this by setting command-line options to specify the amount and type of information to
be included.

The amount of included information is controlled by a level number, as shown in
Table 13-1. The level number is set in conjunction with the option flags, as shown
in Table 13-2.

The format of the debugging information in the object file varies with the native format
of the object code for each platform. The gdb debugger recognizes and can work with
several different formats. Systems that use the STABS format generally contain extra
debugging information that is recognized only by gdb.

Table 13-2 lists the gcc command-line options that can be used to instruct the compiler
to insert debugging information in the object code. It is possible to use the -O optimization
option along with a debugging option, but you should be aware that optimization can
rearrange (and even remove) code, causing it to be difficult to follow the logic flow of

284 G C C : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 3 : U s i n g t h e G N U D e b u g g e r 285
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

Level Description

1 This level inserts the minimum amount of information
into the object code. There is enough information to trace
function calls and examine global variables, but there is no
information relating executable code to source code, nor is
there sufficient information to examine local variables.

2 This is the default level. This level includes all of the level 1
information, and it adds the information necessary to relate
source code lines to the executable code as well as the names
and locations of local variables.

3 This level includes all the level 1 and level 2 information,
and it adds extra information, including the preprocessor
macro definitions.

Table 13-1. The Three Levels of Debugging Information in an Object File

Option Description

-g[level] Produces debugging information in a format that is native
for the system. The GNU debugger can work with this
format, as can other debuggers. On systems that use the
STABS format, this option will produce extra information
that can only be used by gdb and could possibly cause other
debuggers to fail. The optional-level number defaults to 2.

-ggdb[level] Produces debugging information in the default format and
includes the gdb extensions if possible. The information is
produced in the best format available—the native format
is used if neither STABS nor DWARF2 is available.

-gstabs[level] Produces debugging information in the STABS format
(if available).

-gstabs+ Produces debugging information in the STABS format
(if available) and adds the extensions understood only
by the gdb debugger. These extensions may cause other
debuggers to fail.

Table 13-2. The List of gcc Options Used to Insert Debugging Information

286 G C C : T h e C o m p l e t e R e f e r e n c e

your program. However, situations can arise where it is appropriate to debug an
optimized version of the program.

Some of the command-line options in Table 13-2 allow you to add a level number,
and some don’t. For the ones that don’t, you can still specify the level by using a
separate -g option. For example, to specify -gstabs+ and set the level to 3, use the
following sequence of options:

$ gcc -g3 -gstabs+ ...

Option Description

-gcoff[level] Produces object code and debugging information in the
COFF format (if available). This format is used most often
on System V prior to Release 4.

-gxcoff[level] Produces object code and debugging information in the
XCOFF format (if available).

-gxcoff+ Produces object code and debugging information in
the XCOFF format (if available) and adds the extensions
understood only by the gdb debugger. This format may
cause non-GNU debuggers and linkers to fail.

-gdwarf Produces debugging information in the DWARF version 1
format (if available). This is the format used on most System
V Release 4 systems.

-gdwarf+ Produces debugging information in the DWARF version 1
format (if available) and adds the extensions understood
only by the gdb debugger. This format may cause non-GNU
debuggers and linkers to fail.

-gdwarf-2 Produces debugging information in the DWARF version 2
format (if available).

-gvms[level] Produces debugging information in the VMS debug format
(if available). This is the format used on DEC VMS systems.

Table 13-2. The List of gcc Options Used to Insert Debugging Information
(continued)

P
ER

IP
H

ER
A

LS
A

N
D

IN
TER

N
A

LS

Loading a Program into the Debugger
Naming a program on the gdb command line is sufficient for the program to be loaded
into memory and prepared for debugging. The program is loaded but does not start
running until you command it to do so. This pause gives you the opportunity to set up
some breakpoints (places at which the running program will halt) and make other
preparations, such as specifying variables that are to have their values displayed as you
step through the program.

The following is an example of running a program with the debugger that
demonstrates how the interface works as well as how a set of basic commands can
be used to monitor the running of a program. The C program named fibonacci.c
displays the first 20 terms of the Fibonacci sequence:

/* fibonacci.c */

int current;

int next;

int nextnext;

void calcnext();

void setstart();

int main(int argc,char *argv[])

{

int i;

setstart();

for(i=0; i<20; i++) {

printf("%2d: %d\n",i+1,current);

calcnext();

}

return(0);

}

void setstart()

{

current = 0;

next = 1;

}

void calcnext()

{

nextnext = current + next;

current = next;

next = nextnext;

}

C h a p t e r 1 3 : U s i n g t h e G N U D e b u g g e r 287

To compile the program so it will include debugging information, it is only
necessary to use the -g option, as follows:

$ gcc -g fibonacci.c -o fibonacci

It is not necessary for gdb to have access to the source file to be able to produce
diagnostic information because everything needed is included as part of the object file.
However, if the source is found when the debugger starts, checks are made to verify
that the source file correctly matches the object file. If a mismatch is suspected, a warning
message is displayed.

The following simple debug session loads the program, sets a breakpoint at the
entry to the function main(), and sets up the continuous display of two variables.
The program is then started running, which it does until it reaches the breakpoint, where
the step and next commands are used to execute the program one line at a time:

$ gdb fibonacci

(gdb) break main

Breakpoint 1 at 0x80483a0: file fibonacci.c, line 14.

(gdb) display current

(gdb) display next

(gdb) run

Starting program: /home/fred/progs/fibonacci

Breakpoint 1, main (argc=1, argv=0xbffffa9c) at fibonacci.c:14

14 setstart();

2: next = 0

1: current = 0

(gdb) step

setstart () at fibonacci.c:23

23 current = 0;

2: next = 0

1: current = 0

(gdb) step

24 next = 1;

2: next = 0

1: current = 0

(gdb) step

25 }

2: next = 1

1: current = 0

(gdb) step

main (argc=1, argv=0xbffffa9c) at fibonacci.c:15

288 G C C : T h e C o m p l e t e R e f e r e n c e

15 for(i=0; i<20; i++) {

2: next = 1

1: current = 0

(gdb) step

16 printf("%2d: %d\n",i+1,current);

2: next = 1

1: current = 0

(gdb) next

17 calcnext();

2: next = 1

1: current = 0

(gdb) step

calcnext () at fibonacci.c:28

28 nextnext = current + next;

2: next = 1

1: current = 0

(gdb) step

29 current = next;

2: next = 1

1: current = 0

(gdb) step

30 next = nextnext;

2: next = 1

1: current = 1

(gdb) step

31 }

2: next = 1

1: current = 1

(gdb) bt

#0 calcnext () at fibonacci.c:31

#1 0x080483d4 in main (argc=1, argv=0xbffffa9c) at fibonacci.c:17

#2 0x40042316 in __libc_start_main (main=0x8048390 <main>, argc=1,

ubp_av=0xbffffa9c, init=0x8048230 <_init>, fini=0x8048460

<_fini>,

rtld_fini=0x4000d2fc <_dl_fini>, stack_end=0xbffffa8c)

at ../sysdeps/generic/libc-start.c:129

(gdb) quit

The program is running. Exit anyway? (y or n) y

$

The first action performed by gdb is the loading of the executable program. The
debugger then halts and waits for you to enter a command. The loaded program is not

C h a p t e r 1 3 : U s i n g t h e G N U D e b u g g e r 289
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

running. At the time the program is loaded, gdb extracts the debugging information
and builds its own set of internal tables, which means the debugger knows the name
and location of everything (assuming it was compiled and linked with one of the -g
options) and is ready for analysis.

Before the program is started running, the display command is used to instruct
the debugger to display the names and values of the variables named current and
next. These variables will be displayed automatically each time the program stops.

If you were to start the program running at this point, the program would simply
run to its conclusion and halt without you being able to intervene. The purpose of a
debugger is to examine the execution, which means it is necessary to pick a point at
which you would like to halt the program so you can look around and step through
instructions. In this example the command break main sets a breakpoint at the entry
point of the function named main(). The debugger acknowledges the command by
listing the address and line number at which the breakpoint has been set. The source
code of line 14 is displayed, which is the call to the function setstart() used to set
the two initial values of the Fibonacci sequence.

The run command starts the program. Execution begins with the initialization code
inserted into every program by gcc. The initilization code runs until it eventually calls
main(). As soon as the code corresponding with line 14 of the source code is reached,
the program is frozen, the two values are displayed, and gdb issues a prompt for a
new command.

The step command executes one line of source code. At the assembly language
level this is often more than one instruction, but gdb executes as many instructions as
necessary to complete all the instructions created from a single line of source. In this
example, the first step command executes the call to the function setstart() and
then stops on the first line of code in the function, which is line 23 in the source file. The
following two step commands execute the two statements inside the function, which
sets current and next to the initial values of 1 and 0, respectively. The next step
command executes the return from the function and stops at the top of the for loop.

Once the step statement enters the top of the loop, the program is halted on the
call to the printf() function. If another step statement were used at this point, execution
would enter the printf() function, which is probably not what you intend to have
happen. Unless you have gone to the special effort required to compiled the printf()
function with one of the -g options, there will be no debugging information included
and, although the debugger can step through the function, there is no possibility of
displaying values or the source code. Instead of using step, the command next is
used to execute the entire function call as a single line of code and stop on the line
following the call.

A series of step statements is used to execute the statements through iterations of
the loop. This procedure can be continued while you examine the actions of the program
to try to discover places where calculations go amiss. You can interactively verify that
things are being done the way you envisioned them when you wrote the program.

290 G C C : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 3 : U s i n g t h e G N U D e b u g g e r 291
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

In this example, the bt command is used to generate a backtrace of function calls,
which lists the execution path followed by the program to get to the current location.
The information found in the backtrace includes not only the names of the functions,
but the names and values of the arguments passed to each one and the source code
file in which each one is found.

Performing a Postmortem
On a UNIX system, a program that crashes will trigger a function of the operating system
that dumps a copy of the program’s image in memory to a file named core. If the program
has been compiled with the -g option, it is a relatively simple matter to determine
exactly where in the code the crash occurred.

The following program will crash every time it runs because it attempts to store
information at the address zero in memory, which is a forbidden area to any program:

/* falldown.c */

char **nowhere;

void setbad();

int main(int argc,char *argv[])

{

setbad();

printf("%s\n",*nowhere);

}

void setbad()

{

nowhere = 0;

*nowhere = "This is a string\n";

}

The program can be compiled and run with the following commands, producing
a core file containing an image of the running program:

$ gcc -g falldown.c -o falldown

$ falldown

Segmentation fault (core dumped)

To instruct gdb to load both the program and the core file it dumped, enter the
following command:

$ gdb falldown core

In most cases, this command will provide you with all the information you need
because it immediately lists the line of code being executed at the point at which the
program died. The following debug session demonstrates the information displayed
by gdb as well as how you can use other commands to extract more information if you
need it:

$ gdb falldown core

Core was generated by `falldown'.

Program terminated with signal 11, Segmentation fault.

Reading symbols from /lib/libc.so.6...done.

Loaded symbols for /lib/libc.so.6

Reading symbols from /lib/ld-linux.so.2...done.

Loaded symbols for /lib/ld-linux.so.2

#0 0x080483d0 in setbad () at falldown.c:14

14 *nowhere = "This is a string\n";

(gdb) print nowhere

$1 = (char **) 0x0

(gdb) bt

#0 0x080483d0 in setbad () at falldown.c:14

#1 0x080483a5 in main (argc=1, argv=0xbffffa8c) at falldown.c:8

#2 0x40042316 in __libc_start_main (main=0x8048390 <main>, argc=1,

ubp_av=0xbffffa8c, init=0x8048230 <_init>, fini=0x8048410

<_fini>,

rtld_fini=0x4000d2fc <_dl_fini>, stack_end=0xbffffa7c)

at ../sysdeps/generic/libc-start.c:129

(gdb) quit

$

In this example, the offending line of code (the one where the address of a string
is stored into the absolute address zero), including the name of the function and the
source file it is found in, is printed out. The print command is used to verify that the
pointer nowhere is set to an invalid address, and the bt command is used to generate
a backtrace to demonstrate how the program got itself into this situation. A number of
other commands are available that can be used to examine the contents of variables, but
you will usually find that you have enough information to fix the problem immediately.

Attaching the Debugger to a Running Program
The ability to attach the debugger to a running process can be very useful. If, for example,
a program goes into an unresponsive loop after running for some period of time, you can
attach gdb to it and find out exactly where the program is looping. Another situation is

292 G C C : T h e C o m p l e t e R e f e r e n c e

an interactive program that suddenly starts doing things it shouldn’t do—you can attach
the debugger and trace the cause of the strange actions.

There are two prerequisites for attaching the debugger to a running process. First,
the process must have been compiled with some form of the -g option. Second, you
must determine the Process ID (PID) number of the running process. If you don’t already
know the PID, you can use the ps command to discover it. The command-line arguments
for the ps command vary from one system to the next because different operating systems
provide information about running processes in different forms, but the following form
is typical and determines the PID of the process named looper is 29627:

$ ps ax | grep looper

29627 pts/4 R 1.58 looper

32298 pts/4 S 0:00 grep looper

The output from the ps command also indicates that the looper process is active
(R means running). In fact, the program looper.c was written specifically to run in
a continuous loop to demonstrate the ability of gdb to attach itself to a process:

/* looper.c */

void goaround(int);

int main(int argc,char *argv[])

{

printf("started\n");

goaround(20);

printf("done\n");

}

void goaround(int counter)

{

int i = 0;

while(i < counter) {

if(i++ == 17)

i = 10;

}

}

The mainline of the program looper calls the function goaround(), which never
returns because the value of i never reaches the value of counter. The program can
be compiled with debugging information included by using the following command:

$ gcc -g looper.c -o looper

C h a p t e r 1 3 : U s i n g t h e G N U D e b u g g e r 293
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

To start the program running in the background, enter the following command:

$ looper &

The shell program used to start the program will usually display the PID number
of the new process, but if it does not, you can use ps to determine the number. The
following sequence demonstrates how to attach the debugger to the process and use it
to discover the problem. The command line specifies the name of the binary file on disk
and the PID:

$ gdb looper 29627

Attaching to program: /home/fred/looper, process 29627

Reading symbols from /lib/libc.so.6...done.

Loaded symbols for /lib/libc.so.6

Reading symbols from /lib/ld-linux.so.2...done.

Loaded symbols for /lib/ld-linux.so.2

0x080483ea in goaround (counter=20) at looper.c:14

14 if(i++ == 17)

(gdb) display i

1: i = 14

(gdb) step

13 while(i < counter) {

1: i = 15

(gdb) step

14 if(i++ == 17)

1: i = 15

(gdb) step

13 while(i < counter) {

1: i = 16

(gdb) step

14 if(i++ == 17)

1: i = 16

(gdb) step

13 while(i < counter) {

1: i = 17

(gdb) step

14 if(i++ == 17)

1: i = 17

(gdb) step

15 i = 10;

1: i = 18

(gdb) step

294 G C C : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 3 : U s i n g t h e G N U D e b u g g e r 295
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

13 while(i < counter) {

1: i = 10

(gdb) step

14 if(i++ == 17)

1: i = 10

(gdb) step

13 while(i < counter) {

1: i = 11

(gdb) quit

The program is running. Quit anyway (and detach it)? (y or n) y

Detaching from program: /home/fred/looper, process 29627

$

At the beginning, the debugger reads the binary file from disk and loads the symbol
table information from the program and, as indicated by the first few lines of output,
the symbol table from the libraries used by the program. If any of the libraries have
been compiled with debugging information included, it would be possible to trace
through them if necessary, but this simple demonstration only traces the loop in the
goaround() function.

The gdb debugger then attaches itself to the process and freezes at its current location,
displaying the source code text and line number. At this point you are free to set
breakpoints, examine variables, or perform any other normal debugging activity. In
this example a display command is used to instruct gdb to display the value of i with
the execution of each instruction. A series of step commands is used to track the value
through a few iterations of the loop, exposing the fact that the value of i is reset in such
a way that the loop will never exit.

At the end of the session, by using the quit command, the debugger detaches itself
from the process and allows the process to keep running. In this example, as soon as
gdb detaches itself, the program will continue with its looping until halted in some other
way. The process is completely normal again and can be reattached to gdb at any time.
The looper process could have been halted by entering a kill command before the
quit command.

Command Summary
The gdb debugger has an enormous number of commands available. To see them, you
only need to enter help at the gdb prompt. You will be shown a list of categories from
which to choose. Some of these categories contain lists of command descriptions, where
others contain subcategory names containing further lists.

Table 13-3 lists some of the more useful commands, which are all you will need for
most debugging sessions.

296 G C C : T h e C o m p l e t e R e f e r e n c e

Command Description

awatch Sets a watch point so that execution will stop whenever
the value in the named location is either read from or
written to. Also see rwatch and watch.

backtrace Prints a backtrace of all stack frames showing the function
calls and argument values that brought the program to
this location. This command has the short form bt.

break Sets a breakpoint that stops execution at the specified line
number or function name.

clear Clears the breakpoint at the line number or function that
was initially set by the break command.

continue Continues execution of a program that has been halted by
the debugger.

Ctrl-C Interrupts a running program just as if a breakpoint were
hit at the current line.

disable Disables the breakpoints listed by number.

display Displays the value of the specified expression each time
the program is halted.

enable Enables the breakpoints listed by number.

finish Continues execution of a program that has been
halted by the debugger and continues until the
current function returns.

ignore Sets the ignore count of a breakpoint. For example,
the command ignore 4 23 will require that breakpoint
number 4 be hit 23 times before it actually breaks.

info breakpoints Lists the status and description, including the number,
of all breakpoints.

info display Lists the status and description, including the number,
of the previously defined display commands.

kill Kills the running of the current process.

Table 13-3. Some of the More Useful Commands of gdb

C h a p t e r 1 3 : U s i n g t h e G N U D e b u g g e r 297
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

Command Description

list Lists ten lines of code. If no other arguments are on
the command line, the ten lines begin with the current
location. If a function is named, the ten lines start
with the beginning of the function. If a line number
is specified, that line number will be the one in the
center of the listing.

load Dynamically loads the named executable file into gdb
and prepares it for debugging.

next Continues execution of a program that has been halted
and executes all the instructions corresponding to a
single line of source code, but treats a call to a function
as one line of code and doesn’t stop until it returns.

nexti Continues execution of a program that has been halted
and executes a single assembly language instruction, but
treats a call to a function as one instruction and doesn’t
stop until it returns.

print Immediately displays the value of the specified expression.

ptype Prints the type of the named item.

return Forces an immediate return from the current function.

run Starts the program into execution from its beginning.

rwatch Sets a watch point so that execution will stop whenever
the value in the named location is read. Also see awatch
and watch.

set Sets the named variable to the expression. For example,
set nval=54 will store the value 54 into the memory
location named nval.

step Continues execution of a program that has been
halted and executes all the instructions corresponding
to a single line of source code. It will step into a
called function.

Table 13-3. Some of the More Useful Commands of gdb (continued)

298 G C C : T h e C o m p l e t e R e f e r e n c e

Command Description

stepi Continues execution of a program that has been halted
and executes a single assembly language statement.
It will step into a called function.

txbreak Sets a temporary breakpoint (works only one time) at
the exit point of the current function. Also see xbreak.

undisplay Deletes the display expression listed by number.

watch Sets a watch point so that execution will stop whenever
the value in the named location is written. Also see
rwatch and awatch.

whatis Prints the data type and the value of the specified
expression.

xbreak Sets a breakpoint at the exit point of the current function.
Also see txbreak.

Table 13-3. Some of the More Useful Commands of gdb (continued)

Chapter 14
Make and Autoconf

299

This chapter is an introduction to the operation of the make utility, which can
be used to manage a software-development project, and Autoconf, which can be
used to configure and package open source software for release and distribution.

This chapter is not a complete tutorial on all the features of these utilities, but there is
enough here to make it fairly easy for a programmer to extrapolate what is needed to
complete a development environment. The basic purpose and general operation of each
one are exposed.

Make
The make utility is, by far, the most used tool in software development. The fundamental
idea behind make is quite simple: examine the source and object files to determine
which source files need to be recompiled to create new object files. It is assumed by make
that any source file that is newer than the object file produced from it has been modified
and needs to be compiled. Everything make does is based on this one fundamental
operation. The relationship of an object file to the source file used to produce it is known
as a dependency. The object file produced by the commands associated with a dependency
is known as the target.

To determine the dependencies, make reads a script that defines them. The script
is normally named makefile or Makefile. The script contains the dependencies
along with the commands that will translate source into object files. For example, the
following makefile entry specifies that the program named frammis is dependent on
the source file frammis.c, and it specifies the exact gcc command used to create
the target, frammis:

frammis: frammis.c

gcc frammis.c -o frammis

It should be pointed out that make dates from the early days of UNIX, and it retains
an arcane quirk about formatting commands that follow a dependency line—the command
lines must be indented with a tab character. The tab character, even though invisible on
the screen or when printed, is part of the syntax of the makefile script. If you fail to
use a tab (or use spaces instead), you will get a “missing separator” message, which,
fortunately, specifies the line number of the missing tab.

It is common to have one file depend on a file produced from another dependency.
For example, the following set of dependencies compiles the program frammis:

frammis: frammis.o

gcc frammis.o -o frammis

frammis.o: frammis.c

gcc -c frammis.c -o frammis.o

300 G C C : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 4 : M a k e a n d A u t o c o n f 301

In this example, the executable program frammis depends on frammis.o, which,
in turn, is defined as depending on frammis.c. When make starts running, it begins
by reading the entire makefile and constructing an internal tree from the dependency
chains, with the first dependency in the file being the root of the tree. In this example,
the root is the frammis dependency, with the frammis.o dependency beneath it in the
tree. Once the tree is constructed, the program begins at the root of the tree and descends
the tree to the lowest level, then works its way back up, executing the commands that
it determines should be executed until it has reached the root of the tree and all
dependencies have been satisfied.

It should be pointed out that make constructs and executes only one internal tree,
so it is possible to have dependencies defined in the file that are never executed because
they are not linked, through dependencies, to the first dependency in the file. This is
not as much of a limitation as it may seem at first, because you can always insert a
special dependency that includes all the other dependencies, as in the following example,
where all is used as a dummy target:

all: frammis cooker

frammis: frammis.c frammis.h

gcc frammis.c -o frammis

cooker: cooker.c cooker.h

gcc cooker.c -o cooker

The target named all depends on frammis and cooker. Although the all target
has two dependencies, it has no commands associated with it, but that’s okay because
the only purpose is to force the dependencies to be satisfied. The internal make tree has
all as its root and cooker and frammis as the tree nodes beneath it.

Items other than dependencies and their associated commands can be included
in a makefile, but they are all there for the sole purpose of defining the dependencies
and commands.

A makefile is invoked with the following simple command:

$ make

By default, make looks in the current directory first for a file named makefile.
Then, if makefile is not found, it looks for a file named Makefile. If neither of these
are found, no action is taken. You can optionally specify the name of the file on the
command line as follows:

$ make -f mymakefile.text

302 G C C : T h e C o m p l e t e R e f e r e n c e

Internal Definitions
For convenience in constructing rules based on targets and dependencies, it is possible
to use predefined macros and establish implicit rules that make can use to convert one
file type to another.

Macros
A macro can be defined in one of three different ways. The following target in a makefile
demonstrates the definition and use of macros:

showmacros:

echo HOME is $(HOME) # defined as an environment variable

echo COMPILE.f is $(COMPILE.f) #defined as a makefile default

echo HERBERT is $(HERBERT) # defined locally in the makefile

While reading a makefile, whenever make encounters a # character, the rest of the
line is considered a comment and is ignored.

The target named showmacroswill always execute its associated commands because
no dependencies are listed for it, and the default is to assume the target must be made.
The content of a variable can be extracted and used in statements by preceding it with a
dollar ($) character and enclosing it in parentheses. In this example, the value of HOME
is taken from the setting of your environment variable, the value of COMPILE.f is a
name that is defined by GNU make itself, and HERBERT is defined somewhere in the
makefile with a line like the following:

HERBERT=Herbivore

The output from the makefile looks like this:

echo HOME is /home/arthur

HOME is /home/arthur

echo COMPILE.f is f77 -c

COMPILE.f is f77 -c

echo HERBERT is herbivore

HERBERT is herbivore

Each of the echo commands is displayed before the output it produces because the
default mode of make is to echo each command before it is executed.

Suffix Rules
Rules can be specified to recognize file types by their name suffixes and automatically
translate one file type to another. The following example is a makefile that recognizes

three suffixes and defines a pair of commands that will translate a file with one suffix
into a new file with a target suffix:

all: hello.o hello.s

hello.o: hello.c

hello.s: hello.c

.SUFFIXES: .o .c .s

.c.o:

gcc -c $<

.c.s:

gcc -S $<

This makefile is designed to make two targets: one is hello.o, and the other is
hello.s. Because the rules to make these targets have no commands associated with
them, the three file suffixes recognized are .c, .o, and .s. The suffix rule named .c.o
converts a file with a .c suffix into a file with a .o suffix, and the suffix rule .c.s has
a command that will convert a file with a .c suffix into a file with a .s suffix. The
special macro $< is a reference to the name of the file being used to construct the target.
The result is the same as if the following had been included in the makefile:

hello.o: hello.c

gcc -c hello.c

hello.s: hello.c

gcc -S hello.c

Suffix rules can be, and usually are, a bit more complicated than the ones shown
here, but you normally don’t have to write them yourself. A large number of suffix
rules are built into GNU make—enough that you only need to spell out the commands
if you are doing something special.

Viewing the Definitions
Command-line options exist that make it possible for you to see the complete list of
macros and suffix definitions that are defined when you run make. The -p option will
cause the makefile to be read and executed as normal, but all the rules from the makefile,
along with all the macros and suffix rules, are also listed. To see this entire list, enter
the following:

$ make -p | more

C h a p t e r 1 4 : M a k e a n d A u t o c o n f 303

304 G C C : T h e C o m p l e t e R e f e r e n c e

To see the same list but prohibit the makefile commands from actually being executed,
you can enter the command this way:

$ make -p -q | more

If you would rather see only the definitions that are built into GNU make without
seeing any of the definitions from the local makefile, you can have make read an empty
makefile this way:

$ make -p -f /dev/null | more

How to Write a Makefile
If you are new to writing makefiles, the best thing to do is copy an existing one and
modify to it do what you would like it to do. After you do this for your first few
makefiles, you begin to get the feel for the general form. If you want to learn enough
about how make works to be able to write makefiles from scratch, you are going to
need to spend some time researching and experimenting. It isn’t that difficult, really,
but it is different enough that it can be confusing until you get the hang of it.

You may want to create a skeleton makefile to be used as a starter kit each time you
need to create a new makefile, but sadly there is no universal form that fits all occasions.
The following is a somewhat generic example of a makefile that compiles two C programs
and links them into executables:

CC=gcc

PROGS=howdy hello

CFLAGS=-Wall

all: $(PROGS)

howdy: howdy.c

hello: hello.c

$(CC) $(CFLAGS) hello.c -o hello

clean:

rm -f *.o

rm -f *.so

rm -f *.a

rm -f $(PROGS)

C h a p t e r 1 4 : M a k e a n d A u t o c o n f 305

The CC variable is set to gcc, and CFLAGS is set to -Wall. The list of target names
is stored in the variable PROGS. This makefile compiles the two programs in exactly the
same way, but one of them defaults to using the built-in command while the other uses
an explicit command. The output from a successful make looks like the following:

gcc -Wall howdy.c -o howdy

gcc -Wall hello.c -o hello

There is a clean target that can be invoked at any time to remove all files generated
by the makefile. The current set of commands doesn’t leave any .o, .so, or .a files on
disk, so those commands serve no purpose. However, the -f option instructs rm to not
complain if the files are not present, and makefiles grow with a project and begin to
produce all kinds of intermediate files. The make utility, by default, attempts to build
the first target found in the file, but it can be made to build any one of the targets by
naming it on the command line, as follows:

$ make clean

A bit of help is available from the compiler. Chapter 18 contains examples of using
the compiler to produce dependency lists that can be inserted into a makefile.

The Options of Make
There are as many versions of make as there are of UNIX. All of them are fundamentally
the same, but special features and characteristics have been added here and there. The
GNU version of make has the advantage of being freely available in source code form
and, although it contains extensions of its own, it is probably the best one to use when
working with GCC. In particular, if you are going to be building GCC from source, it
would be wise to begin by acquiring the binutils (which includes make and several
other utilities) because they are guaranteed to be compatible with GCC. While many
of the command-line options are universally recognized in all versions of make, the
options known to GNU make are listed in Table 14-1.

Option Description

--assume-old=filename Specifies to not remake the named file regardless
of its age, and not remake any other files based
on a dependency on this file.

Table 14-1. The Command-Line Options of make

306 G C C : T h e C o m p l e t e R e f e r e n c e

Option Description

--assume-new=filename Assumes that the specified file name is a new
file and that every target depending on it must
be rebuilt.

-C directory Changes to the named directory before searching
for files to determine dependencies.

--directory=directory Same as -C.

-d Same as --debug=a.

--debug[=flags] Displays information about processing in a
form that can be useful for debugging makefile
errors. If no flags are specified, basic debugging
information is displayed. The value of flags
can be any combination of the following letters:
a Displays all types of debugging information.
This is a very verbose option.
b Displays basic information, including a list of
out-of-date targets and whether the commands
were successful.
i Displays information about the search for
implicit rules for each target along with the
information of the b flag.
j Displays information on the invocation
of subcommands.
m The other options are disabled during
the construction of makefiles by this makefile,
but this flag enables any other flags during
makefile generation.
v Displays the information of the b flag and adds
information about targets that did not require
command execution.

--dry-run Specifies to not execute any commands. Instead,
this option lists all the commands that would be
executed if this were not a dry run.

-e Same as --environment-overrides.

--environment-overrides Environment variables override variables defined
inside the makefile.

Table 14-1. The Command-Line Options of make (continued)

C h a p t e r 1 4 : M a k e a n d A u t o c o n f 307

Option Description

-f filename Same as --file.

--file=filename Uses the named file as the makefile instead of
looking for a file named Makefile or makefile.

-h Displays this list of options.

--help Displays this list of options.

-i Same as --ignore-errors.

-I directory Same as --include-dir.

--ignore-errors Processing normally stops at the first failure to
make a target, but this option instructs make
to continue by going to the next target.

--include-dir=
directory

The named directory is searched for included
makefiles.

-j [number] Same as --jobs.

--jobs[=number] Specifies the number of commands that can be
executed simultaneously. If no number is specified,
make runs as many as possible.

--just-print Same as --dry-run.

-k Same as --keep-going.

--keep-going Specifies to continue to process as many targets
as possible after an error. Nothing that depends
on a failed target can be made, but the failure of
one dependency does not prevent the others
from being processed.

-l [number] Same as --max-load.

--load-average[=
number]

Same as --max-load.

--makefile=filename Same as --file.

Table 14-1. The Command-Line Options of make (continued)

308 G C C : T h e C o m p l e t e R e f e r e n c e

Option Description

--max-load[=number] No new commands are to be started if there is
at least one command running and the system
load average is greater than the specified value
(a floating-point number). If the number is not
specified, no load limit is set.

-n Same as --dry-run.

--new-file=filename Same as --assume-new.

--no-builtin-rules Eliminates the built-in rules and suffix definitions,
although it is still possible to define your own.
Default variable settings remain in effect.

--no-builtin-variables Eliminates the built-in variables, although it is
still possible to define your own. This option
implies the --no-builtin-rules option.

--no-keep-going Same as --stop.

--no-print-directory Disables the setting of --print-directory.

-o filename Same as --assume-old.

--old-file=filename Same as --assume-old.

-p Same as --print-data-base.

--print-data-base Prints the rules and the values of variables. This
information is a combination of the predefined
values and the contents of the makefile.

--print-directory Prints a message stating the name of the working
directory both before and after executing the
makefile. This only has meaning when makefiles
are invoking one another.

-q Specifies to not run any commands or produce
any other form of output, except a return status
code. A status code of 0 indicates that all targets
are up to date and nothing would be compiled if
makewere run normally. A status code of 1 indicates
that one or more of the targets need to be made.
A status code of 2 indicates an error.

Table 14-1. The Command-Line Options of make (continued)

C h a p t e r 1 4 : M a k e a n d A u t o c o n f 309

As one of its commands, one make process can invoke another. When this happens,
the options that are set in the running of the parent make are passed on to the newly
invoked child. Because of this situation, you will find options that restore default settings
(which can be included as part of the command invoking the child make process). Another
reason for options that restore the default setting is that the defaults can be modified by
the MAKEFLAGS environment variable.

Option Description

-quiet Same as --silent.

-r Same as --no-builtin-rules.

-R Same as --no-builtin-variables.

--recon Same as --dry-run.

-s Same as --silent.

-S Same as --stop.

--silent Suppresses the normal printing of each command
as it is executed.

--stop Cancels the effect of the -keep-going option.

-t Same as --touch.

--touch Adjusts the date settings on the target files to
bring them up to date, instead of actually executing
the commands to create new versions of the files.

-v Displays the version information and quits.

--version Displays the version information and quits.

-w Same as --print-directory.

-W filename Same as --assume-new.

--warn-undefined-
variable

Issues a warning for each reference to a variable
that has not been defined.

--what-if=filename Same as --assume-new.

Table 14-1. The Command-Line Options of make (continued)

310 G C C : T h e C o m p l e t e R e f e r e n c e

Autoconf
Autoconf is a utility that creates installation shell scripts to be included as part of the
distributed source code. By default, the installation script is named configure. The
configure script runs independently, so there is no need for Autoconf to be present
on the system to be able to configure and install the software.

There is more than one advantage to using Autoconf to package and organize your
distribution. The configure script will check for the presence or absence of certain
system capabilities and will generate makefiles that reflect the current environment,
which means your application can be immediately ported to virtually every version of
UNIX. The procedure for installing software by using the configure script to set up
the compilation has become common enough that most people already know the
installation procedure. To install software that has been packaged using Autoconf, the
procedure usually goes something like this:

$./configure

$ make

$ make install

Autoconf is actually a set of tools, as described in Table 14-2.

Tool Description

autoconf Using a template file as input, this tool generates a configuration
script that will generate makefiles and installation scripts for
the current (or the specified) platform.

autoheader This program creates a template file containing #include
statements to be used by the configure script created
by autoconf.

autoreconf This program updates the configuration scripts by running
autoconf only in the directories where the date stamp on the
files indicates that an update is necessary.

autoscan This program scans the source files in the directory tree and
generates a preliminary version of the template file that is the
input file to autoconf.

Table 14-2. The Autoconf Family of Tools

Depending on the complexity of the application and the degree of portability you
require, the process of creating the installation scripts can be quite simple or very involved.
In any case, the following sequence can be used as a guide to the overall process. Change to
the directory in which the source is stored and perform the following steps:

1. Determine conditional compilation. It is not uncommon to use preprocessor
directives in header files to add to the portability of the software. To gather
information on conditional compilation, run the ifnames program on all
the source files that will be preprocessed. For example, the following command
will process all the C source and header files:

$ ifnames *.c *.h

The output is a list of the conditionally defined macro names and the files in
which they are defined.

2. Create the configure.in file. In the directory with the source code, run the
autoscan utility with no arguments on the command line, as follows:

$ autoscan

This will produce a file named configure.scan, which is a skeleton of the file
that will be used to construct the final configure script. Copy (or move)
configure.scan to configure.in so the appropriate setup lines can be
added to it.

3. Edit the configure.in file. This is the main part of the task. This file is made
up of m4 macro directives to be parsed by Autoconf to generate the final
configure script. If your installation becomes more complex than can be
handled by the macros, this script can also include shell script fragments that
will be copied directly into the final configure script.

C h a p t e r 1 4 : M a k e a n d A u t o c o n f 311

Tool Description

autoupdate This program updates an existing template file to match the
syntax of the current version of autoconf.

ifnames This program scans all the C source files and the names
appearing on #if, #elif, #ifdef, and #ifndef
preprocessor directives. The list is sorted, and each name
includes a list of file names in which it was found.

Table 14-2. The Autoconf Family of Tools (continued)

312 G C C : T h e C o m p l e t e R e f e r e n c e

The original configure.in script contains many of the macros you will need
in your final version, and it also contains a number of descriptive comments
(which begin with a hash character). It is a good idea to add further comments
as you change the information in this file. Table 14-3 contains descriptions of
the information you will need to supply for the various macros. Each macro
contains a list of comma-separated items in the following format:

AC_CHECK_LIB(dl, dlopen, socket)

There must be no space between the macro name and the opening parentheses.
Arguments may optionally be enclosed in square brackets ([and]) and must
be so enclosed if an argument is more than one line long.

Macro Description

AC_C_CHAR_UNSIGNED This macro checks the default char data type
and defines the macro __CHAR_UNSIGNED__ if
it is unsigned.

AC_C_CONST This macro checks the way the C compiler handles
the const keyword and redefines it if necessary.

AC_CHECK_FUNCS This macro verifies the presence of the functions
named in the space-separated list.

AC_CHECK_HEADERS This macro checks for the presence of one or more
header files specified in a space-separated list.

AC_CHECK_LIB This macro checks for the presence of the named
libraries. A library name is specified in its short
form, and a function that is a library member must
also be specified for testing. For example, the
libcfont library must contain the function bdf
if AC_CHECK_LIB(cfont, bdf) is specified.

AC_CONFIG_AUX_DIR This macro specifies the name of the directory that
contains install-sh, config.sub, and config.guess.
The default is usually correct, but this macro can be
used to specify either an absolute or relative path.

Table 14-3. The m4 Macros Used in the configure.in Script

C h a p t e r 1 4 : M a k e a n d A u t o c o n f 313

Macro Description

AC_CONFIG_HEADER This macro composes header files containing
#define directives. The name of the file to be
created is followed by a colon and the name of an
input file supplying the directives. For example,
config.h is created from the contents of config.in
with AC_CONFIG_HEADER(config.h:
config.in).

AC_CONFIG_SUBDIRS This macro specifies a list of directories that are
expected to contain configure scripts that are to
be run by the one being produced here. The directory
names are separated by spaces.

AC_FUNC_MEMCMP This macro verifies that memcmp() operates correctly
on 8-bit boundaries.

AC_FUNC_STRFTIME This macro checks the correctness of the operation
of the strftime() function.

AC_FUNC_VPRINTF This macro checks for the presence of vprintf().

AC_HEADER_STDC This macro checks whether the system has the
standard C headers.

AC_HEADER_SYS_WAIT This macro checks for the presence of the POSIX-
compliant header sys/wait.h.

AC_HEADER_TIME This macro verifies that both time.h and sys/time.h
can be included in the same compilation unit.

AC_INIT This macro must come first. It contains the name of
a uniquely named file as a safety check to verify
that the user is running the script in the correct
directory—for example, AC_INIT(hello.c). The
only other required macro is AC_OUTPUT.

AC_OUTPUT This macro is required. It names and outputs the
makefile, and possibly some other output files. If
you include extra arguments, these are commands
that will be added to config.status to be
executed after all other commands. It is usually
written as AC_OUTPUT(Makefile). The only
other required macro is AC_INIT.

Table 14-3. The m4 Macros Used in the configure.in Script (continued)

314 G C C : T h e C o m p l e t e R e f e r e n c e

4. Create makefile.in. To take advantage of the configuration decisions made by
Autoconf, you need to modify your makefile (and name it makefile.in) to
contain the definitions produced by Autoconf. Some of the common definitions
are listed in Table 14-4.

Macro Description

AC_OUTPUT_COMMANDS This macro specifies extra commands to be run at
the end of config.status. This macro can be
used repeatedly—for example, AC_OUTPUT_
COMMANDS(echo An extra command).

AC_PREFIX_DEFAULT This macro sets the installation prefix instead of
defaulting to /usr/local—for example,
AC_PREFIX_DEFAULT(/home/fred/sets).

AC_PREFIX_PROGRAM If the user does not select a prefix with the
--prefix option, this macro will search for the
named program, using the PATH variable, and set
the prefix to the directory containing the program.

AC_PREREQ This macro ensures that a sufficiently recent
version of Autoconf is being used. For example,
this macro will make certain that version 1.8 or
later is being used: AC_PREREQ(1.8).

AC_PROG_MAKE_SET This macro predefines the MAKE variable as
if the command MAKE=make had been set in
the environment.

AC_REVISION This macro copies the specified revision
information into the configure script.

AC_TYPE_OFF_T This macro checks for the presence of certain
typedefs and defines them if they are missing.

AC_TYPE_SIZE_T This macro checks for the presence of certain
typedefs and defines them if they are missing.

Table 14-3. The m4 Macros Used in the configure.in Script (continued)

C h a p t e r 1 4 : M a k e a n d A u t o c o n f 315

5. Create config.h.in. The simplest way to create the header file is to run
autoheader and let it create config.h.in, which is used as the input in the
creation of config.h. This can be done by entering the command with no
arguments, as follows:

$ autohead

6. Update your source. In any of your source files that require portability
considerations, you will want to include the header config.h. This makes it
possible to conditionally compile according to the installation environment. For

Keyword Description

@CC@ The C compiler.

@CFLAGS@ The set of flags to be passed to the C compiler.

@CPP@ The C preprocessor.

@CPPFLAGS@ Flags to be passed to the C preprocessor.

@CXX@ The C++ compiler.

@CXXFLAGS@ The set of flags to be passed to the C++ compiler.

@DEFS@ This is usually defined as -DHAVE_CONFIG_H if the
AC_CONFIG_HEADER macro has been used.

@INSTALL@ The install utility or the install-sh script.

@LDFLAGS@ Flags to be passed to the linker.

@LIBOBJS@ Object files to be included when linking programs.

@LIBS@ Libraries to be included when linking programs.

@RANLIB@ The ranlib utility.

@SET_MAKE@ Usually "MAKE=make".

@srcdir@ The name of the directory containing the source files.

Table 14-4. Makefile Keywords Defined by Autoconf

example, if the standard C headers are not present, you may need to change
your processing:

#ifndef STDC_HEADERS

/* Compiled only if there are no standard C headers */

#endif

7. Create the installation script. The autoconf utility reads configure.in and
produces the configure file with the following command:

$ autoconf

8. Copy the Autoconf scripts. The following three scripts should be included as
part of your installation package. They are part of your Autoconf installation
and can normally be found in a directory named /usr/lib/autoconf or
/usr/share/automake:

config.guess

config.sub

install-sh

316 G C C : T h e C o m p l e t e R e f e r e n c e

Chapter 15
The GNU Assembler

317

318 G C C : T h e C o m p l e t e R e f e r e n c e

The GNU assembler is actually a family of assemblers because a different one is
required for each platform. This means that, although the assembly language
itself will vary, a basic set of directives is common to all of them, and even some

of the opcode mnemonics are the same from one platform to the next.
The GNU assembler is primarily designed to assemble the output of the compiler

into an object code format that can be fed to the linker. As such, the assembler normally
works behind the scenes and is automatically invoked through GCC, but circumstances
can arise that could require you to work directly with the assembler.

Assembling from the Command Line
When you are writing in a higher level language, GCC normally invokes the assembler
for you, so you seldom need to deal with the command-line options. However, if you
decide to write an assembly language module, it is probably for a special purpose, and you
may need to use some of the command-line options. The options are listed in Table 15-1.

Option Description

-a[opts][=file] Turns on the output listing. A combination
of one or more of the following letters can be
used with this option to specify the format and
content of the output listing. The default is
-ahls. The listing defaults to standard output
but can be directed to a file by specifying the
file name following an equals sign as part of the
option; for example, -ahls=assembly.list.
c Omits code not assembled because of a
false conditional.
d Omits any debugging directives found in
the source.
h Includes the source code from the higher
level language.
l Includes the assembled code in hexadecimal
format.
L Includes the line debugging statistics.
m Includes macro expansions.
n Omits forms processing.
s Includes a symbol cross-reference table.

Table 15-1. Command-Line Options of the GNU Assembler

P
ER

IP
H

ER
A

LS
A

N
D

IN
TER

N
A

LS
C h a p t e r 1 5 : T h e G N U A s s e m b l e r 319

Option Description

--defsym symbol=value Defines the named symbol and assigns it the
specified value.

-f Skips the preprocessing of whitespace
and comments.

--fatal-warnings Treats warnings as errors.

--gdwarf2 Generates DWARF2 debugging information and
includes it in the object file.

--gstabs Generates STABS debugging information and
includes it in the object file.

--help Displays this list of options and quits.

-I directory Adds the named directory to the list of those
searched in response to the .include directive.

-J Specifies to not issue warnings about signed
overflow.

-K Issues warnings for alteration in the differences
table. This table contains absolute values
derived by subtraction of a pair of relocatable
values and needs to be altered when addresses
are adjusted.

--keep-locals Retains symbol table entries for locally defined
symbols, which begin with .L.

-L Same as --keep-locals.

-M Same as --mri.

-MD filename Dependency information, formatted for
inclusion in a makefile, is written to the
named file.

--mri Compiles in MRI compatible mode. That is, the
assembly process assumes syntax compatible
with the assembler from Microtec Research.

--no-warn Suppresses all warning messages. Same as --W.

-o filename The name of the output object file.

Table 15-1. Command-Line Options of the GNU Assembler (continued)

320 G C C : T h e C o m p l e t e R e f e r e n c e

If you find yourself in a situation where you need to write an assembly module, the
best way to start is to write a simple program in C that contains all the structural elements
you need and then use gcc with the -S option to generate assembly language source.
Writing in assembly language is error prone and can be very tedious, so it is best to
start with a solid mechanical foundation.

If you don’t need much assembly language, it may be easier to insert it as inline
assembly, as described later in this chapter.

Absolute, Relative, and Boundaries
Much of the assembly language code has to do with addressing and address calculations.
The address of a location is calculated by the assembler for you whenever you simply
mention the name of the location. For example, the following jle (jump on less than
or equal to) statement branches to the address named .L3:

addl $16,%esp

jle .L3

Option Description

-R Folds the code from the data section into the
text section.

--statistics Displays the total amount of space and
execution time taken by the assembler.

--strip-local-absolute Any symbol that is local to this assembly and
has a constant value is removed, and only its
value is used.

--traditional-format Specifies to use the same format for the output
file as used by the native assembler.

--target-help Displays the list of options that are specific to
this target and quits.

--version Displays the version information and quits.

-W Suppresses all warning messages. Same as
--no-warn.

Table 15-1. Command-Line Options of the GNU Assembler (continued)

call function

.L3:

movl $0,%eax

The location labeled .L3 is not an absolute number because the linker will change
its location when the program is linked into an executable. Until then, it is a relative
value, because its value can only be defined as an offset relative to the top of this module.
The linker changes the value of all references to relative addresses, such as the reference
by the jle statement in this example.

An absolute expression is a constant value that is not altered by the linker. It can be
any numeric constant value, or it can be calculated as an expression. It is possible to
create an absolute value by performing calculations on relative addresses. For example,
the following expression is an absolute value because it is the constant value of the
distance between two locations:

.L6 - .L3

The linker will relocate both .L6 and .L3, but the distance between them will not
change. However, not all expressions involving relative addresses result in an absolute
value. For example, the following expression is relative to .L44 because all it does is
calculate a constant value and add it to the relative address:

.L44 + .L6 - .L3

Some expressions involving arithmetic on addresses are ill defined. For example,
the following expression would result in a meaningless number that is a function of
the location chosen by the linker:

.L6 + .L3

Another important concept is an address boundary. If an address is an even multiple
of 16, then the address is said to be on a 16-byte boundary. This can be important for
certain data structures and instructions. In some cases it is a matter of efficiency, and
in some cases it is a matter of necessity because of hardware requirements. Assembler
directives such as .org and .align are used to insert filler bytes to force the items
that follow them onto a boundary. Of course, for the boundaries to remain correct, it
is necessary for the linker to align the beginning of the module such that its internal
boundaries are still valid.

C h a p t e r 1 5 : T h e G N U A s s e m b l e r 321
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

Inline Assembly
There are a number of reasons for writing code in assembly language, but there are
almost none for writing an entire program (or even an entire module) in assembly
language. The things that need to be done at the machine level can usually best be
done by including a passage of assembly language inside the code of a higher level
language. To this end, GCC provides the capability of inserting assembly language
commands directly into a C function.

By its very nature, there is nothing portable about assembly language. Code written
for any particular platform will almost certainly be wrong for any other platform.
However, the basic procedure of writing the code is the same for all platforms. This
section describes the procedure of writing code using a syntax compatible with the
Intel family of processors.

The asm Construct
The following example program uses asm to insert assembly language into C source
code. This example loads the value of a C variable into a register, shifts it one bit to
the right to halve the value, and stores the result in another variable:

/* half.c */

#include <stdio.h>

int main(int argc,char *argv[])

{

int a = 40;

int b;

asm("movl %1,%%eax; \

shr %%eax; \

movl %%eax,%0;"

:"=r"(b)

:"r"(a)

:"%eax");

printf("a=%d b=%d\n",a,b);

return(0);

}

This construct is much more than a simple technique for inserting assembly language
code—it makes it possible for you to use C syntax to address your variables and
even allows you to specify information to be passed on to the C code generation and
optimization stages, so it can generate efficient code in the context of what you are
doing. The following is the syntax of the asm construct:

322 G C C : T h e C o m p l e t e R e f e r e n c e

asm(assembly language template

: output operands

: input operands

: list of clobbered registers);

If you want to prevent the compiler from trying to optimize your assembly language
code, you can use the volatile keyword, like the following:

asm volatile (...

Also, if you need to be POSIX compliant, you can use the keywords __asm__ and
__volatile__ instead of asm and volatile.

The Assembly Language Template
The assembly language template consists of one or more statements of assembly language
and is the actual code to be inserted inline. The opcodes can address immediate (constant)
values, the contents of registers, and memory locations. The following is a summary of
the syntax rules for addressing values:

� A register name begins with two percent signs, such as %%eax and %%esi. The
Intel register names normally begin with a percent sign, and the asm template
also requires a percent sign, which is why there must be two.

� A memory location is one of the input or output operands. Each of these is
specified by a number according to the order of its declaration following the
colons. The first output operand is %0. If there is another output operand, it
will be %1, and so on. The numbers continue with the input operands—for
example, if there are two output operands, the first input operand will be %2.

� A memory location can also be addressed by having its address stored in
a register and enclosing the register name in parentheses. For example, the
following will load the byte addressed by the contents of register %%esi
into the %%al register:

movb (%%esi),%al

� An immediate (constant) value is designated by the dollar ($) character
followed by the number itself, as in $86 or $0xF12A.

� All the assembly language is a single-quoted string, and each line of the
assembly code requires a terminator. The terminator can be a semicolon or
a newline (\n) character. Also, tabs can be inserted to improve readability
of assembly language listings.

C h a p t e r 1 5 : T h e G N U A s s e m b l e r 323
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

324 G C C : T h e C o m p l e t e R e f e r e n c e

Input and Output Operands
The input and output operands consists of a list of variable names that you wish to be
able to reference in the assembly code. You can use any valid C expression to address
memory. For example, the following code is a variation on the preceding example that
uses an array to store the input and output values, and doubles the number by shifting
it to the left:

/* double.c */

#include <stdio.h>

int main(int argc,char *argv[])

{

int array[2];

array[0] = 150;

int i = 0;

asm("movl %1,%%eax; \

shl %%eax; \

movl %%eax,%0;"

:"=r"(array[i+1])

:"r"(array[i])

:"%eax");

printf("array[0]=%d array[1]=%d\n",array[0],array[1]);

return(0);

}

The rules for specifying the input and output variables are as follows:

� The C expression, which results in an address in your program, is enclosed
in parentheses.

� If the address is preceded by "r", it applies the constraint that the value must
be stored in a register. Input variables will be loaded before your assembly
language is executed, and output variables will be stored in memory after
your code has executed. The "=r" form should be used for output operands.

� A variable may be constrained to a specific register with one of the following:

"a" %%eax

"b" %%ebx

"c" %%ecx

"d" %%edx

P
ER

IP
H

ER
A

LS
A

N
D

IN
TER

N
A

LS

"S" %%esi

"D" %%edi

� A variable can be constrained to be addressed in memory instead of being
loaded into a register by using the "m" constraint.

� In the case of the same variable being used as both an input and output value,
the "=a" constraint is used for its output constraint, and its reference number
is used for its input constraint. The following example uses counter for both
input and output:

asm("incw %0;"

: "=a"(counter)

: "0"(counter));

� You may use any number of input and output operands by separating them
with commas.

� The output and input operands are numbered sequentially beginning with $0
and continuing through $n-1, where n is the total number of both input and
output operands. For example, if there is a total of six operands, the last one
would be named $5.

List of Clobbered Registers
The list of registers that are clobbered by your code is simply a list of the register names
separated by commas, as in the following example:

. . .

"%eax", "%esi");

This information is passed on to the compiler so it will know not to expect any values
to be retained in these registers.

Assembler Directives
The primary purpose of an assembler is to translate mnemonic opcodes into binary
opcodes that can be executed by the hardware or used as data storage locations. In
addition, the assembler understands and acts on assembler directives, which can be
used to align code, define macro expansions, divide the code into named sections,
declare named constants, provide conditional assembly, or simply be a shorthand
method for defining character data.

C h a p t e r 1 5 : T h e G N U A s s e m b l e r 325

The following is a list of the assembler directives for the GNU assembler. In each case,
the directive begins with a period. Some directives stand alone, some have arguments
that appear on the same line, and some can be several lines long, until another directive
acts as a terminator. Some directives—particularly the ones used to insert debugging
information—are only valid with one or two object file formats.

Some directives are recognized by the assembler, but they are either deprecated or
have no effect. For example, the .abort directive still aborts the assembly process but
will probably soon disappear. Examples of directives that are often recognized by the
assembler but do nothing are .file, .app-file, .extern, .ident, and .lflags.

You will find some bizarre behavior in some of the directives. It has to do with
history. Assemblers have been around for a long time, and some of the very early
design decisions are still with us. As the years passed and the hardware changed, the
old assembler directives that catered to hardware peculiarities remained intact. The
GNU assembler was written to be compatible with the assembler on the host platform,
so it adopted the behavior of the existing directives. It isn’t that the directives are useless,
it’s just that some of them operate in a very odd sort of way. For an example of this, see
the .fill directive in the following list.

Many of these directives use or declare symbols. A symbol is a name with the
attributes value and type. The value can be either an absolute or relative number,
and the type specifies both the size of the data and how it should be interpreted.

.align boundary [,filler] [,maximum] Inserts filler at the current location to
align the address to a specified boundary. All three values are absolute expressions. If
the filler value is not specified, the value of the filler defaults to zero for data sections
and noop opcodes for executable sections. If a maximum value is specified, and it would
take more than that number of bytes of filler to reach the boundary, no action is taken.

Both filler and maximum are optional. To specify maximum without specifying
filler, use two commas.

The exact meaning of this directive is inconsistent because the GNU assembler
emulates the native assembler on each system. For example, on some systems the
alignment to an 8-byte boundary is specified by the address multiple in the form
.align 8. On other systems the alignment to an 8-byte boundary is specified by
.align 3, which is the minimum number of zeroes required to end the address
value. To have a consistent syntax, you may want to use .balign or .p2align.

.ascii [string][,string ...] Assembles zero or more quoted strings into ASCII character
data. The strings are not allocated with trailing zeroes appended.

.asciz [string][,string ...] Assembles zero or more quoted strings into ASCII character
data. Each string is allocated with a trailing zero appended to it.

.balign boundary [,filler] [,maximum] Inserts filler bytes at the current location
to align the address to a specified boundary. All three values are absolute expressions.
If the filler value is not specified, it defaults to zero for data sections and noop opcodes

326 G C C : T h e C o m p l e t e R e f e r e n c e

for executable sections. If a maximum value is specified, and it would take more than
that number of bytes to reach the boundary, no action is taken.

Both filler and maximum are optional. To specify maximum without specifying
filler, use two commas.

.balignl boundary [,filler] [,maximum] The same as .balign, except filler
is a 32-bit (long) value.

.balignw boundary [,filler] [,maximum] The same as .balign, except filler
is a 16-bit value.

.byte expression [,expression ...] One byte is allocated for each expression, and
the value of the expression is inserted into the allocated byte.

.comm symbol, length An uninitialized memory location of length bytes is declared
and tagged with the name symbol. If more than one module defines the same symbol,
they are merged into one. If the declared symbols are not of the same size, the largest
one is used.

On ELF systems, there is a third optional argument to specify the alignment. On HPPA,
the syntax of this directive is symbol .comm, length.

.data subsection The statements following the .data directive are to be assembled
into the subsection numbered subsection, which is an absolute expression. The default
subsection number is zero.

.def name Begins a block of debugging information, tagged by the symbol name, for
insertion into a COFF formatted object. The block continues until an .endef directive
terminates it. Also see .dim, .scl, .tag, .type, .val, and .size.

.desc symbol, value The symbol is defined as having the specified value. The value
must be an absolute expression. This directive produces no output for the COFF format.

.dim This directive can only be used between .def and .endef pairs. It is used by
compilers to include auxiliary information for the symbol table. It is only valid for the
COFF object format.

.double value [,value ...] For each value specified, a floating-point number is
assembled and stored into memory. The internal representation of floating-point
numbers, including size and range, varies depending on the platform. Also see .float.

.eject Inserts a page break in the listing output from the assembler.

.else See .if.

C h a p t e r 1 5 : T h e G N U A s s e m b l e r 327
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

.endef See .def.

.endif See .if.

.equ symbol, value This directive defines the symbol as having a value. The value
can be either an absolute or relative expression. The .equ directive can be used multiple
times on the same symbol, changing the value each time. On HPPA, the syntax for this
directive is symbol .equ value. This directive is the same as .set. Also see .equiv.

.equiv symbol, value This is the same as .equ or .set, except an error message is
generated if the symbol has been previously defined.

.err The .err directive generates an error and, unless the -Z option has been specified,
prevents the generation of an object file. It is used inside conditionally assembled code
to indicate an error, as in the following example, which causes an error if the symbol
BLACKLINE has not been defined:

.ifndef BLACKLINE

.err

.endif

.fill repeat, size, value This directive creates multiple blocks of data of up to 8 bytes
each. The value of repeat is an absolute expression that specifies the number of blocks
to be created. The value of size can be any absolute value, but any value larger than 8
is treated as the value 8 and is the number of bytes in each block.

The value used to fill each block is taken from an 8-byte array. The highest order
4 bytes are always zero. The lowest order 4 bytes are derived from value, rendered
as a 32-bit binary integer in the byte order of the native machine. Each block is filled
with the number of bytes necessary from the lower order end of the resulting array.

If size is not specified, it defaults to 1. If value is not specified, it defaults to 0.
Also see .org and .p2align.

.float value [,value ...] For each value specified, a floating-point number is assembled
and stored into memory. The internal representation of floating-point numbers, including
size and range, varies depending on the platform. Also see .double.

.global symbol The named symbol, which must be defined elsewhere, is made global
in the sense that it becomes known to the linker. The symbol could be defined in a
separate module, and the references to it can only be resolved by the linker. On HPPA it
may be necessary to use the .EXPORT directive to achieve the same thing.

.globl An alternate spelling of .global.

328 G C C : T h e C o m p l e t e R e f e r e n c e

.hword value A 16-bit location is created and has the specified value stored in it.
This may be the same as .short or .word, depending on the platform.

.if expression The code following this directive is assembled only if the expression
(which must be absolute) evaluates to a value other than zero. The end of the section of
conditionally assembled code is marked with an .endif directive. For example, the
following two instructions will only be assembled if the value of topside and current
are the same:

.if topside - current

pushl %ebp

movl %esp, %bp

.endif

The optional .else clause is assembled if the expression is false, as in the
following example:

.if ENTERING

pushl %ebp

.else

popl %ebp

.endif

The alternative forms of .if are .ifdef, .ifndef, and .ifnotdef, which test
whether a symbol has been defined.

.ifdef symbol The conditional assembly occurs only if the symbol has been defined.
See .if.

.ifndef symbol The conditional assembly occurs only if the symbol has not been
defined. See .if.

.ifnotdef symbol The conditional assembly occurs only if the symbol has not been
defined. See .if.

.include “filename” The named file is inserted into this file and assembled at the
point of the directive. The -I command-line option can be used to specify directories
to be searched for the file.

.int value [,value ...] For each value specified, an integer is assembled and stored
into memory. The size and byte order of the integer depends on the platform. Also see
.long, .int, .short, and .word.

C h a p t e r 1 5 : T h e G N U A s s e m b l e r 329
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

.irp tag,str[,str ...] The code between the .irp and .endr directives is assembled
once for each value listed, with the value inserted for each occurrence of the tag preceded
by a backslash. For example, the following specifies three registers:

.irp tag,esp,ebp,eax

subl $1,%\tag

.endr

The code is assembled once for each of the strings, as follows:

subl $1,%esp

subl $1,%ebp

subl $1,%eax

Also see .macro, .rept, and .irpc.

.irpc tag,charlist The code between the .irpc and .endr directives is assembled
once for each character in charlist, with the character inserted for each occurrence of the
tag preceded by a backslash. The following example expands one line of code into three:

.irpc tag,123

addl $\tag,%esp

.endr

The code is assembled once for each character in the string, as follows:

addl $1,%esp

addl $2,%esp

addl $3,%esp

Also see .macro, .rept, and .irp.

.lcom symbol, length Reserves the number of bytes specified by length, an absolute
expression, as a local block of data in the bss section (causing the block to be initialized
to zero when the program is loaded). The symbol is local so it is unknown to the linker.

The syntax for HPPA is symbol .lcomm, length.

.line number Changes the current line number of the following line to the absolute
expression number. On some systems the synonym .ln must be used.

.linkonce [type] Marks the current section so it is included by the linker only once,
even if the same section appears in multiple modules. The directive must appear

330 G C C : T h e C o m p l e t e R e f e r e n c e

once in each instance of the section. The section is selected only by name, so the name
must be unique.

The optional type argument can be discard to have duplicates silently discarded
(the default). A type of one_only will issue a warning for each duplicate found. A
type of same_size will issue a warning if any of the duplicates are not the same size.
A type of same_contents will issue a warning if any of the duplicates do not contain
exactly the same data.

.list This directive increases the output listing counter by one. If the counter is greater
than zero, the assembler generates a listing to standard output. The .nolist directive
can be used to subtract one from the counter. The counter normally defaults to zero but
can be set to one by the -a option on the command line.

.ln number A synonym of .line.

.long expression This directive is a synonym of .int.

.macro name [tag[=value]] [,tag[=value]] A recursive macro processor that can
be used to assign a name to a block of code, with optional arguments, that can be expanded
and assembled in other locations. For example, the following macro is named saveregs
and will expand to a pair of pushl statements wherever it is used:

.macro saveregs

pushl %ebp

pushl %eax

.endm

To expand the macro, it is a matter of using its name wherever you would normally
use an opcode, like the following:

main:

saveregs

movl %esp,%ebp

The .macro directive can be used recursively and can accept arguments. The following
macro can be used in the declaration of a block containing a variable number of constants
of a selected type:

.macro block type=.int count=1

.if \count

\type 0

block \type,\count-1

C h a p t e r 1 5 : T h e G N U A s s e m b l e r 331
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

.endif

.endm

If no arguments are supplied to the macro, the declaration will consist of one .int.
The following statement will generate the declaration of five .long data types:

block .long 5

It is possible to use .exitm to halt a macro expansion at any point. For example,
the following statement will abandon macro expansion if the value of trigger is 12:

.if trigger-12

.exitm

.endif

Also see .rept, .irp, and .irpc.

.mri expression If the expression evaluates to a nonzero value, the assembly switches
to MRI mode. This is the same as using -M or --mri on the command line. The mode
remains in effect until the end of the file or until there is an .mri directive with an
expression value of zero.

.nolist See .list.

.octa bignum[,bignum ...] For each bignum entry in the list, a 16-byte number will
be declared for it, and the declared value stored in it. This can be treated as eight 16-bit
values, thus the name .octa. Also see .quad.

.org address[,filler] The current address in this section is adjusted forward the
location specified by address. The address value is relative to the top of the current
section. The address is either an absolute expression or a relative expression based on
the address of the current section. This directive can only move the address forward,
not backward. The inserted bytes, if any, are initialized to the value of filler. The
default filler value is zero.

Also see .fill, .skip, and .p2align.

.p2align zeroes[,filler][,maximum] The current address is increased, if necessary,
until it has the specified number of zeroes as its low order bits. For example, a zeroes
value of 3 advances the location counter until there are at least three zero bits as the
low order of the address, resulting in the address being on an 8-byte boundary. The
absolute value filler is the byte value that is to be stored in the new space. If filler

332 G C C : T h e C o m p l e t e R e f e r e n c e

P
ER

IP
H

ER
A

LS
A

N
D

IN
TER

N
A

LS
C h a p t e r 1 5 : T h e G N U A s s e m b l e r 333

is not specified, the default is zero for data sections or noop instructions for code sections.
The maximum value is the maximum number of bytes to advance the address.

Also see .org, .fill, .skip, .p2alignl, and .p2alignw.

.p2alignl zeroes[,filler][,maximum] The same as .p2align, except filler is taken
to be a 16-bit value.

.p2alignw zeroes[,filler][,maximum] The same as .p2align, except filler is taken
to be a 32-bit value.

.psize lines[,columns] Specifies the number of lines per page and, optionally, the
number of columns of the listing output. The default is 60 lines and 200 columns. If you
specify lines as zero, no form feeds are inserted.

.quad bignum[,bignum ...] Each bignum value is declared as an 8-byte value. Also
see .octa.

.rept count Repeats the code between .rept and .endr the specified number of times.
For example, the following sequence will declared 14 .int values, each initialized to 10:

.rept 14

.int 10

.endr

Also see .macro, .irp, and .irpc.

.sbttl “subtitle” Uses the specified subtitle as the subheading on each page of
the listing.

.scl class This directive can be used inside a .def and .endef pair to specify the
storage class of a symbol.

.section name This form of the .section directive is valid for any object format
that supports arbitrarily named sections. It assembles the following code into a section
of the specified name.

.section name[,“flags”] This form of the .section directive is valid for the COFF
object format. Each flag is a single character in the "flags" string, as follows:

� b A section containing uninitialized data (a bss section).

� n This section is not loaded when the program is executed.

� w This section can be written to during execution.

� d A data section, as opposed to an executable section.

� r This section is read-only.

� x This is an executable section, as opposed to a data section.

If no flags are specified, the default settings depend on the section name. If the section
name has no predefined meaning, the default section is loaded and can be written to.

.section name[,“flags”[,type]] This form of the .section directive is valid for
the ELF object format. Each flag is a single character in the "flags" string, as follows:

� a The section is allocatable.

� w The section is writable.

� x The section is executable.

If a type is specified, it can be one of the following:

� @progbits The section contains data.

� @nobits The section does not contain data (it is empty space).

If no flags are specified, the default settings depend on the section name. If the section
name has no predefined meaning, the default is for the section to not be allocatable,
writable, or executable, and the section will contain data.

.section “name”[,flag ...] This form of the .section directive is valid for the Solaris
assembler generating the ELF object format. The optional list of flags can be one or
more of the following:

� #alloc The section is allocatable.

� #write The section is writable.

� #execinstr The section consists of executable instructions.

.set symbol, value This directive defines the symbol as having a value. Here, value
can be either an absolute or relative expression. The .set directive can be used multiple
times on the same symbol, changing the value each time. On HPPA, the syntax for this
directive is symbol .set value. This directive is the same as .equ. Also see .equiv.

.short value[,value...] This may be a synonym for .hword or .word, depending
on the platform. Also see .int.

.single value[,value] This is a synonym for .float.

334 G C C : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 5 : T h e G N U A s s e m b l e r 335
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

.size This directive can only be used between .def and .endef pairs. It is used by
compilers to include auxiliary information for the symbol table. It is only valid for the
COFF object format.

.sleb128 value[,value] This directive is an acronym for “signed little endian base-128.”
This is a compact variable-length representation of numbers used by DWARF symbolic
debugging. Also see .uleb128.

.skip size[,filler] This directive creates a block made up of size bytes containing
the filler value. The default value for filler is zero. Also see .fill, .org, and
.p2align.

.stabd type,other,description See the description of STABS in Chapter 13.

.stabs “name:symdesc=typeinfo”,type,other,description,value See the
description of STABS in Chapter 13.

.stabn type,other,description,value See the description of STABS in Chapter 13.

.string “characters”,[“characters”] The character string (or strings) is stored
in memory. Each string has a null byte (value of zero) added to the end of it as a
terminator. The backslash escape sequences defined for C can be used in the string.

.symver name,name2@nodename For the ELF object format, this directive binds
the symbol to specific version nodes and is used when assembling code with a shared
library. The symbol name2@nodename is created by this directive as an alias of name,
which has been defined elsewhere in the same source file. The name2 portion of the
alias is the actual external reference name to be resolved. The nodename portion is
the name of a node supplied to the linker on the command line.

.tag structname This directive can only be used between .def and .endef pairs.
It is used by compilers to include summary debugging information for the symbol
table. It is only valid for the COFF object format.

.text [subsection] The statements following this directive are appended to the
end of the text subsection named subsection, which is an absolute expression. If
subsection is not specified, it is assumed to be zero.

.title “heading” The specified string is the title used at the top of the listing pages
immediately following the name of the source file and the page number.

.type value This directive can only be used between .def and .endef pairs. The
value is an int to be used as the type value for the symbol table entry. It is only valid
for the COFF object format.

.val address This directive can only be used between .def and .endef pairs.
The value is the address to be assigned to the symbol table entry. It is only valid
for the COFF object format.

.uleb128 value[,value] This directive is an acronym for “unsigned little endian
base-128.” This is a compact variable-length representation of numbers used by
DWARF symbolic debugging. Also see .sleb128.

.word value[,value] This directive declares a numeric value with the size and the
byte order depending on the platform. This may be a synonym for .hword or .short,
depending on the platform.

336 G C C : T h e C o m p l e t e R e f e r e n c e

Chapter 16
Cross Compiling and
the Windows Ports

337

338 G C C : T h e C o m p l e t e R e f e r e n c e

By default, the GCC compiler system will generate code for the same machine on
which it is running, but it can be installed to generate code for other machines
also. You can install the modules necessary to produce code for several targets

and select the one you wish to use from the command line.

The Target Machines
To get an updated list of the possible target machines, go to the Web site http://
gcc.gnu.org/install/specific.html. At that site you will find the updated list of target
machines and the latest information about porting to each one. Each possible target has
a brief description, and you will often find notes about some special requirements for
porting. The list of known targets is quite long, and new ports are always in the works.
The following is the list of ports at the time this book was written:

#s390-*-linux* m6811-elf

#s390x-*-linux* m6812-elf

--freebsd* m68k-att-sysv

--linux-gnu m68k-crds-unos

--solaris2* m68k-hp-hpux

--sysv* m68k-ncr-*

-ibm-aix m68k-sun

*-lynx-lynxos m68k-sun-sunos4.1.1

alpha*-*-* Microsoft Windows

alpha*-dec-osf* mips-*-*

alphaev5-cray-unicosmk* mips-sgi-irix5

arc-*-elf mips-sgi-irix6

arm*-*-linux-gnu Older systems

arm-*-aout OS/2

arm-*-elf powerpc*-*-*powerpc-*-sysv4

avr powerpc-*-darwin*

c4x powerpc-*-eabi

DOS powerpc-*-eabiaix

dsp16xx powerpc-*-eabisim

ELF (SVR4, Solaris 2, etc) powerpc-*-elf powerpc-*-sysv4

h8300-hms powerpc-*-linux-gnu*

hppa*-hp-hpux* powerpc-*-netbsd*

hppa*-hp-hpux10 powerpcle-*-eabi

hppa*-hp-hpux11 powerpcle-*-eabisim

hppa*-hp-hpux9 powerpcle-*-elf powerpcle-*-sysv4

C h a p t e r 1 6 : C r o s s C o m p i l i n g a n d t h e W i n d o w s P o r t s 339
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

i370-*-* powerpcle-*-winnt powerpcle-*-pe

i?86-*-esix sparc-*-linux*

i?86-*-linux* sparc-sun-solaris2*

i?86-*-linux*aout sparc-sun-solaris2.7

i?86-*-sco sparc-sun-sunos4*

i?86-*-sco3.2v4 sparc-unknown-linux-gnulibc1

i?86-*-sco3.2v5* sparc64-*-*

i?86-*-udk sparcv9-*-solaris2*

ia64-*-linux vax-dec-ultrix

m32r-*-elf xtensa-*-elf

m68000-hp-bsd xtensa-*-linux*

Creating a Cross Compiler
A GCC file naming convention enables you to compile and install as many cross compilers
as you need on the same machine. To be able to compile and link programs for another
computer, you will need the fundamental tools (assembler, linker, and so on) that accept
object files and produce executable code in the format for the target. Also, you will need
to install a copy of any necessary libraries from the target machine onto your local machine.

The following set of steps can be used as a general guide for establishing a cross-
compiler environment, but you need to be aware that it is not out of the ordinary to
encounter some situation that requires special handling.

Before you start the procedure, you should review the information about binutils
and the configure script described in Chapter 2. Also, visit the GCC Web site to check
for any information about your specific port. It would be a good idea to subscribe to any
appropriate mailing lists mentioned in Chapter 1 so you will be able to communicate
with others who are doing the same thing you are—discussions about problems with
compiling GCC for various platforms are always going on.

Unless you have good reason for wanting to be on the cutting edge, it would be
better to use a stable released version of the compiler source rather than the latest CVS
snapshot. The snapshot may work as a native compiler on several machines, but there
is no need to deal with more unknowns than necessary.

Installing a Native Compiler
Where the cross compiler is to produce object code to be installed on the target machine,
the compiler itself, along with the support programs such as the assembler and linker,
will actually need to be compiled to run on the local machine. For this, you will need a
native compiler so, if you have not already done so, your first job is to install a native
version of GCC along with a native version of binutils.

340 G C C : T h e C o m p l e t e R e f e r e n c e

It may be possible to build a cross compiler with something other than GCC, but that
would be leaving yourself open for some possibly confusing problems. Again, there is
no need to deal with more unknowns than necessary.

Building binutils for the Target
The binutils described in Chapter 2 must be compiled for the target machine. Because
of the naming convention used by GCC, there will be no conflict in compiling and
installing binutils for another machine. The compilation can be based on the same
set of source files used to create the native binutils.

For the following example, the binutils source code is located in a subdirectory
of the current directory named src. The following four commands in a simple script will
create a new directory named sun and configure it for compilation of the source to run
on the local machine and produce output for sparc-sun-solaris2.7:

DIR=`pwd`

mkdir $DIR/sun

cd $DIR/sun

$DIR/src/configure --prefix=/usr/local \

--target=sparc-sun-solaris2.7

After configuration is complete, the binutils can be compiled by changing to the
new sun directory and using make, as follows:

$ cd sun

$ make

The final step is to change permission settings to the super user and install the new
programs with the following command:

$ make install

This command creates a new set of files in /usr/local/bin, as follows:

$ ls /usr/local/bin/sparc-sun-solaris2.7-*

sparc-sun-solaris2.7-addr2line sparc-sun-solaris2.7-objdump

sparc-sun-solaris2.7-ar sparc-sun-solaris2.7-ranlib

sparc-sun-solaris2.7-as sparc-sun-solaris2.7-readelf

sparc-sun-solaris2.7-c++filt sparc-sun-solaris2.7-size

sparc-sun-solaris2.7-ld sparc-sun-solaris2.7-strings

sparc-sun-solaris2.7-nm sparc-sun-solaris2.7-strip

sparc-sun-solaris2.7-objcopy

You should also have a new directory with a pair of subdirectories, as follows:

$ ls /usr/local/sparc-sun-solaris2.7

bin lib

$ ls /usr/local/sparc-sun-solaris2.7/bin

ar as ld nm ranlib strip

Installing Files from the Target Machine
To compile source for the target machine, you must have the system header files that
are configured for that machine. Also, to compile and link programs that will run on
the target machine, it is necessary to link them with the libraries for that machine. Which
ones you will need depends on the purpose of your cross compiler. If you want a general-
purpose compiler that compiles complete applications for the target, you will need all
the header files and libraries. At the other extreme, if you are creating a cross compiler
for an embedded system that does not use the standard libraries and headers, there may
be no need to copy any files.

You will need to copy some of the libraries stored on the target machine in the
directories /lib and /usr/lib. You will need to store these new files in the file
structure started by the earlier installation of binutils. All the libraries you are going to
be using should be copied from the target machine to your local directory /usr/
local/sparc-sun-solaris2.7/lib. The exact set of libraries you are going to
need depends on the target machine and the type of programs you intend to write.

Besides the libraries, you will need the object modules that are linked into the
executable programs—modules with names such as crt0.o and crtn.o—and they
can be copied into the same directory as the libraries.

The header files from the target machine should be copied into /usr/local/
sparc-sun-solaris2.7/include. It is important that the header files be copied
to the local machine before the cross compiler is built, because the build process uses
them in the construction of libgcc.a.

The Configurable Library libgcc1.a
If GCC is resident on your target machine and you are able to copy libgcc1.a from it,
there is no need for you to construct one. If there is no libgcc1.a library for the target
machine, it will be necessary for one to be constructed.

This library contains routines that are necessary for performing floating-point math
on systems that do not have floating-point hardware. If floating-point emulation is not
necessary, it may be sufficient to supply an empty libgcc1.a and let the compiler
generate all the code.

Some embedded systems come with the floating-point arithmetic routines required
for libgcc1.a.

C h a p t e r 1 6 : C r o s s C o m p i l i n g a n d t h e W i n d o w s P o r t s 341
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

342 G C C : T h e C o m p l e t e R e f e r e n c e

If your target system has a C compiler but does not have GCC, you can either install
GCC to cause the library to be generated or use the native C compiler to construct only
the library. To do so, install the GCC source tree on the target machine as you normally
would, create a build directory, and execute the configure script, specifying both the
target and the host machines, where the host is the machine that is to be the host of the
cross compiler. Then make the library, as in the following example:

$./configure --host=host --target=target
$ make libgcc1.a

The resulting library should then be included with the other libraries from the
target machine.

Building the Cross Compiler
If the proper groundwork has been laid, all that is left is to compile the new compiler.
The following script assumes that the source code of GCC is in a subdirectory named
gcc. It creates a new directory named sun to contain the configuration and to be used
for compilation. Just as was done with binutils earlier, the configure script is
executed, specifying the prefix directory as /usr/local and the target machine as sparc-
sun-solaris2.7:

DIR=`pwd`

mkdir $DIR/sun

cd $DIR/sun

$DIR/src/configure --prefix=/usr/local \

--target=sparc-sun-solaris2.7

Once the configuration procedure has completed, change to the new directory and
compile the cross compiler, as follows:

$ cd sun

$ make

This is a full compilation of GCC, so it will take quite a while. If everything has been
set up properly, there will be no error messages. If the libgcc1.a library is not correct, or
if it is missing, the compilation will fail when the first module that needs it is encountered.
You may also discover that a header file is missing.

If the compiler is built without error, entering the following command, executed
with super user permissions, will install it and prepare it to be run:

$ make install

Running the Cross Compiler
You can run the cross compiler from the command line by using the gcc command and
the -b option. For example, to compile helloworld.c using the compiler constructed
in this chapter, enter the following command:

$ gcc -b sun-sparc-solaris2.7 helloworld.c -o helloworld

Assuming the current version of gcc is 3.2, this command will execute the compiler
named sun-sparc-solaris2.7-gcc-3.2. If, for some reason, you upgrade your local
compiler to a new version but still need to execute version 3.2 of the cross compiler,
you can specify the version number as follows:

$ gcc -b sun-sparc-solaris2.7 -V 3.2 helloworld.c -o helloworld

Using the -V option, you can select from a number of versions of installed
compilers. The different versions of the compilers are usually stored in directories
named in the following way:

/usr/local/lib/gcc-lib/machine/version

MinGW
On the Windows operating system, two different kinds of programs can be compiled.
The simpler of the two—the one that does not use a windowing interface—is referred
to as a console program. A Windows console program is one that is run from the command
line in the usual way and can accept arguments on the command line. A C console
program begins execution with a function named main() and uses standard input,
standard output, and standard error in the normal ways.

A Windows console program can be compiled by using MinGW (Minimalist GNU for
Windows), and you can reach the download page through http://www.mingw.org.
MinGW comes as a collection of packages, but you can download all of them in a single
installation file with a name in one of the following formats:

MinGW-<version>[-<stamp>].tar.gz

MinGW-<version>[-<stamp>].zip

The <version> is the version number, such as 1.0 or 1.1. The optional <stamp> is
the date, in the form YYYYMMDD, that the various packages were bundled together to
create the download file.

To install MinGW, download the file into a working directory and create the directory
you would like to use for your installation, such as c:\mingw. Extract the contents of

C h a p t e r 1 6 : C r o s s C o m p i l i n g a n d t h e W i n d o w s P o r t s 343
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

the downloaded file into this new directory. The archive includes directories, so make
certain that the program you use to extract the files preserves the directory structure
defined in the downloaded file—this may require a special command-line option.

All that is left to do is add the new bin directory to your PATH environment variable.
Exactly how this is done varies among the different versions of Windows, but the
following command will work for most systems:

PATH=%PATH%;c:\mingw\bin

You can quickly test your installation by entering the following command to display
the version information:

gcc -v

The MinGW gcc and g++ programs have much the same form of command line as
the UNIX versions of gcc and g++.

Cygwin
Cygwin is a UNIX environment that is installable on a Windows system. Included with
the environment is a port of the binutils package and a DLL named cygwin1.dll, which
is an implementation of the UNIX API. The installation of Cygwin is quite simple and
can be summed up in the following steps:

1. Create a working directory to contain the downloaded files. This is an
intermediate directory, not the one for final installation.

2. Use your Web browser to go to the Web site http://cygwin.com. Select one
of the icons on the right that reads, “Install Cygwin now.” This will start the
download of a file named setup.exe into your working directory.

3. From the command line or from the Run selection on the system menu, execute
the program named setup.exe. It will take you through a step-by-step process
for downloading and installing the Cygwin system.

Compiling a Simple Cygwin Console Program
The commands for compiling and linking programs are very similar to those you would
normally use for GCC, but some of the file-naming conventions vary. All executable files
have the suffix .exe, and all shared libraries have the suffix .dll. The following command
will compile the simple helloworld.c program into an executable:

C:\> gcc helloworld.c -o helloworld.exe

344 G C C : T h e C o m p l e t e R e f e r e n c e

Compiling a Cygwin GUI Program
The source code of your Windows applications should compile almost unchanged, but
there are a couple of exceptions.

It is necessary to remove the __export attributes. In most cases you can simply
remove the __export attributes, but you may want to replace the __export attributed
functions with new declarations in the following form:

int fn(int) __attribute__ ((__dllexport__));

int fn(int) ...

The following conditionally compiled code can be included in the source:

#ifdef __CYGWIN__

WinMainCRTStartup() { mainCRTStartup(); }

#endif

Without the preceding code included, it will be necessary to specify the linker option
-e _mainCRTStartup on the command line.

The following is an excerpt from a makefile that will compile a Windows program
into a GUI executable:

hellowin.exe: hellowin.o hellowin.res

gcc -mwindows hellowin.o hellowin.res -o hellowin.exe

hellowin.res: hellowin.rc resource.h

windres hellowin.rc -O coff hellowin.res

The windres utility compiles the hellowin.rc file into a COFF format that includes
the icons, bitmaps, and any other resources required by the program. If the -O coff
option were not present, the resulting .res file would be in the Windows format and
could not be linked using GCC.

C h a p t e r 1 6 : C r o s s C o m p i l i n g a n d t h e W i n d o w s P o r t s 345
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

This page intentionally left blank.

Chapter 17
Embedded Systems

347

Compiling software to be installed in an embedded system is fundamentally the
same as cross-compiling for another system. That is, a program is compiled on
one machine to produce an executable that runs on another. The fundamental

difference is that the target operating system is designed for a special purpose and has
no software development capabilities of its own.

Normally an embedded system is constrained in the amount of memory available
and is generally a much more restricted environment than a desktop system. This means
that the compiler of embedded software has to produce not only code that will execute
on the CPU of the embedded system but also executables that are as small and efficient
as possible.

Setting Up the Compiler and Linker
The fundamental process of preparing GCC to produce code for your embedded system
can be found in Chapter 16. GCC is particularly well suited for this kind of configuration
because it can be compiled and installed to execute on any one of a number of platforms
to produce code that will run on other platforms. One of your tasks is to set up a cross
compiler for the target CPU using the libraries and linkable object modules supplied
with the target operating system. Another task you have is to download and install the
binutils (which include the assembler and linker) so you can produce object modules
for your target.

Once you have the cross compiler and linker installed, you can select your language
from among the GNU languages (or mix them, if you wish), and you have available all
the optimization features built into GCC. Also, inline assembly language is available
for those situations where you need to get closer to the hardware.

With all the GCC options available, you can tune the content of the object code to fit
with the requirements of the system. By setting up a makefile you can adjust the option
settings for each individual module, giving you the power to optimize the result. Pay
particular attention to the command-line options that include information in the object
files that will pass through the linking process into the final executable program. Some
of the information—particularly debugging information—could be incompatible with
the object file format of your target system.

For an embedded system you will find that you need to link to a special startup
module that fits with your operating system. Often it is a small block of assembly language
that you assemble and link directly into your program. Some of these initialization routines
can be quite extensive, where others are very simple. The general initialization sequence
is fairly standard and follows a procedure that contains all or some of the following steps:

� Disable all hardware interrupts.

� Zero the data area.

� Copy data initialization values into memory from ROM.

� Allocate space for the stack and initialize the stack pointer.

348 G C C : T h e C o m p l e t e R e f e r e n c e

� Allocate space for the heap.

� Enable the appropriate hardware interrupts.

� Call or jump to the main execution loop of the program.

It is possible for some code to be inserted following the call to the main execution loop.
It could report some diagnostic information for debugging and then call the main loop
again. It could also issue a reset command that starts the entire process over again, or,
depending on the purpose of the embedded software, it could simply halt the processor.

The mainline of an embedded system is almost always a continuous loop that calls
functions to perform the fundamental tasks of the software. In more complicated systems,
the mainline may initiate a collection of threads of execution, each having its own
continuous loop performing its own task. In embedded systems, threads are generally
referred to as tasks.

To be able to use your own startup code, it may be necessary to have the linker ignore
instructions it receives from GCC. To this end, the GNU linker has a scripting language,
the Linker Command Language, that you can use to provide explicit and tight control
over the linking process. The scripting language is robust enough that you may want to
skip linking from GCC and specify your own linking—the scripting language is detailed
enough that you can describe how the sections of the linked object are to be laid out.

Choosing a Language
Writing code for embedded systems is different from writing it for general purpose
computing. Size can be a factor, and speed is almost always a concern. Code that is
“correct” for a desktop system can be the source of problems in embedded software.
This situation translates into the selection of a language and a compiler.

The question usually arises whether one should write in assembly or in C. Of course,
other languages are also available, and often used, but these two choices are by far the
most popular. It is always better to work in a higher level language because the code is
easier to read, write, and understand. Everything goes faster and with fewer errors if
the code is easier to read. The C compiler will generally produce code that, if not quite
as tight and efficient as hand crafted assembly language, is very clean and quite usable.
Assembly language is certainly not going to go away any time soon, but there is no need
to include more of it than is necessary.

If you find yourself in a time critical situation, GCC can provide you with some
information you can use to determine whether an assembly language fix is in order.
You may want to consider one or more of the following.

� Optimization Use the -S option to have assembly language output from the
compiler. Do this at various optimization levels and with different optimization
flag settings. You may find that the optimizer does everything required.

C h a p t e r 1 7 : E m b e d d e d S y s t e m s 349
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

� Analyze the instructions Using the -dp option in conjunction with the -S
option causes the assembly language listing to have the length of each instruction
in a comment. Along with the length is the number of the tree node and the
specific tree instruction that generated the line of assembler code.

� Analyze the tree Using the -dP option in conjunction with the -S option
produces the same output as the -dp option as well as adds lines of comments
containing the intermediate language tree nodes. This option probably has
limited value for most people because its content assumes you are familiar
with the gcc internal tree structure.

� Verify the option settings Specifying the -fverbose-asm option instructs the
compiler to include, at the top of the assembly language listing produced by -S,
a complete list of all the option settings that were in effect when the program was
compiled into assembly language code. It could be that one or more of these
settings need to be changed to produce the type of assembly language you are after.

Other information about the produced code is also available, as described in
Chapter 18. Most useful are the overall size and allocation numbers.

If you decide that an assembly language solution is what you need, you have more
than one option for implementing it. If you just need to make some changes to the code
inside the routine you’ve analyzed, you can simply edit the compiler-generated assembly
language module. It already has the interfacing code that can be linked to the rest of the
program. Probably a better approach would be to determine what changes you need
to make and then use the inline assembler to replace the C code.

GCC Embedding Facilities
The GCC compiler hasn’t been designed specifically for the development of embedded
software, but it is a very mature compiler that has had so much flexibility added to it
over the years that it has just about everything an embedded developer could ask for
in a compiler.

Command-Line Options
Several of the command-line options are particularly useful for embedded programming.
The level of error checking can be made to be very sensitive to the particular things you
want to watch out for. Look through the collection of -W options in Appendix D and set
(or unset) the ones that pertain to your particular environment. You might want to start
out by using the -Wall option to instruct the compiler to issue a warning about even
the smallest of infractions. If it turns out that it is reporting warnings that you would
rather suppress, you can use individual option settings to turn off only the ones in which
you have no interest.

350 G C C : T h e C o m p l e t e R e f e r e n c e

Optimization can be important to the generated code, and the compiler has a very
fine-grained control over optimization settings. See the description of the -O option in
Appendix D.

You can use the -ffixed command-line option to prevent the compiler from using
a specific register. For example, if your particular CPU has a register named gr4, and
that register should not be used by the generated code, then you can use a set of options
like the following:

$ gcc -c -Wall -ffixed-gr4 mainloop.c -o mainloop.o

Diagnostics
The compiler has the ability to format the names of functions, as well as the name of the
source file, into a string that you can use to construct diagnostic messages. For example,
the following code creates a string that contains the current function name, its source
file name, and the date it was compiled:

sprintf(msg,"Function %s in file %s compiled %s\n",

__FUNCTION__,__FILE__,__DATE__);

When C++ is the language, the macro __PRETTY_FUNCTION__will do a better
job of formatting a descriptive function name. Using either __FUNCTION__ or
__PRETTY_FUNCTION__ will produce the same result for C.

Assembler Code
As described in Chapter 15, it is a relatively straightforward task to link assembler
modules with those of a higher level language. Also, assembly language code can be
inserted inline and included with your compiled code.

It can happen that you need to link an assembler module as part of your executable,
but it hasn’t been written with C in mind, and the name doesn’t have the requisite
leading underscore character. The following statements define C symbols that can be
used locally to address global symbols defined in assembler:

extern int musref asm("muslimit");

int rebar asm("rebclean");

extern int gribbit(void) asm("asmgribbit");

The symbol musref in the C source file will be linked, as a reference to an int, to
the globally defined name muslimit. The int variable named rebar is declared in
the assembly language code as rebclean, where a normal declaration of rebar would
produce the assembly language symbol _rebar. The third line in the example is a

C h a p t e r 1 7 : E m b e d d e d S y s t e m s 351
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

function prototype definition that will cause the function declared or referenced as
gribbit to actually have the name asmgribbit in the assembly language code.

The GCC __attribute__ keyword can be used to specify a section name into
which a function or data item is declared in the assembly language. For example, the
following use of __attribute__ will cause the variable named trigmax to be placed
in the section named convals:

const int trigmax __attribute__ ((section("convals")));

The ability to specify the names of sections gives you the capability of using the
linker to specify the exact location and order of placement of the object code.

Libraries
Runtime libraries are often provided as part of the embedded operating system software.
A good runtime library may provide you with everything you need, so you will only
need to write your application code. Once you have compiled and installed the cross
compiler, you can compile and/or assemble the runtime library and set up the linker
commands to refer to it.

If you have no runtime library provided, you will more than likely need to extract
portions of the GNU standard library to use with your application. Unfortunately, if
you are going to use very much of the GNU library, this extraction can be a tedious
process because of the extensive cross-referencing inside the library. Fortunately, this
tedious process can be avoided by the use of the newlib library.

Trimming the Standard Library
Using the complete standard C library can cause the generation of an executable module
that is several times larger than it needs to be. Many of the standard C modules are
designed for very broad use and are implemented with the idea of being loaded into
memory from a shared library and being used by a number of processes. In an embedded
system, statically linked modules of this type can be quite expensive because of their size.

One of the most well-known examples is the printf() function. This function has
a variable number of arguments—the first argument is a character string and the other
arguments are a variable length list of a variety of data types. Because the formatting
information is dynamically specified inside the character string, the routines to format
any possible data type into any requested form must be included as part of the program.
In addition, many of the formatting routines require other library routines. The result is
a huge domino effect, causing the inclusion of a large amount of code that is never used
for anything.

If you are going to be using the standard library routines that come with GCC, it may
be prudent to trim the library to just the modules you actually need and leave the others

352 G C C : T h e C o m p l e t e R e f e r e n c e

out entirely. Depending on how much of the library you use, this can be a long and
tedious process. You can start by creating a library with only the function calls you
know you will need. Then you can add other modules as you need them to satisfy
unresolved references.

A Library Designed for Embedded Systems
A standard library is available for linking with embedded systems. The library is licensed
as freeware and can be downloaded from the website http://source.redhat.com/newlib/.

The library, called newlib, is a C library designed for use on embedded systems. It
is largely made up of a combination of routines gathered from various locations, all of
which are licensed as free software. It comes as source, and the code is straightforward
enough that it compiles cleanly for a number of processors. One great advantage of
newlib is the fact that is has been devised and written specifically for embedded systems.

The library is downloaded and installed much the same as GCC and binutils.
Once you have downloaded the source, it should be installed in the newlib working
directory. The newlib directory should be a sibling directory of the gcc and binutils
source directories. You create a separate build directory and use the configure script
that came with it to specify the required --prefix for the installation directory and
--target to specify the target system.

It would be a good idea to review the other configure options to determine whether
you should use any of them for your particular installation; to get a listing of the
available options use the --help option of the configure script. In particular, the
--newlib-hw-fp option compiles the library routines so they use floating-point
arithmetic; by default, the library routines assume floating point is not available and use
only integer routines. The floating-point algorithms are generally smaller and faster.

The command make, followed by make install, will create the library.

The GNU Linker Scripting Language
The GNU linker is controlled by a scripting language. If you do not specify a script, the one
that was compiled into the linker when it is installed is used by default. You can override
this default and provide your own script, as in the following example, which applies
the script sprig.link to the linking of the executable load module named sprig:

$ ld -T sprig.link start.o loop.o brspr.o -o sprig

The -T option specifies the name of the script file. The -c option is a synonym of
the -T option.

The primary reason for using a special script is the addressing scheme. Normally,
the linker produces an executable file with adjustable addresses that can be set at the
time the module is loaded into memory. Each section has two addresses (which quite

C h a p t e r 1 7 : E m b e d d e d S y s t e m s 353
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

often are the same value); one is the virtual memory address (VMA) used internally
by the module when it is run, and the other is the loadable memory address (LMA),
specifying where the section is to be loaded. With an embedded module, all addresses
are resolved by the linker into absolute locations so that every addressing reference is
completely resolved and immovable. This process of locking down the address is known
as locating the module. Some systems have a separate utility that processes the relocatable
output from the linker into an absolute module, but the GNU linker has the locator built
into it.

The linker reads object files produced by the compiler and combines them into a
new object file (also called an executable file) as its output. An object file is divided into
sections. Each section has a name and a size. The linker combines the input sections of
the same name into a single output section. Some sections contain executable code, some
contain data with initial values, and others contain uninitialized data. A section with
uninitialized data usually has nothing other than a name and a size.

Script Example 1
The following example can be used to generate a linked object file. It takes the sections
of the various input object files and combines them together at the specified addresses:

SECTIONS

{

. = 0x0100000;

.text : {

*(.text)

}

. = 0x8000000;

.data : {

*(.data)

}

.bss : {

*(.bss)

}

}

The SECTIONS keyword specifies that this is a map of the memory layout for the
linked object module. The statements between the opening and closing braces of the
SECTIONS command are taken in order and specify the exact layout of output.

The period is a special variable that contains the current address (also called the
location counter) for insertion of data into the output. The first statement in this example
sets the current address to the absolute value 0x0100000. If it had not been set, the
output address would have defaulted to 0. Once the current address has been set, it
will be incremented automatically by each item added to the output.

354 G C C : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 7 : E m b e d d e d S y s t e m s 355
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

The statement .text { ... } places the beginning of the output .text section at
the current address. The items between the braces are the ones included as part of the
output .text section. In this example, the output .text section contains all the input
.text sections. You could list all the input file names here, but the asterisk matches all
file names.

Following the .text section, the location counter is set to 0x08000000. It is at this
address the .data section is output. Combining all the input .data sections into a single
output .data section advances the location counter, which then points to the location
just past the end of the .data section, and that’s where the output .bss section is placed.

Script Example 2
The following linker script specifies the locations of the sections in a form that is more
like the one you are likely to use to create an object file for an embedded system. It
addresses the existence of both ROM and RAM:

MEMORY

{

rom (rx) : ORIGIN = 0x00000000, LENGTH 1024K

ram (rwx) : ORIGIN = 0x00100000, LENGTH 512K

}

SECTIONS

{

.text rom : {

*(.text)

}

.data ram : {

_StartOfData = . ;

*(.data)

_EndOfData = .;

} >rom

.bss : {

*(.bss)

}

_HeapLocation = .

_StackLocation = 0x80000000

}

This example begins with the MEMORY keyword, which is used to assign names to
blocks of the output address space. This technique can be used to break up the output
address space into any number of blocks and, with later instructions, insert specific
sections into specific memory blocks. In this example, the MEMORY settings are used to
specify the location and size of the RAM and the ROM and to assign a name to each one
for use later.

The optional memory attributes rx mean that the memory contents can be read and
executed. The attributes rwx mean the contents are read/write and can be executed. If
you omit the attribute settings, all permissions are granted.

The previously defined memory locations allow names instead of numbers to be used
to set addresses. The output .text section is placed in ROM by defining its name and
location as .text rom, and the .data section is placed in RAM by being specified as
.data ram. The named items are taken in order, so if an address is not specified, it is
assumed to be at the end of the previous item. For example, the .bss section is output
immediately following the .data section.

The symbols, such as _StartOfData and _EndOfData, included in the script
become globally defined variables during the linking process. These names can be used
from inside your program to directly access the memory address to which they are set.
The _HeapLocation symbol is defined as the address in RAM immediately following
the .bss section, and _StackLocation is set to the absolute address 0x80000000.

Some Other Script Commands
The OUTPUT_FORMAT command is important for getting the resulting executable module
into a form that can be loaded into your development system. For example, the following
command will produce the output object in the Intel hex format:

OUTPUT_FORMAT("ihex")

Some of the binary file descriptor (BFD) names available for this command are
"binary", "ihex" (for Intel hex), "srec" (for S-records), "coff-sh" (for SH-2), and
"coff-m68k" (for CPU32). Using OUTPUT_FORMAT in the script is the same as using
--oformat on the command line of the linker, and it has the same set of BFD names
available.

The INPUT command can be used to list a set of libraries and/or object files that you
want to include in every link. For example, the following command will cause two
libraries and one object file to always be included:

INPUT(libc.a libg.a startmod.o)

The output file can be named with the OUTPUT_FILENAME command as follows:

OUTPUT_FILENAME("loadable.out");

356 G C C : T h e C o m p l e t e R e f e r e n c e

Chapter 18
Output from the Compiler

357

The fundamental purpose of the compiler is to produce object files, libraries containing
object files, and executable programs. But it is also possible to use the compiler to
get other types of output. It is not very often that you find yourself in a position

of needing this information, but the compiler can be very helpful in some special situations
where clues to a problem are scarce.

Options are available that make it possible for you to discover what the compiler
thinks your program means syntactically, where the compiler searches for subprocesses
and libraries, and get a listing of the intermediate language produced from parsing your
program. You can get a complete listing of all the header files included by a program,
and you can automatically generate a dependency statement for a makefile based on
the source code.

Information about Your Program
The compiler constructs detailed internal tables containing information about the program
being compiled, and command-line options are available that make it possible for you
to extract some of this information. Not only can you examine the parse tree, which
contains the compiler’s interpretation of your code, but you can also get a complete
listing of all header files included, the amount of time the compile has taken, and how
much memory each module of your program requires. For C++ programs you can extract
class definition relationships.

The Parse Tree
The compiler parses your program into an internal tree. This tree structure, representing
the original source code, can be dumped to a file with the suffix .tu by using the
-fdump-translation-unit option, as in the following example:

$ gcc -fdump-translation-unit showdump.c -o showdump

The output file produced by this command contains a textual representation of the
tree in showdump.c.tu. Each node in the tree is numbered (shown as @1, @2, and so
on), and the tree structure is represented by each tree node referring to other tree nodes
by numbers.

The amount of information displayed with each node can be controlled to some extent.
The following form will produce a tree that contains the compiler’s internal addressing
information that can be used to cross-reference the parse tree with the internal addresses
produced by the -d option (described later in this chapter):

$ gcc -fdump-translation-unit-address showdump.c -o showdump

358 G C C : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 8 : O u t p u t f r o m t h e C o m p i l e r 359
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

The following two forms will produce a listing with either more or less information,
respectively:

$ gcc -fdump-translation-unit-all showdump.c -o showdump

$ gcc -fdump-translation-unit-slim showdump.c -o showdump

The tree produced from any of these options is quite easy to read. The following
partial tree dump shows that each node is identified by its unique ID number and a
somewhat descriptive name. A list of attributes is also included:

@1 function_decl name: @2 type: @3 srcp: showdump.c:5

chan: @4 args: @5 extern

@2 identifier_node strg: main lngt: 4

@3 function_type size: @6 algn: 64 retn: @7

prms: @8

@4 var_decl name: @9 type: @7 srcp: showdump.c:3

chan: @10 init: @11 size: @12

algn: 32 used: 1

@5 parm_decl name: @13 type: @7 scpe: @1

srcp: showdump.c:4 chan: @14

argt: @7 size: @12 algn: 32

used: 0

At this level in the tree, most of the attributes are defined in terms of other tree nodes.
For example, a name attribute is the number of a tree node that has strg (string) and
lngth (length) attributes. Some nodes, such as the function_type, have algn
(alignment) attributes. Variables, such as arguments and declarations, have both type
and name attributes, and they also have a used attribute that is a count of the number
of times the variable is used in the program. Many of the nodes have srcp (source
position) attributes that specify the name and line number of the source file from which
each node was produced.

Header Files
The -H option, which can also be written as --trace-includes, generates a nested
listing of all the include files. The following example is the output generated on a Linux
system for a C program that includes only stdio.h:

. /usr/lib/gcc-lib/i586-pc-linux-gnu/3.2/include/stdio.h

.. /usr/include/features.h

360 G C C : T h e C o m p l e t e R e f e r e n c e

... /usr/include/sys/cdefs.h

... /usr/include/gnu/stubs.h

.. /usr/lib/gcc-lib/i586-pc-linux-gnu/3.2/include/stddef.h

.. /usr/include/bits/types.h

... /usr/lib/gcc-lib/i586-pc-linux-gnu/3.2/include/stddef.h

... /usr/include/bits/pthreadtypes.h

.... /usr/include/bits/sched.h

.. /usr/include/libio.h

... /usr/include/_G_config.h

.... /usr/lib/gcc-lib/i586-pc-linux-gnu/3.2/include/stddef.h

.... /usr/include/wchar.h

..... /usr/lib/gcc-lib/i586-pc-linux-gnu/3.2/include/stddef.h

..... /usr/include/bits/wchar.h

.... /usr/include/gconv.h

..... /usr/include/wchar.h

...... /usr/lib/gcc-lib/i586-pc-linux-gnu/3.2/include/stddef.h

..... /usr/lib/gcc-lib/i586-pc-linux-gnu/3.2/include/stddef.h

... /usr/lib/gcc-lib/i586-pc-linux-gnu/3.2/include/stdarg.h

.. /usr/include/bits/stdio_lim.h

Multiple include guards may be useful for:

/usr/include/bits/pthreadtypes.h

/usr/include/bits/sched.h

/usr/include/bits/stdio_lim.h

/usr/include/gnu/stubs.h

Each level of inclusion is indicated by the number of periods preceding the name.
Also, at the bottom of the listing are the names of header files that probably should be
fixed because including any one more than once could cause problems with multiple
definitions.

The Memory Required by the Program
The compiler can be requested to produce a summary of the amount of memory required
for the compiled program, along with some details of how that memory has been
allocated. The following sample output demonstrates the detailed form of the report:

RTX Number Bytes % Total

address 7 56 0.664

const_int 129 1032 12.239

const_double 21 336 3.985

const_vector 19 152 1.803

pc 1 8 0.095

reg 14 224 2.657

C h a p t e r 1 8 : O u t p u t f r o m t h e C o m p i l e r 361
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

mem 216 3456 40.987

symbol_ref 391 3128 37.097

cc0 1 8 0.095

plus 1 16 0.190

eq 1 16 0.190

Total 801 8432

Size Allocated Used Overhead

8 8192 6216 184

16 12k 4192 180

32 8192 3392 88

64 32k 28k 288

512 28k 24k 196

1024 4096 1024 28

112 52k 42k 416

20 8192 2580 104

Total 152k 112k 1484

String pool

entries 452

identifiers 452 (100.00%)

slots 16384

bytes 4805 (3339 overhead)

table size 64k

coll/search 0.0168

ins/search 0.7609

avg. entry 10.63 bytes (+/- 5.78)

longest entry 36

From this listing you can determine the amount of memory allocated for various
parts of your program as well as how much of each allocation is being used. This can
be especially useful in analyzing large programs and object modules for embedded
systems.

Time Consumed
The -time option can be used when compiling and linking to cause gcc to list the
amount of time consumed by each individual process. For example, the following
command compiles three C programs into assembly language, invokes the assembler to
produce an object file from each one, and uses collect2 to link them together:

gcc -time getshow.c strmaker.c showstring.c -o getshow

cc1 0.15 0.02

362 G C C : T h e C o m p l e t e R e f e r e n c e

as 0.01 0.00

cc1 0.08 0.03

as 0.01 0.01

cc1 0.13 0.03

as 0.01 0.00

collect2 0.13 0.05

The first of the two times listed for each process is the user time (the amount of time
spent executing the code of the subprocesses), and the second is the system time (the
amount of time the process spent in making system calls). The actual wall-clock time is
not listed, but a total time for the entire gcc process, including the wall-clock time, can
be added by using the standard time utility to run gcc, as in the following example:

$ time gcc -time getshow.c strmaker.c showstring.c -o getshow

The C++ Intermediate Tree
The g++ compiler can be instructed to dump the intermediate language produced by the
front end translation. The dump can be taken at different points during the compilation
process. The following command will show the intermediate language as it was originally
generated, before any modifications or optimizations:

$ g++ -fdump-tree-original minmax.cpp -o minmax

The intermediate language can also be dumped following code optimization:

$ g++ -fdump-tree-optimized minmax.cpp -o minmax

The process of inlining functions is performed on the intermediate language, and
the results of inlining can be dumped with the following:

$ g++ -fdump-tree-inlined minmax.cpp -o minmax

The format of the output can be specified by tagging a modifier onto the end of each
of the dump option names. Appending -address to the end of the option will cause
the inclusion of address information that corresponds to the address information produced
by the -d option (described later in this chapter). To reduce the amount of information
included in the listing, the -slim tag can be specified. To increase the amount of
information in the dump, append the -all tag. For example, the following command
will produce a verbose dump of the intermediate language following optimization:

$ g++ -fdump-tree-optimized-all minmax.cpp -o minmax

P
ER

IP
H

ER
A

LS
A

N
D

IN
TER

N
A

LS
C h a p t e r 1 8 : O u t p u t f r o m t h e C o m p i l e r 363

The C++ Class Hierarchy
The g++ compiler can be instructed to dump the complete class hierarchy and virtual
function tables of your program. Included in the dump is the hierarchy of the system
classes used by your program, so the output can be quite large. The following command
will compile and then dump the complete class hierarchy of a program named
minmax.cpp:

$ g++ -fdump-class-hierarchy minmax.cpp -o minmax

The output resulting from this command is the executable program minmax and a
text file named minmax.cpp.class that contains the class hierarchy. The following
command has the same result, except the class hierarchy also includes address information
that can be cross-referenced with the information dumped by the -d option:

$ g++ -fdump-class-hierarchy-address -da minmax.cpp -o minmax

The -d option dumps some internal compiler information, as described later
in this chapter.

The amount of information included in the dump can be reduced by using the
following option:

$ g++ -fdump-class-hierarchy-slim minmax.cpp -o minmax

A larger dump file, containing all the information available, can be obtained by using
the following option:

$ g++ -fdump-class-hierarchy-all minmax.cpp -o minmax

Information for the Makefile
A collection of options exists that can be used to instruct the compiler to scan your source
files and generate dependencies for insertion into a makefile. For example, the following
program includes two header files:

/* getshow.c */

#include "strmaker.h"

#include "showstring.h"

int main(int argc,char *argv[])

{

char *string;

string = strmaker();

showstring(string);

}

The following compiler command reads the source file and produces a dependency
line for the makefile (in this example, the header file strmaker.h includes motback.h):

$ gcc -M getshow.c

getshow.o: getshow.c strmaker.h motback.h showstring.h

The -M option sets the -E option, which suppresses all output other than the
dependency line. If you wish to produce a dependency line and continue with the
compilation, enter the following:

$ gcc -MD getshow.c -o getshow

This command will produce the executable getshow and store the text of the
dependencies in a file named getshow.d. The -MF option can be used to specify the name
of the file, as in the following example, which places the dependencies in a file named
depends.text:

$ gcc -MD -MF depends.text getshow.c -o getshow

The -MF option can also be used along with -M to suppress compilation and store
the dependencies in a file, as follows:

$ gcc -M -MF depends.text getshow.c

An alternative way of specifying the name of the output file is to set the environment
variable DEPENDENCIES_OUTPUT.

The -M and -MM options will detect and report an error for a missing header file. If
you want to suppress this error message, you can specify the -MP option along with -M
and -MM, which will also generate a dummy target for each header file.

The -MT option can be used with -M or -MM to specify the name of the target, as in
the following example:

$ gcc -M -MT spang.o getshow.c

spang.o: getshow.c strmaker.h motback.h showstring.h

364 G C C : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 8 : O u t p u t f r o m t h e C o m p i l e r 365
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

Information about the Compiler
A few compiler options are available so you can make certain which compiler you are
using and determine just how it has been configured. For example, the version number
of the compiler can be listed with the following command:

$ gcc -dumpversion

To determine the target machine—the type of computer for which this compiler
creates object files—enter the following:

$ gcc -dumpmachine

Time to Compile
The -ftime-report option can be used to generate a listing of the time consumed for
the various stages of compiling. This is mostly for compiler developers, but it can also
be used to get a feel for the relative complexity of your programs. The output from a
compilation using this option looks like the following:

Execution times (seconds)

garbage collection : 1.13 (23%) usr 0.00 (0%) sys 0.50 (10%) wall

life analysis : 0.01 (0%) usr 0.00 (0%) sys 0.00 (0%) wall

preprocessing : 0.43 (9%) usr 0.08 (24%) sys 1.00 (20%) wall

lexical analysis : 0.38 (8%) usr 0.10 (29%) sys 0.00 (0%) wall

parser : 2.72 (56%) usr 0.14 (41%) sys 3.00 (60%) wall

expand : 0.02 (0%) usr 0.00 (0%) sys 0.00 (0%) wall

varconst : 0.05 (1%) usr 0.00 (0%) sys 0.50 (10%) wall

integration : 0.03 (1%) usr 0.01 (3%) sys 0.00 (0%) wall

local alloc : 0.01 (0%) usr 0.00 (0%) sys 0.00 (0%) wall

global alloc : 0.01 (0%) usr 0.00 (0%) sys 0.00 (0%) wall

rest of compilation : 0.00 (0%) usr 0.01 (3%) sys 0.00 (0%) wall

TOTAL : 4.84 0.34 5.00

The values are shown in terms of the number of seconds and the percentage each
duration is of the total. The usr time is the duration spent in the actual execution of
code inside the compiler. The sys time is the duration spent inside system calls (such
as input and output), and the wall time is the actual time consumed.

366 G C C : T h e C o m p l e t e R e f e r e n c e

Subprocess Switches
The gcc program is a front end for other programs such as a language compiler,
assembler, and linker. At the time gcc was configured and compiled, the names of the
subprocesses, and the options passed to them, were configured and installed. To determine
the specifications used to construct the command-line arguments of subprocesses, enter
the following:

$ gcc -dumpspecs | more

The specification for the options and arguments passed to a subprocess consists of a
single string. A default set of spec definitions for each of the fundamental subprocesses
is built into gcc and automatically becomes a part of the compiler front end, but it is
possible to override the default spec strings at the time the compiler is configured.

An example of the information listed is the following spec for invoking the C
preprocessor:

*cpp:

%{posix:-D_POSIX_SOURCE} %{pthread:-D_REENTRANT}

With this spec, whenever gcc invokes cpp, the --posix option on the gcc command
line will cause the appearance of -D_POSIX_SOURCE on the cpp command line, and
the appearance of --pthread on the gcc command line will cause the appearance of
-D_REENTRANT on the cpp command line.

The line of spec text defining the conditions for all the possible options passed to a
subprocess can become quite involved. An example of a more complicated (but by no
means the most complicated) spec set is one used in invoking an assembler:

*asm:

%{v:-V} %{Qy:} %{!Qn:-Qy} %{n} %{T}

In this example, if -v is specified on the gcc command line, the option -V is specified
for the assembler. If -Qy is specified on the gcc command line, it is not passed on to
the assembler, but if -Qn is not specified, then -Qy is added to the assembler command
line. If either -n or -T is specified for gcc, each will be passed on to the assembler. No
other options are passed to the assembler.

Verbose Compiler Debugging Information
The -d option can be used to instruct the GCC system to dump internal information
at various stages of the compilation process. The information in the dumped files has
meaning only to those working on the compiler itself, so even though the information
is quite detailed, it will not help you in debugging or analyzing an application.

C h a p t e r 1 8 : O u t p u t f r o m t h e C o m p i l e r 367
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

You can request that a dump be generated from one of several different points
during the compilation process. For the complete list, see the -d entry in Appendix D.
The output is roughly the same at all the dump points and includes information about
unnecessary instructions being deleted, register allocation, register deallocation (when
a register has its value clobbered), and the generated instructions in the internal RTL
language. For example, the following simple program tests one value against another
to decide whether a branch should be taken:

/* showdump.c */

int a = 44;

static int b = 22;

int main(int argc,char *argv[])

{

if(a > b) {

b = a;

} else {

a = b;

}

}

The following command compiles the program and requests a dump be made
immediately after the RTL code is generated:

$ gcc -dr showdump.c -o showdump

The dumped information is stored in a file named showdump.c.00.rtl and looks
like the following:

;; Function main

(note 2 0 5 NOTE_INSN_DELETED -1347440721)

(insn 5 2 6 (nil) (parallel[

(set (reg/f:SI 7 esp)

(and:SI (reg/f:SI 7 esp)

(const_int -16 [0xfffffff0])))

(clobber (reg:CC 17 flags))

]) -1 (nil)

(nil))

(insn 6 5 7 (nil) (set (reg:SI 59)

(const_int 0 [0x0])) -1 (nil)

(expr_list:REG_EQUAL (const_int 0 [0x0])

(nil)))

368 G C C : T h e C o m p l e t e R e f e r e n c e

(insn 7 6 8 (nil) (parallel[

(set (reg/f:SI 7 esp)

(minus:SI (reg/f:SI 7 esp)

(reg:SI 59)))

(clobber (reg:CC 17 flags))

]) -1 (nil)

(nil))

(insn 8 7 3 (nil) (set (reg/f:SI 60)

(reg/f:SI 55 virtual-stack-dynamic)) -1 (nil)

(nil))

(note 3 8 4 NOTE_INSN_FUNCTION_BEG -1347440721)

(note 4 3 9 NOTE_INSN_DELETED -1347440721)

(note 9 4 10 NOTE_INSN_DELETED -1347440721)

(note 10 9 12 NOTE_INSN_DELETED -1347440721)

(insn 12 10 13 (nil) (set (reg:SI 61)

(mem/f:SI (symbol_ref:SI ("a")) [0 a+0 S4 A32])) -1 (nil)

(nil))

(insn 13 12 14 (nil) (set (reg:CCGC 17 flags)

(compare:CCGC (reg:SI 61)

(mem/f:SI (symbol_ref:SI ("b")) [0 b+0 S4 A32]))) -1 (nil)

(nil))

(jump_insn 14 13 15 (nil) (set (pc)

(if_then_else (le (reg:CCGC 17 flags)

(const_int 0 [0x0]))

(label_ref 22)

(pc))) -1 (nil)

(nil))

(note 15 14 16 NOTE_INSN_DELETED -1347440721)

(note 16 15 18 NOTE_INSN_DELETED -1347440721)

(insn 18 16 19 (nil) (set (reg:SI 62)

(mem/f:SI (symbol_ref:SI ("a")) [0 a+0 S4 A32])) -1 (nil)

(nil))

(insn 19 18 20 (nil) (set (mem/f:SI (symbol_ref:SI ("b")) [0 b+0 S4 A32])

(reg:SI 62)) -1 (nil)

(nil))

(jump_insn 20 19 21 (nil) (set (pc)

(label_ref 28)) -1 (nil)

(nil))

(barrier 21 20 22)

(code_label 22 21 23 2 "" "" [0 uses])

(note 23 22 24 NOTE_INSN_DELETED -1347440721)

(note 24 23 26 NOTE_INSN_DELETED -1347440721)

(insn 26 24 27 (nil) (set (reg:SI 63)

(mem/f:SI (symbol_ref:SI ("b")) [0 b+0 S4 A32])) -1 (nil)

(nil))

(insn 27 26 28 (nil) (set (mem/f:SI (symbol_ref:SI ("a")) [0 a+0 S4 A32])

(reg:SI 63)) -1 (nil)

(nil))

(code_label 28 27 29 3 "" "" [0 uses])

(note 29 28 33 NOTE_INSN_FUNCTION_END -1347440721)

(insn 33 29 34 (nil) (clobber (reg/i:SI 0 eax)) -1 (nil)

(nil))

(insn 34 33 31 (nil) (clobber (reg:SI 58)) -1 (nil)

(nil))

(code_label 31 34 32 1 "" "" [0 uses])

(insn 32 31 35 (nil) (set (reg/i:SI 0 eax)

(reg:SI 58)) -1 (nil)

(nil))

(insn 35 32 0 (nil) (use (reg/i:SI 0 eax)) -1 (nil)

(nil))

C h a p t e r 1 8 : O u t p u t f r o m t h e C o m p i l e r 369
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

Information about Files and Directories
A collection of options can be used to request that the compiler look around the disk to
find things for you. Because the system configuration determines the directories in which
the compiler searches for libraries, you may find yourself in a situation where you
need to verify the location of the actual library being used. This can be done using the
-print-file-name option. For example, the following command determines the
location of the libgcc.a library:

$ gcc -print-file-name=libgcc.a

/usr/lib/gcc-lib/i586-pc-linux-gnu/3.2/libgcc.a

The -print-file-name option can be used to locate any library, but the libgcc.a
library has an option of its own, as shown in the following example:

$ gcc -print-libgcc-file-name

/usr/lib/gcc-lib/i586-pc-linux-gnu/3.2/libgcc.a

In similar fashion, you can determine the full path name of the internal subprocesses,
such as cc1 and cc1obj. For example, enter the following command to locate f771:

$ gcc -print-prog-name=f771

/usr/lib/gcc-lib/i586-pc-linux-gnu/3.2/f771

You can determine the current GCC installation directory and the complete search
path for both programs and libraries by entering the following command:

$ gcc -print-search-dirs >path.text

The output from this command can be quite large, and the paths are listed as one
continuous line, so it is probably best to redirect the output to a file so you can use an
editor to help you analyze it. The installation directory is listed first, followed by programs
and libraries. Some of the path names are derived by an algorithm that leaves them more
verbose than necessary, but if you need to know the search order you can figure it from
the output of this command.

370 G C C : T h e C o m p l e t e R e f e r e n c e

Chapter 19
Implementing a
Language

371

372 G C C : T h e C o m p l e t e R e f e r e n c e

Inside the GCC compiler, the front end analyzes the syntax and semantics of the
programming language, and the back end generates the code for the target machine.
GCC is designed to allow any number of front ends, and every front end is a different

programming language. If you write your own front end for GCC, any of the existing
back ends (also known as ports) can be installed with it, so your language is portable to a
number of machines.

The concept is simple but, as the saying goes, the devil is in the details. Assuming
that you have a language parser capable of recognizing the elements of the language
you wish to implement, the fact is that you must connect this front end to the rest of the
GCC. The parser must produce output in a recognized format. The GCC front end is
not as isolated from the back end as perhaps it should be, so there is more to consider
than just the raw parser output. Also, there is the possible development of a runtime
library for the language.

From Front to Back
The purpose of GCC is to read the source code of a programming language and
produce an executable program from it. The following series of steps is an overview of
the compilation process:

� Lexical analysis The source code is read and tokenized. This process usually
involves reading the source in a stream of one character at a time and deciding
which of these characters belong together to have meaning for the language.
The tokens can be roughly divided into three categories: names, numbers, and
punctuation. Every language has its own set of rules about what is valid and
what is not valid in each of these categories.

� Parsing The tokens have relationships among themselves, depending largely
on their positions relative to one another in the stream coming in from the lexical
scan. The parser determines the type of each token (keyword, symbolic name,
number, and so on) and uses this information to form the entire source file into
a tree. Nodes in the tree represent data declarations, functions, individual
statements, and so on. The entire program is represented by the tree.

� Pruning Some amount of optimization is performed by analyzing the entries
in the tree. Redundant and unused portions of the tree are removed. Some
portions of the tree may be moved to other locations in the tree to prevent
statements from being executed more often than necessary.

� RTL The contents of the parse tree are converted to Register Transfer
Language (RTL) code. RTL is a special pseudo assembly language that contains
opcodes for a hypothetical machine. The parse tree is “unrolled” into a linear
sequence of RTL instructions. The instructions in the tree are reorganized as
necessary, with branches inserted as necessary, in accordance with if-condition
tests defined in the parse tree. Branching for case/switch type statements
and loops is also inserted. Much of the translation done at this stage is target

C h a p t e r 1 9 : I m p l e m e n t i n g a L a n g u a g e 373
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

dependent—that is, the RTL code generated is in terms of the target machine
and contains such things as the register allocation information.

� RTL optimizing Optimizations are performed on the RTL code. These
optimizations include such things as tail recursion elimination, common
subexpression elimination, jump optimization, and several others. This is an
excellent place to perform optimization because it will apply to every language
front end and every target back end.

� Assembly language The RTL is translated into assembly language for the
target machine and written to a file.

� Assembling The assembler is invoked to translate the assembly language file
into an object file. This file is not in an executable format—it contains executable
object code, but not in a loadable form. Besides, it more than likely contains
unresolved references to routines and data in other modules.

� Linking The linker combines object files from the assembler (some of which
may be stored in libraries filled with object files) into an executable program.

You should note that there is a logical separation of the front end language parser
from the back end code generator, with the parse tree being the intermediary. Any
parser that is capable of producing the tree structure can be connected to the back end
through the RTL code generator and compiled with GCC. Similarly, any machine for
which a code generation program has been written to translate RTL language into
native assembly language is capable of producing compiled programs from any of the
languages handled by the front end.

It is not quite as simple as this description makes it sound, but it works.

Lexical Scan
A compiler reads the source code of a program as a stream of characters and then
groups the characters into a stream of tokens for processing. Each token is a number,
a name, or punctuation. For example, the following line is made up of seven tokens:

if (grimle <= 43.1) {

The process of breaking the line into its tokens is called a lexical scan, or just lex
for short. The mechanical process of performing a lexical scan is the same for any
language, except for changes in the rules that define which characters are valid for
symbols and which are the valid punctuation characters. In fact, the process is consistent
enough from one programming language to another that a standard utility exists that
can be used to write your lexical scanner program for you. The standard UNIX utility
named lex—or the GNU equivalent named flex—can be given the set of rules that
your language is to follow, and it will produce a program that will generate the token
stream from the input source.

374 G C C : T h e C o m p l e t e R e f e r e n c e

A Simple Lex
As an example of a simple lex definition, the following defines the two keywords
howdy and now:

%%

howdy printf("(The word is 'howdy')");

now printf("(The time is %ld)",time(0L));

%%

The %% characters specify the beginning and end of the list of character matching.
This example will detect a match on either of the two words and execute the command
following it. The command is actually a C program statement that will be included in
the program produced by this script. The following pair of statements will create the C
program, named lex.yy.c, and compile it into an executable named howdy:

$ flex howdy.lex

$ gcc lex.yy.c -lfl -o howdy

The program lex.yy.c produced in this example is over 1500 lines of C code, and
it calls routines in the library named libfl.a. One reason the output code is so large
is the number of comments—the generated code is commented well enough to make it
relatively easy to determine how it works. If you are using the standard UNIX lex utility
instead of the GNU flex program, the form of the commands is slightly different:

$ lex howdy.lex

$ gcc lex.yy.c -ll -o howdy

This program can be run from the command-line. It will run and wait for input,
which you can enter from the keyboard. Anything that you enter that is not one of the
two recognized keywords is simply echoed to the output, while the two keywords are
replaced by the strings in the printf() function calls.

Lex with Regular Expressions
The following lex definitions will recognize the keywords switch and case, any
arbitrary symbol, any integers, and both the left and right braces:

%%

switch printf("SWITCH ");

case printf("CASE ");

[a-zA-Z][_a-zA-Z0-9]* printf("WORD(%s) ",yytext);

[0-9]+ printf("INTEGER(%s) ",yytext);

C h a p t e r 1 9 : I m p l e m e n t i n g a L a n g u a g e 375
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

\{ printf("LEFTBRACE ");

\} printf("RIGHTBRACE ");

%%

The first two rules match the keywords switch and case. The third rule matches
any symbol that begins with an upper or lower case letter and continues with zero
or more letters, digits, or underscore characters. Note that the output string includes
yytext, which is a pointer to the token string itself. The fourth rule matches any
string of one or more digits. The last two rules match the left and right braces.

This lex example will extract the tokens of the following input text:

blatz {

switch big_time_do

case HamFram

case 889

} dend

The following sequence of commands will compile the lex script kwords.lex into a
program named kwords and then use it to tokenize the source file named kwtry.text:

$ flex kwords.lex

$ gcc lex.yy.c -lfl -o kwords

$ cat kwtry.text | kwords

WORD(blatz) LEFTBRACE

SWITCH WORD(big_time_do)

CASE WORD(HamFram)

CASE INTEGER(889)

RIGHTBRACE WORD(dend)

Parsing
The example described in this section is intended to demonstrate the process of using
a lexical scan to read the tokens and using a parser to organize the tokens logically, as
well as calling a collection of C functions with the organized information. In a compiler
the C functions are used to generate the output (in GCC the output is code in the RTL
intermediate language), but in this example the output is simply lines of text describing
the code that would be generated.

The code that actually performs the job of parsing can be produced by the standard
UNIX utility named yacc, which is an acronym for Yet Another Compiler Compiler.
The GNU utility that performs the same task is named bison. The two programs are
almost identical in purpose and function.

The example is based on a very simple language named clang that accepts commands
to draw colored circles and rectangles at specific locations. The following is an example of
a clang program:

set color blue;

set location (100,200);

draw circle 30;

set color red;

set location (250,200);

draw rectangle (10,10);

The set statement is used to specify the color and the location of the next figure to
be drawn. The draw statement renders a figure of the specified type and size.

The following is the content of the file named clang.lex:

/* clang.lex */

%{

#include "y.tab.h"

extern int yylval;

extern char *yytext;

%}

%%

set { return(SETTOKEN); }

color { return(COLORTOKEN); }

location { return(LOCATIONTOKEN); }

draw { return(DRAWTOKEN); }

circle { return(CIRCLETOKEN); }

rectangle { return(RECTANGLETOKEN); }

\; { return(SEMICOLON); }

\, { return(COMMA); }

\({ return(LEFTPAREN); }

\) { return(RIGHTPAREN); }

[0-9]+ { yylval = atoi(yytext);

return(NUMBER);

}

[a-zA-Z][a-zA-Z0-9]* { yylval = strdup(yytext);

return(NAME);

}

\n /* ignore end of line */

[\t]+ /* ignore white space */

%%

376 G C C : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 9 : I m p l e m e n t i n g a L a n g u a g e 377
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

The include file clang.tab.h is produced by bison from the parser file, as
described later. Each of the lexical definitions returns a value specifying its type (as
defined in the header file). Because the definitions are used to generate C source code,
it is much safer to use the backslash character to escape the punctuation characters
recognized as tokens.

Each incoming token is stored as a string pointed to by the variable yytext. To
make the token available to the C routines, it is necessary that the value of the token be
stored—as a type that is valid for it—in the variable yylval. In this example, the NAME
tokens are saved as strings, and the NUMBER tokens are converted into integers with a
call to atoi().

The last two token matches produce nothing, but they are necessary if you wish to
successfully scan past multiple spaces, tabs, and the end of lines. To create the parser
of a line-oriented language, you could have the newline character return a value that
could be detected by the parser.

The following is the contents of the file clang.y, which contains the syntax
definition of the language:

%start commands

%token SETTOKEN DRAWTOKEN COLORTOKEN

%token LOCATIONTOKEN CIRCLETOKEN RECTANGLETOKEN

%token SEMICOLON LEFTPAREN RIGHTPAREN COMMA

%token NUMBER NAME

%%

commands:

/* nothing */

| commands command

;

command: SETTOKEN set SEMICOLON

| DRAWTOKEN draw SEMICOLON

;

set: COLORTOKEN NAME

{ setcolor($2); }

| LOCATIONTOKEN LEFTPAREN NUMBER COMMA NUMBER RIGHTPAREN

{ setlocation($3,$5); }

;

draw: CIRCLETOKEN NUMBER

{ drawcircle($2); }

| RECTANGLETOKEN LEFTPAREN NUMBER COMMA NUMBER RIGHTPAREN

{ drawrectangle($3,$5); }

;

%%

The first line of the file specifies the starting point of the syntax tree definitions.
Following that are the token definitions—these are named constants in the generated
code that are used as unique identifiers for each token found in the input stream.

Each entry in the parse definition is called a production. Each production has a name,
and the name is associated with one or more syntax layout definitions to its right. The
syntax items on the right are separated by vertical bar (|) characters, and the last one is
terminated by a semicolon. The parser matches the incoming stream of tokens against the
items on the right side of the production until it finds a match.

The kind of parser generated by bison or yacc reads the tokens from left to right
and, to determine a match, will look ahead by no more than one token. This kind of
parser is called a LALR(1) parser, or simply an LR(1) parser. This is quite sufficient to
handle modern programming languages, but older languages with more ambiguous
syntax require special handling. Modern languages are designed with an LR(1) parser
in mind.

The starting production is named commands. The commands production can either be
empty (which happens at the end of the file) or can contain a list of one or more commands.
When you first look at the production, it may appear backwards to you—but the fact that it
refers to itself again before it refers to the next production has to do with the nature of the
recursive code generated by the parser. It will actually work either way, but things run
more efficiently with them in the order shown.

The commands production will match either the set or draw language keyword.
The one it matches determines the productions that are used to match the following
tokens. The set keyword directs the parser to the production named set, and the
draw keyword directs the parser to the draw production. The production names don’t
have to match the keywords, but it does seem to make them easier to read.

Inside each production is some C code enclosed in braces. This can be any arbitrary
C code, but this example simply makes calls to functions that are described further
on. The arguments to the functions are determined by the position of the item (or
value) in the production. The parameter named $1 is the first one, $2 is the second,
and so on. Note that the values passed to the functions in this example are either
NAME or NUMBER tokens, which have C code in their lex definitions to assign their
values to yylval.

All that is left to do is define the C code that will be used to generate the object
code from the source code. This example, instead of producing code, simply prints
out a description of the code it would produce. The following C source file contains
the functions required to be present in all parsers, along with the functions called
from the productions defining the language:

378 G C C : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 1 9 : I m p l e m e n t i n g a L a n g u a g e 379
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

/* clmain.c */

#include "clang.tab.h"

#include <stdio.h>

char colorname[30] = "black";

int x = 0;

int y = 0;

main()

{

yyparse();

}

int yywrap()

{

return(1);

}

void yyerror(const char *str)

{

fprintf(stderr,"Clang: %s\n",str);

}

int setcolor(char *name)

{

strcpy(colorname,name);

return(0);

}

/* Save the x and y location of the

next figure to be drawn. */

int setlocation(int xloc,int yloc)

{

x = xloc;

y = yloc;

}

/* Draw a circle of the of the specified size and color

at the current location. */

int drawcircle(int radius)

{

printf("Draw %s circle at (%d,%d) radius=%d\n",

colorname,x,y,radius);

}

/* Draw a rectangle of the specified height, width, and color

380 G C C : T h e C o m p l e t e R e f e r e n c e

at the current location. */

int drawrectangle(int height,int width)

{

printf("Draw %s rectangle at (%d,%d) h=%d w=%d\n",

colorname,x,y,height,width);

}

The header file clang.tab.h is the one produced from clang.y by bison, and it
contains some constant definitions that may be useful in the code. The main() function
is the mainline of the compiler. In this example, it only calls yyparse() to perform the
action of parsing, but in an actual compiler it would also be responsible for creating the
intermediate language, managing the conversion from intermediate language into object
code, performing optimizations, determining the names of the input and output files,
responding to the command-line options, and any other actions the compiler is to perform.

The yywrap() function is called at the end of the current input file and can be used
to start the reading of another source file. A return value of 1 indicates that there is no
more input.

The yyerror() function is called by the parser if an error occurs. The character
string passed to the function contains a description of the error. This example simply
prints the error message to standard error.

The setcolor() function is called by the parser whenever the keyword set is used
to specify a new color. Depending on the code being generated, as well as the underlying
graphics facilities, this function could generate code to make a change to the color or, as
in this case, save the color information locally so it can be accessed later as needed.

The setlocation() function is similar to the setcolor() function, except it
defines the location to be used to draw the next figure. In this example, the coordinates
are saved locally so they will be available when it comes time to actually draw the figure.

The drawcircle() and drawrectangle() functions are called to generate code
that will do the actual rendering. The previous set color and location information can be
used as part of the generated instructions. This example simply prints the information
that would be used to generate the code.

The following series of commands can be used to compile and link the source files
into a program that can be used to read source code and produce the pseudo
instructions for drawing shapes:

$ bison -d clang.y

$ flex clang.lex

$ gcc clmain.c lex.yy.c clang.tab.c -o clang

The bison command reads the input source file clang.y and produces the output
file clang.tab.c. The file clang.tab.c contains the C code that parses the input, so it
must be compiled and linked into the compiler. Also, because the -d option is specified,
the file clang.tab.h is also produced. This is the header file used in clmain.c and
clang.lex to provide the numeric definitions of all the token types.

The flex command is used to produce the file named lex.yy.c, which contains
the C functions for reading the input stream and organizing it into tokens.

The gcc command is used to compile and link the three C source files into an
executable named clang. As it is written, the compiler accepts source code from
standard input, so the source file of the test program, named figures.clang, can
be processed with the following command:

$ cat figures.clang | clang

The resulting output looks like the following:

Draw blue circle at (100,200) radius=30

Draw red rectangle at (250,200) h=10 w=10

Creating the Parse Tree
The output from the parse operation is a parse tree. The actual format of the tree is a linear
list of lines of text, with each line being a node in the tree. Each node has an identifier so it
can be referred to from any other node, and it contains a character that specifies the node
type. The node types, and the characters that designate them, are listed in Table 19-1.

C h a p t e r 1 9 : I m p l e m e n t i n g a L a n g u a g e 381
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

Designator Type Description

< Comparison expression

1 Unary arithmetic expression

2 Binary arithmetic expression

b A lexical block

c Constant

d Variable declaration or variable reference

e An expression that is not a comparison, unary, or binary
expression and does not have side effects

r A reference to a memory location

s An expression that inherently has side effects

t A data type

x A special node that does not fit any other category

Table 19-1. The Character Designators of the Node Types of the Parse Tree

The node type indicators are defined in the GCC source file tree.def. Many
functions exist to create tree nodes, and they are found in stmt.c. There are many any
functions available to create tree nodes—so many, in fact, it seems that any possible
statement you can think of has its own RTL code generator. For example, the following
function generates code that compares op1 to op2 and branches to label only if the
two are equal:

static void do_jump_if_equal(op1,op2,label,unsignedp);

In this example, both op1 and op2 are expression tree nodes, and label is a
memory reference to a location in the executable code. The last parameter specifies
whether the comparison is to be signed or unsigned. This function examines the
arguments to determine exactly what code should be generated (for example, if op1
and op2 are both constant values and are equal to one another, a simple branch
instruction is generated). Once the form of the instruction is determined, a routine is
called to actually emit the instruction.

The low-level RTL-generation routines are in the source file emit-rtl.c. Probably
the simplest of these is the emit_note() function, which emits an instruction that
doesn’t do anything other than act as a placeholder. The code that actually creates the
instructions and adds them to the RTL output looks like the following:

note = rtx_alloc(NOTE);

INSN_UID(note) = cur_insn_uid++;

NOTE_SOURCE_FILE(note) = file;

BLOCK_FOR_INSN(note) = NULL;

add_insn(note);

In this code sequence, a new RTL tree node of the appropriate type and size is
created with the call to rtx_alloc(). A tree node (defined as the struct rtx_def in
the file rtl.h) consists of a collection of identifying flags at its head, followed by a
variable length array containing the operands. The macro INSN_UID inserts the unique
tree node ID number. The macro NOTE_SOURCE_FILE adds source file information to
the node.

The call to add_insn() adds the newly constructed node to the end of the linked
list that is the RTL code. The function add_insn_before() can be used to insert a
new instruction in front of an existing instruction, and add_insn_after() can be
used to insert a new instruction immediately following an existing instruction.

No symbol table information is carried forward into the RTL. It is necessary for a
symbol table of some form to exist in the front end to resolve references to names, but it
can be ignored at this point because RTL code makes all references directly to tree nodes
by their ID numbers. However, the symbol table must exist and be accessible from the
back end of the compiler.

382 G C C : T h e C o m p l e t e R e f e r e n c e

Connecting the Back to the Front
The back end of the compiler is not cleanly separated from the front end. A number of
global variables and functions must be declared as part of the front end so they can be
directly accessed from the back end.

The code for the front end should be isolated in its own subdirectory beneath the
main gcc directory. For example, the cp directory contains the code for C++, and the
directory ada contains the code for the Ada compiler. In this directory is a file named
Make-lang.in that is included by the main makefile in the parent gcc directory and
by the makefile for the language. The file Makefile.in is also included, and it is used
to create the makefile for the language. The file config-lang.in is used by the
configure script.

The driver program gcc must be modified to include the new language, but these
modifications occur automatically as part of the build process.

The front end must contain certain global variables and functions that are referenced
from the back end. The purpose of these is to provide access to the tree nodes and the
symbol table, as well as for general initialization and cleanup. Table 19-2 contains a
brief description of the required global variables. Table 19-3 contains a brief description
of the functions that must exist in the compiler front end to be addressed from the back
end. Many of these functions and variables are also used in the front end, but they
must exist as globals with these names.

C h a p t e r 1 9 : I m p l e m e n t i n g a L a n g u a g e 383
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

Name Description

error_mark_node The parent node of a tree containing
nodes representing error conditions in
the input

integer_type_node A tree node of the fundamental
integer type

char_type_node A tree node of the fundamental
character type

void_type_node A tree node of the fundamental
void type

integer_zero_node A tree node of the integer value 0

integer_one_node A tree node of the integer value 1

tree_current_function_decl A tree node representing the current
function being translated

Table 19-2. Front End Variables Addressed from the GCC Back End

384 G C C : T h e C o m p l e t e R e f e r e n c e

Name Description

language_string The address of a character string
naming the language

flag_traditional Required, but used only by C

Table 19-2. Front End Variables Addressed from the GCC Back End (continued)

Name Description

lang_init() Performs all language-specific
initializations

lang_finish() Performs all language-specific
finalization and cleanup

lang_decode_option() Called with the options found on the
command line

init_lex() Performs all initializations required for
lexical analysis

init_parse() Performs all initializations required by
the parser

finish_parse() Performs all parser finalization
and cleanup

type_for_mode() Returns a tree node representing a
machine data type

type_for_size() Returns an integer tree node with the
specified number of bits of precision

type_for_unsigned() Returns an unsigned integer tree node
of the specified size

signed_type() Returns a signed integer tree node of
the specified size

signed_or_unsigned_type() Returns a tree node of the specified
type and specified signedness

Table 19-3. Front End Functions Called from the GCC Back End

C h a p t e r 1 9 : I m p l e m e n t i n g a L a n g u a g e 385
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

Name Description

init_decl_processing() Initializes the tree node variables listed
in Table 19-2

global_bindings_p() Returns a value that indicates whether
the current scope is global

kept_level_p() Returns a value that indicates whether
the current level needs to have a data
block created

getdecls() Returns a tree listing all declarations at
the current scope level

pushdecl() Inserts a declaration into the symbol
table and returns a tree node

pushlevel() Creates a new scope level in the
symbol table

poplevel() Abandons the current scope level
of the symbol table and restores the
previous state

insert_block() Adds a new block to the end of the list
of blocks in the current scope level

set_block() Sets the block node for the current
scope level

maybe_build_cleanup() May return a tree node that represents
an action to be taken to clean up behind
previous actions (such as destroying
objects)

truthvalue_conversion() Returns an expression that is the same
as the specified expression, except it
results in true or false

mark_addressable() Marks the specified expression as one
that addresses memory

copy_lang_decl() Duplicates the specified declaration
tree node

incomplete_type_error() Prints an error message for using an
incomplete type

Table 19-3. Front End Functions Called from the GCC Back End (continued)

386 G C C : T h e C o m p l e t e R e f e r e n c e

Name Description

yyerror() Prints a parse error message

print_lang_decl() Outputs a tree node declaration to the
specified file

print_lang_type() Outputs the type information of the
tree node to the specified file

print_lang_identifier() Outputs the identifier information of
the tree node to the specified file

set_yydebug() Sets debugging on or off for
syntax analysis

Table 19-3. Front End Functions Called from the GCC Back End (continued)

Chapter 20
Register Transfer
Language

387

The Register Transfer Language (RTL) is the central point of the compilation
process. The purpose of the front end of the compiler is to produce RTL, and the
purpose of the back end is to translate the RTL into assembly language. Most of

the optimization processing is performed on the program while it is in the RTL form.
This chapter is a description of the form of RTL.

The RTL code can be dumped to disk files in a text format. Chapter 18 contains
examples of the procedure required for dumping RTL code into its printed form. This
chapter contains a description of the RTL code as well as information you will need to
be able to read the codes embedded in the dumped format.

RTL Insns
A single statement in the RTL is called an insn. The insns are connected internally as a
doubly linked list. Some insns are actual instructions while others contain information
such as branch tables used for switch statements. Yet others represent data declarations
and act as labels for branching targets. Also, each insn has a unique ID by which any
insn can refer to any other insn.

The Six Fundamental Expression Codes
There are many different kinds of insns. Each insn has an expression code that
designates its type. The RTL code making up the logic flow of a program is composed
of only six fundamental types, but each of these can hold references to other types. For
example, an expression code of insn, which indicates an executable statement, will
include other insns as its operands. For example, the following insn reads the value of
the variable named val and stores it in a register. To do this, the RTL code has an
expression code of insn and contains an insn with the expression code set, which in
turn employs insns with expression codes of reg and mem. The mem insn contains a
symbol_ref insn.

(insn 12 10 14 (nil) (set (reg:SI 61)

(mem/f:SI (symbol_ref:SI("val")) [0 a+0 S4 A32])) -1 (nil)

(nil))

The insn expression code is one of the six fundamental expression code types.
Every RTL program is composed of a combination of the six expression codes listed
in Table 20-1.

The Type and Content of Insns
Each type of insn is unique and is designed to serve a special purpose; therefore, each
one contains data that pertains to its purpose. Quite often the contained data is in the
form of another insn, but this chain of linked RTL instructions can always be traced to

388 G C C : T h e C o m p l e t e R e f e r e n c e

P
ER

IP
H

ER
A

LS
A

N
D

IN
TER

N
A

LS
C h a p t e r 2 0 : R e g i s t e r T r a n s f e r L a n g u a g e 389

Expression
Code Description

insn This expression code is used for instructions that do not jump and do
not make function calls. This type of insn loads registers, performs
arithmetic, compares values, and so on.

jump_insn This expression code is used for instructions that will (or may) jump
to another location, which means the insn will usually contain one or
more label_ref insns. This expression code is also used to return
from the current function. A reference to the code_label insn,
which is the target of the jump, is included for simple conditional
or unconditional jumps. For more complicated jumps, it may be
necessary to scan the entire body of insns to find the possible targets.

call_insn This expression code is used for instructions that will (or may)
perform a function call. These instructions must be handled specially
because they could unexpectedly modify registers and memory
locations. An insn of this type typically contains clobber and mem
insns to specify which registers and memory locations are altered.
There is either a mem insn that specifies the memory block in which
parameters are passed, or there are clobber and use insns that
specify the work registers and the registers bearing arguments.

code_label This expression code is used to mark a label that can be the target of
a jump. It contains a code_label_number insn to hold the unique
label ID number. The ID number is unique to the entire compilation
unit, not just the current function. The code_label insn is generally
referred to at the jump location inside a label_ref insn. During and
after the optimization, a count is maintained of the number of times
this label is used as a jump target.
Each code_label is one of the following four kinds:
NORMAL This is the only kind of label that cannot be an alternate
entry point into a function.
STATIC_ENTRY This label is an entry point into the function but is
visible only from within the compilation unit.
GLOBAL_ENTRY This label is an entry point into the function and
is visible (through the linker) to all compilation units.
WEAK_ENTRY This label is an entry point into the function and
is a global entry, but it can be overridden by another symbol of the
same name.

Table 20-1. The Six Fundamental RTL Expression Codes

390 G C C : T h e C o m p l e t e R e f e r e n c e

Expression
Code Description

barrier This expression code is placed in the sequence of insns to mark a
location that cannot be reached through control flow. A barrier
insn is inserted following an unconditional jump and following
calls to functions that cannot return.

note This expression code is used to contain certain debugging and
declarative information. Each note insn contains one field that
contains a number and another field that contains a character string.
The number is usually the line number of the source file named by the
string. The note insn controls the line number information used for
debugging. If the number is not a line number, it is a type designator
specifying one of the following types:
NOTE_INSN_DELETED The note marks a point at which an
insn was deleted.
NOTE_INSN_DELETED_LABEL This note replaces a deleted
code_label insn, which was removed because it was never the
target of a jump.
NOTE_INSN_BLOCK_BEG Marks the beginning of a scoping
level block of code.
NOTE_INSN_BLOCK_END Marks the end of a scoping level
block of code.
NOTE_INSN_EH_REGION_BEG Marks the beginning of a
scoping level for exception handling.
NOTE_INSN_EH_REGION_END Marks the end of a scoping
level for exception handling.
NOTE_INSN_LOOP_BEG Marks the beginning of a while or
for loop.
NOTE_INSN_LOOP_END Marks the end of a while or for loop.
NOTE_INSN_LOOP_CONT Marks the place in a loop to which a
continue statement would jump.
NOTE_INSN_LOOP_VTOP Marks the place in a loop where the
exit test begins.
NOTE_INSN_FUNCTION_END Marks the spot near the end of a
function just in front of the label jumped to by return statements.
NOTE_INSN_SETJMP Marks the code immediately following a call
to a setjmp() type of function.

Table 20-1. The Six Fundamental RTL Expression Codes (continued)

some fundamental data. The data contained in statements of the RTL language is in the
form of one of the five insn types listed in Table 20-2.

The format and content of the RTX varies widely, but three fields are always
present: the ID, the address of the previous insn, and the address of the next insn.
These three values can be extracted from any insn by using the following three macros:

INSN_UID(insn)
PREV_INSN(insn)
NEXT_INSN(insn)

The first insn can be retrieved by calling get_insns(), and the last one can be
retrieved by calling get_last_insn().

Most of the GCC code that deals with insns is written to deal with expressions. An
RTL expression insn is referred to as an RTX. These expression insns are the statements
that contain the executable code of the program. Inside the GCC code they are stored in
a struct that is referenced through a pointer that has the typedef name rtx.

Each RTX has its own expression code (or RTX code) that specifies which kind of
expression it is. The expression codes are defined in the file rtl.def as a collection of
enumeration constant names. The expression codes are machine independent, which

C h a p t e r 2 0 : R e g i s t e r T r a n s f e r L a n g u a g e 391
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

Insn Type Description

Expression An executable statement. An RTL expression is called an RTX.

Integer An integer data type in the form of a C language int data type.

Wide integer An integer data type in the form defined by HOST_WIDE_INT,
which is normally defined as a 64-bit value.

String A sequence of characters stored internally with a terminating
null, as in standard C. Strings are mostly used for symbol name
references, but they are also used to represent machine
description information, as described in Chapter 21. A
zero-length string is represented internally as a null pointer.

Vector An arbitrary number of pointers to expressions. The number of
members in a vector is explicitly stated in the insn. Vectors of
zero length are represented internally as null pointers.

Table 20-2. The Fundamental Insn Data Types of RTL

392 G C C : T h e C o m p l e t e R e f e r e n c e

means the RTL language is machine independent. The RTX code can be set in an rtx
struct and then retrieved by using the following two macros defined in rtl.h:

PUT_CODE(rtx,code);

int code = GET_CODE(rtx);

The macro named DEF_RTL_EXPR is used to define each RTL in the file rtl.def.
This macro has four arguments, as shown the following example:

DEF_RTL_EXPR(COND_EXEC,"cond_exec","ee",'x')

The first argument passed to the macro is the name of the RTL in all uppercase
letters. It is used in the C source code as an enum as the unique identifier of the RTL.
The second argument is the name of the RTL as a lowercase ASCII string. It is this
name that is printed in the diagnostic output. The third argument is a list of the data
types of the operands, with each type being designated by a single character. A
description of the types is found in Table 20-3. The fourth argument is the single-letter
class designator of the RTL. The classes are listed in Table 20-4.

Operand
Code Description

* Unspecified. An attempt to process this type will generate a
warning message.

0 An unused field.

b A pointer to a bitmap header.

B A definition of a basic block of instructions (one entrance, one exit).

e A pointer to an RTL expression.

E A pointer to an array of RTL expressions.

i An integer.

Table 20-3. The Codes Used to Specify RTX Operand Types

P
ER

IP
H

ER
A

LS
A

N
D

IN
TER

N
A

LS
C h a p t e r 2 0 : R e g i s t e r T r a n s f e r L a n g u a g e 393

Operand
Code Description

n An integer that specifies one of the following:
1 Instruction deleted
2 The beginning of a block
3 The end of a block
4 The beginning of a loop
5 The end of a loop
6 The continuation of a loop
7 An instruction at the top of the loop
8 A loop-ending conditional
9 The end of a function
10 The end of the function prologue
11 The beginning of the function epilogue
12 A deleted label
13 The beginning (entry point) of a function
14 The beginning of an exception handling region
15 The ending of an exception handling region
16 A repeated line number
17 A basic block
18 An expected value
19 A prediction

s A character string.

S An optional character string.

u A pointer to another insn.

t A tree pointer.

T Code to be assembled or compiled and executed. It is assembly
language source, unless the first character is an asterisk, in which
case the language is C.

V An optional pointer to an array of RTL expressions.

Table 20-3. The Codes Used to Specify RTX Operand Types (continued)

The number of and type of operands vary from one RTL code to the next. Table 20-3
contains a description of the codes used to indicate the data type of the operands. These
codes are not strictly adhered to. For example, although the code T is used to indicate the
source of executable code, and s is used to indicate a simple string, some of the RTL
definitions have C source code included as an s type. Each RTL code is processed
separately, so the operands can be almost anything—the letters indicating the types are
very general and used only for printing the operand values for debugging.

The following list provides a description of the RTL codes. Each RTL is listed by its
name, followed by its class and the character string that specifies the type and number
of operands associated with it. Each entry contains a description of its purpose and a

394 G C C : T h e C o m p l e t e R e f e r e n c e

Class Description

< An RTX code that is a comparison operator, such as less
than or equals

1 An RTX code that is a unary arithmetic operator, such as
negation or one’s compliment

2 An RTX code that is a noncommutative binary operation,
such as subtraction or division

3 An RTX code that is a non-bitfield three-input operation,
such as if/then/else

a An RTX code for autoincrement addressing modes

b An RTX code for a bit-field operation, such as zero extract or
sign extract

c An RTX code for a commutative binary operation, such as
addition or multiplication

g An RTX code for grouping instructions together

i An RTX code for a machine instruction, such as jump or call

m An RTX code for something used to match insns

o An RTX code that represents an object, such as a memory
location or a register

x The code for any RTL that does not fit into any of the
other classes

Table 20-4. The Class Codes of an RTL

list of the meaning and type of the operands it employs. The operands are of the data
type and appear in the order shown in the quoted string. In the GCC code, an
uppercase form of the name of the RTL code is used to define an enumerated type used
as a numeric ID for the RTL—for example, the eq_attr RTL has a constant named
EQ_ATTR as its unique identifier. As noted in the descriptions, some of the RTL codes
serve a special purpose—for example, some of them are used to create lists of
expressions, while others are used as a convenience and never actually appear in an
insn. Rather they are used only as special entries in the machine descriptions.

� abs ‘1’ “e” If the value resulting from the expression is negative, convert it to a
positive value.

� absence_set ‘x’ “ss” This appears only in machine descriptions to specify a list
of CPU functional units that cannot be reserved only if certain other functional
units are also not reserved. For example, in the VLIW processor, slot0 cannot be
reserved following slot1 or slot2. Also see presence_set. Operand 0 is a
comma separated list of functional units that cannot be reserved unless at least
one functional unit from operand 1 is also reserved. Operand 1 is a comma
separated list of functional units.

� addr_diff_vec ‘x’ “eEee0” This contains a vector of address differences between
a base operation and a target operation to be used in spacing calculations. The
operands 2, 3, and 4 are valid only when CASE_VECTOR_SHORTEN_MODE has
been defined in the compiler. Operand 0 is the base operation. Operand 1 is the
address differences representing the distance of each operand from the base
operation. Operand 2 is the label representing the minimum address. Operand 3
is the label representing the maximum address. Operand 4 is a set of flags to
determine the rules for flag shortening. The flag "min_align" specifies to
use the minimum alignment for any branch. The flag "base_after_vec"
specifies that the address of the base is after the addr_diff_vec. The flag
"min_after_vec" specifies the minimum address target label is after the
addr_diff_vec. The flag "max_after_vec" specifies the maximum
address target label is after the addr_diff_vec. The flag "min_after_base"
specifies the minimum address target label is after the base. The flag
"max_after_base" specifies the maximum address target label is after the
base. The flag "offset_aligned" specifies that offsets must be treated as
unsigned values. The flag "scale" specifies that it is necessary to make offsets
fit into the mode.

� addr_vec ‘x’ “E” A vector of addresses. Each address is included as a
label_ref to a code_label.

� address ‘m’ “e” A reference to the address of an argument. Operand 0 is an
expression specifying the address.

� addressof ‘o’ “eit” A reference to an address of a register, which is removed
by purse_addressof() in the compiler after as many register addresses as

P
ER

IP
H

ER
A

LS
A

N
D

IN
TER

N
A

LS
C h a p t e r 2 0 : R e g i s t e r T r a n s f e r L a n g u a g e 395

possible have been removed by being elided. Operand 0 is the register. Operand
1 is the original pseudo register number for which the insn was generated.
Operand 2 is the declaration of the item stored in the register,
for use by put_reg_in_stack.

� and ‘c’ “ee” The two operands are evaluated and the result is taken as a
bitwise AND of the two values.

� ashift ‘2’ “ee” A bitwise logical shift to the left. Operand 0 is the expression
producing the value to be shifted. Operand 1 is the expression producing the
value of the number of bits to shift.

� ashiftrt ‘2’ “ee” A bitwise arithmetic shift to the right (with sign extension).
Operand 0 is the expression producing the value to be shifted. Operand 1 is the
expression producing the value of the number of bits to shift.

� asm_input ‘x’ “s” A string that is passed through to the assembler as an
instruction. This can be used inside other insns as part of a pattern of code, and
it can also be used for the insertion of comments in the assembler code.

� asm_operands ‘x’ “ssiEEsi” An assembly language instruction with its
operands. Operand 0 is the template defining the instruction. Operand 1 is the
constraint for the output. Operand 2 is an identifying value that distinguishes
this assembly language statement from the others. Operand 3 is a collection of
values to be used as input operands. Operand 4 is a collection of modes and
constraints for the input operands. Each member of the array is an asm_input
with a constraint string specifying the mode of the input operand. Operand 5 is
the name of the containing source file. Operand 6 is the line number of the
containing source file.

� attr ‘x’ “s” This is used only in the machine descriptions to define insn
attributes. It is a marker that can be inserted to specify the name of an attribute.
Operand 0 is the name of the attribute.

� attr_flag ‘x’ “s” This is used only in the machine descriptions to define
attributes. If the conditional expression is true, the setting specifies the probability
of a branch being taken, and the insn being executed is specified by the flag. The
valid flag values are "forward", "backward", "very_likely", "likely",
"very_unlikely", and "unlikely". Operand 0 is the value of the flag.

� automota_option ‘x’ “s” This appears only in machine descriptions as an
option for generating automata. For operand 0, the option "no-minimization"
means the automata cannot be minimized, which only has meaning when the
CPU functional unit reservations are to be queried in an automaton state. The
option "time" is a request to print additional timing statistics in the generation
of automata. The option "v" is a request for the generation of a file with the
suffix .dfa, containing verification and debugging information. The option
"w" causes the generation of error messages instead of warning messages for

396 G C C : T h e C o m p l e t e R e f e r e n c e

noncritical errors. The option "ndfa" causes the creation of a nondeterministic
finite-state automata.

� barrier ‘x’ “iuu” A marker that indicates that control flow will not pass
through. Operand 0 is the unique ID of this RTX. Operand 1 is a pointer to the
previous instruction in the chain. Operand 2 is a pointer to the next instruction
in the chain.

� call ‘x’ “ee” Calls a subroutine. Operand 0 is the address of the subroutine to be
called. Operand 1 is the number of arguments being passed to the subroutine.

� call_insn ‘i’ “iuuBteieee” An insn that can possibly call a subroutine but cannot
change the address to which the subroutine is to return. Operand 0 is the unique
ID of this RTX. Operand 1 is a pointer to the previous instruction in the chain.
Operand 2 is a pointer to the next instruction in the chain. Operand 3 is the basic
block of instructions. Operand 4 is a pointer to the tree node. Operand 9 is a
call_insn_function_usage insn that makes the function call.

� call_placeholder ‘x’ “uuuu” A placeholder that is to be replaced by a
call_insn or by code for a sibling call or tail recursion. Operand 0 is the
unique ID of this RTX. Operand 1 is a pointer to the previous instruction in
the chain. Operand 2 is a pointer to the next instruction in the chain. Operand 3
is a code_label insn for the label used in tail recursion. This is null if no tail
recursion possibilities were found.

� clobber’x’ “e” An indicator that something is being used in a way that’s not
necessary to explain. For example, a subroutine call will use a register internally
and overwrite any value stored there. Also see use. Operand 0 is the expression
specifying the item being used.

� cc0 ‘o’ ““ Represents the condition code register. The logic used with the insn
is as if the condition code register contains a value that can be compared to zero
but, in fact, is a true/false setting that is the result of a prior comparison.

� code_label ‘x’ “iuuB00iss” A label followed by instructions. Operand 0 is the
unique ID of this RTX. Operand 1 is a pointer to the previous instruction in the
chain. Operand 2 is a pointer to the next instruction in the chain. Operand 3 is the
basic block of instructions following the label. Operand 4 is the jump count of the
label. Operand 5 is a pointer to the chain of label references to this label. Operand
6 is a unique identification number. Operand 7 is the name the user assigned to
the label, if any. Operand 8 is an alternate label name used internally.

� compare ‘2’ “ee” The two operands are evaluated and compared for equality
to produce a zero value if they match and a nonzero value if they do not match.

� concat ‘o’ “ee” A concatenation of the two expressions in such a way that it
creates a value with the number of bits equal to the sum of the number of bits in
the two expressions. This is used for complex numbers and normally appears
during RTL generation but not in the final insn chain.

C h a p t e r 2 0 : R e g i s t e r T r a n s f e r L a n g u a g e 397
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

� cond ‘x’ “Ee” A general conditional statement. Operand 0 is a vector of pairs
of expressions. The first member of each pair is evaluated in turn, and the
second member of each pair is the conditional expression that results in zero
for false and a nonzero value for true. Operand 1 is used as the conditional
expression if none of the pairs of expressions in operand 0 evaluates to true.

� cond_exec ‘x’ “ee” A conditional expression and a block of code that is executed
when the conditional is true. The conditional expression has no side effects.
Operand 0 is the conditional expression. Operand 1 is the insn to be executed.

� const ‘o’ “e” An expression that results in a constant value. This forces it to
be recognized as a constant value by the compiler instead of as an expression
to be generated into the final code.

� const_double ‘o’ “ww” A numeric floating-point constant. The operands are
chains of values that make up the entire value of the doubles. The syntax is
shown as "ww", but it actually ranges from "ww" to "wwwww", depending on
the size of the floating-point format on the target hardware.

� const_int ‘o’ “w” A numeric integer constant.

� const_string ‘o’ “s” A string constant. At this time, this is only used
for attributes.

� const_vector ‘x’ “E” A vector (array) constant.

� constant_p_rtx ‘x’ “e” A __builtin_constant_p expression. This is
created during RTL generation only if optimization is turned on, and it
is eliminated during the first CSE pass.

� define_asm_attributes ‘x’ “V” Defines attribute computation for assembly
language instructions. Operand 0 is a vector containing the list of attributes.

� define_attr ‘x’ “sse” This is used only in the machine descriptions to define
insn attributes. Operand 0 is the name of the attribute being defined. Operand 1
is a comma-separated list of possible values for the attribute. Operand 2 is an
expression to be used for the default setting of the attribute.

� define_automaton ‘x’ “s” This appears only in machine descriptions to name
automata used for pipeline hazards recognition. The name is used in
define_cpu_unit and define_query_cpu_unit. Operand 0 is a
comma-separated list of names.

� define_bypass ‘x’ “issS” This appears only in machine descriptions to specify
the latency from one set of insns to another. Operand 0 is the latency value.
Operand 1 is a comma-separated list of insn names from which the latency
timing begins. Operand 2 is a comma-separated list of insn names at which the
latency timing ends. Operand 3 is an optional function name that receives the
two insns as arguments and returns a bypass value. The return value is zero if
the bypass is to be ignored in this particular case.

398 G C C : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 0 : R e g i s t e r T r a n s f e r L a n g u a g e 399
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

� define_cond_exec ‘x’ “Ess” The definition of a conditional execution
meta-operation to generate new instances of define_insn. Operand 0
indicates the expressions to be used for matching. Operand 1 is a C language
conditional expression that must result in a nonzero value for a pattern to
match. Operand 2 is a block of either C or assembly language code to produce
the assembly language output.

� define_cpu_unit ‘x’ “sS” This appears only in machine descriptions to define
the names of the CPU functional units. Operand 0 is a comma-separated list of
the CPU functional unit names. Operand 1 is the name of the automaton, as
described in define_automaton.

� define_delay ‘x’ “eE” Defines a requirement for delay slots. Operand 0 is a
conditional expression that evaluates to true to indicate the insn requires the
number of delay slots specified. Operand 1 is a vector (the length of which is
three times the length of the number of required slots) containing a set of three
conditions for each slot. The first is true to indicate that an insn is to occupy
the slot position. The second is true for each insn that can be annulled if the
branch is taken. The third is true for each insn that can be annulled if the branch
is not taken.

� define_expand ‘x’ “sEss” Defines how to generate multiple insns for a standard
insn name. Operand 0 is the standard insn name. Operand 1 is the vector of insn
patterns to be matched. Operand 2 is a C language expression that must result in
a nonzero value for this operation to be available. Operand 3 is some C language
code to be executed prior to generating the insns. This could, for example, be
code to create an RTX sequence for use in generating code.

� define_function_unit ‘x’ “siieiiV” A set of insns that require a function unit.
That is, each of these insns produces a result after a delay, and there may be
restrictions on the number of insns of this type that can be scheduled to execute
simultaneously because of possible restrictions on the number of function units
in the CPU. More than one define_function can be declared for the same
CPU, but the first operands must be the same for the same function unit.
Operand 0 is the name of the function unit. Operand 1 is the number of
identical function units in the CPU. Operand 2 is the maximum number of
simultaneous function units available in the CPU. The number 0 indicates there
is no limit. The number 1 indicates only one insn at a time can use the function
unit. Operand 3 is a conditional expression involving the function attribute that
results in a nonzero value if the function applies to this insn. Operand 4 is the
constant delay value after which the result of the insn using the function will be
available. Operand 5 is the constant delay value after which another insn can
use the same function unit. Operand 6, if specified, is a list of attribute
expressions. If any of these expressions results in a nonzero value, the function
unit is currently executing, and an appropriate amount of delay must be
inserted. If the result is zero for all expressions, the function unit is available
and can be scheduled immediately, subject to the limit specified by operand 2.

400 G C C : T h e C o m p l e t e R e f e r e n c e

� define_insn ‘x’ “sEsTV” This appears only in machine descriptions and is the
definition of one kind of instruction. Operand 0 is the name of the instruction. If
the name is a null string, the instruction is part of the machine description
solely for the purpose of being recognized in matches and will never appear as
an RTX. Operand 1 is the pattern of the expression. Operand 2 is a C expression
specifying additional conditions for recognizing this pattern. If this is a null
string, there are no further conditions. Operand 3 is assembly language defining
the action to be taken if the match is successful. If the exprssion begins with an
asterisk, it is C instead of assembly. Operand 4 is an optional vector of attributes
for this insn (see set_attr and set_attr_alternative).

� define_insn_and_split ‘x’ “sEsTsESV” The definition of an insn and its
associated split. This is produced from concatenating a define_insn and a
define_split, where the two share the same patterns. Operand 0 is the name
of the instruction. If the name is null, the instruction is stored in the machine
descriptions only to be matched and will never be used to create an actual RTX.
Operand 1 is the vector of expressions to be matched. Operand 2 is the C
source code to be used as an extra expression in matching. This operand can be
a null string. Operand 3 is the source code of an action to be executed when a
match is found. Operand 4 is the C source code of an expression that must
result in a nonzero value. Operand 5 is the vector of expressions to be placed
in the sequence. Operand 6 is some C language code to be executed prior
to generating the insns. This could, for example, be code to create an RTX
sequence for use in generating code. Operand 7 is a vector of attributes for
this insn.

� define_insn_reservation ‘x’ “sies” This appears only in machine descriptions
to describe the reservation of CPU functional units. Operand 0 is a string used
as descriptive output for debugging and tracing. Operand 3 is the regular
expression used to select the instructions. The regular expression uses the
following syntax: The vertical bar (|) is used in the expression as an OR
operator, and the plus sign (+) is used as an AND operator. The asterisk (*)
is used to repeat an element a specified number of times. The
cpu_function_unit_name is the name of a CPU function unit. The
reservation_name is one defined by define_reservation. The following
is the syntax of the regular expression:

regexp = regexp "," oneof

| oneof

oneof = allof "+" repeat

| repeat

repeat = element "*" number

| element

element = cpu_function_unit_name

| reservation_name

| result_name

| "nothing"

| "(" regexp ")"

� define_peephole ‘x’ “sEsTV” The definition of a peephole optimization.
Operand 0 is the name of the optimization. Operand 1 is the vector of
instructions to which this optimization may be applied. Operand 3 is a C
language expression that must result in a nonzero value. Operand 4 is an
optional list of attributes for this insn (see set_attr and
set_attr_alternative).

� define_peephole2 ‘x’ “EsES” The definition of an RTL peephole optimization
operation. Operand 0 is the vector of insns to match. Operand 1 is a C language
expression that must result in a nonzero value. Operand 2 is a vector of insns to
be placed into the sequence. Operand 3 is some C language code to be
executed prior to generating the insns. This could, for example, be code to
create an RTX sequence for use in generating code.

� define_query_cpu_unit ‘x’ “sS” This appears only in machine descriptions to
describe the CPU functional units defined by define_cpu_unit. Operand 0 is
a comma-separated list of CPU functional unit names. Operand 1 is the name of
the automation, as described in define_automaton.

� define_reservation ‘x’ “ss” This appears only in machine descriptions to specify
a collection of CPU functional units that are commonly reserved as a group.
Operand 0 is the name assigned to the collection of functional units. Operand 1
is the list of CPU functional units that is to be identified by the name.

� define_split ‘x’ “EsES” A definition of a split operation. Operand 0 is the
vector of insns to match. Operand 1 is a C language expression that must
result in a nonzero value. Operand 2 is a vector of insns to be placed into
the sequence. Operand 3 is some C language code to be executed prior to
generating the insns. This could, for example, be code to create an RTX
sequence for use in generating code.

� div ‘2’ “ee” The two expressions are evaluated, and operand 1 is divided into
operand 0.

� eq ‘<‘ “ee” The generated code evaluates the expressions and performs a
signed comparison. The result is true if the first value is equal to the second.

� eq_attr ‘x’ “ss” This is used only in the machine descriptions to define
attributes. It is the name of an attribute of a comparison value to be used to
determine whether the attribute applies. Operand 0 is the name of the attribute.
Operand 1 is the comparison value.

C h a p t e r 2 0 : R e g i s t e r T r a n s f e r L a n g u a g e 401
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

� exclusion_set ‘x’ “ss” This appears only in machine descriptions to specify
CPU functional units that cannot be simultaneously scheduled with other CPU
functional units. The functional units listed as the first operand cannot be
scheduled with those in the second list. An example of this is where single and
double precision floating-point operations cannot be carried on simultaneously.
Operand 0 is a comma-separated list of functional units that cannot be
scheduled with those in operand 1. Operand 1 is a comma-separated list of
functional units.

� expr_list ‘x’ “ee” A linked list of expressions.

� ffs ‘1’ “e” Evaluates the expression and counts the number of trailing zero bits
in the result from the expression.

� fix ‘1’ “e” Converts the value of a floating-point expression to a fixed-point
value. Also see unsigned_fix.

� float ‘1’ “e” Converts the value of a fixed-point expression to a floating-point
value. Also see unsigned_float.

� float_extend ‘1’ “e” Code is generated to evaluate the floating-point
expression and, if necessary, to extend it to fit the larger format into which it is
being stored.

� float_truncate ‘1’ “e” Code is generated to evaluate the floating-point
expression and, if necessary, to truncate it to fit the smaller format into which it
is being stored.

� ge ‘<‘ “ee” The generated code evaluates the expressions and performs a
signed comparison. The result is true if the first value is greater than or equal to
the second.

� geu ‘<‘ “ee” The generated code evaluates the expressions and performs an
unsigned comparison. The result is true if the first value is greater than or equal
to the second.

� gt ‘<‘ “ee” The generated code evaluates the expressions and performs a
signed comparison. The result is true if the first value is greater than the second.

� gtu ‘<‘ “ee” The generated code evaluates the expressions and performs
an unsigned comparison. The result is true if the first value is greater than
the second.

� high ‘o’ “e” This is the value of the high-order bits in a constant expression on
a RISC machine.

� if_then_else ‘3’ “eee” A representation of a conditional jump instruction.
Operand 0 is the conditional expression. Operand 1 is the expression to be the
target of the jump whenever the conditional expression evaluates to true.
Operand 2 is the expression to be the target of the jump whenever the
conditional expression evaluates to false.

402 G C C : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 0 : R e g i s t e r T r a n s f e r L a n g u a g e 403
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

� include ‘x’ “s” The operand is the name of a file to be included.

� insn ‘i’ “iuuBteiee” This is an insn that cannot branch. Operand 0 is the
unique ID of this RTX. Operand 1 is a pointer to the previous instruction in
the chain. Operand 2 is a pointer to the next instruction in the chain. Operand 3
is the basic block of instructions that cannot branch. Operand 4 is a pointer to
the tree node.

� insn_list ‘x’ “ue” A linked list of instructions.

� ior ‘c’ “ee” The two operands are evaluated and the result is taken as a bitwise
inclusive OR of the two values.

� jump_insn ‘i’ “iuuBteiee0” This is an insn that can possibly branch. Operand
0 is the unique ID of this RTX. Operand 1 is a pointer to the previous instruction
in the chain. Operand 2 is a pointer to the next instruction in the chain. Operand
3 is the basic block of instructions. Operand 4 is a pointer to the tree node.

� label_ref ‘o’ “u00” This is a reference to a label in the assembly language.
Operand 0 is a code_label insn found elsewhere in the chain. Also see
symbol_ref. Operand 1 is a LABEL_NEXTREF declaration used in flow.c.
Operand 2 is a CONTAINING_INSN declaration used in flow.c.

� le ‘<‘ “ee” The generated code evaluates the expressions and performs a signed
comparison. The result is true if the first value is less than or equal to the second.

� leu ‘<‘ “ee” The generated code evaluates the expressions and performs an
unsigned comparison. The result is true if the first value is less than or equal to
the second.

� lo_sum ‘o’ “ee” This is the sum of a register and the low-order bits of a
constant expression on a RISC machine.

� lsshiftrt ‘2’ “ee” A bitwise logical shift to the right. Operand 0 is the
expression producing the value to be shifted. Operand 1 is the expression
producing the value of the number of bits to shift.

� lt ‘<‘ “ee” The generated code evaluates the expressions and performs a
signed comparison. The result is true if the first value is less than the second.

� ltgt ‘<‘ “ee” The generated code evaluates the expressions and performs an
unordered floating-point comparison. The result is true if the first value is not
equal to the second. Also see uneq.

� ltu ‘<‘ “ee” The generated code evaluates the expressions and performs an
unsigned comparison. The result is true if the first value is less than the second.

� match_insn ‘m’ “is” This appears only in the machine descriptions. Operand
0 is the index into the operand table. Operand 1 is the name of the function to
perform the matching.

� match_dup ‘m’ “i” This appears only in the machine descriptions. A test is
made for a match with whatever is stored at the specified location in the
operand table. Operand 0 is the index into the operand table.

404 G C C : T h e C o m p l e t e R e f e r e n c e

� match_op_dup ‘m’ “iE” This appears only in the machine descriptions. It
matches only something that is stored in the operand table at the specified
index. Operand 0 is the index into the operand table. Operand 1 is the vector
of expressions to be compared.

� match_operand ‘m’ “iss” This appears only in the machine descriptions. It is a
comparison for functional equality of two operands. Operand 0 is the index into
the operand table. Operand 1 is the name of the function to be used to perform
the comparison. Operand 2 is the first operand name to be compared. Operand
3 is the second operand name to be compared.

� match_operator ‘m’ “isE” This appears only in the machine descriptions. It
recursively matches the operands of the expressions in the RTX. Operand 0 is
the index into the operand table. Operand 1 is the name of the function to be
called to do the matching. Operand 2 is the vector of operands to be matched.

� match_par_dup ‘m’ “iE” This appears only in the machine descriptions. It
matches only something that is stored in the operand table at the specified
index. Operand 0 is the index into the operand table. Operand 1 is the vector of
expressions to be compared.

� match_parallel ‘m’ “isE” This appears only in machine descriptions. It
matches the vector of operands—a collection of parallel instructions—by calling
the specified function. Operand 0 is the index into the operand table. Operand 1
is the name of the function to be called to do the matching. Operand 2 is the
vector of parallel instructions to be matched.

� match_scratch ‘m’ “is” This appears only in the machine descriptions. For the
form used as an RTX, see scratch. A comparison is made to test for a scratch
register. Operand 0 is the index into the operand table. Operand 1 is the name
of the function to be used to perform the comparison.

� mem ‘o’ “e0” A memory location. Operand 0 is the address of the memory
location. Operand 1 is the alias set to which this memory belongs.

� minus ‘2’ “ee” The two operands are evaluated, and operand 1 is subtracted
from operand 0.

� mod ‘2’ “ee” The two expressions are evaluated, and operand 1 is divided into
operand 0, and the result is taken to be the remainder of an integer
division operation.

� mult ‘1’ “e” The two operands are evaluated and multiplied to produce a result.

� ne ‘<‘ “ee” The generated code evaluates the expressions and performs a
signed comparison. The result is true if the first value is not equal to the second.

� neg ‘1’ “e” The expression is evaluated and the result is negated.

� nil ‘x’ “*” A null pointer.

� not ‘1’ “e” The expression is evaluated and a bitwise not operation (one’s
compliment) is performed to produce the result.

C h a p t e r 2 0 : R e g i s t e r T r a n s f e r L a n g u a g e 405
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

� note ‘x’ “iuuB0ni” Specifies where in the code the source code line starts.
Operand 0 is the unique ID of this RTX. Operand 1 is a pointer to the previous
instruction in the chain. Operand 2 is a pointer to the next instruction in the
chain. Operand 3 is the basic block of instructions following the label. Operand
4 is the name of the file if the line number is greater than zero; otherwise, this is
data specific to this note. Operand 5 is the line number. If the line number value
is zero, this is the value of enum note_insn. Operand 6 is a unique value if the
line number is equal to note_insn_deleted_label.

� ordered ‘<‘ “ee” The generated code evaluates the expressions and performs
an ordered floating-point comparison. An ordered comparison throws an
exception if either value is NaN. The result is true only if the values are equal.
Also see unordered.

� parallel ‘x’ “E” An array of two or more operations to be executed in parallel.

� pc ‘o’ ““ The program counter. Jumps are specified as set statements with
operand 0 being a pc.

� phi ‘x’ “E” The SSA phi operator, which can only appear at the beginning of a
basic block. The operand is a vector of 2n RTX. Element 2n+1 is a const_int
insn with the ID number of the predecessor block through which control has
passed when element 2n is used.

� plus ‘c’ “ee” The two expressions are evaluated and the resulting values are
added together.

� post_dec ‘a’ “e” Postdecrementation of the address in memory specified by
the expression. The amount of the decrementation is not specified because its
type and size can be determined from the expression.

� post_inc ‘a’ “e” Postincrementation of the address in memory specified by the
expression. The amount of the incrementation is not specified because its type
and size can be determined from the expression.

� post_modify ‘a’ “ee” Represents generic address side effects (except in the
case of increment and decrement, which are handle by other operators). Also
see pre_modify. Operand 0 is a reg insn, which is used as the address.
Operand 1 is an expression that is assigned to the register. This operand must
be of the form plus(reg)(reg) or plus(reg)(const_int), where the first
operand of the plus is the same as the first operand of the post_modify.

� pre_dec ‘a’ “e” Predecrementation of the address in memory specified by the
expression. The amount of the decrementation is not specified because its type
and size can be determined from the expression.

� pre_inc ‘a’ “e” Preincrementation of the address in memory specified by the
expression. The amount of the incrementation is not specified because its type
and size can be determined from the expression.

� pre_modify ‘a’ “ee” Represents generic address side effects (except in the case
of increment and decrement, which are handle by other operators). Operand 0

is a reg insn, which is used as the address. Operand 1 is an expression that is
assigned to the register. This operand must be of the form plus(reg)(reg) or
plus(reg)(const_int), where the first operand of the plus is the same as
the first operand of the pre_modify.

� prefetch ‘x’ “eee” A memory prefetch with attributes supported on some
target machines. The operands 1 and 2 will be ignored for hardware that does
not support them. Operand 0 is the memory address from which the fetch is to
be made. Operand 1 is set to 0 for read access and 1 for write access. Operand 2
is a number determining the level of temporal locality, where 0 indicates none,
with 1, 2, and 3 specifying increasing levels of temporal locality.

� presence_set ‘x’ “ss” This appears only in machine descriptions to specify
a list of CPU functional units that cannot be reserved unless certain other
functional units are also reserved. Also see absence_set. Operand 0 is a
comma-separated list of functional units that cannot be reserved unless at
least one functional unit from operand 2 is also reserved. Operand 1 is a
comma-separated list of functional units.

� queued ‘x’ “eeeee” A pointer to a member of a queue of instructions to be out-
put later for postincrement or postdecrement so that a queued insn never be-
comes an actual part of the generated code. A queued expression is put into an
instruction so that the value used is the one coming before the increment or dec-
rement. Operand 0 is the variable (or register) to be incremented or decrement-
ed. Operand 1 is the insn that performs the incrementing or decrementing.
Operand 2 is a reg RTX that contains the original value of the variable. Oper-
and 3 is the body to be used as the incrementing or decrementing instruction.
Operand 4 is the next queued expression in the queue.

� range_info ‘x’ “uuEiiiiiibbii” The header for range information. Operand 0 is
a pointer to a note insn marking the beginning of the range. Operand 1 is a
pointer to a note insn marking the end of the range. Operand 2 is a vector
containing all the registers that can be substituted within the range. Operand 3
is the number of calls within the range. Operand 4 is the total number of insns
in the range. Operand 5 is a unique ID number for this range. Operand 6 is the
basic block number of the start of the range. Operand 7 is the basic block
number of the end of the range. Operand 8 is the loop depth. Operand 9 is a
bitmap specifying which registers are live at the beginning of the range.
Operand 10 is a bitmap specifying which registers are live at the end of the
range. Operand 11 is a marker number for the start of the range. Operand 12 is
a marker number for the end of the range.

� range_live ‘x’ “bi” This is information about the registers that are live at this
point. Operand 0 is the bitmap representing the list of live registers. Operand 1
is the original block number of the current block.

� range_reg ‘x’ “iiiiiiiitt” Specifies the registers that can be substituted within
the range. Operand 0 is the original pseudo register number. Operand 1 is the

406 G C C : T h e C o m p l e t e R e f e r e n c e

value held in the pseudo register for the duration of the range. Operand 2 is the
number of references made to the register within the range. Operand 3 is the
number of times the register is clobbered in the range. Operand 4 is the number
of deaths the register has in the range. Operand 5 contains flags that indicate
whether the data needs to be copied from the original register to the new
register at the beginning of the range, and whether the data needs to be copied
from the new register back to the original register at the end of the range.
Operand 6 is the live length. Operand 7 is the number of calls across which this
register remains alive. Operand 8 is the symbol node of the variable, if the
register is a variable. Operand 9 is the block node in which the variable is
declared, if the register is a variable.

� range_var ‘x’ “eti” This is information about the ranges of a local variable.
Operand 0 is an expr_list containing the ranges in which the variable
is copied to a pseudo register. Operand 1 is the block in which the variable is
declared. Operand 2 is the number of ranges in which the variable appears.

� reg ‘o’ “i0” This is a hardware or pseudo register. Also see scratch. Operand
0 is the register number. If this number is less than FIRST_PSEUDO_REGISTER,
then it is a hardware register. Operand 1 is the original register number, which
will be a different value for a pseudo register that was converted into a
hardware register.

� resx ‘x’ “i” This is a placeholder for a possible _Unwind_Resume before it has
been determined whether a function call or a branch is needed. Operand 0 is the
exception region from which control is flowing.

� return ‘x’ ““ Returns from a subroutine.

� rotate ‘2’ “ee” A bitwise shift to the left without sign extension. Bits shifting
off the left end are rotated back to the right end. Operand 0 is the expression
producing the value to be shifted. Operand 1 is the expression producing the
value of the number of bits to shift.

� rotatert ‘2’ “ee” A bitwise shift to the right, with bits shifting off the right
end being rotated back to the left end. Operand 0 is the expression producing
the value to be shifted. Operand 1 is the expression producing the value of the
number of bits to shift.

� scratch ‘o’ “0” A scratch register. This is a register that is used only within a
single instruction, and it will be turned into a reg insn during register
allocation or during reload. This is specified as having an operand only to
facilitate it being turned into a reg.

� sequence ‘x’ “E” This form of a sequence of insns is the result of generating
code based on a define_expand that produces a number of insns. The
function emit_insn() breaks the sequence apart into separate insns.
Operand 0 is the array of expressions.

C h a p t e r 2 0 : R e g i s t e r T r a n s f e r L a n g u a g e 407
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

� set ‘x’ “ee” An assignment operation for storing a value at a location. All
assignment operations must use set. Instructions that require multiple
assignments must use multiple set insns. Operand 0 is the lvalue. This is the
location (memory, register, condition code, or whatever) to receive the assigned
value. Operand 1 is the rvalue, which is the value, or the location of the value,
to be stored in the lvalue.

� set_attr ‘x’ “ss” This can be used as the last operand of define_insn,
define_peephole, and define_asm_insn to specify an attribute to assign
to insns matching the pattern. Operand 0 is the name of the attribute. Operand
1 is the value of the attribute.

� set_attr_alternative ‘x’ “sE” This can be used as the last operand for
define_insn and define_peephole as a set of alternatives attribute values
to be assigned. Which is assigned is determined by a match. Operand 0 is the
name of the attribute. Operand 1 is an array of possible attribute values.

� sign_extend ‘1’ “e” The result of evaluating the expression is sign-extended.
The amount of sign extension is determined by the machine modes and type of
expression. Also see zero_extend.

� sign_extract ‘b’ “eee” This is the specification of the size and location of a
signed bit field. Also see zero_extract. Operand 0 is the memory unit
containing the first bit of the bit field. Operand 1 is the number of bits in the
field. Operand 2 is the offset to the bit field, which is the number of bits in
the memory unit before the first bit of the bit field. If BITS_BIG_ENDIAN
is set, the count is from the most significant bit of the memory unit; otherwise,
the count is from the least significant bit.

� smax ‘c’ “ee” A signed comparison in which the result is the maximum of the
two expressions.

� smin ‘c’ “ee” A signed comparison in which the result is the minimum of the
two expressions.

� sqrt ‘1’ “e” Extracts the square root of the value resulting from the evaluation
of the expression.

� ss_minus ‘2’ “ee” The two expressions are evaluated and the result
of operand 1 is subtracted from operand 0 with signed saturation. Also
see us_minus.

� ss_plus ‘c’ “ee” The two expressions are evaluated and the results are added
with signed saturation. Also see us_plus.

� ss_truncate ‘1’ “e” Evaluates the expression and performs signed saturating
truncation. Also see us_truncate.

� strict_low_part ‘x’ “e” This is the assignment of a value that only modifies the
least significant part of the destination. Operand 0 is the assignment expression
that has the strict_low_part restriction imposed on it.

408 G C C : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 0 : R e g i s t e r T r a n s f e r L a n g u a g e 409
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

� subreg ‘x’ “ei” One word of a multiword value. Operand 0 is an expression
containing the complete value. Operand 1 is the selector of the word of the
multiword value.

� symbol_ref ‘o’ “s” A reference to a named label. Also see label_ref.
Operand 0 is the label string with the preceding underscore added to it. If the
label name begins with an asterisk, the asterisk is removed and the underscore
is not added.

� trap_if ‘x’ “ee” A conditional trap. For an unconditional trap, the conditional
expression is set to 1. Operand 0 is the conditional expression. Operand 1 is the
code to execute if the conditional expression is a nonzero value.

� truncate ‘1’ “e” The result of the expression is simply truncated to be stored in
the receiving location.

� udiv ‘2’ “ee” The two expressions are evaluated and operand 1 is divided into
operand 0, performing an unsigned integer division.

� unordered ‘<‘ “ee” The generated code evaluates the expressions and
performs an unordered floating-point comparison. An unordered comparison
does not throw an exception if either value is NaN. The result is true only if the
values are equal. Also see ordered.

� umax ‘c’ “ee” In an unsigned comparison operation, the result is the
maximum of the two expressions.

� umin ‘c’ “ee” In an unsigned comparison operation, the result is the
minimum of the two expressions.

� umod ‘2’ “ee” The two expressions are evaluated and operand 1 is divided
into operand 0, and the result is taken to be the remainder of an unsigned
integer division.

� uneq ‘<‘ “ee” The generated code evaluates the expressions and performs an
unordered floating-point comparison. The result is true if the first value is equal
to the second.

� unge ‘<‘ “ee” The generated code evaluates the expressions and performs an
unordered floating-point comparison. The result is true if the first value is
greater than or equal to the second.

� ungt ‘<‘ “ee” The generated code evaluates the expressions and performs an
unordered floating-point comparison. The result is true if the first value is
greater than the second.

� unle ‘<‘ “ee” The generated code evaluates the expressions and performs an
unordered floating-point comparison. The result is true if the first value is less
than or equal to the second.

� unlt ‘<‘ “ee” The generated code evaluates the expressions and performs an
unordered floating-point comparison. The result is true if the first value is less
than the second.

410 G C C : T h e C o m p l e t e R e f e r e n c e

� UnKnown ‘x’ “*” An RTX that, as yet, has an unknown type.

� unsigned_fix ‘1’ “e” Converts the value of a floating-point expression to an
unsigned fixed-point value. Also see unsigned_fix.

� unsigned_float ‘1’ “e” Converts the value of an unsigned fixed-point
expression to a floating-point value. Also see unsigned_fix.

� unspec ‘x’ “Ei” A machine-specific operation. Operand 0 is a vector of
operands to be used by the machine-specific operation. Operand 1 is an index
into the operands specifying which is to be used.

� unspec_volatile ‘x’ “Ei” A machine-specific operation in which there could
possibly be a trap. Operand 0 is a vector of operands to be used by the
machine-specific operation. Operand 1 is an index into the operands specifying
which is to be used.

� us_minus ‘2’ “ee” The two expressions are evaluated and the result of operand
1 is subtracted from operand 0 with unsigned saturation. Also see ss_minus.

� us_plus ‘c’ “ee” The two expressions are evaluated and the results are added
with unsigned saturation. Also see ss_plus.

� us_truncate ‘1’ “e” Evaluates the expression and performs unsigned
saturating truncation. Also see ss_truncate.

� use ‘x’ “e” An indicator that something is used in a way that is not necessary
to explain. For example, a subroutine call will use a register as part of its calling
sequence. Also see clobber. Operand 0 is the expression specifying the item
being used.

� value ‘o’ “0” Used by the cselib routines to describe a value.

� vec_concat ‘x’ “ee” Defines the concatenation of two vectors. The result is a
vector the length of the two vectors combined, with the operand 0 vector
preceding the operand 1 vector. Operand 0 is the first vector to be concatenated.
Operand 1 is the second vector to be concatenated.

� vec_duplicate ‘x’ “e” Defines an operation that multiplies the size of a vector
by replicating all the members of the vector. The resulting vector is an integer
multiple of the size of the input vector.

� vec_merge ‘x’ “eee” Defines a merge operation between two vectors. Operand
0 is the first vector to be merged. Operand 1 is the second vector to be merged.
Operand 2 is a bitmask that specifies where the parts of the resulting vector are
to be extracted. A 0 bit indicates a member is to be taken from operand 0, and a
1 bit indicates a member is to be taken from operand 1.

� vec_select ‘x’ “ee” Defines an operation that selects parts of a vector.
Operand 0 is the source vector. Operand 1 is a parallel insn containing
constant values that specify which members of the source vector are to be
stored in the resulting vector.

� xor ‘c’ “ee” The two operands are evaluated and the result is taken as a
bitwise exclusive OR of the two values.

� zero_extend ‘1’ “e” The result of evaluating the expression is not sign
extended but zero filled instead. Also see sign_extend.

� zero_extract ‘b’ “eee” The specification of the size and location of an unsigned
bit field. Also see sign_extract. Operand 0 is the memory unit containing
the first bit of the bit field. Operand 1 is the number of bits in the field. Operand
2 is the offset to the bit field, which is the number of bits in the memory unit
before the first bit of the bit field. If BITS_BIG_ENDIAN is set, the count is from
the most significant bit of the memory unit; otherwise, the count is from the
least significant bit.

Modes and Mode Classes
Each RTX expression has a mode that describes the size and type of the data it
manipulates and produces. Two identical expressions with different modes can
produce entirely different code. An example of this is a floating-point expression
compared to an integer expression. The modes are listed in Table 20-5 and are defined
as a set of enumerated types in machmode.def.

C h a p t e r 2 0 : R e g i s t e r T r a n s f e r L a n g u a g e 411
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

Mode Description

BImode Bit mode. Specifies an operation on a single bit.

QImode Quarter integer mode. Specifies an operation on a byte being
treated as an integer value.

HImode Half integer mode. Specifies an operation on two bytes being
treated as an integer value.

PSImode Partial single integer mode. Specifies an operation on an integer
that occupies four bytes of storage but does not actually use all
four bytes.

SImode Single integer mode. Specifies an operation on a 4-byte
integer value.

PDImode Partial double integer mode. Specifies an operation on an integer
that occupies eight bytes of storage but does not actually use all
eight bytes.

Table 20-5. The Machine Modes That Are Applied to Expressions

412 G C C : T h e C o m p l e t e R e f e r e n c e

Mode Description

DImode Double integer mode. Specifies an operation on an 8-byte integer.

TImode Tetra integer mode. Specifies an operation on a 16-byte integer.

OImode Octa integer mode. Specifies an operation on a 32-byte integer.

QFmode Quarter floating mode. Specifies an operation on a single-byte
floating-point number.

HFmode Half floating mode. Specifies an operation on a 2-byte
floating-point number.

TQFmode Three-quarter floating mode. Specifies an operation on a 3-byte
floating-point number.

SFmode Single floating mode. Specifies an operation on a 4-byte
floating-point number. This is commonly the single precision
floating-point operation of IEEE, which specifies 8-bit bytes but
can be different on machines with 16-bit bytes and on other
hardware with its own form of floating-point arithmetic.

DFmode Double floating mode. Specifies an operation on an 8-byte
floating-point number. This is commonly the double precision
floating-point operation of IEEE, which specifies 8-bit bytes but
can be different on machines with 16-bit bytes and on other
hardware with its own form of floating-point arithmetic.

XFmode Extended floating mode. Specifies an operation on a 12-byte
floating-point number. This is commonly the extended precision
floating-point operation of IEEE, which specifies 8-bit bytes.
Some systems will use less than the full 12 bytes.

TFmode Tetra floating mode. Specifies an operation on a 16-byte
floating-point number. This is used for both the 96-bit extended
IEEE floating-point types padded to 128 bits, and for the true
128-bit extended IEEE floating-point types.

CCmode Condition code. Specifies an operation on the value of a
condition code. These are machine-specific sets of hardware bits
used to contain the results of comparison operations. This mode
is not used on machines that use the cc0 insn.

Table 20-5. The Machine Modes That Are Applied to Expressions (continued)

C h a p t e r 2 0 : R e g i s t e r T r a n s f e r L a n g u a g e 413
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

Mode Description

BLKmode Block mode. Specifies an operation on aggregate values to which
none of the other modes apply. In RTL this mode is used only for
memory references used in vector hardware instructions. This
mode is not used on machines that have no such instructions.

VOIDmode Void mode. This is used in the absence of any specific mode.
Constant expressions can have this mode because they can be
taken to be of whatever mode is dictated by the context.

QCmode Quarter complex mode. Specifies a complex number composed of
two floating-point values in QFmode.

HCmode Half complex mode. Specifies a complex number composed of
two floating-point values in HFmode.

SCmode Single complex mode. Specifies a complex number composed of
two floating-point values in SFmode.

DCmode Double complex mode. Specifies a complex number composed of
two floating-point values in DFmode.

XCmode Extended complex mode. Specifies a complex number composed
of two floating-point values in XFmode.

TCmode Tetra complex mode. Specifies a complex number composed of
two floating-point values in TFmode.

CQImode Quarter integer complex mode. Specifies a complex number
composed of two integer values in QImode.

CHImode Half integer complex mode. Specifies a complex number
composed of two integer values in HImode.

CSImode Single integer complex mode. Specifies a complex number
composed of two integer values in SImode.

CDImode Double integer complex mode. Specifies a complex number
composed of two integer values in DImode.

CTImode Tetra integer complex mode. Specifies a complex number
composed of two integer values in TImode.

COImode Octa integer complex mode. Specifies a complex number
composed of two integer values in OImode.

Table 20-5. The Machine Modes That Are Applied to Expressions (continued)

In RTL debugging dumps, and in the machine descriptions, the name of the mode
of an operation is listed with a colon immediately following the expression. For
example, a register expression could be written as (reg:SI 7 esp) or, if the register
flag is set, as (reg/f:SI 7 esp). The mode name is always written with the word
“mode” trimmed from it. If no mode appears in the dump, it is VOIDmode.

Not all machines support all modes. It is only required that a machine support
QImode (a single-byte integer), the integer types that match the size defined by
BITS_PER_WORD, and the float sizes defined by FLOAT_TYPE_SIZE and
DOUBLE_TYPE_SIZE. These constant values are defined in the compiler during
configuration, and they match the sizes of the target machine.

414 G C C : T h e C o m p l e t e R e f e r e n c e

Mode Class Description

MODE_INT The class of integer modes is made up of BImode,
QUmode, HImode, SImode, DImode, TImode,
and OImode.

MODE_PARTIAL_INT The class of partial integer modes is made up of
PQImode, PHImode, PSImode, and PDImode.

MODE_FLOAT The class of floating-point modes is made up of
QFmode, HFmode, TQFmode, SFmode, DFmode,
XFmode, and TFmode.

MODE_COMPLEX_INT The class of complex numbers composed of integer
pairs includes CQImode, CHImode, CSImode,
CDImode, CTImode, and COImode.

MODE_COMPLEX_FLOAT The class of complex numbers composed of
floating-point pairs includes QCmode, HCmode,
SCmode, DCmode, XCmode, and TCmode.

MODE_CC The class of condition codes is composed of CCmode
and any others that may be defined by the macro
EXTRA_CC_MODES.

MODE_RANDOM The random class is used to represent any mode
not in one of the other classes, such as BLKmode
and VOIDmode.

Table 20-6. The Names of the Mode Classes and the Modes They Designate

Although the mode settings are used explicitly in the RTL code, the compiler itself
most often uses references to mode classes. The mode classes are described in Table 20-6
and are defined as enum values in machmode.h.

A global variable named byte_mode contains the mode appropriate for the target
machine’s value for BITS_PER_UNIT (on a 32-bit machine, it is set to QImode). The
global variable named word_mode contains the mode appropriate for the target
machine’s value for BITS_PER_WORD (on a 32-bit machine, it is set to SImode).

Flags
A number of flags are included in each insn in the RTL code. In the printed form of the
RTL, these flags appear as single characters preceded by a backslash, as demonstrated
in Chapter 18. The exact meaning of the flag depends on the type of insn in which it is
set. Table 20-7 contains a list of the insns that can have flags set as well as the flag that
is displayed in the output dump of the RTL.

C h a p t e r 2 0 : R e g i s t e r T r a n s f e r L a n g u a g e 415
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

Insn Flag Meaning of the Flag

asm_input /v The data at the referenced memory location is
volatile. The insn cannot be deleted, reordered,
or combined.

asm_operands /v The data at the referenced memory location is
volatile. The insn cannot be deleted, reordered,
or combined.

call_insn /j This is a sibling call.

call_insn /u The call is to a pure function or a const.

code_label /s The label is the target of a nonlocal goto and
may not be deleted. If such a label is deleted,
it must be replaced with an entry specifying the
label was deleted.

const /i This RTL was produced by procedure integration.

expr_list /u A call is made to a pure function or a const.

Table 20-7. The Meaning of Flag Indicators for Different Insns

416 G C C : T h e C o m p l e t e R e f e r e n c e

Insn Flag Meaning of the Flag

insn /f This is part of a function prologue that sets the
stack pointer. It is a frame pointer, saves a register,
or sets up a temporary register to use in place of the
frame pointer.

insn /i This RTL was produced by procedure integration.

insn /s During dead code elimination, this flag indicates
dead code. During a reorganization (reorg) in the
delay slot of a branch, this flag indicates that the
insn is from the target of the branch. During
scheduling, this flag indicates that this insn must
be scheduled together with the previous insn.

insn /v This insn has been deleted.

insn_list /i This RTL was produced by procedure integration.

jump_insn /s During a reorg in the delay slot of a branch, this
flag indicates that the insn is from the target of
the branch.

label_ref /s A label is being referenced that is outside the
innermost loop containing this insn.

label_ref /v This is a reference to a nonlocal label.

mem /f The reference is to a scalar.

mem /j The alias set for this memory reference should
be left unchanged when a component of memory
is accessed.

mem /s The referenced memory is part of an aggregate
(structure or array). This flag is not set if the
reference is through a C pointer, which could be
to a scalar or an aggregate.

mem /u The value at the memory location never changes.

mem /v The data at the memory location is volatile. The
insn cannot be deleted, reordered, or combined.

Table 20-7. The Meaning of Flag Indicators for Different Insns (continued)

C h a p t e r 2 0 : R e g i s t e r T r a n s f e r L a n g u a g e 417
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

Insn Flag Meaning of the Flag

note /u A call is made to a pure function or a const.

reg /f The register contains a pointer.

reg /i This register contains the value to be returned by
the current function. On machines that have a
preset register used to return a value, this flag
will not be set.

reg /s The register content has its entire life contained
in the test expression of a loop.

reg /u The value in the register never changes.

reg /v This flag indicates a user-defined variable;
otherwise, it is a temporary variable created by
the compiler.

reg_label /v This is a reference to a nonlocal label.

set /f This is part of a function prologue that sets the
stack pointer. It establishes the frame pointer, saves
a register, or sets up a temporary register to use in
place of the frame pointer.

set /j The value is being set to be returned.

subreg /s An object is being accessed that has had its mode
promoted from a wider mode.

subreg /u The reference is to an unsigned value that has had
its mode promoted to a wider type.

symbol_ref /f The reference addresses this function’s string
constant pool.

symbol_ref /i The referenced symbol is weak.

symbol_ref /u The reference is to something inside the constant
pool of the current function.

symbol_ref /v This flag is used for machine-specific purposes.

Table 20-7. The Meaning of Flag Indicators for Different Insns (continued)

This page intentionally left blank.

Chapter 21
Machine-Specific
Compiler Options

419

This chapter includes information that can be used when compiling programs
for specific platforms. Mostly, the options and settings deal with adjusting the
generated code to use (or not use) some specific feature of the hardware, but

there are also options for debugging and organizing sections in object files.

The Machine List
The following machine description files are included with the 3.1 release of GCC.
These files are found in the config directory of the GCC source distribution:

420 G C C : T h e C o m p l e t e R e f e r e n c e

alpha/alpha.md
alpha/ev4.md
alpha/ev5.md
alpha/ev6.md
arc/arc.md
arm/arm.md
avr/avr.md
c4x/c4x.md
cris/cris.md
d30v/d30v.md
dsp16xx/dsp16xx.md
fr30/fr30.md
h8300/h8300.md
i370/i370.md
i386/i386.md
i386/athlon.md
i386/k6.md
i386/pentium.md
i386/ppro.md
i960/i960.md
ia64/ia64.md
m32r/m32r.md
m68hc11/m68hc11.md
m68k/m68k.md

m88k/m88k.md
mcore/mcore.md
mips/mips.md
mmix/mmix.md
mn10200/mn10200.md
mn10300/mn10300.md
ns32k/ns32k.md
pa/pa.md
pdp11/pdp11.md
romp/romp.md
rs6000/rs6000.md
s390/s390.md
sh/sh.md
sparc/cypress.md
sparc/sparc.md
sparc/hypersparc.md
sparc/sparclet.md
sparc/supersparc.md
sparc/ultra1_2.md
sparc/ultra3.md
stormy16/stormy16.md
v850/v850.md
vax/vax.md

Each directory corresponds to a single platform. Some of the directories contain
more than one .md file because of the include directive, which allows for the full
configuration to be organized as a set of files. For example, the alpha.md file in the
alpha directory includes the files ev4.md, ev5.md, and ev6.md, and the i386.md file
in the i386 directory includes pentium.md, ppro.md, k6.md, and athlon.md.

The GCC Command-Line Options
Some, but not all, of the existing ports have special command-line options that tell the
compiler to produce code that will further refine the generated to code to match a specific
hardware mode or runtime configuration. The following sections list the -m options
available for the ports that have defined them.

Most of the options begin with -m, but there are a few exceptions. Some are used to
specify that code be generated for a specific CPU within a family of CPUs, while others
can be used to generate code that will take advantage of some specific hardware feature
to better merge the characteristics of your program with the hardware. Some of the options
are needed to make the generated code fit with a particular hardware configuration.

Alpha Options
The following options are defined for the DEC Alpha implementations.

-malpha-as
Generates code to be assembled by the vendor-supplied assembler. Also see -mgas.

-mcix
Specifies that the compiler is to generate code to use the optional CIX instruction set.
The default is to use the instruction sets implied by -mcpu. Code for the CIX
instruction set can be disabled by -mno-cix. Also see -mbwx, -mfix, and -mmax.

-mbuild-constants
This option requires the compiler to construct all integer constants using code, even if
it takes more instructions (the maximum is six).

Normally GCC examines a 32- or 64-bit integer constant to see whether it can construct
the constant from smaller constants in two or three instructions. If it cannot, it will
output the constant as a literal and generate code to load it from the data segment at
runtime. This option would typically be used to build a shared library dynamic loader.
A shared library must relocate itself in memory before it can find the variables and
constants in its own data segment.

-mbwx
Specifies that the compiler is to generate code to use the optional BWX instruction set.
The default is to use the instruction sets implied by -mcpu. Code for the BWX instruction
set can be disabled by -mno-bwx. Also see -mcix, -mfix, and -mmax.

-mcpu=type
Sets the instruction set and instruction scheduling parameters for the specified machine
type. You can specify either the EV style name or the corresponding chip number. GCC
supports scheduling parameters for the EV4, EV5, and EV6 family of processors and
will choose the default values for the instruction set from the processor you specify. If

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 421
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

you do not specify a processor type, GCC will default to the processor on which the
compiler was built. The valid choices for type are listed in Table 21-1.

-mexplicit-relocs
Generates explicit symbol relocation information.

Older Alpha assemblers provided no way to generate symbol relocations except via
assembler macros. Use of these macros does not allow optimal instruction scheduling.
GNU binutils supports a new syntax that allows the compiler to explicitly mark
which relocations should apply to which instructions. This option is mostly useful for
debugging, because GCC detects the capabilities of the assembler when it is built and
sets the default accordingly. The generation of symbol relocation information can be
suppressed by -mno-explicit-relocs.

Also see -msmall-data and -mlarge-data.

-mfix
Specifies that the compiler is to generate code to use the optional FIX instruction set.
The default is to use the instruction sets implied by -mcpu. Code for the FIX instruction
set can be disabled by -mno-fix. Also see -mbwx, -mcix, and -mmax.

-mfloat-ieee
Generates code that uses IEEE single and double precision instead of VAX F and G
floating-point arithmetic. Also see -mfloat-vax.

422 G C C : T h e C o m p l e t e R e f e r e n c e

Type Description

ev4, ev45, 21064 Schedules as an EV4 and has no instruction
set extensions

ev5, 21164 Schedules as an EV5 and has no instruction
set extensions

ev56, 21164a Schedules as an EV5 and supports the BWX
extension

pca56, 21164pc, 21164PC Schedules as an EV5 and supports the BWX
and MAX extensions

ev6, 21264 Schedules as an EV6 and supports the BWX,
FIX, and MAX extensions

ev67, 21264a Schedules as an EV6 and supports the BWX,
CIX, FIX, and MAX extensions

Table 21-1. CPU Type Selections for DEC Alpha

-mfloat-vax
Generates code that uses VAX F and G floating-point arithmetic instead of IEEE single
and double precision. Also see -mfloat-ieee.

-mfp-reg
Generates code that uses the floating-point register set. This is the default.

The option -mno-fp-regs does not use the floating-point register set, and it sets
the option -msoft-float. If the floating-point register set is not used, floating-point
operands are passed in integer registers as if they were integers, and floating-point
results are passed in $0 instead of $f0. This is a nonstandard calling sequence, so any
function with a floating-point argument or return value called by code compiled with
-mno-fp-regs must also be compiled with that -mno-fp-regs.

A typical use of -mno-fp-regs is in building a kernel that does not use, and
therefore does not save and restore, any floating-point registers.

-mfp-rounding-mode=mode
Selects the IEEE rounding mode. Other Alpha compilers call this option -fprm mode.
Table 21-2 lists the possible values for mode.

-mfp-trap-mode=mode
This option controls which floating-point-related traps are enabled. Other Alpha
compilers call this option -fptm mode. Table 21-3 lists the possible values for mode.

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 423
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

Mode Description

n Floating-point numbers are rounded toward the nearest
machine number or toward the even machine number in
case of a tie. This is the default.

m Rounds toward minus infinity.

c Chopped rounding mode. Floating-point numbers are rounded
toward zero.

d Dynamic rounding mode. A field in the floating-point control
register (fpcr) controls the rounding mode in effect. The C
library initializes this register for rounding toward plus infinity.
Therefore, unless your program modifies the register, this mode
rounds toward plus infinity.

Table 21-2. Floating-point Rounding Modes

-mgas
Generates code to be assembled by the GNU assembler. Also see -malpha-as.

-mieee
Generates code that is fully IEEE compliant, except that the inexact-flag is not
maintained. The Alpha architecture implements floating-point hardware optimized for
maximum performance and is mostly compliant with the IEEE floating-point standard.
However, for full compliance, software assistance is required.

With this option, the preprocessor macro _IEEE_FP is defined during compilation.
The resulting code is less efficient but is able to correctly support denormalized numbers
and exceptional IEEE values such as not-a-number (NaN) and plus/minus infinity.
Other Alpha compilers call this option -ieee_with_no_inexact.

Also see -mieee-with-inexact.

-mieee-conformant
Generates code as IEEE conformant.

This option must not be used unless you also specify -mtrap-precision=i and
either specify -mfp-trap-mode=su or -mfp-trap-mode=sui.

The only effect of this option is to emit the line .eflag 48 in the function prolog of
the generated assembly file. Under DEC UNIX, this has the effect that IEEE-conformant
math library routines will be linked in.

-mieee-with-inexact
The same as -mieee, except the generated code also maintains the IEEE inexact-flag.
This option causes the generated code to implement fully compliant IEEE math.

In addition to the defining of _IEEE_FP, _IEEE_FP_EXACT is also defined as a
preprocessor macro. On some Alpha implementations the resulting code may execute
significantly slower than the code generated by default. Because very little code depends
on the inexact-flag, you should normally not specify this option. Other Alpha
compilers call this option -ieee_with_inexact.

424 G C C : T h e C o m p l e t e R e f e r e n c e

Mode Description

n The only traps enabled are the ones that cannot be disabled in software
(for example, the division-by-zero trap). This is the default.

u Underflow traps are enabled in addition to the traps enabled by n.

su The instructions are marked to be safe for software completion.

sui Like su, but inexact traps are enabled as well.

Table 21-3. Floating-point Trap Mode Settings

-mlarge-data
With this option, the data area is limited to just below 2GB. Programs that require more
than 2GB of data must use malloc() or mmap() to allocate the data in the heap instead
of in the program’s data segment. This is the default.

When generating code for shared libraries, -fpic sets -msmall-data and -fPIC
sets -mlarge-data.

-mmax
Specifies that the compiler is to generate code to use the optional MAX instruction set.
The default is to use the instruction sets implied by -mcpu. Code for the MAX instruction
set can be disabled by -mno-max. Also see -mbwx, -mcix, and -mfix.

-mmemory-latency=duration
Sets the latency the scheduler should assume for typical memory references as seen by
the application. This number is highly dependent on the memory access patterns used
by the application and the size of the external cache on the machine.

The duration can be specified as a decimal number, which is a number of clock cycles.
The duration can also be specified as L1, L2, L3, or main. The compiler contains

estimates of the number of clock cycles for typical EV4 and EV5 hardware for the level
1, 2, and 3 caches (also called Dcache, Scache, and Bcache), as well as for the main memory.
Note that L3 is only valid for EV5.

-msmall-data
When -mexplicit-relocs is in effect, static data is accessed via gp-relative
relocations. This option specifies that objects 8 bytes long or smaller are placed in a
small data area (the .sdata and .sbss sections) and are accessed via 16-bit relocations
based on the $gp register. This limits the size of the small data area to 64KB but allows
the variables to be directly accessed via a single instruction.

When generating code for shared libraries, -fpic sets -msmall-data and -fPIC
sets -mlarge-data.

-msoft-float
Indicates that the compiler is not to use the hardware floating-point instructions for
floating-point operations. The functions in libgcc.a will be used to perform floating-point
operations.

Unless they are replaced by routines that emulate the floating-point operations or
are compiled in such a way as to call such emulation routines, these routines will issue
hardware floating-point operations. If you are compiling for an Alpha that does not have
floating-point hardware, you must ensure that the library is built. Alpha implementations
without floating-point operations still have floating-point registers.

The default is -mno-soft-float.

-mtrap-precision=precision
Sets the precision used in floating-point traps.

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 425
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

In the Alpha architecture, floating-point traps are imprecise. This means that
without software assistance it is impossible to recover from a floating-point trap, and
program execution normally needs to be terminated. The compiler generates code that
can assist operating system trap handlers in determining the exact location that caused
a floating-point trap.

Different levels of precision can be selected from those listed in Table 21-4.
Other Alpha compilers provide the equivalent options called -scope_safe and

-resumption_safe.

-mtune=type
Sets only the instruction-scheduling parameters for the specified machine type. The
instruction set is not changed. The valid choices for type are listed in Table 21-1.

Alpha/VMS Options
The following option is defined for the DEC Alpha/VMS implementation.

-mvms-return-codes
Returns a VMS condition from main(). The default is to return a POSIX condition code.

ARC Options
The following options are defined for ARC implementations:

-mcpu=cpu
Generates code for the specified ARC cpu.

Which CPU variants are supported depends on the configuration. All variants
support -mcpu=base, which is the default.

426 G C C : T h e C o m p l e t e R e f e r e n c e

Precision Description

p Program precision. This option means a trap handler can only
identify which program caused a floating-point exception. This
is the default.

f Function precision. The trap handler can determine the function
that caused a floating-point exception.

i Instruction precision. The trap handler can determine the exact
instruction that caused a floating-point exception.

Table 21-4. Floating-point Trap Precision Settings

-mdata=section
Places data in the specified code section. This selection can be overridden in the code
by specifying the section attribute.

Also see -mtext and -mrodata.

-mmangle-cpu
Prepends the name of the CPU onto all public symbol names.

In multiple-processor systems, there are many ARC variants with different
instruction and register set characteristics. This flag prevents code compiled for one
CPU to be linked with code compiled for another. No facility exists for handling
variants that are almost identical.

-mrodata=section
Places read-only data in the specified code section. This selection can be overridden in
the code by specifying the section attribute.

Also see -mtext and -mdata.

-mtext=section
Places functions in the specified code section. This selection can be overridden in the
code by specifying the section attribute.

Also see -mdata and -mrodata.

-EL
Generates code for little endian mode. This is the default.

-EB
Generates code for big endian mode.

ARM Options
The following options are defined for Advanced RISC Machines (ARM) architectures.

-mabort-on-noreturn
Generates a call to the function abort() at the end of a noreturn function. The call
is placed so that it will be executed if the function tries to return.

-malignment-traps
Generates code that will not trap even if the MMU has alignment traps enabled. The
generated code is a series of byte accesses instead of a direct half-word access. This
option is ignored when compiling for ARM architecture 4 or later because these
processors are capable of directly accessing half-word locations in memory.

The specification of -mno-alignment-traps generates code that assumes that
the MMU will not trap unaligned accesses. This option produces better code when the
target instruction set does not have half-word memory operations. Note that you cannot

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 427
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

use this option to access unaligned word objects, because the processor will only fetch
one 32-bit aligned object from memory.

The default setting for most targets is -mno-alignment-traps. This produces
better code when no half-word memory instructions are available.

On ARM architectures prior to ARMv4, there were no instructions to access
half-word objects stored in memory. However, when reading from memory, a feature of
the ARM architecture allows a word load to be used even if the address is unaligned,
and the processor core will rotate the data as it is being loaded. The
-malignment-traps option tells the compiler that such misaligned accesses will
cause an MMU trap and that it should instead generate the access as a series of byte
accesses. The compiler can still use word accesses to load half-word data if it knows
that the address is aligned to a word boundary.

-mapcs
The same as -mapcs-frame.

-mapcs-26
Generates code for a processor running with a 26-bit program counter and conforming
to the function calling standards for the APCS 26-bit option.

The -mapcs-26 option replaces the -m2 and -m3 options that existed in previous
versions of the compiler.

-mapcs-32
Generates code for a processor running with a 32-bit program counter and conforming
to the function calling standards for the APCS 32-bit option.

The -mapcs-32 option replaces the -m6 option that existed in previous versions
of the compiler.

-mapcs-frame
Generates a stack frame that is compliant with the ARM Procedure Call Standard for all
functions, even if this is not strictly necessary for correct execution of the code. The
default is -mno-apcs-frame.

Specifying the option -fomit-frame-pointer in conjunction with this option
will cause the stack frames not to be generated for leaf functions.

-march=name
This option specifies the name of the target ARM architecture. GCC uses this name to
determine what kind of instructions it can emit when generating assembly code. This
option can be used in conjunction with or instead of the -mcpu option. The recognized
selections for name are armv2, armv2a, armv3, >armv3m, armv4, armv4t, armv5,
armv5t, and armv5te.

428 G C C : T h e C o m p l e t e R e f e r e n c e

-mbig-endian
Generates code for a processor running in big-endian mode; the default is to
compile code for a little-endian processor. Also see -mwords-little-endian
and -mlittle-endian.

-mcallee-super-interworking
Gives all externally visible functions in the file being compiled an ARM instruction set
header that switches to Thumb mode before executing the rest of the functions. This
configuration allows these functions to be called from noninterworking code.

-mcaller-super-interworking
Allows calls via function pointers (including virtual functions) to execute correctly
regardless of whether the target code has been compiled for interworking. There is
a small overhead in the cost of executing a function pointer if this option is enabled.

-mbsd
This option can only be used on the RISC iX to emulate the native BSD-mode compiler.
This is the default if -ansi is not specified. Also see -mxopen.

-mcpu=name
This option is used to specify the name of the target ARM processor. GCC uses this
name to determine what kind of instructions it can emit when generating assembly
code. The recognized names are arm2, arm250, arm3, arm6, arm60, arm600, arm610,
arm620, arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700, arm700i,
arm710, arm710c, arm7100, arm7500, arm7500fe, arm7tdmi, arm8, strongarm,
strongarm110, strongarm1100, arm8, arm810, arm9, arm9e, arm920, arm920t,
arm940t, arm9tdmi, arm10tdmi, arm1020t, and xscale.

Also see -mtune.

-mfp=number
Same as -mfpe-number.

-mfpe=number
This option specifies the version of the floating-point emulation available on the target.
Permissible values for number are 2 and 3.

-mhard-float
Generates code containing floating-point operations. This is the default.
See -msoft-float.

-mlittle-endian
Generates code for a processor running in little-endian mode. This is the default for
all standard configurations. Also see -mbig-endian.

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 429
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

-mlong-calls
This option causes code to be generated that performs function calls by first loading the
address of the function into a register and then making the call based on the address
stored in the register.

The default behavior is -mno-long-calls, which has the default result of placing
the function calls within the scope of a #pragma long_calls_off directive.

These option settings have no effect on how the compiler generates code to handle
function calls via function pointers.

This option is needed if the target function lies outside of the 64MB addressing
range of the offset based version of the subroutine call instruction. Even with this
option set, certain functions will not be turned into long calls. Examples include static
functions, functions bearing the short-call attribute, functions that are inside the
scope of a #pragma no_long_calls directive, and functions whose definitions
have already been compiled within the current compilation unit. On the other hand,
functions that have weak definitions, functions with the long-call attribute, functions
in a section with the long-call attribute, and functions that are within the scope
of a #pragma long_calls directive will always be turned into long calls.

-mnop-fun-dllimport
Disables support for the dllimport attribute.

-mpic-register=reg
Specifies the register to be used for PIC addressing. The default is R10, unless
stack-checking is enabled, when R9 is used. Also see -msingle-pic-base.

-mpoke-function-name
Writes the name of each function into the text section, directly preceding the code
of the function prolog. The generated code is similar to the following:

.ascii "arm_poke_function_name", 0

.align

t1

.word 0xff000000 + (t1 - t0)

arm_poke_function_name

mov ip, sp

stmfd sp!, {fp, ip, lr, pc}

sub fp, ip, #4

During a stack backtrace, code can inspect the value of the program counter stored
at fp+0. If the trace function then looks at location pc-12 and finds the top eight bits
are set, then you know that a function name is embedded immediately preceding this
location. The length of the name is ((pc[-3]) & 0xff000000).

430 G C C : T h e C o m p l e t e R e f e r e n c e

-msched-prolog
This is the default. Specifying -mno-sched-prolog prevents the reordering
of instructions in the function prolog or the merging of those instruction with the
instructions in the body of the function.

The code generated when -mno-sched-prolog is specified causes all functions to
begin with a more easily recognized set of instructions. This fact can be used to locate
the start of functions inside executable code.

-mshort-load-bytes
Deprecated form of -malignment-traps.

-mshort-load-words
Deprecated form of -malignment-traps.

-msingle-pic-base
Treats the register used for PIC addressing as read-only, rather than loading it in
the prolog for each function. The runtime system is responsible for initializing this
register with an appropriate value before execution of the program begins. Also see
-mpic-register.

-msoft-float
Generates code containing library calls for floating-point operations. The default is
-mhard-float.

You should be aware that the required libraries are not available for all ARM
targets. Normally the libraries of the C compiler for the target machine are used, but
this cannot be done directly in cross-compilation. If you use this option, you will also
need to provide your own libraries.

This option changes the calling conventions used in the code, so it is useful only
if you compile the entire program with this option. You will need to compile libgcc.a
(the library that comes with GCC) using -msoft-float for this to work.

-mstructure-size-boundary=number
The size of all structures and unions will be rounded up to a multiple of the number
of bits set by this option. Permissible values for number are 8 and 32. Specifying the
larger number can produce faster and more efficient code, but it can also increase the
size of the program.

The default value varies for different toolchains. For the COFF-targeted toolchain,
the default value is 8.

The two values are potentially incompatible. Code compiled with one value cannot
necessarily be expected to work with code or libraries compiled with the other value if
they exchange information using structures or unions.

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 431
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

-msymrename
This is the default. This option can only be used on the RISC iX as -mno-symrename
to suppress running the assembler postprocessor, symrename, after code has been
assembled. Normally it is necessary to modify some of the standard symbols in
preparation for linking with the RISC iX C library. Specifying -mno-symrename
suppresses this pass.

The postprocessor is never run when the compiler is built for cross-compilation.

-mthumb
Generates code for the 16-bit Thumb instruction set. The default is to use the 32-bit
ARM instruction set.

-mthumb-interwork
Generates code that supports calling between the ARM and Thumb instruction sets.
Without this option, the two instruction sets cannot be reliably used within a single
program.

This option causes the generation of slightly larger code, so the default is
-mno-thumb-interwork.

-mtpcs-frame
Generates a stack frame that is compliant with the Thumb Procedure Call Standard
for all non-leaf functions. (A leaf function is one that does not call any other functions.)
The default is -mno-tpcs-frame. Also see -mtpcs-leaf-frame.

-mtpcs-leaf-frame
Generates a stack frame that is compliant with the Thumb Procedure Call Standard
for all leaf functions. (A leaf function is one that does not call any other functions.)
The default is -mno-apcs-leaf-frame. Also see -mtpcs-frame.

-mtune=name
This option is very similar to the -mcpu option, except that instead of specifying the
actual target processor type and restricting which instructions can be used, it specifies
that GCC should tune the performance of the code as if the target were of the type
specified, but continue to choose the actual instructions generated based on the CPU
specified by the -mcpu option.

The possible values for name are the ones listed for -mcpu. For some ARM
implementations, better performance can be obtained by using this option.

-mwords-little-endian
Generates code for a little-endian word order but a big-endian byte order.

This option should only be used if you require compatibility with code for big-endian
ARM processors generated by versions of the compiler prior to 2.8.

This option only applies when generating code for big-endian processors—that is,
a desired byte order of the form 32107654.

432 G C C : T h e C o m p l e t e R e f e r e n c e

-mxopen
This option can only be used on the RISC iX to emulate the native X/Open-mode compiler.
Also see -mbsd.

AVR Options
The following options are defined for AVR implementations.

-mcall-prologues
Reduces code size by generating function prologs and epilogs as calls to the appropriate
subroutines.

-minit-stack=address
Specifies the initial stack address, which may be a symbol or numeric value. The value
of __stack is the default.

-mmcu=setting
The value of setting specifies either the ATMEL AVR instruction set or the MCU
type. Table 21-5 lists the valid names for setting. The first column contains the AVR
instruction set names, and the second column contains the corresponding MCU types.
Any name from either the first or second column can be used as the setting.

-mno-interrupts
Reduces code size by generating code that is not compatible with hardware interrupts.

-mno-tablejump
Reduces code size by not generating tablejump instructions, which can sometimes
increase code size.

-msize
Outputs instruction size information into the assembly language file.

-mtiny-stack
Generates code that changes only the low eight bits of the stack pointer.

CRIS Options
The following options are defined for the CRIS ports.

-m8-bit
Arranges for the stack frame, writable data, and constants all to be 8-bit aligned.

Also see -mdata-align, -mconst-align, -mstack-align, -m32-bit,
and -m16-bit.

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 433
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

-m16-bit
Arranges for the stack frame, writable data, and constants all to be 16-bit aligned.

Also see -mdata-align, -mconst-align, -mstack-align, -m32-bit,
and -m8-bit.

-m32-bit
Arranges for the stack frame, writable data, and constants all to be 32-bit aligned.
This is the default.

Also see -mdata-align, -mconst-align, -mstack-align, -m16-bit,
and -m8-bit.

434 G C C : T h e C o m p l e t e R e f e r e n c e

AVR MCU Description

avr1 at90s1200, attiny10,
attiny11, attiny12,
attiny15, attiny28

This is the minimal AVR core
instruction set, which is not
supported by the C compiler.
This setting is only for assembler
programs.

avr2 at90s2313, at90s2323,
attiny22, at90s2333,
at90s2343, at90s4414,
at90s4433, at90s4434,
at90s8515, at90c8534,
at90s8535

This avr2 instruction set is the
default. This is the classic AVR
core, with up to 8KB of program
memory space.

avr3 atmega103, atmega603,
at43usb320, at76c711

This is for the classic AVR core,
with up to 128KB of program
memory space.

avr4 atmega8, atmega83,
atmega85

This is for the enhanced AVR
core, with up to 8KB of program
memory space.

avr5 atmega16, atmega161,
atmega163, atmega32,
atmega323, atmega64,
atmega128, at43usb355,
at94k

This is for the enhanced AVR
core, with up to 128KB of
program memory space.

Table 21-5. The AVR and MCU Settings

-maout
Legacy no-op option only recognized with the cris-axis-aout target.

-march=architecture
Same as -mcpu.

-mcc-init
Suppresses the use of condition-code results from previous instructions and always
generates compare and test instructions before the use of condition codes.

-mconst-align
Arranges for constants to be aligned for the maximum single data access size for the
chosen CPU model. The default is -mno-const-align, which sets a 32-bit alignment.
ABI details, such as structure layout, are not affected.

Also see -mdata-align, -m32-bit, -m16-bit, and -m8-bit.

-mcpu=architecture
Generates code for the specified architecture. The valid choices for architecture are
v3 for ETRAX4, v8 for ETRAX100, and v10 for ETRAX100LX. The default is v0, except
for cris-axis-linux-gnu, where the default is v10.

-mdata-align
Arranges for individual data items to be aligned for the maximum single data access
size for the chosen CPU model. The default is -mno-data-align, which sets a 32-bit
alignment. ABI details, such as structure layout, are not affected.

Also see -mstack-align, -mconst-align, -m32-bit, -m16-bit, and -m8-bit.

-melf
Legacy no-op option only recognized with the cris-axis-elf and
cris-axis-linux-gnu targets.

-melinux
Selects a GNU/Linux-like multilib, include files, and an instruction set for -mcpu=v8.
This option is valid only for the cris-axis-aout target.

-melinux-stacksize=number
Arranges for indications in the program informing the kernel loader that the stack
of the program should be set to number bytes. This option is only available for the
cris-axis-aout target.

-metrax100
Same as -mcpu=v8.

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 435
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

-metrax4
Same as -mcpu=v3.

-mgotplt
In conjunction with -fpic and -fPIC, instruction sequences are generated that load
addresses for functions from the PLT part of the GOT rather than calls to the PLT. This
is the default, which can be suppressed by -mno-gotplt.

-mlinux
Legacy no-op option, only recognized with the cris-axis-linux-gnu target.

-mmax-stack-frame=number
Issues a warning when the stack frame of a function exceeds number bytes.

-mno-side-effects
Suppresses the generation of instructions with side effects in addressing modes other
than postincrement.

-mpdebug
Enables CRIS-specific verbose debug-related information in the assembly code. This
option also has the effect of turning off the #NO_APP formatted-code indicator to the
assembler at the beginning of the assembly file.

-mprologue-epilogue
It is the default to generate prolog and epilog code that sets up the stack frame.

Specifying -mno-prologue-epilogue suppresses the generation of the normal
function prolog and epilog that set up the stack frame. No return instructions or return
sequences are generated in the code. Use this option only together with a visual inspection
of the compiled code because no warnings or errors are generated when call-saved
registers must be saved or when storage for local variable needs to be allocated.

-mstack-align
Arranges for the stack frame to be aligned for the maximum single data access size
for the chosen CPU model. The default is -mno-stack-align, which sets a 32-bit
alignment. ABI details, such as structure layout, are not affected.

Also see -mdata-align, -mconst-align, -m32-bit, -m16-bit, and -m8-bit.

-mtune=architecture
Tunes to the specified architecture everything applicable about the generated code,
except for the ABI and the set of available instructions. The choices for architecture
are the same as for -mcpu.

-sim
Links with input and output functions from a simulator library. Code, initialized data,
and zero-initialized data are allocated consecutively. This option is valid only for the
cris-axis-aout and cris-axis-elf targets. Also see -sim2.

436 G C C : T h e C o m p l e t e R e f e r e n c e

-sim2
Similar to -sim but passes linker options to locate initialized data at 0x40000000 and
zero-initialized data at 0x80000000.

D30V Options
The following options are defined for D30V implementations.

-masm-optimize
Enables passing -O to the assembler when optimizing. The assembler uses the -O
option to automatically “parallelize” adjacent short instructions, where possible. This
is the default, which can be overridden by specifying -mno-asm-optimize.

-mbranch-cost=number
Increases the internal costs of branches to number. Higher costs mean that the compiler
will issue more instructions to avoid doing a branch. The default is 2.

Also see -mcond-exec.

-mcond-exec=number
Specifies the maximum number of conditionally executed instructions that replace a
branch. The default is 4.

Also see -mbranch-cost.

-mextmem
Links the .text, .data, .bss, .strings, .rodata, .rodata1, and .data1 sections
into external memory, which starts at location 0x80000000.

-mextmemory
Same as -mextmem.

-monchip
Links the .text section into on-chip text memory, which starts at location 0x00000000.
It also links the .data, .bss, .strings, .rodata, .rodata1, and .data1 sections
into on-chip data memory, which starts at location 0x20000000.

H8/300 Options
The following options are defined for the H8/300 implementations.

-malign-300
On the H8/300H and H8/S, the same alignment rules are used as for the H8/300.

The default for the H8/300H and H8/S is to align long and float data items
on 4-byte boundaries. This option causes them to be aligned on 2-byte boundaries.

This option has no effect on the H8/300.

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 437
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

-mh
Generates code for the H8/300H.

-mint32
Generates int data as 32-bit values.

-mrelax
Shortens some address references at link time, if possible. This option sets the linker
option -relax.

-ms
Generates code for the H8/S.

-ms2600
Generates code for the H8/S2600. This switch must be used in combination with -ms.

HPPA Options
The following options are defined for the HPPA family of computers.

-march=architecture
Generates code for the specified architecture. The known names for architecture
are 1.0 (for PA 1.0), 1.1 (for PA 1.1), and 2.0 (for PA 2.0).

Code compiled for lower numbered architectures will run on higher numbered
architectures, but not the other way around. Refer to /usr/lib/sched.models on an
HPUX system to determine the proper architecture option for your machine.

-mbig-switch
Generates code suitable for big switch tables. Use this option only if the assembler/
linker complain about out-of-range branches within a switch table.

-mdisable-fpregs
Prevents floating-point registers from being used in any manner.

This is necessary for compiling kernels that perform lazy context switching of
floating-point registers. If you use this option and attempt to perform floating-point
operations, the compiler will abort.

-mdisable-indexing
Prevents the compiler from using indexing address modes. This avoids some rather
obscure problems when compiling MIG generated code under MACH.

-mfast-indirect-calls
Generates code that assumes calls never cross space boundaries.

This allows the compiler to generate code that performs faster indirect calls. This
option will not work in the presence of shared libraries or nested functions.

438 G C C : T h e C o m p l e t e R e f e r e n c e

-mgas
Enables the use of assembler directives only the gas assembler understands.

-mjump-in-delay
Fills delay slots of function calls with unconditional jump instructions by modifying
the return pointer for the function call to be the target of the conditional jump.

-mlinker-opt
Enables the optimization pass in the HPUX linker. This option makes symbolic
debugging impossible. Also, it triggers a bug in the HPUX 8 and HPUX 9 linkers
in which they give bogus error messages when linking some programs.

-mlong-load-store
Generates three-instruction load and store sequences, as sometimes required by
the HPUX 10 linker. This is equivalent to the +k option used with HP compilers.

-mno-space-regs
Generates code that assumes the target has no space registers.

This allows GCC to generate faster indirect calls and use unscaled index address
modes. Such code is suitable for level 0 PA systems and kernels.

-mpa-risc-1-0
The same as -march=1.0.

-mpa-risc-1-1
The same as -march=1.1.

-mpa-risc-2-0
The same as -march=2.0.

-mportable-runtime
Uses the portable calling conventions proposed by HP for ELF systems.

-mschedule=type
Schedules code according to the constraints for the specified machine type. The
valid selections for type are 700, 7100, 7100LC, 7200, 7300, and 8000. Refer to
/usr/lib/sched.models on an HPUX system to determine the proper scheduling
option for it. The default scheduling is 8000.

-msoft-float
Generates output containing library calls for floating-point operations.

The libraries are not available for all HPPA targets. Under normal circumstances,
the facilities of the machine’s usual C compiler are used, but this cannot be done
directly in cross-compilation. You must provide suitable library functions for
cross-compilation. The embedded target hppa1.1-*-pro does provide software
floating-point support.

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 439
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

This option changes the calling convention in the object file, so it is only useful if
you compile all modules, including all libraries, of a program with this option. This
includes libgcc.a, the library that comes with GCC.

IA-64 Options
The following options are defined for the Intel IA-64 architecture.

-mauto-pic
Generates code that is self-relocatable. This option also sets -mconstant-gp. This is
useful when compiling firmware code.

-mb-step
Generates code that works around Itanium B step errata.

-mbig-endian
Generates code for a big endian target. This is the default for HPUX.

Also see -mlittle-endian.

-mconstant-gp
Generates code that uses a single constant global pointer value. This is useful when
compiling kernel code.

Also see -mauto-pic.

-mdwarf2-asm
Generates assembler code for the DWARF2 line number debugging info. This may
be useful when the GNU assembler is not being used. The option can be reversed by
specifying -mno-dwarf2-asm.

-mfixed-range=range
Generates code that treats the given register range as fixed registers. A register range is
specified as two registers separated by a dash. Multiple register ranges can be specified
separated by a comma.

A fixed register is one that the register allocator cannot use. This is useful when
compiling kernel code.

-mgnu-as
Generates code for the GNU assembler. This is the default, which can be reversed by
specifying -mno-gnu-as.

-mgnu-ld
Generates code for the GNU linker. This is the default, which can be reversed by
specifying -mno-gnu-ld.

440 G C C : T h e C o m p l e t e R e f e r e n c e

-minline-divide-max-throughput
Generates code for inline divides using the maximum throughput algorithm. Also see
-minline-divide-min-latency.

-minline-divide-min-latency
Generates code for inline divides using the minimum latency algorithm. Also see
-minline-divide-max-througput.

-mlittle-endian
Generates code for a little endian target. This is the default for AIX5 and Linux.

Also see -mbig-endian.

-mno-pic
Generates code that does not use a global pointer register for addressing. The result
is code that is not position independent and violates the IA-64 ABI.

-mregister-names
Generates in, loc, and out register names for the stacked registers. This may make
assembler output more readable. This option can be reversed with
-mno-register-names.

-msdata
Enables optimizations that use the small data section. This is the default, which can be
reversed with -mno-sdata, and may be useful for working around optimizer bugs.

-mvolatile-asm-stop
Generates a stop bit immediately before and after volatile assembler statements. This
option can be reversed with -mno-volatile-asm-stop.

Intel 386 and AMD x86-64 Options
The following options are defined for the i386 and x86-64 family of computers.

-m128bit-long-double
Specifies the size of the long double type to be 128 bits (16 bytes). The i386
application binary interface specifies the size to be 12 bytes, while newer architectures
(Pentium and later) prefer long double aligned on an 8- or 16-byte boundary. This is
impossible to achieve with 12-byte long doubles being accessed as an array.

If you specify this option, the structures and arrays containing long double data
will change size. Also, the function calling convention for functions using long
double will be modified.

Also see -m96bit-long-double.

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 441
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

-m32
On AMD x86-64 processors in a 64-bit environment, this option sets int, long, and
pointer data to 32 bits and generates code that runs on any i386 system.

-m386
The same as -mcpu=i386. This form of the option is deprecated.

-m3dnow
Enables the use of built-in functions that allow direct access to the 3Dnow extensions.
The usage can be disallowed with -mno-3dnow.

-m486
The same as -mcpu=i486. This form of the option is deprecated.

-m64
On AMD x86-64 processors in a 64-bit environment, this option sets int to 32 bits, sets
long and pointer data to 64 bits, and generates code specifically for AMD’s x86-64
architecture.

-m96bit-long-double
Specifies that the size of long double data items be 96 bits (12 bytes), as required by
the i386 application binary interface. This is the default.

Also see -m128bit-long-double.

-maccumulate-outgoing-args
Specifies that the maximum amount of space required for outgoing arguments will
be computed in the function prolog. This is faster on most modern CPUs because
of reduced dependencies, improved scheduling, and reduced stack usage when the
preferred stack boundary is not equal to 2. The drawback is an increase in code size.
Setting this option also sets -mno-push-args.

-malign-double
Specifies that the compiler align double, long double, and long long variables on
a two-word boundary. Specifying -mno-align-double aligns them on a one-word
boundary.

Aligning double variables on a two-word boundary will produce code that runs
somewhat faster on a Pentium at the expense of the program being larger.

The -malign-double option causes structures containing the preceding types to
be aligned differently than the published application binary interface specifications for
the 386.

-march=architecture
Generates instructions for the machine architecture. The choices for architecture
are the same as for type in the -mcpu option. Specifying -march implies -mcpu for
the same type.

442 G C C : T h e C o m p l e t e R e f e r e n c e

-masm=dialect
Outputs assembly language instructions using the specified dialect. Valid selections
for dialect are intel and att. The default is att.

-mcpu=type
Tunes the generated code to everything applicable to the specified type, except for the
ABI and the set of available instructions. The valid choices for type are i386, i486,
i586, i686, pentium, pentium-mmx, pentiumpro, pentium2, pentium3, pentium4,
k6, k6-2, k6-3, athlon, athlon-tbird, athlon-4, athlon-xp, and athlon-mp.

The type i586 is equivalent to pentium. The type i686 is equivalent to pentiumpro.
The k6 and athlon types are the AMD chips.

Although selecting a specific CPU will cause things to be scheduled appropriately
for that particular chip, the compiler will not generate any code that does not run on
the i386 without the -march option being specified.

-mfpmath=unit
Generates floating-point instructions for the selected hardware unit.

Specifying unit as 387 uses the standard 387 floating-point coprocessor, present
in the majority of chips and emulated otherwise. Code compiled with this option will
run almost everywhere. The temporary results are computed with 80-bit precision.

Also see -ffloat-store in Appendix D. This is the default choice for the i386
architecture.

Specifying unit as sse uses scalar floating-point instructions, present in the SSE
instruction set. This instruction set is supported by Pentium3 and newer chips as well
as in the AMD line by the Athlon-4, Athlon-xp, and Athlon-mp chips. The earlier
version of the SSE instruction set supports only single-precision operations, thus the
double- and extended-precision operations are still performed using 387. The newer
version, present only in Pentium4 and the AMD x86-64 chips, supports double-precision
operations.

When specifying unit as i387, you must also specify a -march, -msse, or -msse2
option to enable SSE extensions and make this option effective. For the x86-64 compiler,
these extensions are enabled by default. The resulting code should be considerably faster
(in most cases) and avoid the numerical instability problems of 387 code. However,
this option may break some existing code that expects temporaries to be 80-bit values.

Specifying unit as sse,387 attempts to utilize both instruction sets at once. This
effectively doubles the number of available registers on chips with separate execution
units for 387 and SSE. This option is experimental, because gcc register allocation does
not model separate functional units well.

-mieee-fp
Specifies that the compiler uses IEEE floating-point comparisons. These comparisons
correctly handle the case in which the result of a comparison is unordered. The use of
IEEE floating-point comparisons can be suppressed by specifying -mno-ieee-fp.

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 443
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

-minline-all-stringops
All string operations are inlined. The default is that string operations are inlined only
when the destination is known to be aligned at least to a 4-byte boundary. This option
enables more inlining, which increases code size, but may improve performance of the
code that depends on fast memcpy(), strlen(), and memset() for short lengths.

-mmmx
Enables the use of built-in functions that allow direct access to the MMX extensions.
This usage can be disallowed with -mno-mmx.

-mno-align-stringops
Does not align the destination of inlined string operations. This option reduces code
size and improves performance in cases where the destination is already aligned and
the compiler doesn’t know it.

-mno-fancy-math-387
Some 387 emulators do not support the sin, cos, and sqrt instructions for the 387.
This option avoids generating those instructions. It has no effect unless you also specify
the -funsafe-math-optimizations option.

This option is the default on FreeBSD, OpenBSD, and NetBSD. It is ignored when
-march indicates that the target CPU will always have an FPU and the instruction will
not need emulation.

-mno-fp-ret-in-387
Specifies not to use the FPU registers for return values of functions.

The usual calling convention has functions return values of types float and
double in an FPU register, even if there is no FPU. The idea is that the operating
system should emulate an FPU. Specifying this option will cause the values to be
returned in ordinary CPU registers instead.

-mno-red-zone
On AMD x86-64 processors in a 64-bit environment, this option suppresses the use of
a so-called red zone for x86-64 code. The red zone is mandated by the x86-64 ABI and
is a 128-byte area beyond the location of the stack pointer that will not be modified by
signal or interrupt handlers and therefore can be used for temporary data without
adjusting the stack pointer. This option disables the red zone.

-momit-leaf-frame-pointer
Does not retain the frame pointer in a register for leaf functions. This avoids the
instructions to save, set up, and restore frame pointers and makes an extra register
available inside the leaf functions.

The option -fomit-frame-pointer can be used to remove the frame pointer
for all functions, but this does make debugging more difficult.

444 G C C : T h e C o m p l e t e R e f e r e n c e

-mpentium
The same as -mcpu=pentium. This form of the option is deprecated.

-mpentiumpro
The same as -mcpu=pentiumpro. This form of the option is deprecated.

-mpreferred-stack-boundary=number
Attempts to keep the stack boundary aligned to a 2 raised to number byte boundary.
The default for number is 4 (16 bytes or 128 bits).

Optimizing for code size by specifying -Os sets the minimum to the correct alignment
(four bytes for x86 and eight bytes for x86-64). On Pentium and Pentium Pro, double and
long double values should be aligned to an 8-byte boundary to prevent the code from
running slower. On the Pentium III, the Streaming SIMD Extension (SSE) data type
__m128 suffers similar speed penalties if it is not aligned on a 16-byte boundary.

To ensure proper alignment of values on the stack, the stack boundary must be
aligned to the boundary required by any value stored on the stack. Also, every function
must be generated so that it keeps the stack aligned. This means calling a function
compiled with a higher preferred stack boundary from a function compiled with a
lower preferred stack boundary will most likely misalign the stack. It is recommended
that libraries that use callbacks always use the default setting.

This extra alignment does consume stack space and generally increases code size.
For code that is sensitive to stack space usage, such as embedded systems and operating
system kernels, you may want to reduce the preferred alignment to -mpreferred-
stack-boundary=2.

Also see -malign-double.

-mpush-args
Uses push operations to store outgoing parameters. This method is shorter and usually
equally as fast as the method using sub/mov operations, and it’s enabled by default.
The default can be overridden with -mno-push-args and, in some cases, disabling it
may improve performance because of improved scheduling and reduced dependencies.

-mregparm=number
Specifies the number of registers used to pass integer arguments. By default, no registers
are used to pass arguments. The largest value for number is 3. You can control this
behavior for a specific function by using the function attribute regparm.

When using this option with number being a nonzero value, you must build all
modules, including libraries, with the same value.

-mrtd
Uses a different function calling convention, in which functions that take a fixed number
of arguments return with the ret num instruction, which pops their arguments while
returning. This saves one instruction in the caller because there is no need to pop the
arguments after the return.

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 445
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

You can specify that an individual function is called with this calling convention
with the function attribute stdcall. You can also override the -mrtd option by using
the function attribute cdecl.

The use of this calling convention is incompatible with the one normally used on
UNIX, so you cannot use it if you need to call libraries compiled with the UNIX compiler.
Also, you must provide function prototypes for all functions that take variable numbers
of arguments; otherwise, incorrect code will be generated for calls to those functions.

Incorrect code will result if you call a function with too many arguments. Normally,
extra arguments are harmlessly ignored.

-msoft-float
Generates code containing library calls for floating-point operations. The libraries are
not part of GCC. The libraries of the target computer’s C compiler can be used, but this
can’t be done directly in cross-compilation. It will be necessary for you to provide your
own libraries for a cross compiler.

On machines where a function returns floating-point results in the 80387 register
stack, some floating-point opcodes may be emitted even when -msoft-float is
specified.

-msse
Enables the use of built-in functions that allow direct access to the SSE extensions.
The usage can be disallowed with -mno-sse.

-msse2
Enables the use of built-in functions that allow direct access to the SSE2 extensions.
The usage can be disallowed with -mno-sse2.

-mthreads
Supports thread-safe exception handling for Mingw32. Code that relies on thread-safe
exception handling must compile and link all code with the -mthreads option. Setting
this option defines -D_MT. When linking, it includes a special thread helper library with
-lmingwthrd that cleans up per-thread exception handling data.

-msvr3-shlib
Specifies that the compiler place uninitialized local variables into the bss data segment.
To specify that they be placed in the data data segment, use -mno-svr3-shlib. These
options are meaningful only on System V Release 3.

Intel 960 Options
The following options are defined for the Intel 960 implementations.

-mtype
Assumes the defaults for the specified machine type. This includes settings for instruction
scheduling, floating-point support, and addressing modes. The possible choices for type
are ka, kb, mc, ca, cf, sa, and sb. The default is kb.

446 G C C : T h e C o m p l e t e R e f e r e n c e

-masm-compat
Enables compatibility with the iC960 assembler.

-mcode-align
Aligns code to 8-byte boundaries for faster fetching. This is currently turned on, by default,
for C-series implementations only. For the others, the default is -mno-code-align.

-mcomplex-addr
The compiler is to assume that the use of a complex addressing mode is desired on this
implementation of the i960. Complex addressing modes may not be worthwhile on the
K-series, but they definitely are on the C-series. The default is -mcomplex-addr for all
processors except cb and cc, where the default is -mno-complex-addr.

-mic-compat
Enables compatibility with iC960.

-mic2.0-compat
Enables compatibility with iC960 version 2.0.

-mic3.0-compat
Enables compatibility with iC960 version 3.0.

-mintel-asm
Same as -masm-compat.

-mleaf-procedures
This option specifies that the compiler should attempt to alter leaf procedures to be
callable with the bal instruction as well as call. This option can be suppressed by
specifying -mno-leaf-procedures.

The result of specifying -mleaf-procedures is more efficient code for explicit
calls when the bal instruction can be substituted by the assembler or linker, but less
efficient code in other cases, such as calls via function pointers.

-mlong-double-64
Implements data type long double as a 64-bit floating-point number. Without this
option, long double is implemented as an 80-bit floating-point number.

The only reason for this option is the lack of 128-bit long double support in
fp-bit.c. This option is only useful for people using soft-float targets.

-mnumerics
This option specifies that the processor does support floating-point instructions. Also
see -msoft-float.

-mold-align
Enables structure-alignment compatibility with Intel’s gcc release version 1.3 (which
is based on gcc 1.37). Setting this option also sets -mstrict-align.

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 447
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

-msoft-float
This option specifies that the processor does not support floating-point instructions.
Also see -mnumerics.

-mstrict-align
Does not permit unaligned accesses. To permit unaligned access, specify
-mno-strict-align.

-mtail-call
Instructs the compiler to take additional attempts (beyond those of the machine-
independent portions of the compiler) to optimize tail-recursive calls into branches.
You may not want to do this because the detection of cases where this is not valid is
not totally complete. The default is -mno-tail-call.

M32R/D Options
The following options are defined for the Mitsubishi M32R/D architectures.

-m32r
Generates code for the M32R. This is the default.

-m32rx
Generates code for the M32R/X.

-mcode-model=name
Specifying name as small instructs the compiler to assume all objects live in the lower
16MB of memory so that their addresses can be loaded with the ld24 instruction. The
compiler also assumes all subroutines are reachable with the bl instruction. This is the
default.

Specifying name as medium instructs the compiler to assume objects may be
anywhere in the 32-bit address space (the compiler will generate seth/add3
instructions to load their addresses). The compiler also assumes all subroutines are
reachable with the bl instruction.

Specifying name as large instructs the compiler to assume objects may be
anywhere in the 32-bit address space (the compiler will generate seth/add3
instructions to load their addresses). The compiler also assumes subroutines may
not be reachable with the bl instruction (the compiler generates the much slower
seth/add3/jl instruction sequence).

-msdata=setting
This options specifies which items are stored in the small data area. The small data area
consists of the sections .sdata and .sbss. Objects may be explicitly put into the small
data area with the section attribute specifying one of these two sections. Also see the
-G option.

448 G C C : T h e C o m p l e t e R e f e r e n c e

Specifying setting as none disables the use of the small data area. Variables will
be put into one of .data, .bss, or .rodata (unless the section attribute has been
specified). This is the default.

Specifying setting as sdata places small global and static data in the small data
area but does not generate special code to reference them.

Specifying setting as use places small global and static data in the small data
area and generates special instructions to reference them.

-G number
Puts global and static objects less than or equal to number bytes into the small data or bss
sections instead of the normal data or bss sections. The default value of number is 8.

The -msdata option must be set to either sdata or use for this option to have
any effect.

All modules should be compiled with the same -msdata and -G settings. Compiling
with different values for numbermay or may not work. If it does not work, the linker will
detect the error preventing incorrect code from being generated.

M680x0 Options
The following options are defined for the 680x0 series. The default values for these
options vary, depending on which CPU in the 680x0 series was selected when the
compiler was configured.

-m5200
Code is generated for a 520X “coldfire” family CPU. This is the default when the
compiler is configured for 520X-based systems. Use this option for microcontrollers
with a 5200 core, including the MCF5202, MCF5203, MCF5204, and MCF5202.

This option also sets -mnobitfield.

-m68000
Code will be generated for the 6800. This option is for microcontrollers with a 68000 or
EC000 core, including the 68008, 68302, 68306, 68307, 68322, 68328, and 68356. This is
the default when the compiler is configured to generate code for the 68000 series.

This option also sets -mnobitfield.

-m68020
Code will be generated for a 68020. This is the default when the compiler is configured
for 68020-based systems.

This option also sets -mbitfield.

-m68020-40
Code is generated for a 68040, without using any of the new instructions. This results in
code that can run relatively efficiently on either a 68020/68881, 68030, or 68040. The
generated code does use the 68881 instructions that are emulated on the 68040.

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 449
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

-m68020-60
Code is generated for a 68060, without using any of the new instructions. This results in
code that can run relatively efficiently on a 68020/68881, 68030, or 68040. The generated
code does use the 68881 instructions that are emulated on the 68060.

-m68030
Code will be generated for a 68030. This is the default when the compiler is configured
for 68030-based systems.

-m68040
Code will be generated for a 68040. This is the default when the compiler is configured
for 68040-based systems. This option inhibits the use of 68881/68882 instructions that
have to be emulated by software on the 68040. Use this option if your 68040 does not
have code to emulate those instructions.

-m68060
Code is generated for a 68060. This is the default when the compiler is configured for
68060-based systems. This option inhibits the use of 68020 and 68881/68882 instructions
that have to be emulated by software on the 68060. Use this option if your 68060 does
not have code to emulate those instructions.

-m68881
Code will be generated containing 68881 instructions for floating point. This is the
default for most 68020 systems, unless --nfp was specified when the compiler was
configured.

-malign-int
This option specifies the alignment of int, long, long long, float, double, and
long double variables on a 32-bit boundary. The default is -no-align-int, which
places the alignment on a 16-bit boundary. Aligning variables on 32-bit boundaries
produces larger code that runs somewhat faster on processors with 32-bit busses.

Using the -malign-int option, GCC aligns structures containing the preceding
types differently than most published application binary interface specifications for
the m680x0.

-mbitfield
Enables the use of the bit-field instructions. The -m68020 option implies this option.
This is the default if the compiler is configured for a 68020.

-mc68000
Same as -m6800.

-mc68020
Same as -m68020.

450 G C C : T h e C o m p l e t e R e f e r e n c e

-mcpu32
Code is generated for a CPU32. This is the default when the compiler is configured for
CPU32-based systems. Use this option for microcontrollers with a CPU32 or CPU32+
core, including the 68330, 68331, 68332, 68333, 68334, 68336, 68340, 68341, 68349, and
68360.

This option also sets -mnobitfield.

-mfpa
Code is generated containing Sun FPA instructions for floating point.

-mno-strict-align
The compiler will assume that unaligned memory references will be handled by the
system. To force the compiler to align the referenced data, specify -mstrict-align.

-mnobitfield
Disables the use of the bit-field instructions. The options -m68000, -mcpu32, and
-m5200 imply this option.

-mpcrel
Uses the PC-relative (program counter-relative) addressing mode of the 68000 directly,
instead of using a global offset table.

This option also sets -fpic to allow, at most, a 16-bit offset for PC-relative addressing.
The -fPIC option is not currently supported with this option.

-mrtd
Uses a different function calling convention, in which functions take a fixed number
of arguments and return with the rtd instruction by popping the arguments while
returning. This saves one instruction in the caller because there is no need to pop the
arguments. The rtd instruction is supported by the 68010, 68020, 68030, 68040, 68060,
and CPU32 processors, but not by the 68000 and 5200.

This calling convention is incompatible with the one normally used on UNIX, so
you cannot use it if you need to call libraries compiled with the UNIX compiler. Also,
you must provide your own function prototypes for all functions, such as printf(),
that take variable numbers of arguments. Without appropriate prototypes, incorrect
code will be generated for calls to those functions.

Incorrect code will result if a function is called with too many arguments. Using
the default calling sequence, extra arguments are harmlessly ignored.

-mshort
Causes the type int to be a 16-bit number, the same as short int.

-msoft-float
Code is generated to make library calls for floating-point operations.

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 451
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

To use this option you will need to acquire suitable libraries for cross-compilation,
and the libraries are not available for all m680x0 targets. Often the facilities of the C
compiler on the target machine are used, but this can’t be done directly in cross-
compilation. The embedded targets m68k-*-aout and m68k-*-coff do provide
software floating-point support.

M68HClx Options
These options are defined for the 68HC11 and 68HC12 microcontrollers. The default
values for these options depend on which style of microcontroller was selected when
the compiler was configured.

-m6811
Code will be generated for a 68HC11. This is the default when the compiler is
configured for 68HC11-based systems.

-m6812
Code will be generated for a 68HC12. This is the default when the compiler is
configured for 68HC12-based systems.

-m68hc11
Same as -m6811.

-m68hc12
Same as -m6812.

-mauto-incdec
Enables the use of 68HC12 for both pre and post auto-increment and auto-decrement
addressing modes.

-mshort
Considers an int data type to be a 16-bit number, the same as short int.

-msoft-reg-count=count
Specifies count as the number of pseudo-soft registers, which are used in code
generation. The maximum number is 32. Using more pseudo-soft registers may or
may not result in better code, depending on the program. The default is 4 for 68HC11
and 2 for 68HC12.

M88K Options
The following options are defined for Motorola 88K architectures.

-m88000
Generates code that works well on both the m88100 and the m88110.

452 G C C : T h e C o m p l e t e R e f e r e n c e

-m88100
Generates code that works best for the m88100 but also runs on the m88110.

-m88110
Generates code that works best for the m88110 and may not run on the m88100.

-mbig-pic
A deprecated option. Use -fPIC instead.

-mhandle-large-shift
Includes code to detect bit-shifts of more than 31 bits. Such shifts are trapped or code
is generated to handle them properly. By default, GCC makes no special provision for
large bit shifts.

-midentify-revision
Includes an ident directive in the assembler output, recording the source file name,
compiler name and version, timestamp, and the set of compilation flags used.

-mno-check-zero-division
Generates code that does not detect integer division by zero. The default is
-mcheck-zero-division, which detects integer division by zero.

Some models of the MC88100 processor fail to trap upon integer division by zero under
certain conditions. By default, when compiling code that might be run on such a processor,
GCC generates code that explicitly checks for zero-valued divisors and traps with
exception number 503 when one is detected. Use of -mno-check-zero-division
suppresses such checking for code generated to run on an MC88100 processor.

GCC assumes that the MC88110 processor correctly detects all instances of integer
division by zero. When -m88110 is specified, no explicit checks for zero-valued divisors are
generated, and both -mcheck-zero-division and -mno-check-zero-division
are ignored.

-mno-underscores
Specifies that the assembly language generated by the compiler does not have an
underscore character added at the beginning of each symbol. The default is to add
an underscore at the beginning of each name.

-mocs-debug-info
Includes debugging information about registers used in each stack frame, as specified
in the 88open Object Compatibility Standard (OCS). This extra information makes it
possible to debug code that has had the frame pointer eliminated.

The default for DG/UX, SVr4, and Delta 88 SVr3.2 is to include this information,
which can be suppressed by specifying -mno-ocs-debug-info. Other 88K
configurations omit this information by default.

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 453
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

-mocs-frame-position
When generating COFF debugging information for automatic variables and parameters
stored on the stack, this option specifies the use of the offset from the canonical frame
address, which is the stack pointer (register 31) upon entry to the function.

Specifying -mno-ocs-frame-position instructs the compiler, when generating
COFF debugging information for automatic variables and parameters stored on the
stack, to use the offset from the frame pointer register (register 30). When this option
is in effect, the frame pointer is not eliminated when debugging information is selected
by the -g switch.

The DG/UX, SVr4, Delta88 SVr3.2, and BCS configurations use the offset by default,
which can be suppressed by -mno-ocs-frame-position. Other 88K configurations
have the default of -mno-ocs-frame-position.

-moptimize-arg-area
This option saves space by reorganizing the stack frame. This option generates code
that does not agree with the 88open specifications, but it uses less memory.

Specifying -mno-optimize-arg-area suppresses the reorganization of the stack
frame to save space. This is the default, which conforms to the specification but uses
more memory.

-mshort-data-number
Generates smaller data references by making them relative to r0, which allows loading
a value using a single instruction rather than the usual two. The value of number should
be greater than zero but has no effect for values greater than 65535.

This option controls which data references are affected by specifying number as the
maximum offset. For example, if you specify -mshort-data-512, the data references
affected are those involving displacements of less than 512 bytes.

-mserialize-volatile
Generates code to guarantee sequential consistency of volatile memory references. This
is the default, which can be overridden by -mno-serialze-volatile.

The order of memory references made by the MC88110 processor does not always
match the order of the instructions requesting those references. In particular, a load
instruction may execute before a preceding store instruction. Such reordering violates
sequential consistency of volatile memory references when there are multiple
processors. When consistency must be guaranteed, GCC generates special instructions
as needed to force execution in the proper order.

The MC88100 processor does not reorder memory references, so it always provides
sequential consistency. However, by default, GCC generates the special instructions to
guarantee consistency even when you use -m88100 to make it possible for that code to
be run on an MC88110 processor. If you intend to run your code only on the MC88100
processor, you may want to specify -mno-serialize-volatile. The extra code

454 G C C : T h e C o m p l e t e R e f e r e n c e

generated to guarantee consistency may affect the performance of your application,
which you can avoid if you know that you can safely forgo this guarantee.

-msvr3
Turns off the compiler extensions related to System V release 4 (SVr4). See -msvr4.

-msvr4
Turns on the compiler extensions related to System V release 4 (SVr4). This option
determines which variant of the assembler syntax to generate, makes the C preprocessor
recognize #pragma weak, and makes GCC issue additional declaration directives used
in SVr4.

This is the default for the m88k-motorola-sysv4 and m88k-dg-dgux m88k
configurations. For these configurations, the default can be reversed by using -msvr3.
For other M88K configurations, the default is -msvr3.

-mtrap-large-shift
Same as -mhandle-large-shift.

-muse-div-instruction
Generates code to use the div instruction for signed integer division on the MC88100
processor. By default, the div instruction is not used.

On the MC88100 processor, the signed integer division instruction div traps to the
operating system on a negative operand. The operating system transparently completes
the operation, but at a large cost in execution time. By default, when compiling code
that might be run on an MC88100 processor, GCC emulates signed integer division
using the unsigned integer division instruction divu, thereby avoiding the large
penalty of a trap to the operating system. Such emulation has its own, smaller execution
cost in both time and space. To the extent that your code’s important signed integer
division operations are performed on two nonnegative operands, it may be desirable
to use the div instruction directly.

On the MC88110 processor, the div instruction (also known as the divs instruction)
processes negative operands without trapping to the operating system. When -m88110
is specified, -muse-div-instruction is ignored, and the div instruction is used for
signed integer division.

The result of dividing INT_MIN by -1 is undefined. In particular, the behavior of
such a division with and without -muse-div-instruction may differ.

-mversion-03.00
This option is obsolete and is ignored.

-mwarn-passed-structs
Issues a warning when a function passes a struct as an argument or return value.
Structure-passing conventions have changed during the evolution of the C language
and are often the source of portability problems. By default, GCC issues no such warning.

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 455
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

MCore Options
The following options are defined for the Motorola MCore processors.

-m210
Generates code for the 210 processor.

-m340
Generates code for the 340 processor.

-m4byte-functions
Forces all functions to be aligned on a 4-byte boundary. This option can be reversed
with -mno-4byte-functions.

-mbig-endian
Generates code for a big endian target. Also see -mlittle-endian.

-mcallgraph-data
Emits callgraph information. This option can be reversed with
-mno-callgraph-data.

-mdiv
Uses the hardware divide instruction. This is the default, which can be reversed by
-mno-div.

-mhardlit
Constants are inlined into the code stream if it can be done in two instructions or less.
This option can be suppressed by -mno-hardlit.

-mlittle-endian
Generates code for a little endian target. Also see -mbig-endian.

-mrelax-immediate
Allows arbitrarily sized immediate values in bit operations. This option can be
suppressed by -mno-relax-immediate.

-mslow-bytes
Prefers word access when reading byte quantities. This option can be reversed with
-mno-slow-bytes.

-mwide-bitfields
Bit fields are stored as int data types. This option can be reversed with
-mno-wide-bitfields.

456 G C C : T h e C o m p l e t e R e f e r e n c e

MIPS Options
The following options are defined for the MIPS family of computers.

-m4650
Turns on -msingle-float, -mmad, and -mcpu=r4650.

-mabi=name
Generates code for the named ABI. The recognized ABI names are 32, o64, n32, 64,
eabi, and meabi.

The name eabi selects the embedded ABI defined by Cygnus. The name meabi
selects the embedded ABI defined by MIPS. Both these ABIs have 32-bit and 64-bit
variants. By default, the compiler will generate 64-bit code when you select a 64-bit
architecture, but you can specify -mgp32 to get 32-bit code instead.

-mabicalls
Generates the pseudo operations .abicalls, .cpload, and .cprestore that some
System V.4 ports use for position-independent code. This action can be suppressed by
-mno-abicalls.

-march=architecture
Generates code that will run on the specified architecture, which can either be the name
of a generic MIPS ISA or the name of a specific processor.

The generic ISA names are mips1, mips2, mips3, mips4, mips32, and mips64.
The specific processor names are r2000, r3000, r3900, r4000, vr4100, vr4300,

r4400, r4600, r4650, vr5000, r6000, r8000, 4kc, 4kp, 5kc, 20kc, and orion. In
the processor names, a terminating 000 can be abbreviated as k—that is, r2000 can be
written as r2k. Also, prefix letters are optional, so vr5000 can be written as r5000,
r5k, or vr5k.

The special architecture name from-abi selects the most compatible architecture
for the selected ABI, which is mips1 for 32-bit ABIs and mips3 for 64-bit ABIs.

The macro _MIPS_ARCH is defined to contain the name of target architecture as a
string. Also, the macro _MIPS_ARCH_architecture is defined using the capitalized
name of the string in _MIPS_ARCH. For example, -march=r2000 defines _MIPS_ARCH
as "r2000" and also defines the macro _MIPS_ARCH_R2000. The _MIPS_ARCH
definition uses the full prefixed form of the name, as listed earlier, so it will never
abbreviate 000 as k. Specifying from-abi results in the macro definition of either
"mips1" or "mips3". The default architecture name is used when no -march option
is specified.

-mdouble-float
Permits the compiler to use double precision operations. This is the default.

Also see -msingle-float.

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 457
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

-membedded-data
Allocates variables to the read-only data section first, if possible, and next to the small
data section, if possible. Otherwise, they are allocated in data. This results in slightly
slower code than the default, but it reduces the amount of RAM required while executing
and therefore may be preferred for some embedded systems. This action can be suppressed
by -mno-embedded-data.

-membedded-pic
Generates PIC code suitable for some embedded systems. All calls are made using
PC-relative addresses, and all data is addressed using the $gp register. No more than
65,536 bytes of global data may be accessed. This option requires GNU as and GNU
ld, which do most of the work. This currently works only on targets that use ECOFF;
it does not work with ELF.

-mentry
Uses the entry and exit pseudo ops. This option can only be used with -mips16.

-mfix7000
Passes an option to gas, which will cause noops to be inserted if the read of the
destination register of an mfhi or mflo instruction occurs within the following two
instructions.

-mflush-func=function
Specifies the name of the function to call to flush the I and D caches. Specifying
-mno-flush-func instructs the compiler not to call any such function.

If called, the function must take the same arguments as the common _flush_func()
—that is, the address of the memory range for which the cache is being flushed, the
size of the memory range, and the number 3 (to flush both caches). The default depends
on the target GCC was configured for, but commonly is either _flush_func() or
__cpu_flush().

-mfp32
Assumes that floating-point registers are 32 bits wide.

-mfp64
Assumes that floating-point registers are 64 bits wide.

-mfused-madd
Generates code that uses the floating-point multiply and accumulate hardware
instructions, when they are available. These instructions are generated by default if
they are available. However, this may be undesirable if the extra precision causes
problems, or on certain chips in the mode where denormals are rounded to zero and
where denormals generated by multiply and accumulate instructions cause exceptions
anyway.

458 G C C : T h e C o m p l e t e R e f e r e n c e

The use of hardware floating-point operations can be disabled by specifying
-mno-fused-madd.

-mgas
Generates code for the GNU assembler. This is the default on the OSF/1 reference
platform, using the OSF/rose object format. Also, this is the default if the configure
option --with-gnu-as is specified.

Also see -mmips-as.

-mgp32
Assumes that general purpose registers are 32 bits wide.

-mgp64
Assumes that general purpose registers are 64 bits wide.

-mgpopt
Instructs the compiler to write all the data declarations before the instructions in
the text section, which allows the MIPS assembler to generate one-word memory
references instead of using two words for short global or static data items. This is
the default when optimization is turned on, but it can be suppressed by specifying
-mno-gpopt.

-mhalf-pic
Puts pointers to external references into the data section and loads them from there,
rather than putting the references in the text section. This action can be suppressed
by -mno-half-pic.

-mhard-float
Generates output containing hardware floating-point instructions. This is the default.

Also see -msoft-float.

-mint64
Forces int and long types to be 64 bits wide.

The default size of int, long, and pointer data depends on the ABI. All the
supported ABIs use an int of 32 bits. The n64 ABI and the 64-bit Cygnus EABI use a
long of 64 bits. All others use a long of 32 bits. A pointer is the same size as a long,
or the same size as integer registers, whichever is smaller.

Also see -mlong64 and -mlong32.

-mips1
The same as -march=mips1.

-mips2
The same as -march=mips2.

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 459
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

-mips3
The same as -march=mips3.

-mips4
The same as -march=mips4.

-mips16
Enables 16-bit instructions. This can be suppressed by specifying -mno-mips16.

-mips32
The same as -march=mips32.

-mips64
The same as -march=mips64.

-mlong-calls
Generates code to make all function calls with the JALR instruction, which requires
loading up a function’s address into a register before the call. This option is necessary
for calls outside the current 512MB segment to functions that are not addressed through
pointers. This option can be suppressed by -mno-long-calls.

-mlong32
Forces long, int, and pointer types to be 32 bits wide.

The default size of int, long, and pointer data depends on the ABI. All the
supported ABIs use an int of 32 bits. The n64 ABI and the 64-bit Cygnus EABI use a
long of 64 bits. All others use a long of 32 bits. A pointer is the same size as a long, or
the same size as integer registers, whichever is smaller.

Also see -mint64 and -mlong64.

-mlong64
Forces long types to be 64 bits wide.

The default size of int, long, and pointer data depends on the ABI. All the
supported ABIs use an int of 32 bits. The n64 ABI and the 64-bit Cygnus EABI use a
long of 64 bits. All others use a long of 32 bits. A pointer is the same size as a long, or
the same size as integer registers, whichever is smaller.

Also see -mint64 and -mlong32.

-mmad
Permits the use of the mad, madu, and mul instructions, as on the r4650 chip. This
can be reversed by specifying -mno-mad.

-mmemcpy
Generates code to make all block moves call the appropriate string function, memcpy()
or bcopy(), instead of possibly generating inline code. The function calls can be
suppressed by specifying -mno-memcpy.

460 G C C : T h e C o m p l e t e R e f e r e n c e

-mmips-as
Generates code for the MIPS assembler and invokes mips-tfile to add normal
debug information. This is the default for all platforms, except for the OSF/1 reference
platform, using the OSF/rose object format. If either the -gstabs or the -gstabs+
option is specified, the mips-tfile program will encapsulate the STABS within MIPS
ECOFF.

Also see -mgas.

-mmips-tfile
The object file output by the MIPS assembler is postprocessed with the mips-tfile
program to add debug support. This action can be suppressed by specifying -mno-
mips-tfile. The -mno-mips-tfile option should only be specified when there
are bugs in the mips-tfile program that prevent compilation.

If mips-tfile is not run, no local variables will be available to the debugger. Also,
stage2 and stage3 objects will have the temporary file names passed to the
assembler embedded in the object file, which means the objects will not compare the
same.

-mrnames
Instructs the compiler to output code using the MIPS software names for the registers
instead of the hardware names (that is, a0 instead of $4). The only known assembler
that supports this option is the Algorithmics assembler. This option can be suppressed
by -mno-rnames.

-msingle-float
Assumes that the floating-point coprocessor only supports single precision operations,
as on the r4650 chip. Also see -mdouble-float.

-msoft-float
Generates output containing library calls for floating-point operations.

The required libraries are not part of GCC. Normally the facilities of the target
machine’s usual C compiler are used, but this can’t be done directly in cross-
compilation. You must provide your own suitable library functions for cross-compilation.

Also see -mhard-float.

-msplit-addresses
Generates code to load the high and low parts of address constants separately. This
allows the compiler to optimize away redundant loads of the high order bits of
addresses. This optimization requires GNU as and GNU ld. This optimization is
enabled by default for some embedded targets where GNU as and GNU ld are
standard. This option can be disabled by specifying -mno-split-addresses.

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 461
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

-mstats
For each noninline function processed, this option causes the compiler to output one
line to the standard error file containing statistics about the program (the number of
registers saved, stack size, and so on). This action can be suppressed by -mno-stats.

-mtune=architecture
Optimizes for the specified architecture. Among other things, this option controls the
way instructions are scheduled as well as the perceived cost of arithmetic operations.
The list of architecture names is the same as for -march.

When this option is not specified, the compiler optimizes for the processor specified
by -march. By using both -march and -mtune, it is possible to generate code that will
run on a family of processors but optimize the code for one particular member of that
family.

This option causes the definition of the macros _MIPS_TUNE and _MIPS_TUNE_
architecture, which are created using the same rules as the two macros defined by -march.

-muninit-const-in-rodata
When used together with -membedded-data, this option will always store
uninitialized const variables in the read-only data section.

-EL
Compiles code for the processor in little endian mode. Also see -EB.

-EB
Compiles code for the processor in big endian mode. Also see -EL.

-G number
Puts global and static items less than or equal to number bytes in size into the small
data or bss section instead of the normal data or bss section. This allows the assembler
to emit one-word memory reference instructions based on the global pointer (gp or
$28), instead of the normal two words used. By default, number is 8 when the MIPS
assembler is used and 0 when the GNU assembler is used.

This option setting is also passed to the assembler and linker, so all modules should
be compiled with the same number value.

-nocpp
Tells the MIPS assembler to not run its preprocessor over user assembler files (files with
a .s suffix) when assembling them.

-no-crt0
Does not include the default crt0.

MMIX Options
The following options are defined for the MMIX.

462 G C C : T h e C o m p l e t e R e f e r e n c e

-mabi=setting
Specifying setting as mmisware generates code that passes function parameters
and return values that, inside the called function, are seen as registers $0 and up.

Specifying settings as gnu generates the GNU ABI, which uses global registers
$231 and up.

-mbase-addresses
Generates code that uses base addresses.

Using a base address automatically generates a request (handled by the assembler
and the linker) for a constant to be set up in a global register. The register is used for
one or more base address requests, within the range 0 to 255, from the value held in the
register. This generally leads to short and fast code, but the number of data items that
can be addressed is limited, which means that a program that uses lots of static data
may require -mno-base-addresses to suppress this option.

-mbranch-predict
Uses the probable-branch instructions when static branch prediction indicates a
probable branch. This action can be suppressed by -mno-branch-predict.

-melf
Generates an executable in the ELF format, rather than the default mmo format used
by the MMIX simulator.

-mepsilon
Generates floating-point comparison instructions that compare with respect to the rE
epsilon register. This option can be reversed by -mno-epsilon.

-mknuthdiv
Makes the result of a division yielding a remainder have the same sign as the divisor.
The default is -mno-knuthdiv, in which the sign of the remainder follows the sign of
the dividend. Both methods are considered arithmetically valid, the latter being almost
exclusively used.

-mlibfuncs
Specifies that intrinsic library functions are being compiled, passing all values in
registers, no matter the size. This option can be reversed by -mno-libfuncs.

-msingle-exit
Forces generated code to have a single exit point in each function. This option can be
suppressed by -mno-single-exit.

-mtoplevel-symbols
Prepends a colon onto the front of all global symbols so that the assembly code can be
used with the PREFIX assembly directive. This action can be suppressed by specifying
-mno-toplevel-symbols.

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 463
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

-mzero-extend
When reading data from memory in sizes shorter than 64 bits, zero-extending load
instructions are used by default, rather than sign-extending ones. This option can be
reversed by -mno-zero-extend.

MN10200 Options
The following option is defined for Matsushita MN10200 architecture.

-mrelax
Specifies that the linker should perform a relaxation optimization pass to shorten
branches, calls, and absolute memory addresses. This option only has an effect when
used on the command line for the final link step. Also, this option makes symbolic
debugging impossible.

MN10300 Options
The following options are defined for the Matsushita MN10300 architecture.

-mam33
Generates code that uses features specific to the AM33 processor. The default is
-mno-am33, which does not generate code for the special features.

-mmult-bug
Generates code to avoid bugs in the multiply instructions for the MN10300 processors.
This is the default. This option can be turned off with -mno-mult-bug.

-mno-crt0
The default is to link the C runtime initialization routines, but this option causes them
not to be linked to the program.

-mrelax
Specifies that the linker should perform a relaxation optimization pass to shorten
branches, calls, and absolute memory addresses. This option only has an effect when
used on the command line for the final link step. This option makes symbolic debugging
impossible.

NS32K Options
The following options are defined for the 32000 series. The default values for these
options depend on which style of 32000 was selected when the compiler was configured.

-m32032
Generates code for a 32032. This is the default when the compiler is configured
for 32032. and 32016 based systems.

464 G C C : T h e C o m p l e t e R e f e r e n c e

-m32081
Generates code containing 32081 instructions for floating point. This is the default
for all systems.

Also see -m32381.

-m32332
Generates code for a 32332. This is the default when the compiler is configured
for 32332-based systems.

-m32381
Generates code containing 32381 instructions for floating point. This also sets -m32081.
The 32381 is compatible only with the 32332 and 32532 CPUs. This is the default for the
pc532-netbsd configuration.

-m32532
Generates code for a 32532. This is the default when the compiler is configured
for 32532-based systems.

-mbitfield
Generates code to use the bit-field instructions. This is the default for all platforms
except the PC532.

Also see -mnobitfield.

-mhimem
Causes code to be generated that can be loaded above 512MB.

Many NS32000 series addressing modes use displacements of up to 512MB. If an
address is above 512MB, displacements from zero cannot be used. This option may be
useful for operating systems or ROM code.

Also see -mnosb.

-mieee-compare
Specifies that the compiler uses IEEE floating-point comparisons. These comparisons
handle correctly the case where the result of a comparison is unordered. However, the
required kernel support may not be available. This can be disabled with -mno-ieee-
compare.

-mmulti-add
Tries to generate the multiply-add floating-point instructions polyF and dotF. This
option is only available if the -m32381 option is in effect.

Using these instructions requires changes to the register allocation, which generally
has a negative impact on performance. This option should only be used when compiling
code that is likely to make heavy use of multiply-add instructions.

Also see -mnomulti-add.

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 465
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

-mnobitfield
Specifies to not use the bit-field instructions. On some machines it is faster to use
shifting and masking operations. This is the default for the PC532.

Also see -mbitfield.

-mnohimem
Assumes code will be loaded in the first 512MB of virtual address space. This is the
default for all platforms.

-mnomulti-add
Specifies to not try and generate the multiply-add floating-point instructions polyF
and dotF. This is the default.

Also see -mmulti-add.

-mnoregparam
Specifies to not pass any arguments in registers. This is the default for all targets.

Also see -mrtd and -mregparam.

-mnosb
The sb register is not available for use or has not been initialized to zero by the runtime
system. This is the default for all targets except pc532-netbsd. This option is set
whenever -mhimem or-fpic is specified.

-mregparam
Uses a different function-calling convention, where the first two arguments are passed
in registers. This calling convention is incompatible with the one normally used on
UNIX, so you cannot use it if you need to call libraries compiled with the UNIX compiler.

Also see -mrtd and -mnoregparam.

-mrtd
Uses a different function-calling convention, in which functions taking a fixed number
of arguments pop their arguments on return by using the ret instruction.

This calling convention is incompatible with the one normally used on UNIX, so
you cannot use it if you need to call libraries compiled with the UNIX compiler. Also,
you must provide function prototypes for all functions that take variable numbers of
arguments; otherwise, incorrect code will be generated for calls to those functions.

Incorrect code will result if you call a function with too many arguments. Normally,
extra arguments are harmlessly ignored.

This option takes its name from the 680x0 rtd instruction.
Also see -mregparam and -mnoregparam..

-msb
Allows the compiler to use the sb register as an index register, which is always loaded
with zero. This is the default for the pc532-netbsd target.

Also see -mnosb.

466 G C C : T h e C o m p l e t e R e f e r e n c e

-msoft-float
Generates output containing library calls for floating point. However, the libraries
containing the called functions may not be available.

PDP-11 Options
The following options are defined for the PDP-11.

-mabshi
Uses the abshi2 pattern. This is the default, which can be reversed with -mno-abshi.

-mbranch-cheap
Specifies to not pretend that branches are expensive. This is the default.

Also see -mbranch-expensive.

-mbranch-expensive
Pretends that branches are expensive. This is for experimenting with code generation
only.

Also see -mbranch-cheap.

-m10
Generates code for a PDP-11/10.

-m40
Generates code for a PDP-11/40.

-m45
Generates code for a PDP-11/45. This is the default.

-mac0
Returns floating-point results in ac0 (fr0 in UNIX assembler syntax). The default
is -mno-ac0, which returns floating-point results in memory.

-mbcopy
Specifies to not use inline movstrhi patterns for copying memory.

Also see -mbcopy-builtin.

-mbcopy-builtin
Uses inline movstrhi patterns for copying memory. This is the default.

Also see -mbcopy.

-mdec-asm
Uses DEC assembler syntax. This is the default when configured for any PDP-11 target
other than pdp11-*-bsd.

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 467
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

-mfloat32
Defines float data as 32 bits. This option can also be specified as -mno-float64.

-mfloat64
Defines float data as 64 bits. This is the default. This option can also be specified as
-mno-float32.

-mfpu
Uses hardware FPP floating point. This is the default. (FIS floating point on the
PDP-11/40 is not supported.)

-mint16
Defines int data as 16 bits. This is the default. This option can also be specified as
-mno-int32.

-mint32
Defines int data as 32 bits. This option can also be specified as -mno-int16.

-msoft-float
Suppress the use of hardware floating point.

-msplit
Generates code for a system with split I&D. The default is -mno-split, which generates
code for a system without a split I&D.

-munix-asm
Uses UNIX assembler syntax. This is the default when the compiler is configured for
pdp11-*-bsd.

RS/6000 and PowerPC Options
The following options are defined for the IBM RS/6000 and PowerPC.

GCC supports two related instruction set architectures for the RS/6000 and
PowerPC. The Power instruction set is those instructions supported by the RIOS
chipset used in the original RS/6000 systems. The PowerPC instruction set is the
architecture of the Motorola MPC5xx, MPC6xx, MPC8xx microprocessors, and the
IBM 4xx microprocessors.

Neither architecture is a subset of the other. However, there is a large common
subset of instructions supported by both. An MQ register is included in processors
supporting the power architecture.

-mabi=altivec
Extends the current ABI to include the AltiVec ABI extensions. This does not change
the default ABI; instead, it adds the AltiVec ABI extensions to the current ABI. To
suppress this extension, specify -mabi=no-altivec.

468 G C C : T h e C o m p l e t e R e f e r e n c e

-mabi=spe
Extends the current ABI to include the SPE ABI extensions. This does not change the
default ABI but rather only adds the SPE ABI extensions. To disable the inclusion of
these extensions, specify -mabi=no-spe.

-misel
Enables the generation of ISEL instructions. This option can also be written as
-misel=yes. To disable the generation of ISEL instructions, use -misel=no.

-mads
On embedded PowerPC systems, this option assumes that the startup module is called
crt0.o and the standard C libraries are libads.a and libc.a.

-maix-struct-return
Returns all structures in memory (as specified by the AIX ABI).

-maix32
This is the default. This option disables the 64-bit ABI and implies -mno-powerpc64.

Also see -maix64.

-maix64
Enables the 64-bit AIX ABI and calling convention, which includes 64-bit pointers,
64-bit long types, and the infrastructure needed to support them. This option also
implies -mpowerpc64 and -mpowerpc.

Also see -maix32.

-maltivec
This option enables the use of built-in functions that allow access to the AltiVec instruction
set. You may also need to set -mabi=altivec to adjust the current ABI with AltiVec
ABI enhancements. To disable the use of the built-in functions, specify -mno-altivec.

-mbig
On System V.4 and embedded PowerPC systems, this option compiles code for the
processor in big endian mode.

Also see -mlittle.

-mbig-endian
Same as -mbig.

-mbit-align
On System V.4 and embedded PowerPC systems, this option forces structures and
unions that contain bit-fields to be aligned to the base type of the bit-field. This is the
default. To not force this alignment, specify -mno-bit-align.

For example, by default a structure containing nothing but eight unsigned bit-fields
of length 1 would be aligned to a 4-byte boundary and have a size of four bytes. By

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 469
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

specifying -mno-bit-align, the structure would be aligned to a 1-byte boundary
and be one byte in size.

-mcall-aix
On System V.4 and embedded PowerPC systems, this option compiles code using
calling conventions that are similar to those used on AIX. This is the default if you
configured GCC using powerpc-*-eabiaix.

-mcall-gnu
On System V.4 and embedded PowerPC systems, this option compiles code for the
Hurd-based GNU system.

-mcall-linux
On System V.4 and embedded PowerPC systems, this option compiles code for the
Linux operating system.

-mcall-netbsd
On System V.4 and embedded PowerPC systems, this option compiles code for the
NetBSD operating system.

-mcall-solaris
On System V.4 and embedded PowerPC systems, this option compiles code for the
Solaris operating system.

-mcall-sysv
On System V.4 and embedded PowerPC systems, this option compiles code using
calling conventions that adhere to the March 1995 draft of the System V Application
Binary Interface, PowerPC processor supplement. This is the default unless you
configured GCC using powerpc-*-eabiaix.

-mcall-sysv-eabi
Specifies both -mcall-sysv and -meabi.

-mcall-sysv-noeabi
Specifies both the -mcall-sysv and -mno-eabi options.

-mcpu=type
Specifies the architecture type, register usage, choice of mnemonics, and instruction-
scheduling parameters to those of the specified type of machine. The recognized
machine type names are rios, rios1, rsc, rios2, rs64a, 601, 602, 603, 603e, 604,
604e, 620, 630, 740, 7400, 7450, 750, power, power2, powerpc, 403, 505, 801,
821, 823, 860, and common.

The option -mcpu=common generates code for a generic processor that will run on
any Power or PowerPC processor. GCC will use only the instructions in the common

470 G C C : T h e C o m p l e t e R e f e r e n c e

subset of both architectures and will not use the MQ register. GCC assumes a generic
processor model for scheduling purposes.

The options -mcpu=power, -mcpu=power2, -mcpu=powerpc, and -mcpu=
powerpc64 specify generic Power, Power2, pure 32-bit PowerPC (that is, not MPC601),
and 64-bit PowerPC machine types, with a generic processor model assumed for
scheduling purposes.

The remainder of the options produce code for a specific processor. Code generated
under one of those options will run best on that processor, and it may not run at all on
another.

Table 21-6 lists other options that are set by the -mcpu option. Selecting the value
in the first column of the table implies the options named in the second column.

-meabi
On System V.4 and embedded PowerPC systems, this option adheres to the Embedded
Applications Binary Interface (eabi), which is a set of modifications to the System V.4
specifications. The stack is aligned to an 8-byte boundary, the function __eabi() is
called from main() to set up the eabi environment, and the -msdata option can use
both r2 and r13 to point to two separate small data areas.

Specifying -mno-eabi aligns the stack to a 16-byte boundary, does not call an
initialization function from main(), and causes the -msdata option to only use r13
to point to a single small data area.

The -meabi option is on by default if you configured GCC using one of the
powerpc*-*-eabi* options.

-memb
On embedded PowerPC systems, this option sets the PPC_EMB bit in the ELF flags
header to indicate that eabi extended relocations are used.

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 471
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

-mcpu Options Implied Options

common -mno-power, -mno-powerc

power, power2, rios1, rios2, rsc -mpower, -mno-powerpc,
-mno-new-mnemonics

powerpc, rs64a, 602, 603, 603e, 604,
620, 630, 740, 7400, 7450, 750, 505

-mno-power, -mpowerpc,
-mnew-mnemonics

601 -mpower, -mpowerpc,
-mnew-mnemonics

Table 21-6. Setting an -mcpu Option Implies the Setting of Other Options

-mfull-toc
This is the default. The compiler will allocate at least one TOC (table of contents) entry
for each unique, nonautomatic variable reference in your program. Also, floating-point
constants will be included in the TOC. The TOC is limited to a maximum of 16,384 entries.

To reduce the amount of information stored in the TOC, see -mno-fp-in-toc,
-mno-sum-in-toc, and -mminimal-toc.

-mfused-madd
Generates code that uses the floating-point multiply and accumulate instructions. This
option is selected by default if hardware floating is used. To suppress this option, specify
-mno-fused-madd.

-mhard-float
Generates code that does not use the floating-point register set.

Also see -msoft-float.

-minimal-toc
This option can be used in the case of a linker error message stating that the available
TOC (table of contents) space has been exceeded. This option reduces the amount
of TOC space used, making only one TOC entry for each file. The code produced is
slightly larger and slower, but it makes an extreme reduction in the size of the TOC.

Also see -mfull-toc.

-mlittle
On System V.4 and embedded PowerPC systems, this option compiles code for the
processor in little endian mode.

Also see -mbig.

-mlittle-endian
Same as -mlittle.

-mlongcall
Specifies that all function calls be made via pointers so that functions that reside further
than 64MB (67,108,864 bytes) from the current location can be called. This setting can be
overridden by specifying the shortcall function attribute or #pragma longcall(0).
The long calls can be disabled by specifying -mno-longcall.

Some linkers are capable of detecting out-of-range calls and generating glue code
on the fly. On these systems, long calls are unnecessary and the code is slower than
necessary. As of this writing, the AIX linker can do this, as can the GNU linker
for the PowerPC/64. This feature is planned to be added to the GNU linker for 32-bit
PowerPC systems as well.

472 G C C : T h e C o m p l e t e R e f e r e n c e

-mmultiple
Generates code that uses the “load multiple word” instructions and the “store multiple
word” instructions. These instructions are generated by default on Power systems and
are not generated on PowerPC systems.

To disable the generation of these instructions, specify -mno-multiple.
Do not use this option on little endian PowerPC systems, because those instructions

do not work when the processor is in little endian mode. The exceptions are PPC740
and PPC750, which permit the instructions usage in little endian mode.

-mmvme
On embedded PowerPC systems, this option assumes that the startup module is called
crt0.o and the standard C libraries are libmvme.a and libc.a.

-mnew-mnemonics
Selects the assembly language mnemonics defined for the PowerPC architecture. This
option will be ignored if the mnemonics are not defined for the selected architecture.

Also see -mold-mnemonics.

-mno-fp-in-toc
This option can be used in the case of a linker error message stating that the available
TOC (table of contents) space has been exceeded. This option reduces the amount
of TOC space used by preventing the inclusion of floating-point constants.

Also see -mfull-toc.

-mno-sum-in-toc
This option can be used in the case of a linker error message stating that the available
TOC (table of contents) space has been exceeded. This option reduces the amount
of TOC space used by generating code to calculate the sum of an address and a
constant at runtime instead of putting that sum into the TOC.

Also see -mfull-toc.

-mold-mnemonics
Selects the assembly language mnemonics defined for the Power architecture. This
option will be ignored if the mnemonics are not defined for the selected architecture.

Also see -mnew-menonics.

-mpe
Generates code that supports the IBM RS/6000 SP Parallel Environment (PE) by linking
special startup code with an application that has been written to use message passing.

The system must either have PE installed in the standard location (/usr/lpp/ppe.poe/)
or the specs file must be overridden by using the -specs option to specify the directory

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 473
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

location. The Parallel Environment does not support threads, so the -mpe option and
the -pthread option are incompatible.

-mpower
Generates instructions that are found only in the Power architecture to use the MQ
register. If the GCC installation specified this configuration, it can be suppressed by
-mno-power.

By specifying both -mno-power and -mno-powerpc, GCC will use only the
instructions in the common subset of both architectures, plus some special AIX
common-mode calls, and will not use the MQ register. Specifying both -mpower and
-mpowerpc permits GCC to use any instruction from either architecture and to allow
the use of the MQ register. Specify this for the Motorola MPC601.

-mpower2
Generates instructions that are present in the Power2 architecture but are not present in
the original Power architecture. Setting this option also sets the -mpower option. If the
GCC installation specified this configuration, it can be suppressed by -mno-power2.

-mpowerpc
Generates instructions that are found only in the 32-bit subset of the PowerPC
architecture. If the GCC installation specified this configuration, it can be suppressed
by -mno-powerpc.

Also see -mpower.

-mpowerpc-gpopt
Generates code to use the optional PowerPC architecture instructions in the General
Purpose group, including floating-point square root. Setting this option also sets
-mpowerpc. If the GCC installation specified this configuration, it can be suppressed
by -mno-powerpc-gopt.

-mpowerpc-gfxopt
Generates code to use the optional PowerPC architecture instructions in the
Graphics group, including floating-point select. Setting this option also sets
-mpowerpc. If the GCC installation specified this configuration, it can be suppressed
by -mno-powerpc-gfxopt.

-mpowerpc64
Generates the additional 64-bit instructions that are found in the full PowerPC64
architecture and to treat GPRs as 64-bit double-word quantities. The default is
-mno-powerpc64.

-mprototype
On System V.4 and embedded PowerPC systems, this option assumes that all calls
to variable argument functions are properly prototyped.

474 G C C : T h e C o m p l e t e R e f e r e n c e

Without this option, or by specifying -mno-prototype, the compiler must insert
an instruction before every nonprototyped call to set or clear bit 6 of the condition
code register (CR) to indicate whether floating-point values were passed in the floating-
point registers. With -mprototype, only calls to prototyped variable argument functions
will set or clear the bit.

-mregnames
On System V.4 and embedded PowerPC systems, this option emits register names
into the assembly language using symbolic forms. This option can be suppressed by
-mno-regnames.

-mrelocatable
On embedded PowerPC systems, this option generates code that allows the program
to be relocated to a different address at runtime. If you specify this option for any
module, all objects linked together must be compiled with -mrelocatable or
-mrelocatable-lib. The default is -mno-relocatable.

-mrelocatable-lib
On embedded PowerPC systems, this option generates code that allows the program
to be relocated to a different address at runtime. Modules compiled with this option can
be linked with modules compiled without the -mrelocatable and -mrelocatable-
lib options, and they can be linked with modules compiled with the -mrelocatable
option.

-msdata=setting
Specifying -msdata=eabi on System V.4 and embedded PowerPC systems puts small
initialized const global and static data in the .sdata2 section, which is pointed to by
register r2. Also, small initialized non-const global and static data is put in the .sdata
section, which is pointed to by register r13. Also, small uninitialized global and static
data is put in the .sbss section, which is adjacent to the .sdata section. The -msdata=
eabi option sets the -memb option but is incompatible with the -mrelocatable option.

Specifying -msdata=sysv on System V.4 and embedded PowerPC systems puts
small global and static data in the .sdata section, which is pointed to by register r13.
It also puts small uninitialized global and static data in the .sbss section, which is
adjacent to the .sdata section. The -msdata=sysv option is incompatible with the
-mrelocatable option.

Specifying -msdata=none (which can also be written as -mno-sdata) on embedded
PowerPC systems puts all initialized global and static data in the .data section and all
uninitialized data in the .bss section.

Specifying -msdata=default (which can be written simply as -msdata) on System
V.4 and embedded PowerPC systems, in combination with -meabi, will compile code
the same as -msdata=eabi. If -meabi is not specified, the code is compiled the same
as -msdata=sysv.

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 475
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

-msdata-data
On System V.4 and embedded PowerPC systems, this option puts small global and
static data in the .sdata section. It also puts small uninitialized global and static data
in the .sbss section. It does not use register r13 to address small data, however.

This is the default behavior unless other -msdata options are used.

-msim
On embedded PowerPC systems, this option assumes that the startup module is called
sim-crt0.o and that the standard C libraries are libsim.a and libc.a. This is the default
for powerpc-*-eabisim configurations.

-msoft-float
Generates code that uses software floating-point emulation.

Also see -mhard-float.

-mstrict-align
On System V.4 and embedded PowerPC systems, this option generates code that assumes
unaligned memory references will be handled by the system. This is the default. To not
make this assumption, specify -mno-strict-align.

-mstring
Generates code that uses the “load string” instructions and the “store string word”
instructions to save multiple registers and perform small block moves. These instructions
are generated by default on Power systems and are not generated on PowerPC systems.

To disable the generation of these instructions, specify -mno-string.
Do not use this option on little endian PowerPC systems, because those instructions

do not work when the processor is in little endian mode. The exceptions are PPC740
and PPC750, which permit the instructions usage in little endian mode.

-msvr4-struct-return
Returns structures smaller than 8 bytes in registers (as specified by the SVR4 ABI).

-mtoc
On System V.4 and embedded PowerPC systems, this option assumes that register 2
contains a pointer to a global area pointing to the addresses used in the program.
Specifying -mno-mtoc will suppress the assumption.

-mtune=type
Specifies the instruction scheduling parameters for specified machine type but does
not set the architecture type, register usage, or choice of mnemonics, as is done by
-mcpu. The same set of values recognized by -mcpu is recognized by -mtune. If
both options are specified, the code generated will use the architecture, registers, and
mnemonics set by -mcpu but the scheduling parameters set by -mtune.

476 G C C : T h e C o m p l e t e R e f e r e n c e

-mupdate
Generates code that uses the load or store instructions that update the base register to
the address of the calculated memory location. This is the default.

To suppress the generation of this code, specify -mno-update, which opens a
small window of time between updating the stack pointer and updating the address
of the previous frame in which code that walks the stack frame across interrupts or
signals may get corrupted data.

-mvxworks
On System V.4 and embedded PowerPC systems, this option specifies that you are
compiling for a VxWorks system.

-mwindiss
Specifies that the compilation is for the WindISS simulation environment.

-mxl-call
Uses the convention of certain AIX compilers of passing floating-point arguments on
the stack. To disable this option, specify -mno-xl-call.

On AIX, floating-point arguments are passed to prototyped functions beyond the
register save area (RSA) on the stack in addition to argument FPRs. The AIX calling
convention was extended but not initially documented to handle an obscure K&R C
case of calling a function that takes the address of its arguments with fewer arguments
than declared. AIX XL compiler floating-point arguments that do not fit in the RSA are
accessed from the stack when a subroutine is compiled without optimization. Because
always storing floating-point arguments on the stack is inefficient and rarely needed,
this option is not enabled by default and is only necessary when calling subroutines
compiled by AIX XL compilers without optimization.

-myellowknife
On embedded PowerPC systems, this option assumes that the startup module is called
crt0.o and the standard C libraries are libyk.a and libc.a.

-G number
On embedded PowerPC systems, this option puts global and static items less than or
equal to number bytes into the small data or bss section instead of the normal data or
bss section. The default value of number is 8.

This option is also passed to the linker, so all modules should be compiled with the
same value for number.

-pthread
Adds support for multithreading with the pthreads library. This option sets flags for
both the preprocessor and the linker.

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 477
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

RT Options
The following options are defined for the IBM RT PC.

-mcall-lib-mul
Generates a call to lmul$$ for integer multiples.

Also see -min-line-mul.

-mfp-arg-in-fpregs
Uses a calling sequence incompatible with the IBM calling convention in which floating-
point arguments are passed in floating-point registers. The stdarg.h header will not work
with floating-point operands if this option is specified.

Also see -mfp-arg-in-gregs.

-mfp-arg-in-gregs
Uses the normal calling convention for floating-point arguments. This is the default.

Also see -mfp-arg-in-fpregs.

-mfull-fp-blocks
Generates full-size floating-point data blocks, including the minimum amount of
scratch space recommended by IBM. This is the default.

Also see -mminimum-fp-blocks.

-mhc-struct-return
Structures of more than one word are returned in memory rather than in a register. This
provides compatibility with the MetaWare HighC (hc) compiler. Use the option
-fpcc-struct-return for compatibility with the Portable C Compiler (pcc).

-min-line-mul
Uses an inline code sequence for integer multiplies. This is the default.

Also see -mcall-lib-mul.

-mminimum-fp-blocks
Specifies not to include extra scratch space in floating-point data blocks. This results in
smaller code but slower execution, because scratch space must be allocated dynamically.

Also see -mfull-fp-blocks.

-mnohc-struct-return
Returns some structures that are larger than one word in registers, as convenient. This
is the default. For compatibility with the IBM-supplied compilers, use the option
-fpcc-struct-return or the option -mhc-struct-return.

S/390 and zSeries Options
The following options are defined for the S/390 and zSeries architecture.

478 G C C : T h e C o m p l e t e R e f e r e n c e

-m31
Generates code compliant with the Linux for S/390 ABI. For the s390 targets, the
default is -m31, while the s390x targets default to -m64.

-m64
Generates code compliant with the Linux for zSeries ABI. This allows GCC, in
particular, to generate 64-bit instructions. For the s390 targets, the default is -m31,
whereas the s390x targets default to -m64.

-mbackchain
Generates code that maintains an explicit backchain within the stack frame that points
to the caller’s frame, which is needed to allow debugging. This is the default, which
can be reversed by -mbackchain.

-mhard-float
Uses the hardware floating-point instructions and registers for floating-point operations.
The compiler generates IEEE floating-point instructions. This is the default.

Also see -msoft-float.

-mdebug
Prints additional debug information when compiling. The default is -mno-debug,
which indicates to not print debug information.

-mmvcle
Generates code using the mvcle instruction to perform block moves. The default is
-mno-mvcle, which uses an mvc loop.

-msmall-exec
Generates code using the bras instruction to do subroutine calls. This only works reliably
if the total executable size does not exceed 64KB. The default is -mno-small-exec,
which uses the basr instruction instead. It does not have the size limitation.

-msoft-float
Specifies to not use the hardware floating-point instructions and registers for floating-
point operations. Functions in libgcc.a are to be used to perform floating-point operations.

Also see -mhard-float.

SH Options
The following options are defined for the SH implementations.

-m1
Generates code for the SH1.

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 479
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

-m2
Generates code for the SH2.

-m3
Generates code for the SH3.

-m3e
Generates code for the SH3e.

-m4-nofpu
Generates code for the SH4 without a floating-point unit.

-m4-single-only
Generates code for the SH4 with a floating-point unit that only supports single-precision
arithmetic.

-m4-single
Generates code for the SH4, assuming the floating-point unit is in single-precision mode
by default.

-m4
Generates code for the SH4.

-mb
Generates code for the processor in big endian mode.

Also see -ml.

-mbigtable
Generates 32-bit offsets in switch tables. The default is to use 16-bit offsets.

-mdalign
Aligns doubles at 64-bit boundaries. This changes the calling conventions, and therefore
some functions from the standard C library will not work unless you recompile it first with
the -mdalign option set.

-mfmovd
Enables the use of the instruction fmovd.

-mhitachi
Complies with the calling conventions defined by Hitachi.

Also see -mnomacsave.

-mieee
Increases IEEE compliance for floating-point code.

-misize
Dumps the instruction size and location in the assembly code.

480 G C C : T h e C o m p l e t e R e f e r e n c e

-ml
Generates code for the processor in little endian mode.

Also see -mb.

-mnomacsave
Marks the MAC register as clobbered by a call, even if -mhitachi is specified.

-mpadstruct
This option is deprecated. It pads structures to multiples of four bytes, which is
incompatible with the SH ABI.

-mprefergot
Generates function calls using the Global Offset Table instead of the Procedure Linkage
Table when generating position-independent code.

-mrelax
Shortens some address references at link time. This option sets the linker -relax
option.

-mspace
Optimizes for size instead of speed. This option is set by -Os.

-musermode
Generates a library function call to invalidate instruction cache entries, after fixing up
a trampoline. This is the default when the target is sh-*-linux*.

This library function call doesn’t assume it can write to the entire memory address
space.

SPARC Options
The following are the options defined for the Sun Microsystems SPARC processor.

-m32
On the SPARC V9 processor in a 64-bit environment, this option sets int, long, and
pointer values to 32 bits.

-m64
On the SPARC V9 processor in a 64-bit environment, this option sets int to 32 bits
while setting long and pointer values to 64 bits.

-mapp-regs>
Generates code using the global registers 2 through 4, which the SPARC SVR4 ABI
reserves for applications. This is the default.

To be fully SVR4 ABI compliant (at the cost of some performance loss),
specify -mno-app-regs. Libraries and system software should be compiled
with -mno-app-regs.

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 481
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

-mcmodel=setting
On the SPARC V9 processor in a 64-bit environment, this option generates code for the
specified code model. The settings for the code models are listed in Table 21-7.

-mbroken-saverestore
On the SPARCLET processor, this option will generate code that does not use nontrivial
forms of the save and restore instructions.

The reason for this option is that early versions of the SPARCLET processor do not
correctly handle save and restore instructions when used with arguments, but they
are correctly handled when used without arguments. A save instruction used without
arguments increments the current window pointer but does not allocate a new stack
frame because it is assumed that the window overflow trap handler will properly
handle this case, as do interrupt handlers.

-mcpu=type
The instruction set, register set, and instruction scheduling parameters are set for the
specific machine named as the type. Supported values for type are v7, cypress, v8,
supersparc, sparclite, hypersparc, sparclite86x, f930, f934, sparclet,
tsc701, v9, and ultrasparc.

482 G C C : T h e C o m p l e t e R e f e r e n c e

Setting Code Model

medlow The Medium/Low code model means the program must be
linked in the low 32 bits of the address space. Pointers are
64 bits. Programs can be statically or dynamically linked.

medmid The Medium/Middle code model means the program must be
linked in the low 44 bits of the address space, the text segment
must be less than 2G bytes in size, and the data segment must
be within 2G of the text segment. Pointers are 64 bits.

medany The Medium/Anywhere code model means the program may be
linked anywhere in the address space, the text segment must be
less than 2G bytes in size, and the data segment must be within
2G of the text segment. Pointers are 64 bits.

embmedany The Medium/Anywhere code model for embedded systems
assumes a 32-bit text and a 32-bit data segment, both starting
anywhere (determined at link time). Register %g4 points to the
base of the data segment. Pointers are 64 bits. Programs are
statically linked. PIC is not supported.

Table 21-7. The SPARC V9 Model Settings

Default instruction scheduling parameters are used for values that select an
architecture and not an implementation. Table 21-8 lists the architectures and the
implementations that support them.

-mcypress
This is the default. The compiler optimizes code for the Cypress CY7C602 chip, as
used in the SparcStation/SparcServer 3xx series. This is also appropriate for the older
SparcStation 1, 2, IPX, and so on.

This option is deprecated and will be removed from a future version of the compiler.
Use -mcpu=cypress instead.

-mfaster-structs
This option enforces the assumption that structures have an 8-byte alignment. This
enables the use of pairs of ldd and std instructions for copies in structure assignment.
This code is in place of twice as many ld and st pairs.

However, the use of this changed alignment directly violates the SPARC ABI, so it
is intended only for use on targets where it is understood that the resulting code will
not be in line with the ABI rules.

The default is -mno-faster-structs.

-mflat
This option specifies that the compiler should not generate save and restore instructions
but instead should use a “flat” or “single register window” calling convention. The default
is -mno-flat.

This model uses %i7 as the frame pointer and is compatible with the normal register
window model. Code from the two models may be intermixed. The local registers and
the input registers (0–5) will still be saved on the stack as necessary.

By specifying -mno-flat, the compiler emits save and restore instructions (except
for leaf functions), which is the normal mode of operation.

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 483
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

Architecture Implementations

v7 cypress

v8 supersparc, hypersparc

sparclite f930, f934, sparclite86x

sparclet tsc701

v9 ultrasparc

Table 21-8. The Implementations That Support Various Architectures

-mfpu
This is the default, which is to generate code containing hardware floating-point
instructions.

To generate code containing library calls for floating-point operations, specify
-mno-fpu. The libraries for this are not available for all SPARC platforms. The
libraries used by the native compiler of the target machine can be used, but these
cannot be used in cross-compilation. The embedded targets sparc-*-aout and
sparclite-*-* do provide software floating-point support.

The option -mfpu can also be written -mhard-float.
Also see -msoft-float.

-mhard-float
Same as -mfpu.

-mhard-quad-float
The code output with this option set contains quad-word (long double)
floating-point instructions.

-mlittle-endian
On the SPARCLET processor and on the SPARC V9 possessor in a 64-bit environment,
this option will generate code for a processor running in little-endian mode.

-mlive-g0
On the SPARCLET processor, this option will treat register %g0 as a normal register.
GCC will continue to clobber it, as necessary, but will not assume it always reads as 0.

-msoft-float
Same as -mno-fpu, except changes are made to the calling convention in the generated
code. This means this option can only be used if you compile the entire program with
this option. Also, you must compile libgcc.a, the library that comes with GCC, with the
-msoft-float option so that all the code will be consistent.

-msoft-quad-float
This is the default. The code output with this option set contains library calls for
quad-word (long double) floating-point instructions. The functions called are
those specified in the SPARC ABI.

There is no -mhard-quad-float option because there are no SPARC
implementations that have hardware support for quad-word floating-point
operations. They all invoke a trap handler for one of these instructions, and then
the trap handler emulates the effect of the instruction. Because of the trap handler
overhead, this is much slower than calling the ABI library routines. This is the
reason for the -msoft-quad-float option being the default.

484 G C C : T h e C o m p l e t e R e f e r e n c e

-msparclite
This option selects a variation in the SPARC architecture. Unless the compiler is
specifically configured for the Fujitsu SPARClite, GCC generates code for the v7
variant of the SPARC architecture. The integer multiply, integer divide, and scan (ffs)
instructions exist in SPARClite but not in SPARC V7.

This option is deprecated and will be removed from a future version of the compiler.
Use -mcpu=sparclite instead.

-mstack-bias
On the SPARC V9 processor in a 64-bit environment, this option makes the assumption
that the stack pointer (and frame pointer, if present) are offset by -2047, which must
be added back when making stack frame references. The default is -no-stack-bias,
which assumes no such offset is present.

-msupersparc
The compiler optimizes code for the SuperSparc CPU, as used in the SparcStation 10,
1000, and 2000 series. This option also enables use of the full SPARC V8 instruction set.

This option is deprecated and will be removed from a future version of the compiler.
Use -mcpu=supersparc instead.

-mtune=type
Sets the instruction scheduling parameters for the specified machine type but does not
specify the instruction set or register set, which would be specified if the -mcpu option
were used.

The same values that can be used for -mcpu can also be used for -mtune. The only
useful values are the ones that specify a particular CPU implementation (that is, the
names listed in the second column of Table 21-8).

-munaligned-doubles
This option imposes the assumption that doubles have 8-byte alignment only if they
are contained in another type, or if they have an absolute address. All other doubles
are assumed to have 4-byte alignment. Specifying this option avoids some rare
compatibility problems with code generated by other compilers. This is not the default
because it results in a performance loss, especially for floating-point code.

The default is -mno-unaligned-doubles, which assumes all doubles have
8-byte alignment.

-mv8
This option selects a variation on the SPARC architecture. This option produces SPARC
V8 code. The only difference from V7 code is that the compiler emits the integer multiply
and integer divide instructions that exist in SPARC V8 but not in SPARC V7.

This option is deprecated and will be removed from a future version of the compiler.
Use -mcpu=v8 instead.

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 485
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

System V Options
The following are some additional options available on System V Release 4.

-G
Creates a shared object. It is recommended that -symbolic or -shared be used
instead of this option.

-Qn
Refrains from adding any .ident directives to the output file. This is the default.

-Qy
Identifies the versions of each tool used by the compiler by using an .ident assembler
directive in the output.

-Ym,directory
Looks in the directory to find the M4 preprocessor. The assembler uses this option.

-YP,directories
Searches the specified directories, and no others, for libraries specified by the
-lname option.

TMS320C3x/C4x Options
The following options are defined for TMS320C3x/C4x implementations.

-mbig
Generates code for the big memory model. The big memory model is the default and
requires reloading of the DP register for every direct memory access.

Also see -msmall.

-mbig-memory
Same as -mbig.

-mbk
Allows allocation of general integer operands into the block count register BK. To disallow
the allocation, specify -mno-bk.

-mcpu=type
Sets the instruction set, register set, and instruction scheduling parameters for the
specified machine type. The valid choices for type are c30, c31, c32, c40, and c44.
The default is c40, which generates code for the TMS320C40.

-mdb
Enables generation of code using decrement and branch DBcond(D) instructions.
This is enabled by default for the C4x. It can be disabled by specifying -mno-db.

486 G C C : T h e C o m p l e t e R e f e r e n c e

This is disabled for the C3x for safety because the maximum iteration count on the
C3x is 2^23 + 1. Note that GCC will try to reverse a loop so that it can utilize the decrement
and branch instructions, but it will give up if there is more than one memory reference
in the loop. Therefore, a loop where the loop counter is decremented can generate
slightly more efficient code, in cases where the RPTB instruction cannot be utilized.

-mdp-isr-reload
Forces the DP register to be saved on entry to an interrupt service routine (ISR), reloaded
to point to the data section, and restored on exit from the ISR. This should not be
required unless the small memory model has been violated by a modification being
made to the DP register.

-mfast-fix
Disables the generation of the additional code required to correct the results of the FIX
instruction. The default is -mno-fast-fix.

The C3x/C4x FIX instruction to convert a floating-point value to an integer value
chooses the nearest integer less than or equal to the floating-point value rather than to
the nearest integer. Therefore, if the floating-point number is negative, the result will be
incorrectly truncated and additional code is necessary to detect and correct this case.

-mloop-unsigned
Allows an unsigned iteration count. The default is -mno-loop-unsigned.

The maximum iteration count when using RPTS and RPTB (and DB on the C40)
is 2^31 + 1, because these instructions test whether the iteration count is negative
to terminate the loop. If the iteration count is unsigned, there is a possibility that the
2^31 + 1 maximum iteration count may be exceeded.

Also see -mrptb and -mrpts.

-mmemparm
Generates code that uses registers for passing arguments to functions. By default,
arguments are passed in registers where possible, rather than by pushing arguments
onto the stack.

Also see -mregparm.

-mmpyi
Uses the 24-bit MPYI instruction for integer multiplies on the C3x instead of the default
of making a library call to guarantee 32-bit results. This option can be suppressed by
-mno-mpyi.

If one of the operands is a constant, the multiplication will be performed using
shifts and adds. If this option is not specified for the C3x, squaring operations are
performed inline instead of a library call.

-mparallel-insns
Allows the generation of parallel instructions. This is enabled by default by -O2 but
can be disabled by -mno-parallel-insns.

Also see -mparallel-mpy.

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 487
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

-mparallel-mpy
Allows the generation of MPY||ADD and MPY||SUB parallel instructions, provided
-mparallel-insns is also specified. These instructions have tight register constraints that
can “pessimize” the code generation of large functions. This option can be disabled by
-mno-parallel-mpy.

-mparanoid
Same as -mdp-isr-reload.

-mregparm
Generates code that uses the stack for passing arguments to functions. By default,
arguments are passed in registers where possible, rather than by pushing arguments
onto the stack.

Also see -mmemparm.

-mrptb
Enables the generation of repeat block sequences using the RPTB instruction for zero
overhead looping. This is enabled by default by -O2 but can be disabled with -mno-rptb.

The RPTB construct is only used for innermost loops that do not call functions or
jump across the loop boundaries. There is no advantage to having nested RPTB loops
due to the overhead required to save and restore the RC, RS, and RE registers.

Also see -mrpts and -mloop-unsigned.

-mrpts=number
Enables the use of the single instruction repeat instruction RPTS. The default is
-mno-rpts.

If a repeat block contains a single instruction, and the loop count can be guaranteed
to be less than the value specified by number, GCC will generate an RPTS instruction
instead of an RPTB. If no number is specified, an RPTS will be generated even if the
loop count cannot be determined at compile time.

The repeated instruction following RPTS does not have to be reloaded from memory
for each iteration, thus freeing up the CPU busses for operands. However, because
interrupts are blocked by this instruction, it is disabled by default.

Also see -mrptb and -mloop-unsigned.

-msmall
Generates code for the small memory model. The small memory model assumes that
all data fits into one 64K word page. At runtime, the content ofthe DP register must be
set to point to the 64K page containing the .bss and .data program sections.

Also see -mbig.

-msmall-memory
Same as -msmall.

488 G C C : T h e C o m p l e t e R e f e r e n c e

-mti
Tries to generate an assembler syntax that satisfies the TI assembler (asm30). This also
enforces compatibility with the API employed by the TI C3x C compiler. For example, a
long double is passed as a structure rather than in floating-point registers.

V850 Options
The following options are defined for V850 implementations.

-mbig-switch
Generates code suitable for big switch tables. This option should be used only if the
assembler/linker complains about out-of-range branches within a switch table.

-mep
Optimizes basic blocks that use the same index pointer four or more times to copy a
pointer into the ep register and that use the shorter sld and sst instructions. This is
the default if optimization is turned on, but it can be disabled by -mno-ep.

-mlong-calls
Treats all calls as being far away. If calls are assumed to be far away, the compiler
will always load the function’s address up into a register and call indirectly through the
pointer.

This option can be suppressed by -mno-long-calls.

-mprolog-function
Uses external functions to save and restore registers at the prolog and epilog of a
function. The external functions are slower but use less code space if more than one
function needs to save the same set of registers. This is the default if optimization is
turned on, but it can be disabled by -mno-prolog-function.

-msda=number
Puts static or global variables whose size is number bytes or less into the small data
area that register gp points to. The small data area can hold up to 64KB.

Also see -mtda and -mzda.

-mspace
Tries to make the code as small as possible by turning on the -mep and
-mprolog-function options.

-mtda=number
Puts static or global variables whose size is number bytes or less into the tiny data
area that registers ep addresses. The tiny data area can hold up to 256 bytes in total
(128 bytes for byte references).

Also see -msda and -mzda.

C h a p t e r 2 1 : M a c h i n e - S p e c i f i c C o m p i l e r O p t i o n s 489
P

ER
IP

H
ER

A
LS

A
N

D
IN

TER
N

A
LS

-mv850
Specifies that the target processor is the V850.

-mzda=number
Puts static or global variables whose size is number bytes or less into the first 32KB
of memory.

Also see -msda and -mtda.

VAX Options
The following are the options defined for the DEC VAX processor.

-mg
Outputs code for the VAX g-format floating-point numbers instead of d-format.

-mgnu
Performs output jump instructions on the assumption that the GNU assembler is
being used.

-munix
Specifies to not output certain jump instructions (such as aobleq) that the UNIX
assembler for the VAX cannot handle across long ranges.

Xstormy16 Options
The following option is defined for Xstormy16.

-msim
Chooses startup files and linker scripts suitable for the simulator.

490 G C C : T h e C o m p l e t e R e f e r e n c e

Part IV
Appendixes

This page intentionally left blank.

Appendix A
GNU General
Public License

493

The GCC compiler is licensed under the GNU General Public License (which is
also called the GNU GPL, or just the GPL).

The type of license granted by the GPL is known as a copyleft. Briefly, this means
that anyone has the right to copy and use the software but that if it is incorporated into
a product, that product must also be licensed by the GPL. That is, you cannot take GPL
software and convert it to proprietary software. However, there is no restriction
whatsoever on you using GCC as a tool to create software that is licensed in any way
you wish. The binary bits and pieces that become a part of the produced program do
not require the program to be licensed under the GPL.

An alternative to the GPL is the Lesser General Public License (LGPL). This license
was formerly called the Library GPL, but the name was changed because it was somewhat
misleading—it is suitable for some, but not all, libraries. The LGPL allows library
routines to be used in proprietary programs as long as the libraries are shared and not
statically linked. An example of this is the GNU version of the standard C library.

The following is the text of the GPL. It describes the details of the license in very clear
language. At the end of the document is a description of the process to be followed for
you to place your software under the GPL.

GNU General Public License11

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble
The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its
users. This General Public License applies to most of the Free Software Foundation’s
software and to any other program whose authors commit to using it. (Some other Free
Software Foundation software is covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code
or can get it if you want it, that you can change the software or use pieces of it in new
free programs; and that you know you can do these things.

494 G C C : T h e C o m p l e t e R e f e r e n c e

1 Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee,
you must give the recipients all the rights that you have. You must make sure that they,
too, receive or can get the source code. And you must show them these terms so they
know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you
this license which gives you legal permission to copy, distribute and/or modify the
software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified
by someone else and passed on, we want its recipients to know that what they have is
not the original, so that any problems introduced by others will not reflect on the
original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to
avoid the danger that redistributors of a free program will individually obtain patent
licenses, in effect making the program proprietary. To prevent this, we have made it
clear that any patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms of
this General Public License. The “Program”, below, refers to any such program
or work, and a “work based on the Program” means either the Program or any
derivative work under copyright law: that is to say, a work containing the Program
or a portion of it, either verbatim or with modifications and/or translated into
another language. (Hereinafter, translation is included without limitation in the
term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by
this License; they are outside its scope. The act of running the Program is not
restricted, and the output from the Program is covered only if its contents
constitute a work based on the Program (independent of having been made by
running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code
as you receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that refer to this License

A p p e n d i x A : G N U G e n e r a l P u b l i c L i c e n s e 495
A

P
P

EN
D

IX
ES

and to the absence of any warranty; and give any other recipients of the
Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may
at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it,
thus forming a work based on the Program, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that
you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that
you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run,
you must cause it, when started running for such interactive use in the
most ordinary way, to print or display an announcement including an
appropriate copyright notice and a notice that there is no warranty (or else,
saying that you provide a warranty) and that users may redistribute the
program under these conditions, and telling the user how to view a copy of
this License. (Exception: if the Program itself is interactive but does not
normally print such an announcement, your work based on the Program is
not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be reasonably
considered independent and separate works in themselves, then this License,
and its terms, do not apply to those sections when you distribute them as
separate works. But when you distribute the same sections as part of a whole
which is a work based on the Program, the distribution of the whole must be
on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control
the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with
the Program (or with a work based on the Program) on a volume of a storage
or distribution medium does not bring the other work under the scope of this
License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections 1 and 2
above provided that you also do one of the following:

496 G C C : T h e C o m p l e t e R e f e r e n c e

a) Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2 above
on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any
third party, for a charge no more than your cost of physically performing source
distribution, a complete machine-readable copy of the corresponding source
code, to be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to
distribute corresponding source code. (This alternative is allowed only for
noncommercial distribution and only if you received the program in object
code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all the
source code for all modules it contains, plus any associated interface definition
files, plus the scripts used to control compilation and installation of the executable.
However, as a special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary form) with the
major components (compiler, kernel, and so on) of the operating system on which
the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the source code
from the same place counts as distribution of the source code, even though third
parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense or distribute the Program is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its
derivative works. These actions are prohibited by law if you do not accept this
License. Therefore, by modifying or distributing the Program (or any work
based on the Program), you indicate your acceptance of this License to do so,
and all its terms and conditions for copying, distributing or modifying the
Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program),
the recipient automatically receives a license from the original licensor to copy,
distribute or modify the Program subject to these terms and conditions. You
may not impose any further restrictions on the recipients’ exercise of the rights

A p p e n d i x A : G N U G e n e r a l P u b l i c L i c e n s e 497
A

P
P

EN
D

IX
ES

granted herein. You are not responsible for enforcing compliance by third
parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions
of this License, they do not excuse you from the conditions of this License. If you
cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not
distribute the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies directly
or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has
the sole purpose of protecting the integrity of the free software distribution system,
which is implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed through that
system in reliance on consistent application of that system; it is up to the author/
donor to decide if he or she is willing to distribute software through any other
system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries
either by patents or by copyrighted interfaces, the original copyright holder
who places the Program under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the
General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the Program specifies
a version number of this License which applies to it and “any later version,” you
have the option of following the terms and conditions either of that version or
of any later version published by the Free Software Foundation. If the Program
does not specify a version number of this License, you may choose any version
ever published by the Free Software Foundation.

498 G C C : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x A : G N U G e n e r a l P u b l i c L i c e n s e 499
A

P
P

EN
D

IX
ES

10. If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission.
For software which is copyrighted by the Free Software Foundation, write to
the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all
derivatives of our free software and of promoting the sharing and reuse of
software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY
WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS
PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING
ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM
(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY
OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to
the start of each source file to most effectively convey the exclusion of warranty; and

each file should have at least the “copyright” line and a pointer to where the full notice
is found.

<one line to give the program's name and a brief idea of what it does.>

Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place,
Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail. If the
program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type 'show w'.

This is free software, and you are welcome to redistribute it under certain

conditions; type 'show c' for details.

The hypothetical commands 'show w' and 'show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may be called
something other than 'show w' and 'show c'; they could even be mouse-clicks or menu
items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your school,
if any, to sign a “copyright disclaimer” for the program, if necessary. Here is a sample;
alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program

'Gnomovision' (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it
more useful to permit linking proprietary applications with the library. If this is what
you want to do, use the GNU Library General Public License instead of this License.

500 G C C : T h e C o m p l e t e R e f e r e n c e

Appendix B
Environment Variables

501

Anumber of environment variables can be set to affect the way GCC compiles
programs. The controls imposed by these variables can also be imposed by
using the appropriate command-line options.

Several of the environment variables are set to a list of directory names. These names
are listed in the same format as is used on the PATH environment variable. The special
character named PATH_SEPARATOR (defined during the installation of the compiler) is
used between the directory names. On UNIX systems the separator is a colon, and on
Window systems it is a semicolon.

C_INCLUDE_PATH
This environment variable applies when compiling C programs. The list of one or more
directory names specified by this environment variable is searched for header files, just
as if they had been specified on the command line with the -isystem option. Any
directories specified by -isystem are searched first.

Also see CPATH, CPLUS_INCLUDE_PATH, and OBJC_INCLUDE_PATH.

COMPILER_PATH
This environment variable can be set to a list of one or more directories to be searched
when the compiler is looking for its subprograms, if the subprograms are not located
by the GCC_EXEC_PREFIX specification.

Also see LIBRARY_PATH, GCC_EXEC_PREFIX, and the -B command-line option.

CPATH
This environment variable applies when compiling C, C++, and Objective-C programs.
The list of one or more directory names specified by this environment variable is
searched for header files, just as if they had been specified on the command line with
the -I option. Any directories specified by -I are searched first.

Also see C_INCLUDE_PATH, CPLUS_INCLUDE_PATH, and OBJC_INCLUDE_PATH.

CPLUS_INCLUDE_PATH
This environment variable applies when compiling C++ programs. The list of one or
more directory names specified by this environment variable is searched for header files,
just as it had been specified on the command line with the -isystem option. Any
directories specified by -isystem are searched first.

Also see CPATH, C_INCLUDE_PATH, and OBJC_INCLUDE_PATH.

DEPENDENCIES_OUTPUT
Setting this environment variable to a file name will cause the preprocessor to write a
dependency-based makefile rule to the file. System header file names are not included.

If the environment variable is set to a single name, it is taken to be the name of the
file, and the name on the dependency rule is taken from the name of the source file. If
there are two names in the definition, the second name is the name of the target used
on the dependency rule.

502 G C C : T h e C o m p l e t e R e f e r e n c e

The result of setting this environment variable is the same as using a combination
of the command-line options -MM, -MF, and -MT. Also see SUNPRO_DEPENDENCIES.

GCC_EXEC_PREFIX
If this environment variable is defined, it will be used as a prefix string on the names of
all the subprograms executed by the compiler. For example, if you were to set the variable
to testver instead of looking for as, the assembler, it would first try to find it under
the name testveras. If it is not found under this name, the compiler continues by
looking for it by its normal name. You can use slash characters in the prefix name to
specify a path name.

The default setting for GCC_EXEC_PREFIX is prefix/lib/gcc-lib/, where prefix is the
name specified by the configure script when the compiler was installed. This prefix
is also used to locate standard linker files to be included as part of the executable program.

If you use the -B command-line option, it will override this setting. Also see
COMPILER_PATH.

LANG
This environment variable is used to specify the character set used by the compiler for
the creation of wide character literals, string literals, and comments.

Defining LANG as C-JIS instructs the preprocessor to interpret multibyte characters
as Japanese Industrial Standard (JIS) characters. C-SJIS can be used to specify SHIFT-JIS
characters and C-EUCJP indicates Japanese EUC.

If LANG is not defined or is defined to be something that is not recognized, the
function mblen() is used to determine the character width, and mbtowc() is used to
convert multibyte sequences into wide characters.

LC_ALL
If set, the value of this environment variable overrides any setting for both
LC_MESSAGES and LC_CTYPE.

LC_CTYPE
This environment variable specifies the character classification of multibyte characters
defined in quoted strings. It is primarily used to determine character boundaries in a
string, which is required for character encodings that use quote or escape characters
that could be misinterpreted as the end of the string or a special character. It can be set
to a value such as en_AU for Australian English or es_MX for Mexican Spanish. If this
variable is not set, the value defaults to the LANG variable or, if LANG is not set, the C
English behavior is used. Also see LC_ALL.

LC_MESSAGES
This environment variable specifies the language to be used to issue diagnostic messages
from the compiler. It can be set to a value such as en_AU for Australian English or
es_MX for Mexican Spanish. If this variable is not set, the value defaults to the LANG
variable or, if LANG is not set, the C English behavior is used. Also see LC_ALL.

A p p e n d i x B : E n v i r o n m e n t V a r i a b l e s 503
A

P
P

EN
D

IX
ES

LD_LIBRARY_PATH
This environment variable does not affect the compiler, but it does have an effect when
a program is run. The variable specifies a list of directories that the program will search
to locate shared libraries. This variable must be set for the execution of a program only
if the shared libraries are to be found in some location other than where they were
when the program was compiled.

LD_RUN_PATH
This environment variable does not affect the compiler, but it does have an effect when
a program is run. It is used at runtime to specify the name of a file from which the running
program is to get its symbol names and addresses. The addresses are not relocated,
making it possible to refer symbolically to absolute address locations in other files. This
is identical to the -R option on the ld utility.

LIBRARY_PATH
This environment variable can be set to a list of one or more directory names to be
searched when the linker is looking for special linker files and for libraries specified by
name with the -l (letter l) command-line option.

Directories specified by the -L command-line option take precedence over this
environment variable and will be searched first. Also see COMPILER_PATH.

OBJC_INCLUDE_PATH
This environment variable applies when compiling Objective-C programs. The list of
one or more directory names specified by this environment variable is searched for
header files, just as if they had been specified on the command line with the -isystem
option. Any directories specified by -isystem are searched first.

Also see CPATH, CPLUS_INCLUDE_PATH, and C_INCLUDE_PATH.

SUNPRO_OUTPUT
Setting this environment variable to a file name will cause the preprocessor to write a
dependency-based makefile rule to the file. System header file names are included.

If the environment variable is set to a single name, it is taken to be the name of the
file, and the name on the dependency rule is taken from the name of the source file. If
there are two names in the definition, the second name is the name of the target used
on the dependency rule.

The result of setting this environment variable is the same as using a combination
of the command-line options -M, -MF, and -MT. Also see DEPENDENCIES_OUTPUT.

TMPDIR
This variable contains the path name of a directory that will be used by the compiler
to contain the temporary work files. These are the files that are normally deleted at
the end the compile process. An example of this would the file that is output from the
preprocessor and used as input to the compiler.

504 G C C : T h e C o m p l e t e R e f e r e n c e

Appendix C
Command-Line
Cross Reference

505

This appendix is a cross reference for the command-line options. The command-
line options are listed alphabetically by keyword and by category. The keywords
are words extracted from the option names, and the categories are derived from

the general purpose of the options. You will be able to find options listed under the
name of the language to which they apply, whether the options apply to the compiler’s
internal operations, and so on. For example, if you want to know which command-line
options affect the preprocessor or the linker, you will find them listed here.

Cross Reference
Ada -gnat, -I, --include-directory, --no-standard-includes,
-nostdinc

alias -fargument-alias, -fargument-noalias,
-fargument-noalias-global, -fstrict-aliasing

align -falign-functions, -falign-jumps, -falign-labels,
-falign-loops, -Wcast-align

argument -fargument-alias, -fargument-noalias,
-fargument-noalias-global, -fugly-args, -Wformat-extra-args

asm --assemble, -fasm, -fdata-sections, -ffunction-sections,
-finhibit-size-directive, --for-assembler, -fverbose-asm, -Wa

assert -A, -A-, --assert

atexit -fuse-cxa-atexit

bitfields -fsigned-bitfields, -funsigned-bitfields

boehm -fuse-boehm-gc

bounds -fbounds-check, -ffortran-bounds-check

C --ansi, -ansi, -aux-info, -c, -C, -fallow-single-precision, -fasm,
-fbuiltin, -fcommon, -fcond-mismatch, -fdollars-in-identifiers,
-fdump-translation-unit, -ffreestanding, -fhosted, -finline,
-fshort-wchar, -fsigned-bitfields, -fsigned-char,
-funsigned-bitfields, -funsigned-char, -fwritable-strings,
-pedantic, -pedantic-errors, -std, -traditional-cpp,
-Waggregate-return, -Wbad-function-cast, -Wcast-align,
-Wcast-qual, -Wchar-subscripts, -Wcomment, -Wconversion,
-Wdeprecated-declarations, -Werror-implicit-function-declaration,

506 G C C : T h e C o m p l e t e R e f e r e n c e

A
P

P
EN

D
IX

ES

-Wformat, -Wformat-extra-args, -Wformat-nonliteral,
-Wformat-security, -Wformat-y2k, -Wimplicit,
-Wimplicit-function-declaration, -Wimplicit-int, -Wimport,
-Winline, -Wlarger-than-size, -Wlong-long, -Wmain, -Wmissing-braces,
-Wmissing-declarations, -Wmissing-format-attribute,
-Wmissing-noreturn, -Wmissing-prototypes, -Wmultichar,
-Wnested-externs, -Wpacked, -Wpadded, -Wparentheses,
-Wpointer-arith, -Wredundant-decls, -Wreturn-type,
-Wsequence-points, -Wshadow, -Wsign-compare, -Wstrict-prototypes,
-Wswitch, -Wsystem-headers, -Wtraditional, -Wtrigraphs, -Wundef,
-Wuninitialized, -Wwrite-strings

C++ --ansi, -ansi, -faccess-control, -falt-external-templates,
-fasm, -fcheck-new, -fconserve-space, -fconst-strings,
-fdefault-inline, -fdollars-in-identifiers,
-fdump-class-hierarchy, -fdump-translation-unit,
-fdump-tree-switch, -felide-constructors, -fenforce-eh-specs,
-fexternal-templates, -ffor-scope, -fgnu-keywords,
-fimplement-inlines, -fimplicit-inline-templates,
-fimplicit-templates, -finline, -fmemoize-lookups,
-fms-extensions, -fnonansi-builtins, -foperator-names,
-foptional-diags, -fpermissive, -frepo, -frtti, -fshort-wchar,
-fstats, -ftemplate-depth-number, -fuse-cxa-atexit, -fvtable-gc,
-fweak, -fwritable-strings, -nostdinc++, -pedantic,
-pedantic-errors, -Waggregate-return, -Wcast-align, -Wcast-qual,
-Wchar-subscripts, -Wcomment, -Wconversion, -Wctor-dtor-privacy,
-Wdeprecated, -Wdeprecated-declarations, -Weffc++,
-Wextern-inline, -Wformat, -Wformat-extra-args, -Wformat-nonliteral,
-Wformat-security, -Wformat-y2k, -Wimport, -Winline,
-Wlarger-than-size, -Wlong-long, -Wmain, -Wmissing-braces,
-Wmissing-format-attribute, -Wmissing-noreturn, -Wmultichar,
-Wnon-template-friend, -Wnon-virtual-dtor, -Wold-style-cast,
-Woverloaded-virtual, -Wpacked, -Wpadded, -Wparentheses,
-Wpmf-conversions, -Wpointer-arith, -Wredundant-decls, -Wreorder,
-Wreturn-type, -Wshadow, -Wsign-compare, -Wsign-promo, -Wswitch,
-Wsynth, -Wsystem-headers, -Wundef, -Wuninitialized, -Wwrite-strings

call -fcall-saved-register, -fcall-used-register, -fcaller-saves,
-fnon-call-exceptions, -foptimize-sibling-calls

case -fcase-initcap, -fcase-lower, -fcase-preserve,
-fcase-strict-lower, -fcase-strict-upper, -fcase-upper,
-fignore-case, -fintrin-case-spec, -fmatch-case-spec,
-fsource-case-spec, -fsymbol-case-spec

A p p e n d i x C : C o m m a n d - L i n e C r o s s R e f e r e n c e 507

cast -Wbad-function-cast, -Wcast-align, -Wcast-qual,
-Wold-style-cast

char -fsigned-char, -funsigned-char, -Wchar-subscripts

check -fbounds-check, -fcheck-new, -fcheck-references,
-fdelete-null-pointer-checks, -fforce-classes-archive-check,
-ffortran-bounds-check, -fruntime-checking, -fstack-check,
-fstore-check

Chill -fchill-grant-only, -fgrant-only, -fignore-case,
-flocal-loop-counter, -fold-string, -fruntime-checking, -I,
--include-directory, -lang-chill

class --bootclasspath, -fconstant-string-class,
-fdump-class-hierarchy, -fforce-classes-archive-check,
-foptimize-static-class-initialization, -foutput-class-dir,
--main, --output-class-directory

comment -C, -Wcomment

compile -c, --compile, -E, -fassume-compiled, -fcommon,
-fcompile-resource, -fgnu-linker, -fgrant-only, -fhosted,
-fmerge-all-constants, -fmerge-constants, -fsyntax,
-ftest-coverage, -ftime-report, --help, -pass-exit-codes, -pipe,
--preprocess, -Q, -s, -S, -save-temps, -syntax-only, -time, -v

complex -femulate-complex, -fugly-complex

constant -fconst-strings, -fconstant-string-class,
-fkeep-static-consts, -fmerge-all-constants, -fmerge-constants,
-fsingle-precision-constant

conversion -Wconversion, -Wpmf-conversions

cse -fcse-follow-jumps, -fcse-skip-blocks, -ffunction-cse,
-frerun-cse-after-loop

debug -a, -d, --debug, -fdump-class-hierarchy,
-fdump-translation-unit, -fdump-tree-switch, -fdump-unnumbered,
-finstrument-functions, -fmem-report, -foptional-diags,
-fpermissive, -fsilent, -fstats, -ftemplate-depth-number,
-ftrapping-math, -ftrapv, -fverbose-asm, -g, -gcoff, -gdwarf,
-gdwarf-2, -ggdb, -gstabs, -gvms, -gxcoff, -H, -v

508 G C C : T h e C o m p l e t e R e f e r e n c e

declaration -gen-decls, -Wdeprecated-declarations,
-Werror-implicit-function-declaration,
-Wimplicit-function-declaration, -Wmissing-declarations,
-Wredundant-decls

dependencies --dependencies, -M, -MD, -MF, -MG, -MM, -MMD, -MP, -MQ,
-MT, -pass-exit-codes, --print-missing-file-dependencies,
--user-dependencies, -Wout-of-date, --write-dependencies,
--write-user-dependencies

deprecated -Wdeprecated, -Wdeprecated-declarations

directory -B, --bootclasspath directory, -foutput-class-dir,
-I, -I-, -idirafter, -include, --include-barrier,
--include-directory, --include-directory-after,
--include-prefix, --include-with-prefix,
--include-with-prefix-after, -iprefix, -isystem,
-iwithprefix, -iwithprefixbefore, -L, --library-directory,
--output-class-directory, --prefix, -print-multi-directory,
-print-prog-name, -print-search-dirs

dollar -fdollar-ok, -fdollars-in-identifiers

dump -d, --dump, -dumpbase, -dumpmachine, -dumpspecs, -dumpversion,
-fdump-class-hierarchy, -fdump-translation-unit,
-fdump-tree-switch, -fdump-unnumbered

error -fmessage-length, -pedantic-errors, -Werror,
-Werror-implicit-function-declaration

exception -fasynchronous-unwind-tables, -fcheck-new,
-fenforce-eh-specs, -fexceptions, -fnon-call-exceptions,
-fnonansi-builtins

extern -falt-external-templates, -fexternal-templates,
-Wextern-inline, -Wnested-externs

file -aux-info, -B, --bootclasspath, -include, --include-barrier,
--include-directory-after, --include-prefix,
--include-with-prefix, --include-with-prefix-after,
--language, -llibrary, -MF, --output, -print-file-name,
-print-libgcc-file-name, --print-missing-file-dependencies,
-print-prog-name, -remap, -save-temps, -x

float -ffloat-store, -fpretend-float, -Wfloat-equal

A
P

P
EN

D
IX

ES
A p p e n d i x C : C o m m a n d - L i n e C r o s s R e f e r e n c e 509

form -ffixed-form, -ffree-form

format -Wformat, -Wformat-extra-args, -Wformat-nonliteral,
-Wformat-security, -Wformat-y2k, -Wmissing-format-attribute

Fortran -fautomatic, -fbackslash, -fbadu77-intrinsics-spec,
-fbounds-check, -fcase-initcap, -fcase-lower, -fcase-preserve,
-fcase-strict-lower, -fcase-strict-upper, -fcase-upper,
-fdollar-ok, -femulate-complex, -ff2c, -ff2c-intrinsics-spec,
-ff66, -ff77, -ff90, -ff90-intrinsics-spec, -ffixed-form,
-ffixed-line-length-len, -ffortran-bounds-check, -ffree-form,
-fglobals, -fgnu-intrinsics-spec, -finit-local-zero, -finline,
-fintrin-case-spec, -fmatch-case-spec, -fmil-intrinsics-spec,
-fonetrip, -fpedantic, -fsecond-underscore, -fsilent,
-fsource-case-spec, -fsymbol-case-spec, -fsyntax, -ftypeless-boz,
-fugly-args, -fugly-assign, -fugly-assumed, -fugly-comma,
-fugly-complex, -fugly-init, -fugly-logint, -funderscoring,
-funix-intrinsics, -fversion, -fvxt, -fvxt-intrinsics, -fzeros,
-maligned-data, -pedantic, -pedantic-errors, -Wglobals, -Wimplicit,
-Wsurprising, -Wuninitialized

function -falign-functions, -ffunction-cse,
-ffunction-sections, -finline-functions,
-finstrument-functions, -fkeep-inline-functions,
-Wbad-function-cast, -Werror-implicit-function-declaration,
-Wimplicit-function-declaration, -Wunused-function

garbage -fuse-boehm-gc, -fvtable-gc

gcse -fgcse, -fgcse-lm, -fgcse-sm

global -fargument-noalias-global, -fglobals, -fvolatile-global,
-Wglobals

gnu -fgnu-intrinsics-spec, -fgnu-keywords, -fgnu-linker,
-fgnu-runtime

implicit -fimplicit-inline-templates, -fimplicit-templates,
-Werror-implicit-function-declaration, -Wimplicit,
-Wimplicit-function-declaration, -Wimplicit-int

include -include, --include-barrier, --include-directory,
--include-directory-after, --include-prefix,
--include-with-prefix, --include-with-prefix-after,

510 G C C : T h e C o m p l e t e R e f e r e n c e

--include-with-prefix-before, --no-standard-includes,
--trace-includes

inline -fasm, -fdefault-inline, -fimplement-inlines,
-fimplicit-inline-templates, -finline, -finline-functions,
-finline-limit, -fkeep-inline-functions, -Wextern-inline, -Winline

intrinsics -fbadu77-intrinsics-spec, -ff2c-intrinsics-spec,
-ff90-intrinsics-spec, -fgnu-intrinsics-spec,
-fmil-intrinsics-spec, -funix-intrinsics, -fvxt-intrinsics
iprefix

Java --bootclasspath, -C, -D, --define-macro,
--encoding, -fassume-compiled, -fbounds-check,
-fcheck-references, -fcompile-resource, -fencoding,
-fforce-classes-archive-check, -fhash-synchronization, -fjni,
-foptimize-static-class-initialization, -foutput-class-dir,
-fstore-check, -fuse-boehm-gc, -fuse-divide-subroutine, -I,
--include-directory, --main, --output-class-directory,
-Wextraneous-semicolon, -Wlarger-than-size, -Wout-of-date,
-Wredundant-modifiers, -Wshadow

label -falign-labels, -Wunused-label

length -ffixed-line-length-len, -fmessage-length

lib -B, -L, -l, --library-directory, --no-standard-libraries,
-print-libgcc-file-name, -print-multi-lib, -shared,
-shared-libgcc, -static, -static-libgcc, -symbolic

link -c, --compile, -fcommon, -fgnu-linker, -fhosted,
-fmerge-all-constants, -fmerge-constants, --for-linker,
--force-link, -fvtable-gc, -L, --library-directory, -llibrary,
-no-standard-libraries, -nodefaultlibs, -nostartfiles, -nostdlib,
-s, -shared, -shared-libgcc, -static, -static-libgcc, -symbolic, -u,
-Wl, -Xlinker

machine -b, --target, --target-help

macro --ansi, -D, --define-macro, -ffast-math,
-ffixed-register, -imacros, -U, -undef, --undefine-macro

math -fallow-single-precision, -femulate-complex, -ffast-math,
-ffloat-store, -fmath-errno, -fpretend-float, -fschedule-insns,
-fschedule-insns2, -fshort-double, -fsingle-precision-constant,
-ftrapping-math, -ftrapv, -ftypeless-boz, -fugly-complex,

A
P

P
EN

D
IX

ES
A p p e n d i x C : C o m m a n d - L i n e C r o s s R e f e r e n c e 511

-funsafe-math-optimizations, -funsigned-bitfields,
-funsigned-char, -fuse-divide-subroutine, -Wdiv-by-zero,
-Wfloat-equal, -Wsign-compare, -Wsign-promo, -Wsurprising

missing --print-missing-file-dependencies, -Wmissing-braces,
-Wmissing-declarations, -Wmissing-format-attribute,
-Wmissing-noreturn, -Wmissing-prototypes

Objective-C --ansi,-ansi, -fasm, -fbuiltin, -fconstant-string-class,
-fgnu-runtime, -finline, -gen-decls, -Waggregate-return,
-Wcast-align, -Wcast-qual, -Wchar-subscripts, -Wcomment,
-Wconversion, -Wdeprecated-declarations, -Wformat,
-Wformat-extra-args, -Wformat-nonliteral, -Wformat-security,
-Wformat-y2k, -Wimport, -Winline, -Wlarger-than-size, -Wlong-long,
-Wmissing-braces, -Wmissing-format-attribute, -Wmissing-noreturn,
-Wmultichar, -Wpacked, -Wpadded, -Wparentheses, -Wpointer-arith,
-Wprotocol, -Wredundant-decls, -Wselector, -Wshadow, -Wsign-compare,
-Wswitch, -Wsystem-headers, -Wundef, -Wuninitialized

optimization -fasynchronous-unwind-tables, -fbranch-probabilities,
-fcall-saved-register, -fcall-used-register, -fcaller-saves,
-fcommon, -fconserve-space, -fcprop-registers, -fcse-follow-jumps,
-fcse-skip-blocks, -fdata-sections, -fdefer-pop, -fdelayed-branch,
-fdelete-null-pointer-checks, -fdiagnostics-show-location,
-felide-constructors, -fexpensive-optimizations, -ffloat-store,
-ffunction-cse, -ffunction-sections, -fgcse, -fgcse-lm,
-fglobals, -fguess-branch-probability, -finit-local-zero,
-fkeep-static-consts, -fmemoize-lookups, -fmove-all-movables,
-fomit-frame-pointer, -foptimize-register-move,
-foptimize-sibling-calls, -foptimize-static-class-initialization,
-fpack-struct, -fpeephole, -fpeephole2, -fppc-struct-return,
-fprefetch-loop-arrays, -freduce-all-givs, -freg-struct-return,
-fregmove, -frename-registers, -frerun-cse-after-loop,
-frerun-loop-opt, -fruntime-checking, -fschedule-insns,
-fschedule-insns2, -fshort-double, -fshort-enums, -fssa, -fssa-ccp,
-fssa-dce, -fstack-check, -fstore-check, -fstrength-reduce,
-fstrict-aliasing, -fthread-jumps, -funroll-all-loops,
-funroll-loops, -funwind-tables, -fvtable-gc, -fzeros, -O, --optimize
optimize, --optimize, --param, -Wdisabled-optimization

preprocessor -A, -A-, --assert, -C, -D, --define-macro,
--dependencies directory, -E, -fident, -fpreprocessed, -H,
-I, -I-, -idirafter, -imacros, -include, --include-barrier,

512 G C C : T h e C o m p l e t e R e f e r e n c e

--include-directory, --include-directory-after,
--include-prefix, --include-with-prefix,
--include-with-prefix-after, --include-with-prefix-before,
-iprefix, -isystem, -iwithprefix, -iwithprefixbefore, -M,
-MD, -MF, -MG, -MM, -MMD, -MP, -MQ, -MT, --no-line-commands,
--no-standard-includes, -nostdinc, -nostdinc++, -P,
--preprocess, --print-missing-file-dependencies, -remap,
--trace-includes, -trigraphs, -U, -undef, --undefine-macro,
--user-dependencies, -Wp, --write-dependencies,
--write-user-dependencies, -Wsystem-headers, -Wundef,
-Wunknown-pragmas

profile -a, -fdata-sections, -fprofile-arcs, -ftest-coverage, -p,
-pg, --profile, --profile-blocks

prototypes -Wmissing-prototypes, -Wstrict-prototypes

register -fcall-saved-register, -fcall-used-register,
-fcprop-registers, -ffixed-register, -fforce-addr, -fforce-mem,
-foptimize-register-move, -freg-struct-return, -fregmove,
-frename-registers, -fstack-limit-register, -remap

return -fppc-struct-return, -freg-struct-return,
-Waggregate-return, -Wreturn-type

sign -fsigned-bitfields, -fsigned-char, -Wsign-compare,
-Wsign-promo

ssa -fssa, -fssa-ccp, -fssa-dce

stack -fstack-check, -fstack-limit-register,
-fstack-limit-symbol

standard --ansi, -ansi, -ff2c, -ff2c-intrinsics, -ff66, -ff77,
-ff90, -ff90-intrinsics, -ffixed-form, -ffixed-line-length-len,
-ffor-scope, -ffree-form, -fgnu-keywords, -fmil-intrinsics,
-fms-extensions, -fnext-runtime, -fnonansi-builtins,
-foperator-names, -fpedantic, -fpermissive, -fsigned-bitfields,
-fsigned-char, -ftrapping-math, -ftrapv, -fugly-args, -fugly-assign,
-fugly-assumed, -fugly-comma, -fugly-complex, -fugly-init,
-fugly-logint, -fvxt, -fvxt-intrinsics, -fwritable-strings,
--no-standard-includes, --no-standard-libraries, -pedantic,
-std, -traditional-cpp, -Wtraditional

A
P

P
EN

D
IX

ES
A p p e n d i x C : C o m m a n d - L i n e C r o s s R e f e r e n c e 513

static -fkeep-static-consts,
-foptimize-static-class-initialization,
-fvolatile-static, -static, -static-libgcc

strings -fconst-strings, -fconstant-string-class,
-fold-string, -fwritable-strings, -Wwrite-strings

syntax -fsyntax, -syntax-only

template -falt-external-templates, -fexternal-templates,
-fimplicit-inline-templates, -fimplicit-templates,
-ftemplate-depth-number, -Wnon-template-friend

underscore -fleading-underscore, -fsecond-underscore,
-funderscoring

version -dumpversion, -fversion, --use-version, -v, -V

warn --all-warnings, --extra-warnings, -fmessage-length,
--no-warnings, -w, -W, -Waggregate-return, -Wall,
--warn-, -Wbad-function-cast, -Wcast-align, -Wcast-qual,
-Wchar-subscripts, -Wcomment, -Wconversion, -Wctor-dtor-privacy,
-Wdeprecated, -Wdeprecated-declarations,
-Wdisabled-optimization, -Wdiv-by-zero, -Weffc++, -Werror,
-Werror-implicit-function-declaration, -Wextern-inline,
-Wextraneous-semicolon, -Wfloat-equal, -Wformat,
-Wformat-extra-args, -Wformat-nonliteral,
-Wformat-security, -Wformat-y2k, -Wglobals, -Wimplicit,
-Wimplicit-function-declaration, -Wimplicit-int, -Wimport,
-Winline, -Wlarger-than-size, -Wlong-long, -Wmain,
-Wmissing-braces, -Wmissing-declarations,
-Wmissing-format-attribute, -Wmissing-noreturn,
-Wmissing-prototypes, -Wmultichar, -Wnested-externs,
-Wnon-template-friend, -Wnon-virtual-dtor, -Wold-style-cast,
-Wout-of-date, -Woverloaded-virtual, -Wpacked, -Wpadded,
-Wparentheses, -Wpmf-conversions, -Wpointer-arith, -Wprotocol,
-Wredundant-decls, -Wredundant-modifiers, -Wreorder,
-Wreturn-type, -Wselector, -Wsequence-points, -Wshadow,
-Wsign-compare, -Wsign-promo, -Wstrict-prototypes, -Wsurprising,
-Wswitch, -Wsynth, -Wsystem-headers, -Wtraditional, -Wtrigraphs,
-Wundef, -Wuninitialized, -Wunknown-pragmas, -Wunreachable-code,
-Wunused, -Wunused-function, -Wunused-label, -Wunused-parameter,
-Wunused-value, -Wunused-variable, -Wwrite-strings

514 G C C : T h e C o m p l e t e R e f e r e n c e

Appendix D
Command Line Options

515

This appendix contains an alphabetic listing of the command line options. Some
of the options apply to every language, and some of them apply to a subset of
one or more languages. There are also options that apply only to the preprocessor,

the assembler, or the linker. Each option is marked with the language, or languages,
to which it applies. If an option applies to all languages, it has no such mark.

It is possible to compile any of the languages by using the gcc command, but it
is possible that some language-specific options would not be available. Each language has
its own front end driver process so, if an option exists only for one specific language, it
will probably be necessary to use the driver as a front end for gcc for the option
to be recognized.

Option Prefix
All of the options begin with a hyphen. A number of them have two hyphens. There
are also some special meanings to options that begin with -f and -W.

The - - Prefix
The traditional method for indicating an option on the command line is to have a letter
preceded by a single hyphen. The newer form is to have an option preceded with a pair
of hyphens. Many of the options listed in this index have both the older (single hyphen)
and new (double hyphen) formats that do exactly the same thing. For example, the
traditional option setting to have debugging information included in the generated
code is:

L D-1 -g

This same option can be specified in a longer file, like this:

L D-2 --debug

The -f Prefix
The letter f stands for flag. Most of these options are either on or off. For example,
the following option sets a flag that will cause peephole optimization to occur:

L D-3 -fpeephole

Because a flag is either on or off, each flag option has an inverse that is invoked
by using the same name with a no- prefix. For example:

L D-4 -fno-peephole

516 G C C : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 517
A

P
P

EN
D

IX
ES

Almost all of these options toggle a true or false flag setting, so one or other of the
options is the default setting. But there are some exceptions. For example, either of the two
following options can be used to specify the scope of variables declared in a for loop:

L D-5 -ffor-scope

-fno-for-scope

Neither of the scope settings is the default. The default is to follow the standard, but
both of these settings are variations from the standard.

Any -f option can also be entered as a double hyphen option. For example, the
following pair of options are exactly the same:

L D-6 -frtti

--rtti

The -W Prefix
The -W prefix is used to specify whether certain warning messages are to be generated
by the compiler. In a manner similar to the -f flag settings, the warnings can be turned
both on and off by using no- on the front of the name. For example, the following
setting will cause the compiler to issue a warning if there are too many arguments
on a function call:

L D-7 -Wformat-extra-args

To suppress the warning messages, you can use the following:

L D-8 -Wno-format-extra-args

The Order on the Command Line
The order of the options can be important. If you have two options on the command line
that conflict with one another, normally the second option on the line will override the
first by simply changing the setting that the first one made. The command line is read
from left to right, and each option sets either a value or a flag (or a collection of values
and flags), so anything that is set at one point on the command line can be changed later.

This ordering requirement can actually be used as a convenience. For example, the
-O3 optimizing flag turns on the -finline-functions option. If, however, you want
to keep -O3 but turn off the inlining of functions, you can do so by entering the flags
in the following order:

L D-9 -O3 -fno-inline-functions

The File Types
The compiler determines the contents of a file by examining the suffix of the file name
looking for a match to the ones in Table D-1. Any file with an unknown suffix is assumed
to be input for the linker on the target machine and is passed to it during the link phase.
The -x option can be used to instruct the compiler to ignore the suffix and assume the
file is of a certain type.

518 G C C : T h e C o m p l e t e R e f e r e n c e

Suffix File Contains

.a A static library (also called an archive file) containing
one or more .o files to be used by the linker.

.c C source code that is to be preprocessed.

.adb Ada body file, which is source code containing a library
unit body.

.ads Ada spec file, which is source code containing a library
unit declaration or a library unit, renaming a declaration.

.C .c++ .cc

.cp .cpp .cxx
C++ source code that is to be preprocessed.

.class A file containing the bytecodes produced by compiling
a Java program.

.f .for .FOR Fortran source code that is not to be preprocessed.

.F .fpp .FPP Forttran source code that is to be preprocessed.

.h C, C++, or Objective-C header file.

.i C source code that is not to be preprocessed.

.ii C++ source code that is not to be preprocessed.

.java Java source code.

.m Objective C source code that is to be preprocessed.

.mi Objective C source code that is not to be preprocessed.

.mo Binary file containing translations for
internationalization.

.o An object file in a format appropriate to be supplied
to the linker.

Table D-1. File Name Suffixes Recognized by GCC

Alphabetic List of Options
-###
Displays the current version number of the compiler and then displays all of the
commands that would be used to run each phase of the compile and link process,
but none of the commands are executed. When used alone, this option will display
the current version number of the compiler. When used in combination with the
--help option, a complete list of the command line options is displayed.

Also see -v.

-a
Generate extra code for profiling at the top of each basic block of executable code.
The profiling will record each time a basic block of code is executed. The recorded
information includes the basic block starting address and the name of the function
containing the basic block. If the -g option is also specified, the recorded information for
each block will include the file name and the starting line number of each block. The
information is written to a file named bb.out (unless another name was specified in
the machine description).

Also see -ax, -fprofile-arcs, and -ftest-coverage. This option can be
written --profile-blocks.

A
P

P
EN

D
IX

ES
A p p e n d i x D : C o m m a n d L i n e O p t i o n s 519

Suffix File Contains

.po Text file containing translations for internationalization.

.r Fortran source code to be preprocessed by a
RATFOR preprocessor.

.S Assembly language source code that is to be preprocessed.

.s Assembly language source code that is not to
be preprocessed.

.so A dynamic library (also called a shared library) containing
one or more .o files to be used by a program at
execution time.

<other> Files with an unrecognized suffix, or with no suffix,
are assumed to be input for the linker and are passed
to it unmodified.

Table D-1. File Name Suffixes Recognized by GCC (continued)

520 G C C : T h e C o m p l e t e R e f e r e n c e

-A question(answer) Pre
Specifies a question and answer for an assertion in the following form:

L D-10 #if #question(answer)

This option can be written --assert. Also see -A-.

-A- Pre
Disables standard assertions that normally describe the target machine. Also see -A.

--all-warnings
Same as -Wall.

--ansi C C++ ObjC
Same as -ansi.

--ansi C C++ ObjC
This option instructs the compiler to successfully compile programs that are standards
compliant, but does not constrain the code in any way that does not conflict with the
standard. That is, non-conflicting GNU extensions remain enabled. For C, this option
will correctly compile ISO C89 compliant programs. For C++, GNU extensions that
conflict with ISO C++ are disabled.

This option also set the options -fno_asm, -fno_nonansi_builtin, -trigraphs,
and -fno_dollars_in_identifiers. For C++ it also sets the options -fno_gnu_
keywords and -fno-nonansi-builtins.

This option defines the macro __STRICT_ANSI__ which prevents some header files
from declaring functions or macros that may conflict names in the program being
compiled.

This option disables the GNU C extension keywords asm, typeof, and inline, but
the alternate forms __asm__, __typeof__, and __inline__ remain available.

To constrain code strictly to the standard, use -pedantic in addition to -ansi.
Also see -std.

This option can be written --ansi.

--assemble
Same as -S.

--assert question(answer) Pre
Same as -A.

-aux-info filename C
Outputs prototype declarations for all the functions declared or defined in a single
compilation unit (a C source file and all the header files it includes) to the named file.

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 521
A

P
P

EN
D

IX
ES

-b machine
This option specifies the target machine for which the program is to be compiled. If this
option is not specified, the default is to compile code for the machine on which the
compiler is being run. The machine is determined by naming the directory containing
the compiler which is normally /user/local/lib/gcc-lib/machine/version.

Also see -B and -V. This option can be written --target.

-Bprefix
The prefix path specifies the location of the libraries, include files, executable programs,
and data files of the compiler. To run a subprogram such as cpp, as, or ld, the prefix is
tried as the path to locate each program. You may specify a directory separator character
at the end of the prefix, or not, as you prefer.

The same standard search procedure is used in all cases. The following steps are
executed in order until the item being sought is located:

1. If a prefix is specified by the -B option, it is used to construct a path name.

2. A path is constructed by using the prefix /usr/lib/gcc/.

3. A path is constructed by using the prefix /usr/local/lib/gcc-lib/.

4. Each directory path defined in the PATH variable is used in the order they
appear in the variable.

The -B option also is used to locate libraries for the linker because the compiler
translates this option into a -L option to pass to the linker.

The -B option also is used to locate header files because the specified prefix has the
directory name appended to it and is translated into a -isystem option passed to
the preprocessor.

The environment variable GCC_EXEC_PREFIX can be set to the name of the prefix
directory and will have the same effect as if it were specified as a -B option.

Special case for bootstrapping the compiler: If the prefix is in the form dirpath/
stage0 through dirpath/stage9, it will be replaced by dirpath/include.

This option can be written --prefix.

—bootclasspath=pathname Java
The pathname species the location of the standard Java packages and classes (such as
java.lang.String). The path name can be that of a directory, a jar file, or a zip file.

Also see --classpath and -I.

-c
Do not invoke the linker. This option will allow compiling and assembling of source
files into object files, but the linker will not be run to create an executable. The object files
produced will be stored in a file of the same name as the source file with a .o suffix.
Any input files that do not have a recognizable suffix according to Table D-1 or do not
have their types indicated by -x are ignored.

This option can be written --compile.

-C Java
Causes the compiler to produce bytecode class files instead of the default executable
object code. Also see -foutput-class-dir.

-C Pre
This option, used in conjunction with the -E option, causes all comments to be discarded.

This option can be written --comments.

--compile
Same as -c.

-dletters
One or more letters can be listed to specify when a debugging dump (or dumps) should
occur and what the dump is to contain. This option is for use in debugging the compiler
by making it possible to examine detailed information at various stages of compilation.
Each output file is identified with a suffix of the pass number followed by some identifying
letters. For example, the file dumped following pass 21, which is global register allocation,
while compiling doline.c would be named doline.21.greg.

Also see -dumpbase, -fdump-unnumbered, -fdump-translation-unit,
-fdump-class-hierarchy, and -fdump-tree-switch. This option can also be
written --dump.

Table D-2 lists all of the available letters for the -d option, which can be inserted in
any combination and in any order. This feature has been implemented strictly for purposes
of debugging the compiler, so you will find that not all the letters are implemented in
every release. Note that the letters D, I, M, and N have a special meaning to the preprocessor
only when used in conjunction with the -E option.

522 G C C : T h e C o m p l e t e R e f e r e n c e

Letter Produces

A Annotates the assembly language output with miscellaneous
debugging information.

a Sets the flags so that all the named files are dumped except the
name.pass.vcg files, which can only be specified by the v
option letter.

b Dump to name.14.bp after computing branch probabilities.

B Dump to name.29.bbro after block reordering.

c Dump to name.16.combine after instruction combination.

Table D-2. The Letters That Can Be Used in Combination with the -d Option

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 523
A

P
P

EN
D

IX
ES

Letter Produces

C Dump to name.17.ce after first if-conversion.

d Dump to name.31.dbr after delayed branch scheduling.

D When used along with the -E option, in addition to the normal output
after preprocessing, include all macro definitions in the output.

e Dump to name.04.ssa and name.07.ussa after static single
assignments optimizations.

E Dump to name.26.ce2 after the second if-conversion.

f Dump to name.13.cfg after data flow analysis and name.15.life
after life analysis.

F Dump to name.09.addressof after purging ADDRESSOF codes.

g Dump to name.21.greg after global register allocation.

G Dump to name.10.gcse after GCSE.

h Dump to name.02.eh after finalization of exception handling.

i Dump to name.01.sibling after sibling call optimizations.

I When used in conjunction with the -E option, the preprocessor outputs
the #include directives in addition to the other preprocessor output.

j Dump to name.03.jump after the first jump optimizations.

k Dump to name.28.stack after register-to-stack conversion and to
name.32.stack after the conversion from registers to stack.

l Dump to name.20.lreg after local register allocation.

L Dump to name.11.loop after loop optimization.

M Dump to name.30.mach after the machine dependent reorganization
pass. When used along with the -E option, the preprocessor will output
a list of the macro definitions in effect at the end of all preprocessing.

m At the end of the compile, print the memory usage information to
standard error.

n Dump to name.25.rnreg after register renumbering.

Table D-2. The Letters That Can Be Used in Combination with the -d Option
(continued)

524 G C C : T h e C o m p l e t e R e f e r e n c e

Letter Produces

N Dump to name.18.regmove after the register move pass. When used
along with the -E option, in addition to the normal output after
preprocessing, include a list of all macros in the simplified form of
#define name.

o Dump to name.22.postreload after post-reload optimizations.

p Annotate the assembly language with the length of each instruction
and a comment indicating which pattern and alternative was used
for optimization.

P Annotate the assembly language with the RTL code that produced
each instruction. This also sets the -dp option for more annotation.

r Dump to name.00.rtl after generating the RTL. Also see the
letter x.

R Dump to name.27.sched2 after the second scheduling pass.

s Dump to name.08.cse after CSE and the jump optimization that
sometimes follows the first CSE pass.

S Dump to name.19.sched after the first scheduling pass.

t Dump to name.12.cse2 after the second CSE pass and the jump
optimization that sometimes follows the second CSE pass.

u Dump to name.06.null after SSA optimizations.

v Dump to name.pass.vcg a representation of the control flow graph
for each of the other files dumped (except name.00.rtl). The file is
formatted in such a way that it can be read and displayed by vcg.

w Dump to name.23.flow2 after the second flow pass.

W Dump to name.05.ssaccp after the SSA conditional
code propogation.

X Dump to name.06.ssadce after the SSA dead code elimination pass.

x Generate the RTL for a function but do not compile it. This letter is
often used with the letter r.

y The parser will dump debugging information to standard error.

z Dump to name.24.peephole2 after the peephole optimization pass.

Table D-2. The Letters That Can Be Used in Combination with the -d Option
(continued)

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 525
A

P
P

EN
D

IX
ES

-Dproperty[=string] Java
This option can be specified on the same command line that specifies
--main and will define a property that can be retrieved by calling the
java.lang.System.getProperty() method. If the string is not
specified, the property is defined with the empty string.

This option can be written --define-macro.

-Dmacro[=string] Pre
If the string is specified, a macro by that name is defined just as if it had been included
as part of the code. For example, -Dbrunt=logger generates the following definition:

L D-11 #define brunt=logger

If the string is not specified, the macro is defined as the string “1”. For example,
-Dminke generates the following definition:

L D-12 #define minke 1

All -D options are processed before any -U options, and all -U options are processed
before any -include or -imacros options.

This option can be written --define-macro.

--debug[level]
Same as -g.

--define-macro macro[=string] Pre Java
Same as -D.

--dependencies Pre
The same as -M.

--dump letters
Same as -d.

-dumpbase base
The base is the base name to be used for naming the dump files produced by the
-d option.

This option can be written --dumpbase.

-dumpmachine
Print the name of the target machine of this compiler and take no further action.

526 G C C : T h e C o m p l e t e R e f e r e n c e

-dumpspecs
Print the specifications used to build the compiler and take no further action. This is a
long listing including all the option (and default) settings that were used for compiling,
assembling, and linking the GCC compiler itself.

-dumpversion
Print the version number of the compiler and take no further action.

-E Pre
Stop after preprocessing the source code and output the result. The output is written
to standard out unless the -o option is used to send it to a file. Input files that do not
require preprocessing are ignored, which is determined either by the file name suffixes
in Table D-1 or by not having their types indicated by the -x option.

This option defines the environment variables __GNUC__, __GNUC_MINOR__,
and __GNUC_PATCHLEVEL__.

The -dD, -dI, -dM, and -dN options take on special meanings only when used
in conjunction with -E. Also see the -C and -P options. This option can be written
--preprocess.

--encoding=name Java
Same as -fencoding.

--extra-warnings
Same as -W.

-faccess-control C++
This is the default. If you specify -fno-access-control the compiler will not check for
access permision requirements. The only purpose of this flag is for working around
an access permission bug in the compiler.

-falign-functions[=number]
Aligns the starting address of functions on a boundary that is a power of 2 equal to or
greater than number, but only if it is necessary to skip no more than number bytes to do
it. For example, if number is 20, the resulting alignment is on a 32 byte boundary as long
as no more than 20 bytes must be skipped to place it there.

Setting number to a power of 2 causes all functions to be aligned to the boundary.
If the number is not specified the machine default is used. For some machines the
number is rounded up to a power of 2 thus aligning all functions. Specifying number
as 1 is equivalent to -fno-align-functions and no alignment will take place.

-falign-jumps[=number]
Aligns branch targets that cannot be reached any other way to a boundary that is a power
of 2 equal to or greater than number, but only if it is not necessary to skip no more than
number bytes to do it. For example, if number is 20 the resulting alignment is on a 32-byte
boundary as long as no more than 20 bytes must be skipped to place it there. Unlike the
similar option -falign-labels, this option does not require the insertion of dummy
instructions before the branch target.

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 527
A

P
P

EN
D

IX
ES

If number is not specified the machine default is used, which is normally 1.
Specifying the number as 1 is equivalent to -fno-align-jumps and no alignment
takes place.

-falign-labels[=number]
Aligns the targets of all branches to a boundary that is a power of 2 equal to or greater
than number, but only if it is not necessary to skip no more than number bytes to do it.
For example, if number is 20, the resulting alignment is on a 32-byte boundary as long
as no more than 20 bytes must be skipped to place it there. This option can make code
slower and larger because of the insertion of dummy instructions before the branch
target. For a similar, but cheaper, version of this option see -falign-jumps.

If -falign-loops or -falign-jumps is used, with a greater value than number,
the greater value is used here. If number is not specified, the machine default is used,
which is normally 1. Specifying number as 1 is equivalent to -fno-align-labels
and no alignment takes place.

-falign-loops[=number]
Aligns the top of loops to a boundary that is a power of 2 equal to or greater than number,
but only if it is not necessary to skip more than number bytes to do it. For example, if
number is 20, the resulting alignment is on a 32-byte boundary as long as no more than
20 bytes must be skipped to place it there. This option could make code larger because
of the insertion of dummy instructions to bring about alignment, but, depending on the
machine, the loop could execute faster because of branching to an aligned location from
the bottom of each iteration.

If number is not specified, the machine default is used, which is normally 1. Specifying
number as 1 is equivalent to -fno-align-loops, and no alignment takes place.

-fallow-single-precision C
This is the default. Do not perform single precision floating point math operations as
double precision. If you use the -traditional option, all floating point operations
are performed as double precision, but you can use this option to allow single precision
operations to take place.

-falt-external-templates C++
This option is deprecated. Template instances may or may not be emitted depending
on the location of the original template instantiation. The instantiation obeys #pragma
interface and #pragma implementation. Also see -fexternal-templates.

-fargument-alias
Specifies that arguments passed to functions may be aliases of one another. That is, two
or more parameters may represent the same memory location. It is also possible that an
argument can be an alias of a global value. This option is intended for internal compiler
use only.

This is the default for C, C++, and ObjC.
Also see -fargument-noalias and -fargument-noalias-global.

-fargument-noalias
Specifies that arguments passed to functions will never be aliases of one another. That
is, two or more parameters will not represent the same memory location. However, it is
possible that an argument can be an alias of a global value. This option is intended for
internal compiler use only.

Also see -fargument-alias and -fargument-noalias-global.

-fargument-noalias-global
Specifies that arguments passed to functions will never be aliases of one another. That
is, two or more parameters will not represent the same memory location. It is also not
possible that an argument is an alias of a global value. This option is intended for internal
compiler use only.

This is the default for Fortran.
Also see -fargument-alias and -fargument-noalias.

-fasm C C++ ObjC
This is the default, which enables the keywords asm, inline, and typeof.

For C, specifying -fno-asm disables the keywords asm, inline, and typeof. This
option has no effect on the keywords __asm__, __inline__, and __typeof__.

For C++, specifying -fno-asm disables the keyword typeof, but has no effect
on asm and inline because they are part of the language.

Other flags that effect these keywords are -ansi, -gnu-keywords, and -std.

-fassume-compiled=classname Java
The compiler can generate different code depending on whether it can assume that certain
classes have already been compiled into native code. The options -fassume-compiled
and -fno-assume-compiled can be used repeatedly to construct lists of classes that
can be assumed, or not assumed, to have been compiled.

-fasynchronous-unwind-tables
Generate unwind table in DWARF2 format if supported on the target machine. The
resulting table is in a format that can be used by asynchronous events such as a debugger
or garbage collector.

Also see -fexceptions, -fnon-call-exceptions, and -funwind-tables.

-fautomatic Fortran
This is the default. Specifying -fno-automatic has the same result as if the SAVE
statement had been specified for every local variable and array. It has no effect on
common blocks. This can be disabled by specifying -fno-automatic.

Also see -finit-local-zero.

-fbackslash Fortran
This is the default. Specifying -fno-backslash will prevent the backslash character
from being used as an escape character in Hollerith strings (as they are in C) to define

528 G C C : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 529
A

P
P

EN
D

IX
ES

special characters. The default is to interprent \n as a newline character and \007 as
the octal representation of the BEL (beep) character).

-fbadu77-intrinsics-spec Fortran
The spec specifies the status of the UNIX intrinsics that have inappropriate forms.
The spec can be any one of the following:

� enable The intrinsics are recognized and enabled. This is the default.

� hide The intrinsics are recognized and enabled only if the first mention
of the name of each one is in an INTRINSIC statement.

� disable The intrinsics are recognized, but references to them must be
made through an INTRINSIC statement.

� delete The intrinsics are not recognized.

-fbounds-check Java Fortran
For Java, this is the default. Specifying -fno-bounds-check disables the bounds
checking on all array accesses. This option will improve performance of array indexing,
but could result in unpredictable behavior if the bounds of an array are exceeded.

For Fortran, this option causes the generation of code that will make checks at runtime
to verify array subscripts and CHARACTER substring accesses are within the declared
minimum and maximum values.

Also see -ffortran-bounds-check.

-fbranch-probabilities
After using -fprofile-arcs to compile a program and then running it to create the
file containing execution counts for each block of code, the program can be compiled
again with this option, and the information from the file is used to optimize the code
for the branches that are taken most often. Without this information, GCC will guess
which path is taken most often to perform optimization. The information is stored in
a file with the name as the source and a .da suffix.

Also see -fguess-branch-probability.

-fbuiltin C ObjC
This is the default, which is to recognize built in functions by their name. The option
-fno-builtin specifies that no built in function is to be recognized unless it is
referenced by using the prefix __builtin_. For example, to get the built in version,
instead of calling the function named strcpy() you should call __builtin_strcpy().

Instead of using -fno-builtin to suppress all built in functions, you can append the
name of the function to the option name to select specific built in functions that will not
be used. For example, to allow all built in functions except bzero() and sqrt(), you
can use the following options:

L D-13 -fno-builtin-bzero -fno-builtin-sqrt

530 G C C : T h e C o m p l e t e R e f e r e n c e

For C++ -fno-builtin is always in effect, so the only way to make a direct call
to one of the C built in functions is to use the __builtin_ prefix, but the GNU C++
standard library uses many built in functions.

Also see -fbuiltin-function , -ffreestanding, and
-fnonansi-builtins.

-fcall-saved-register
Treat the named register as a register that can be allocated to contain a value, and that
value will be retained even through a function call. Functions compiled with this option
set must save and restore the contents of the register.

This option must not be specified for registers that have fixed roles (such as a frame
pointer or stack pointer).

The register names are platform dependent and are named in the REGISTER_NAMES
macro of the machine description.

Also see -fcall-used-register and -ffixed-register.

-fcall-used-register
Treat the named register as a register that is available for allocation, but will have its
contents destroyed by a function call. It may be allocated for temporary storage, but
must be reloaded after a function call.

This option must not be specified for registers that have fixed roles (such as a frame
pointer or stack pointer).

The register names are platform dependent and are named in the REGISTER_NAMES
macro of the machine description.

Also see -ffixed-register and -fcall-saved-register.

-fcaller-saves
Extra instructions are included to save registers before a function call and then restore
them afterward. The registers can then be used in the function call and inside the function
itself. Only registers that contain useful values are saved, and then only if it seems
better to save and restore than it does to reload the value later, when it is needed again.
This option is enabled by default on some machines and is always enabled by -O2, -O3,
and -Os, but can be overridden by -fno-caller-saves.

-fcase-initcap Fortran
Requires most source code to be written with initial upper case letters. Sets the options
-fintrin-case-initcap, -fmatch-case-initcap, -fsource-case-preserve,
and -fsymbol-case-initcap.

-fcase-lower Fortran
Maps source code to lower case. Sets the options -fintrin-case-any,
-fmatch-case-any, -fsource-case-lower, and -fsymbol-case-any.

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 531
A

P
P

EN
D

IX
ES

-fcase-preserve Fortran
Preserves all case in user defined symbols while allowing any case for matching
keywords and intrinsics. Sets the options -fintrin-case-any, -fmatch-case-any,
-fsource-case-preserve, and -fsymbol-case-any.

-fcase-strict-lower Fortran
Requires most source code to be in lower case. Sets the options -fintrin-case-lower,
-fmatch-case-lower, -fsource-case-preserve, and -fsymbol-case-lower.

-fcase-strict-upper Fortran
Requires most source code to be in upper case. Sets the options -fintrin-case-upper,
-fmatch-case-upper, -fsource-case-preserve, and -fsymbol-case-upper.

-fcase-upper Fortran
Maps source code to upper case. Sets the options -fintrin-case-any,
-fmatch-case-any, -fsource-case-upper, and -fsymbol-case-any.

-fcheck-new C++
Inserts code to check that the pointer returned from operator new, used in C++ to
allocate memory, does not return a NULL pointer. This is not normally necessary
because the version of new in the C++ library throws an exception if it is out of memory.
If an overloaded version of new could return NULL but does not throw an exception,
this option could be used to test the returned pointer.

-fcheck-references Java
Insert inline code to check for null pointer references when accessing an object through
a reference. This is usually unnecessary because most processors detect such null pointer
references.

-fcommon C
This is the default. Specifying -fno-common will cause the compiler to make an explicit
allocation of space in the data section for each global variable. The default is to allocate
them in a common block that is resolved by the linker, so declaring the same global
variable more than once causes the linker to resolve the two into one.

You can specify -fno-common to verify that the program will compile and link on
another system that does not use GCC.

For Fortran, the -fno-common option must not be used.
Also see “Attributes” in Chapter 4.

-fcompile-resource=resourcename Java
The resourcename is the name of a file containing property defintions and other resources
that is compiled into object code and can be accessed at run time by the core protocol
handler as core:/resourcename.

532 G C C : T h e C o m p l e t e R e f e r e n c e

-fcond-mismatch C
Allow type mismatches in conditional expressions.

-fconserve-space C++
Place global variables that are not initialized at compile time into the common segment
(as is done in C). This reduces the size of the executable file because no space is allocated
for them until the program loads. This flag no longer serves a purpose for most platforms
because support has been added to store variables in BSS without making them common.

Warning: If use of this option causes your program to crash when it is terminating,
it could be because an object is being destroyed twice because object definitions were
merged and assigned the same address.

-fconst-strings C++
This is the default. If you specify -fno-const-strings, string literal declarations are
defined as char * instead of the default const char *. To be able to actually write to
the strings, you would also need to use the -fwriteable-strings option.

-fconstant-string-class=classname ObjC
Use the specified classname as the name of the class instantiated for each literal string of
the form @"...". The default classname is NXConstantString.

-fcprop-registers
After all the register allocation has been completed, this option analyzes the pattern
of data copied into the registers to try to find places where it is not necessary to copy
a value into a register, but propogate a previous copy forward so it can be used again.
This option is set by -O but can be overridden with -fno-cprop-registers.

-fcse-follow-jumps
When the target of a jump cannot be reached any other way except by the jump being
taken, the common subexpression elimination scan follows the path of the jump. That
is, any values that exist before the jump is taken will always exist at the point of the
destination of the jump and can be used there. This flag is set by -O2, -O3, and -Os,
but can be overridden by -fno-cse-follow-jumps. Also see -fcse-skip-blocks
and --param.

-fcse-skip-blocks
If the body of an if statement is simple enough that it does not contain code that would
disrupt the previously calculated values, the common subexpression analysis flow skips
over the if statement and is applied to the statements that follow it. This flag is set by
-O2, -O3, and -Os, but can be overridden by -fno-cse-skip-blocks. Also see
-fcse-skip-blocks and --param.

-fdata-sections
Each data item is placed into its own named section in the assembly language output.
The section name is derived from the name of the data item. This only has an advantage
on machines with a linker that can use sectioning to optimize allocation of space. For
the same optimization with the executable code, see -ffunction-sections.

Setting this option for a machine that does not support sectioning in its assembler
code will result in a warning message, and the option will be ignored. Even on machines
that support such sectioning there will be no advantage unless that linker uses the
organization for optimization. In fact, it could have a detrimental effect by making
the object code larger and slower to load.

If the -p option is set for profiling, this option will have no effect. Also, because of
the rearrangement of the code, you may have problems with the -g option and debugging.

-fdefault-inline C++
This is the default. Member functions that have their bodies defined at the point of
declaration inside the class will be defined inline whether or not the inline keyword
is used to declare them. To prevent automatic inlining specify -fno-default-inline.
Also see --param.

-fdefer-pop
The arguments that were pushed onto the stack to make a function call are not popped
off immediately after the return of the function, but are allowed to accumulate along
with the arguments of several function calls, and the stack is later cleared of them all.
This option is set by default, so to force the stack to be cleared after each function call,
specify -fno-defer-pop.

-fdelete-null-pointer-checks
The code that checks for an attempt to dereference a null pointer is removed if dataflow
analysis indicates that the pointer cannot be null. In some environments it is possible
to process the result of an attempt to dereference a null pointer, so this option should
not be used in programs that rely on these checks. This flag is set by -O2, -O3, and -Os,
but can be overridden by -fno-delete-null-pointer-checks.

-fdelayed-branch
This flag only has effect on machines with delayed branch slots. This has to do with
loading and executing instructions at the same time the decision is being made whether
to take a branch. After the decision is made the result of the instruction may be discarded
depending on the location of the instruction and the decision made. This flag is set by
every level of optimization if the target machine supports it, but it can be overridden
by -fno-delayed-branch. Also see --param.

-fdiagnostics-show-location=where
It is possible for a diagnostic (error or warning) message to be long and split so it is
displayed on more than one line. The default setting of where is once, which causes the
source file location causing the diagnostic message to be included only once. Specifying
where as every-line will cause the inclusion of the source code location on every line
of the diagnostic message.

This option may not be implemented in all cases, and it only applies when the setting
(or default value) of -fmessage-length is some value other than zero.

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 533
A

P
P

EN
D

IX
ES

534 G C C : T h e C o m p l e t e R e f e r e n c e

-fdollar-ok Fortran
Allows dollar ($) characters in symbol names.

-fdollars-in-identifiers C C++
Accepts the character $ as a valid character in an identifier. The option -fno-dollars-
in-identifiers will explicitly prohibit their use. The default varies depending on
the platform and language. Traditional C allowed them, but the modern standards
prohibit them, so if you want to specify their use it would be best to do so explicitly.

-fdump-class-hierarchy[-format] C++
For each class, dump the hierarchy and virtual function table to a file with the same
name as the class and the suffix .class. The optional format can be specified as one
of the following:

� address The address of each node is printed and can be used to cross-reference
tree node addresses with other dumps, such as those produced by -d.

� slim Reduce the size of the output by inhibiting the dumping of the bodies of
functions or the members of scope.

� all Increase the size of the output by turning on all options.

-fdump-translation-unit[-format] C C++
Dump the compiler’s internal tree structure representing the source code to a file with
the same name as the source file with the suffix .tu. The optional format can be specified
as one of the following:

� address The address of each node is printed and can be used to cross-reference
tree node addresses with other dumps, such as those produced by -d.

� slim Reduce the size of the output by inhibiting the dumping of the bodies
of functions or the members of scope.

� all Increase the size of the output by turning on all options.

-fdump-tree-switch[-format] C++
Dumps various stages of the intermediate language tree to files. The file names are
created from the source file name with the suffix named as the switch specified as part
of the option. The switch must be specified as one of the following:

� original Dump the tree to name.original prior to any tree-base
optimization.

� optimized Dump the tree to name.optimized following all tree-base
optimization.

� inlined Dump the tree to name.inlined following function inlining.

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 535
A

P
P

EN
D

IX
ES

The optional format can be specified as one of the following:

� address The address of each node is printed and can be used to cross-reference
tree node addresses with other dumps, such as those produced by -d.

� slim Reduce the size of the output by inhibiting the dumping of the bodies
of functions or the members of scope.

� all Increase the size of the output by turning on all options.

-fdump-unnumbered
When debugging the compiler with the -d option, this option will suppress instruction
numbers and line numbers in the output files, which makes it easier to use diff to
compare dumps.

-felide-constructors C++
This is the default. The generated code that calls a function returning an object by value
may be simplified by having the function construct the object directly in the specified
return location instead of using a copy constructor to duplicate the one constructed
inside the function. This could cause a problem if there are side effects in a constructor,
and the default can be overridden with -fno-elide-constructors.

-femulate-complex Fortran
Implement complex arithmetic by emulation instead of using the gcc back end that
provides direct support for complex arithmetic.

This option was implemented as a work-around of bugs in the gcc complex arithmetic,
which are now believed to be fixed.

-fencoding=name Java
The name is the encoding name for a particular character set to be used to read source
files. The default is supplied the current locale setting of the computer or, if no locale
name is specified, the default is UTF-8.

-fenforce-eh-specs C++
This is the default. GCC generates code to enforce runtime exception violations according
to the C++ standard, but specifying -fno-enforce-eh-specs will suppress the
generation of the code. The size of the code is reduced without the code to check the
violations.

-fexceptions
Enables exception handling. This option generates the extra code necessary to process
the throwing and catching of exceptions. If you do not specify this option, it will
be specified automatically for languages such as Ada, Java, and C++ that normally
throw exceptions.

536 G C C : T h e C o m p l e t e R e f e r e n c e

There is no performance penalty with the generated code, but there is a size penalty
so you may want to specify -fno-exceptions if you are compiling C++ code that
does not use exceptions.

Also see -fnon-call-exceptions, -funwind-tables, and
-fasynchornous-unwind-tables.

-fexpensive-optimizations
This flag enables a few optimizations that are effective but cost in terms of compile time.
For example, common subexpression elimination is run again following global common
subexpression elimination. Some of the other optimizations are carried out in more depth
when this flag is set. This flag is set by -O2, -O3, and -Os, but can be overridden by
-fno-expensive-optimizations.

-fexternal-templates C++
This option is deprecated. Template instances may or may not be emitted depending on
the location of the template definition. The instantiation obeys #pragma interface
and #pragma implementation. Also see -falt-external-templates.

-ff2c Fortran
This is the default, which is to generate code compatible with f2c.

Specifying -fno-f2c will suppress generating code compatible with f2c and use
the GNU calling convention instead. This has no effect on code that interfaces with
the libf2c library other than disallowing library intrinsics from libf2c to be passed
as arguments.

The -fno-f2c option must be used consistently for all code that is to be linked
into a single program.

-ff2c-intrinsics-spec Fortran
The spec specifies the status of the f2c specific intrinsics that have inappropriate forms.
The spec can be any one of the following:

� enable The f2c-specific intrinsics are recognized and enabled. This is
the default.

� hide The f2c-specific intrinsics are recognized and enabled only if the first
mention of the name of each one is in an INTRINSIC statement.

� disable The f2c-specific intrinsics are recognized, but references to them
must be made through an INTRINSIC statement.

� delete The f2c-specific intrinsics are not recognized.

-ff66 Fortran
The source code being compiled is in the Fortran 66 dialect

Also see -ff77 and -ff90.

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 537
A

P
P

EN
D

IX
ES

-ff77 Fortran
The source code being compiled is in the Fortran 77 dialect.

This also specifies that the dialect is the one expected by the f2c utility that converts
Fortran source to C source.

Also see -ff66 and -ff90.

-ff90 Fortran
The compiler will recognize certain constructs of the Fortran 90 dialect.

More Fortran 90 constructs can be enabled by using the -fvxt and
-ff90-instrinsics-enable options.

Also see -ff66 and -ff77.

-ff90-intrinsics-spec Fortran
The spec specifies the status of the Fortran 90 intrinsics that have inappropriate forms.
The spec can be any one of the following:

� enable The Fortran 90 intrinsics are recognized and enabled. This is
the default.

� hide The Fortran 90 intrinsics are recognized and enabled only if the first
mention of the name of each one is in an INTRINSIC statement.

� disable The Fortran 90 intrinsics are recognized, but references to them
must be made through an INTRINSIC statement.

� delete The Forran 90 intrinsics are not recognized.

Also see -ff90 and -fvxt.

-ffast-math
Certain mathematical calculations are made faster by violating some of the ISO and
IEEE rules. For example, with this option set it is assumed that no negative values are
passed to sqrt() and that all floating point values are valid.

Setting this option causes the preprocessor macro __FAST_MATH__ to be defined
and also sets -fno-math-errno, -funsafe-math-optimizations, and
-fno-trapping-math. Setting -fno-fast-math will also set -fmath-errno.

-ffixed-register
Treat the named register as a fixed register that cannot be allocated for use by the compiler.
It may still be used as a stack pointer, frame pointer, or some other fixed purpose.

The register names are platform dependent and are named in the REGISTER_NAMES
macro of the machine description.

Also see -fcall-used-register and -fcall-saved-register.

-ffixed-form Fortran
This is the default. Specifies that the Fortran source code is in the traditional fixed form
instead of the free-form format like that of Fortran 90.

Same as -fno-free-form.

-ffixed-line-length-len Fortran
The len number specifies the column number after which all characters are ignored in
the fixed form of source input.

Specifying either -ffixed-line-length-0 or -ffixed-line-length-none
allows the input source line to be any length.

The value of len is traditionally 72 (leaving 8 spaces on an 80 column card
for sequencing).

-ffloat-store
Do not allocate registers to hold floating point values. On some machines this option
may cause the registers to extend the precision beyond that defined for the language,
and thus will carry more precision than the floating point data stored in memory.

The default is -fno-float-store, which allows the use of registers.
This flag is only useful if your program must restrict its precision to exactly that

defined by the IEEE standard.

-ffor-scope C++
The default is to follow the standard. This setting determines the scope of variables
declared in the initialization section of the for statement.

Specifying -ffor-scope limits the scope of the variables to the body of the loop.
Specifying -fno-for-scope limits the scope of the variables from the point at

which it is declared to the closing of the scope containing the for statement itself.
The following example is valid with this option:

L D-14 #include <stdio.h>

int main(int argc,char *argv[])

{

for(int i=0; i<10; i++) {

printf("Loop one %d\n",i);

}

printf("Out of loop %d\n",i);

return(0);

}

-fforce-addr
Address must be copied into registers to have arithmetic performed on them. This
improves the generated code because addresses needed will often have been
previously loaded into a register and do not need to be loaded again. The default
is -fno-force-addr. Also see -fforce-mem.

-fforce-classes-archive-check Java
This option will force a check for the presence of an attribute in the class file
java.lang.Object to make certain it was compiled by the GNU compiler.

538 G C C : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 539
A

P
P

EN
D

IX
ES

The attribute has zero size and is named gnu.gcj.gcj-compiled. This attribute
is checked except when the output from the compiler is to be bytecodes.

-fforce-mem
Values must be copied into registers to have arithmetic performed on them. This improves
the generated code because values needed will often have been previously loaded into
a register and do not need to be loaded again. This flag is set by -O2, -O3, and -Os;
otherwise the default is -fno-force-mem. Also see -fforce-addr.

-ffortran-bounds-check
Causes the generation of checks that will be made at runtime to verify that array
subscripts and CHARACTER substring accesses are within the declared minimum and
maximum values.

The same as -fbounds-check.

-ffree-form Fortran
Specifies that the Fortran source code is in a free-form format like that of Fortran 90.

Same as -fno-fixed-form.

-ffreestanding C
The compiled program is to run in a freestanding environment, which may not have
the standard library, and execution may not begin with main(). This option sets
-fno-builtin. This option is the same as -fno-hosted.

-ffunction-cse
This is the default. Function calls are made with the function address stored in a
register. Using -fno-function-cse will cause each instruction making a call to
implicitly include the address of the function. The default produces more efficient
code. Also see --param.

-ffunction-sections
Each function is placed into its own named section in the assembly language output.
The section name is derived from the function name. This only has an advantage on
machines with a linker that can use sectioning to optimize allocation of space. For the
same optimization with data, see -fdata-sections.

Setting this option for a machine that does not support sectioning in its assembler
code will result in a warning message, and the option will be ignored. Even on machines
that support such sectioning there will be no advantage unless that linker uses the
organization for optimization. In fact, it could have a detrimental effect by making
the object code larger and slower to load.

If the -p option is set for profiling, this option will have no effect. Also, because of
the rearrangement of the code, you may have problems with the -g option and debugging.

Also see “Attributes” in Chapter 4.

-fgcse
Performs global common subexpression elimination optimization. This option could
be detrimental if there are computed gotos in the program. This flag is set by -O2, -O3,
and -Os; which can be overridden with -fno-gcse. Also see --param.

-fgcse-lm
Performs global common subexpression elmination optimization by detecting load and
store operations inside a loop, in which the load operation is in a form that can be moved
in front of the loop and thus only occur once. This is the default, but will have no effect
except when -Os is set. It can be overridden with -no-fgcse-lm.

-fgcse-sm
Performs global common subexpression elmination optimization by detecting load and
store operations inside a loop, in which the store operation is in a form that can be moved
after the loop and thus only occur once. This is the default, but will have no effect except
when -Os is set. It can be overridden with -no-fgcse-sm.

-fglobals Fortran
This is the default. Specifying -fno-globals disables the diagnosis of such global
conflicts as the same procedure name being called with different argument types. This
option also disables inlining to prevent crashes from incorrect code generation.

-fgnu-intrinsics-spec Fortran
The spec specifies the status of the GNU intrinsics that have inappropriate forms.
The spec can be any one of the following:

� enable The GNU intrinsics are recognized and enabled. This is the default.

� hide The GNU intrinsics are recognized and enabled only if the first mention
of the name of each one is in an INTRINSIC statement.

� disable The GNU intrinsics are recognized, but references to them must be
made through an INTRINSIC statement.

� delete The GNU intrinsics are not recognized.

-fgnu-keywords C++
This is the default. The option -fno-gnu-keywords disables the typeof keyword.
Also see --ansi.

-fgnu-linker
This is the default. If you specify -fno-gnu-linker it means that the GNU linker is
not to be used, so code to perform certain global initialization (such as constructors and
destructors) is not generated. Without the GNU linker it is necessary that the collect2
utility be used to make certain the linker that is used will include constructors and
destructors.

On systems that require it, gcc is configured to automatically invoke collect2.

540 G C C : T h e C o m p l e t e R e f e r e n c e

-fgnu-runtime ObjC
This is the default for most systems. This option instructs the compiler to generate code
using the standard GNU Objective C runtime.

-fguess-branch-probability
This is the default. GCC will guess whether a branch is to be taken more often than
it is not, and will optimize the code accordingly.

A randomized model is used to make some of the guesses, so compiling
the same source could possibly generate different code. To disable this option
and force the same code to be generated with every compilation, specify
-fno-guess-branch-probability. For other options to prevent the randomness
and have the same code generated every time, see -fbranch-probabilities and
-fprofile_arcs.

-fhash-synchronization Java
This option will cause the location of synchronize, wait, and notify to be stored
in a hash table instead of inside each object.

-fhosted C
The compiled program is to run in a hosted environment, which has the entire standard
library available, and main() has a return type of int. This option sets -fbuiltin.
This option is the same as -fno-freestanding.

-fident Pre
This is the default. If -fno-ident is specified, the preprocessor will ignore the #ident
directive.

-fimplement-inlines C++
This is the default. Functions that are generated as inline code also have function bodies
generated for them where they are defined. The option -fno-implement-inlines
will suppress the generation of the function bodies for inline functions controlled by
#pragma implementation. If no function body is generated, every call to it must be
generated as inline code.

-fimplicit-templates C++
This is the default. Reference to a template, or the function of a template, that
does not already exist will cause an instantiation of the template. The option
-fno-implicit-templates will suppress the implicit instantiation of templates
except those that are compiled inline. Also see -fimplicit-inline-templates.

-fimplicit-inline-templates C++
This is the default. Reference to a template, or the function of a template,
that does not already exist will cause an instantiation of the template. The option
-fno-implicit-templates will suppress the implicit instantiation of templates
including those that are compiled inline. Also see -fimplicit-templates.

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 541
A

P
P

EN
D

IX
ES

542 G C C : T h e C o m p l e t e R e f e r e n c e

-finhibit-size-directive
Do not output a .size assembler directive, nor any other directive that could cause
problems if the function is split and the two halves are separated in memory.

This option is a special case used to compile crtstuff.c (part of GCC) and is not
expected to have any other purpose.

-finit-local-zero Fortran
All variables declared local to the compilation unit are initialized to zero. This has
no effect on common blocks and variables passed as arguments.

It may be advisable to also specify -fno-automatic to prevent the runtime
penalty of initializing automatic variables.

-finit-priority
This option is for internal use by the compiler and is used to specify runtime
initialization order.

-finline C C++ ObjC Fortran
This is the default, which allows the inline keyword to specify that a function be
expanded inline at the place the function is called. Using the -fno-inline option will
cause the compiler to ignore the inline keyword. Note: no inline expansion is done
unless some level of optimization has been set with the -O option. Also see --param
and the “Attributes” section of Chapter 4.

-finline-functions
The compiler is allowed to select certain simple functions to be expanded in line at the
point of the function call. If the function is declared in such a way that all calls to it are
known (for example, a static function in a C source file cannot be addressed from outside
the file) the body of the function is omitted because it is never actually called. This option
is automatically turned on by -O3 unless the -fno-inline-functions flag is specified.
Also see -fkeep-inline-functions. Also see --param and the “Attributes” section
of Chapter 4.

-finline-limit=size
The compiler will not expand functions inline that require more than the specified
number of pseudo instructions. The default value for size is 600. Also see --param.

-finstrument-functions
Insert code that will call a function at the entry and exit point of each function.
The prototypes of the function calls are as follow:

L D-15 void __cyg_profile_func_enter(void *this_fn,void *call_site);

void __cyg_profile_func_exit(void *this_fn,void *call_site);

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 543
A

P
P

EN
D

IX
ES

The this_fn argument is the address of the function being called, which can be
identified by symbol table information. The call_site argument identifies the caller.
(On some platforms the call_site information is not available.)

If a function is expanded inline, the function calls are inserted before and after the
inline code. For purposes of identification there must be a non-inline version of the function
available, even if all the calls to it generate inline code.

To prevent a function from having the code inserted, it can be declared with the
attribute no_instrument_function. This may be necessary for interrupt handlers
and functions from which the profiling routines cannot be called.

Also see the “Attributes” section of Chapter 4.

-fintrin-case-spec Fortran
The spec determines the case of intrinsic names. It may be any of the following:

� initcap The first letter of the name is capitalized and the others are all
lower case.

� upper The name is all upper case.

� lower The name is all lower case. This is the default.

� any The name can be in any mixture of upper and lower case letters.

Also see -fmatch-case-, -fsource-case-, -fsymbol-case-, and -fcase-.

-fjni Java
This option compiles native methods into JNI instead of the default CNI. Stubs are also
generated to invoke the underlying JNI methods.

-fkeep-inline-functions
The compiler will generate a body for a function even if all of the references
to it are expanded inline and there are actually no calls to it. The default is
-fno-keep-inline-functions, which does not create bodies for functions
that are not called. Also see -finline-functions and --param.

-fkeep-static-consts
This is the default unless some level of optimization is set. Constant values that are
private to the compilation unit are allocated storage even if they are not referenced.
To prevent allocating space for unused constants, use -fno-keep-static-consts.

-fleading-underscore
This option forces each symbol written to the object file to be modified to begin with
an underscore character. The option -fno-leading-underscore will suppress the
addition of an underscore character.

This option is available for use when attempting to link with legacy assembly code.

544 G C C : T h e C o m p l e t e R e f e r e n c e

-fmatch-case-spec Fortran
The spec determines the case of Fortran keywords. It may be any of the following:

� initcap The first letter of the name is capitalized and the others are all
lower case.

� upper The name is all upper case.

� lower The name is all lower case. This is the default.

� any The name can be in any mixture of upper and lower case letters.

Also see -fintrin-case-, -fsource-case-, -fsymbol-case-, and -fcase-.

-fmath-errno
This is the default. An error code resulting from such math functions as sqrt() will be
stored in the global variable named errno. Setting -fno-math-errno will cause no
errno value to be stored, which can interfere with standard IEEE exception handling.
See also -ffast-math.

-fmem-report
When the compiler finishes, it prints a detailed listing of the amount of storage that has
been allocated for each data type and other permanent memory allocation information.

-fmemoize-lookups C++
The result of the latest internal symbol table lookups are cached to speed
subsequent lookups.

-fmerge-all-constants
This option sets -fmerge-constants and adds the merging duplicate character strings
and arrays. Standard C and C++ require that each variable have a distinct location, so
this option may create non-conforming object code.

-fmerge-constants
An attempt is made for all constant values, except strings, to be merged into a single copy
across compilation units. This is the default when any level of optimization is turned on.
The default is -fno-merge-constants, which will allow for the merging of constant
values only within a compilation unit.

-fmessage-length=size
Error messages are formatted so they are no longer than size characters. If size is 0, no
line formatting is done and each error message will appear on a single line. The default
size is 72 for C++ and 0 for all other languages. This option may not be implemented in
all cases.

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 545
A

P
P

EN
D

IX
ES

-fmil-intrinsics-spec Fortran
The spec specifies the status of the MIL-STD-1753 intrinsics that have inappropriate forms.
The spec can be any one of the following:

� enable The MIL-STD-1753 intrinsics are recognized and enabled. This is
the default.

� hide The MIL-STD-1753 intrinsics are recognized and enabled only if the first
mention of the name of each one is in an INTRINSIC statement.

� disable The MIL-STD-1753 intrinsics are recognized, but references to them
must be made through an INTRINSIC statement.

� delete The MIL-STD-1753 intrinsics are not recognized.

-fmove-all-movables
All invariant expressions are moved outside the loop. Whether this produces better
or worse code depends on the structure of the loops in the source code. The default
is -fno-move-all-movables except for Fortran. Also see -freduce-all-givs.

-fms-extensions C++
Disables warning messages when using constructs defined in MFC, such as implicit int
definition in data declarations and acquiring a pointer to a member function using non-
standard syntax. The default is -fno-ms-extensions, which enables the warnings.

-fnext-runtime
Generates output compatible with NeXT runtime. The is the default for NeXT based
systems such as Darwin and Mac OS X.

-fno-*
Any option beginning with -fno- has two forms and is listed alphabetically under the
name that does not have the no- preceding it. For example, you will find a description
of -fno-for-scope listed under -ffor-scope. Most, but not all, options preceded
by -f have a companion -fno form.

-fnon-call-exceptions
Generate code that makes it possible for trapping instructions (such as invalid floating
point operations or invalid memory addressing) to throw exceptions. This option is not
universally available because it requires platform-specific runtime support.

This is limited to hardware trap signals only and does not include general signals
such as SIGALRM or SIGTERM.

Also see -fexceptions, -funwind-tables, and
-fasynchronous-unwind-tables.

-fnonansi-builtins C++
This is the default. Specifying -fno-nonansi-builtins will disable the automatic
generation of built-in functions that are not specifically required by ANSI/ISO C. Also
see -ansi, -fbuiltin., and -fnonansi-builtins.

546 G C C : T h e C o m p l e t e R e f e r e n c e

-fomit-frame-pointer
Don’t store the frame pointer in a register for functions that don’t need one, thus
omitting the code to store and retrieve the address as well as making another register
available for general use. This flag is automatically set for all levels of -O optimization,
but only if the debugger can be run without a frame pointer. If the debugger cannot be
run with this setting you will have to set it explicitly. Some platforms have no frame
pointer and this flag will have no effect. The default is -fno-omit-frame-pointer.

-fonetrip Fortran
A DO loop is to be executed at least once (the test is made at the bottom of the loop
instead of the top).

Prior to Fortran 77 some compilers performed the test at the bottom of the loop and
some at the top. Beginning with Fortran 77 the test is made at the top of the loop, which
means that if the test is false from the beginning, the loop will never execute.

-foperator-names C++
This is the default. Specifying -fno-operator-names will prevent the keywords
and, bitand, bitor, compl, not, or, and xor from being recognized by the compiler
as alternate operators for &&, &, |, ~, !, ||, and ^ respectively. This will prevent breaking
old code by making the names available to be used for other purposes.

-foptimize-register-move
Register allocation is optimized by changing the assignment of registers used in
operations that move data from one memory location to another. This is especially
effective on machines that have instructions that can move data directly from one memory
location to another. This flag is set by -O2, -O3, and -Os, but can be overridden by
-fno-optimize-register-move.

-foptimize-sibling-calls
Optimizes recursive tail calls and sibling calls. This flag is automatically set by -O2, -O3,
and -Os. The default is -fno-optimize-sibling-calls.

The following is an example of a recursive tail call:

L D-16 int rewhim(int x,int y) {

. . .

return(rewhim(x+1,y));

}

Optimization can be performed by, instead of making a new function call, inserting
a command that jumps to the top of the function. A similar situation is shown in the
following example of a sibling call:

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 547
A

P
P

EN
D

IX
ES

L D-17 int whim(int x,int y) {

. . .

return(wham(x+1,y));

}

In a sibling call, the call to the function wham() must be made, but the stack frame
of whim() can be deleted by the call, causing wham() to return its value directly to the
caller of whim().

-foptimize-static-class-initialization Java
This is the default. When optimization is set to -O2, -O3, or -Os and the output is object
code instead of bytecodes, static classes are initialized on their first use. This optimization
can be turned off by specifying -fno-optimize-static-class-initialization.

-foptional-diags C++
This is the default. Specifying -fno-optional-diags will suppress diagnostic
messages that, according to the C++ standard, a compiler is not required to issue.

--for-assembler optionlist Asm
Same as -Wa.

--for-linker option Linker
Same as -Xlinker.

--force-link name Linker
Same as -u.

-foutput-class-dir=directory Java
When used with the -C option, the class files output from the compiler are stored in
directory (or the appropriate subdirectory of directory) instead of using the current directory
as the base.

This option can be written --output-class-directory.

-fpack-struct
Pack the members of structures together in such a way that no alignment space is inserted
between the members of the structure.

This could cause the executable code accessing structure members to be less efficient,
and it could also cause the code to be incompatible with the system libraries.

For Fortran, the -fpack-struct option must not be used.
Also see “Attributes” in Chapter 4.

-fpedantic Fortran
Same as -pedantic for Fortran.

-fpeephole
This is the default, but it can be turned off with -fno-peephole. Enables peephole
optimization at the time the assembly language is output. It looks for matches on sets
of instructions and replaces them with an optimized set. This flag has no effect unless
optimization is also specified. This option is platform dependent and may have no effect.

-fpeephole2
Enables RTL peephole optimization after registers have been allocated but before
scheduling. The optimization is a machine specific translation of one specific set of
instructions into another. This option is platform dependent and may have no effect.
There is no effect unless optimization is also specified. This flag is set by -O2, -O3,
and -Os, but can be overridden by -fno-peephole2.

-fpermissive C++
Diagnostic messages specifying that code does not conform to the standard are issued
as warnings instead of errors. If nether -fpermissive nor -pedantic is specified,
the -fpedantic-errors option is assumed.

-fpic
Generate position independent code (PIC) that can be used in a shared library. All internal
addressing is done through a global offset table (GOT). To determine an address, the
memory location of the code itself is added to an entry in the table. This option requires
operating system support, so it is not available on all systems.

This option produces object modules that can be stored in and loaded from
shared libraries.

If the -fpic option produces an error message from the linker that position
independent code does not work, recompile using -fPIC instead.

Some systems have a size limit for the offset table. The limit is 16k on the Motorola
m88k, 32k on the m68k and RS/6000, and 8k on the Sparc. Position independent code
requires support, so it only exists on certain machines.

See also -fPIC and -shared.

-fPIC
This option is the same as the -fpic option, with the added benefit that it can be used
to overcome the table size limitations of position independent code that can possibly be
encountered on the m68k, m88k, and Sparc.

See also -fpic and -shared.

-fppc-struct-return
Generate code to return all structures by storing them in memory even if they are small
enough to fit in a register. The precise convention for returning structures in memory or
in registers depends on the platform.

While producing less efficient code, this option may be needed when linking to object
files created using another compiler.

548 G C C : T h e C o m p l e t e R e f e r e n c e

In Fortran, this option should only be used if it was used to compile the version
of libg2c that this program will be linked with.

Also see -freg-struct-return.

-fprefetch-loop-arrays
If it is supported by the platform, instructions are generated to prefetch arrays to improve
loop performance.

-fpreprocessed Pre
No preprocessing will take place even if files on the command line have suffixes that
would indicate that the files should be preprocessed. The suffixes are listed in Table D-1.

Even with this option specified, the -C option can still be used to have the preprocessor
remove comments.

-fpretend-float
When cross compiling object for another system, this flag will format floating point
operations as if they were going to be performed on the local machine. The result is likely
to be in a form that will not run on the target machine, but the sequence of instructions
is likely to be the same as it will be when producing code for the target machine.

-fprofile-arcs
After using this option to compile a program and then running it to create the file
containing execution counts for each block of code, the program can be compiled again
with the -fbranch-probabilities option, and the information from the file is
used to optimize the code for the branches that are taken most often. Without this
information, GCC will guess which path is taken most often to perform optimization.
The information is stored in a file with the name as the source and a .da suffix.

A second use of this option is to use it in conjunction with the -ftest-coverage
option to support gcov. This option combination creates a flow graph for each function
in the program, then determines a spanning tree for the graph. Code is then inserted
into each function not in the spanning tree that will generate a count of the number of
times it is executed. For each block with a single entry and exit, the code is added directly
to the block. Blocks with multiple entries or exits cause the creation of a new block that
tracks each entry and exit.

A program compiled with these options and run with gcov will run a bit slower than
a program compiled with -a and -ax, but the counts produced by the -a option don’t
provide enough information to estimate all branch possibilities.

Also see-a,-ax,-fbranch-probabilities, and-fguess-branch-probability.

-freduce-all-givs
Forces all general induction variables (loop counters) to be strength reduced. Whether
this produces better or worse code depends on the structure of the loops in the source
code. The default is -fno-reduce-all-givs except for Fortran.

Also see -fmove-all-movables.

A
P

P
EN

D
IX

ES
A p p e n d i x D : C o m m a n d L i n e O p t i o n s 549

550 G C C : T h e C o m p l e t e R e f e r e n c e

-freg-struct-return
Generate code to return short structures by storing them in registers. If they are not
small enough to fit in a register, they are returned in memory. The precise convention
for returning structures in memory or in registers depends on the platform.

In Fortran, this option should only be used if it was used to compile the version
of libg2c that this program will be linked with.

Also see -fpcc-struct-return.

-fregmove
Same as -foptimize-register-move.

-frename-registers
This is an optimization technique that attempts to eliminate false dependencies
in scheduled code by making use of registers left over after register allocation and
scheduling has been completed. This optimization is mostly advantageous for machines
with a large number of registers. The code generated by this option can be very difficult
to debug. This flag is set by -O3 but can be overridden by -fno-rename-registers.

-frepo C++
Enables automatic template instantiation. Setting this option also sets
-fno-implicit-templates, which suppresses automatic instantiation
of non-inline templates.

-frerun-cse-after-loop
This option will cause the common subexpression optimization to be applied again
following loop optimizations. This is done because it is possible that loop optimization
creates the presence of new subexpressions. This flag is set by -O2, -O3, and -Os, but
can be overridden by -fno-rerun-cse-after-loop. Also see --param.

-frerun-loop-opt
Run the loop optimization twice. The second time does not unroll loops, but it does
analyze the loops again with the instructions from the first optimization pass removed.
This flag is set by -O2, -O3, and -Os, but can be overridden by -fno-rerun-loop-opt.

-frtti C++
This is the default. Code is generated for run time identification of every class containing
virtual methods. If you use neither dynamic_cast nor typeid, you can save some
space in each class by using -fno-rtti to supress the code generation. This flag has
no effect on exception handling which generates rtti code as necessary.

-fschedule-insns
On machines that have relatively slow floating point or memory access operations when
compared to other operations, and on machines that support the execution of more than
one instruction at a time, an attempt is made to change the order of the instructions to

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 551
A

P
P

EN
D

IX
ES

eliminate stalling. Other instructions are executed during the time the slower instruction
is being executed. This flag is set by -O2, -O3, and -Os, but can be overridden by
-fno-scedule-insns.

-fschedule-insns2
This is the same as -fschedule_insns except that it is performed after allocation of
both the global registers and the local registers for each function. This can be effective
on machines with a small number of registers and relatively slow instructions to load
registers. This flag is set by -O2, -O3, and -Os, but can be overridden by
-fno-scedule-insns2.

-fshared-data
This option requests that the data be shared rather than private. This only has meanings
on operating systems where shared data is accessible among separate processes running
the same program, and each process has its own copy of private data.

-fshort-double
Use the same size for the double data type that is used for float.

For Fortran, this option may cause problems.

-fshort-enums
Reduce the size of an enum to the smallest integer type required to store the range
of values.

-fshort-wchar C C++
Changes the data type of wchar_t to be unsigned short int instead of the default
for the current target.

-fsigned-char C
With this option the char data type defaults to signed (a value from 0 to 255). If no flag
is used to specify whether char data types should be signed or unsigned, the default
will vary depending on the platform. Specifying -fno-signed-char is the same as
-funsigned-char.

-fsigned-bitfields C
This is the default. Bit fields are treated as signed int data types, but specifying
-fno-signed-bitfields will cause them to be treated as unsigned int
types. Specifying -traditional forces all bit fields to be unsigned. Specifying
-fno-signed-bitfields is the same as -funsigned-bitfields.

-fsilent Fortran
This is the default. Specifying -fno-silent lists to stderr the name of each program
unit as it is being compiled.

552 G C C : T h e C o m p l e t e R e f e r e n c e

-fsingle-precision-constant
Constant declarations of floating point numbers are stored as single precision floating
point numbers instead of doubles.

-fsource-case-spec Fortran
The spec determines whether the source text is to be translated to all upper case,
lower case, or left unchanged. Holerith constants are not affected. The spec may be
any of the following:

� upper The source is translated to all upper case.

� lower The source is translated to all lower case. This is the default.

� preserve The source text is left unchanged.

Also see -fintrin-case-, -fmatch-case-, -fsymbol-case-, and -fcase-.

-fssa
Experimental feature. The entire body of a function is converted to a SSA (Static Single
Assignment) flow graph, optimizations are performed, and then the code is converted
out of an SSA graph to the original format.

-fssa-ccp
Experimental feature. Enables SSA conditional code propagation in which variables that
are actually used as constants are converted to constants and also eliminates branches
which can never be taken. This option requires -fssa and any level of -O.

-fssa-dce
Experimental feature. Enables SSA dead code elimination which removes any code
that cannot be executed. This option requires -fssa and any level of -O.

-fstack-check
Generate code that will perform the test necessary to prevent the program from
overflowing the stack. The generated code does not actually do the checking, but the code
is generated to make certain the operating system detects it when the stack is extended.

This may be necessary when running a program in a multi-threaded environment,
but stack overflow is automatically checked in a single-threaded program.

-fstack-limit-register=register
Specify the name of the register that contains the address limiting the size of the stack.
This option can only be used to reduce the stack; it cannot be used to expand it beyond
the size specified by the operating system.

Also see -fstack-limit-symbol.

-fstack-limit-symbol=symbol
Specify the name of the variable that contains the address limiting the size of the stack.
This option can only be used to reduce the stack; it cannot be used to expand it beyond
the size specified by the operating system.

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 553
A

P
P

EN
D

IX
ES

The values used for the address depend on the platform. For example, if the stack
begins with the address 0x80000000 and grows by decreasing the address, a stack limit
of 128k can be imposed with the following option settings:

L D-18 -fstack-limit-symbol=__stack_limit -W1,__stack_limit=0x7FFE0000

It is also possible to declare the stack limit variable inside the program, but it would
still be necessary to specify the -fstack-limit-symbol option on the command line.

Also see -fstack-limit-register.

-fstats C++
Displays statistical information about front-end processing. This information pertains
to compiler internals and has no effect on its output.

-fstore-check Java
This is the default. Specifying -fno-store-check removes the run time checks made
to ensure the correct object type is being stored in an array.

-fstrength-reduce
Performs loop strength reduction and elimination variables being used inside loops.
This is the process of replacing time-consuming operations, such as multiply and divide,
with simpler and faster operations, such as add and subtract. This option is always set
by -funroll_loops and -funroll-all-loops. It is also set by -O2, -O3, and -Os
but can be overridden by -fno-strength-reduce.

As a simple example, the following loop uses a temporary variable to contain
a calculated index:

L D-19 for(int i=0; i<10; i++) {

index = i * 2;

frammis(valarr[index]);

}

The internal variable index can be eliminated, and the multiplication can be changed
to a simple shift resulting in the following:

L D-20 for(int i=0; i<10; i++) {

frammis(valarr[i << 1]);

}

Shifting the loop counter one position to the left effectively doubles it, and
the value is then used directly as the index on the array without being stored in
a temporary variable.

-fstrict-aliasing
The strictest aliasing rules are applied depending on the language being compiled. With
strict aliasing in C, for example, an int cannot be the alias of a double or a pointer, but
it can be the alias of an unsigned int. Even with strict aliasing there is not a problem
with union members as long as the references are through the union and not through a
pointer to the address of a union member. The following code could cause a problem:

L D-21 int *iptr;

union {

int ivalue;

double dvalue;

} migs;

. . .

migs.ivalue = 45;

iptr = &migs.ivalue;

frammis(*iptr);

migs.dvalue = 88.6;

frammis(*iptr);

In this example is possible that strict aliasing would not recognize that the value
pointed to by iptr had changed between the two function calls. However, referring
to the union members directly would not cause a problem.

-fsymbol-case-spec Fortran
The spec determines the case of user defined symbols. It may be any of the following:

� initcap The first letter of the name is capitalized and the others are all
lower case.

� upper The name is all upper case.

� lower The name is all lower case.

� any The name can be in any mixture of upper and lower case letters.
This is the default.

Also see -fmatch-case-, -fsource-case-, -fintrin-case-, and -fcase-.

-fsyntax Fortran
Check the source code for syntax and proceed no further.

-ftemplate-depth-number C++
Sets the maximum template instantiation depth to number to detect recursive or circular
template definitions. Programs adhering to the standard must not use a depth greater
than 17. The default depth is 500.

554 G C C : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 555
A

P
P

EN
D

IX
ES

-ftest-coverage
The compiler will produce files that contain information used by gcov. The output files
bear the same name as the source file, but with different suffixes to indicate their contents.

A file with the suffix .bb contains the mappings from basic blocks of executable code
to line numbers in the source file. This information is used by gcov to relate execution
counts to line numbers.

A file with the suffix .bbg contains a list of all arcs in the program’s flow graph.
This information is used by gcov to reconstruct the flow graph and compute the
execution counts from the data in a file with the suffix .da produced by setting
the -fprofile-arcs option.

Also see -a, -ax, -ftest-coverage, and -fprofile-arcs.

-fthread-jumps
If the value of the conditional expression of a jump goes to a location where the values
are such that another jump will also be taken, the original jump is redirected to the final
destination. This option is set for all optimization levels, but can be overridden with
-fno-thread-jumps.

-ftime-report
When the compilation is complete, the compiler will print statistics about the time spent
in compilation. Times are printed for user, system, and the wall clock for each pass and
summed at the end.

-ftrapping-math
This is the default. Setting the option -fno-trapping-math causes the code to assume
that floating point operations will not cause exceptions that could be trapped and to
issue signals. The -fno-trapping-math option may cause code to be generated that
violates standards rules for floating point operations.

-ftrapv
Generate code to trap overflow conditions on signed addition, subtraction, and
multiplication. This option can be used during software testing to create a core file
whenever an integer overflow condition occurs, which normally goes undetected.
The default is -fno-trapv.

-ftypeless-boz Fortran
Specifies that prefix-radix non-decimal constants such as Z'ABCD' are typeless instead
of defaulting to INTEGER(KIND=1).

-fugly-args Fortran
This is the default. Specifying -fno-ugly-args will disallow the passing of typeless
Hollerith constants as arguments in a function call. For example, the two following
function calls are valid by default:

L D-22 CALL FRED(4HABCX)

CALL SAM('123'O)

556 G C C : T h e C o m p l e t e R e f e r e n c e

-fugly-assign Fortran
Use the same storage to contain assigned labels and numeric data. For example, the
two following statements would use the same storage location:

L D-23 I = 3

ASSIGN 10 TO I

This option will be necessary if the program attempts to access the assigned value
as data because the compiler default is to create separate storage locations for the two
different types of information.

-fugly-assumed Fortran
An array with a specified size of 1 is assumed to have been declared as a size of *. For
example, DIMENSION X(1) will be treated as if it had been written DIMENSION X(*).

-fugly-comma Fortran
A trailing comma implies that a null argument is to be added to the list of those passed
to the subroutine. For example, with this option set, CALL BLOG() will pass a single
null argument and CALL RIM(,) will pass two null arguments.

Without this option the trailing comma is ignored and causes no null argument to
be passed, even in the presence of other arguments in the list.

-fugly-complex Fortran
Allows any kind of complex expression to be used with the intrinsics REAL(expr) and
AIMAG(expr). The default is to limit the complex expression to COMPLEX(KIND=1).

With the -ff90 option set, these intrinsics return the unconverted real and imaginary
parts of their arguments.

-fugly-init Fortran
This is the default. Specifying -fno-ugly-init disallows the use of Hollerith formatted
data in PARAMETER and DATA statements. It also disallows the use of character
constants to initialze numeric data types, and vice versa.

-fugly-logint Fortran
Automatic conversion between INTEGER and LOGICAL data types is enabled in most
circumstances, enough so the two can be used interchangeably.

-funderscoring Fortran
This is the default. Two underscores are appended to names with an underscore. One
underscore is appended to external names with no underscore. Two underscores are
also appended to internal names with underscores to avoid naming collisions with
external names.

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 557
A

P
P

EN
D

IX
ES

Specifying -fno-underscoring will prohibit the transformation of names by
appending underscore characters to them. Specifying -fno-second-underscoring
instead will prevent only the appending of the second underscore character.

The use of these underscore control options is not recommended unless you are
making adjustments to try to make the output compatible with code produced by
another compiler. Among other problems, omitting the underscoring can cause a name
conflict with a system library.

-fuse-boehm-gc Java
Enables use of the Boehm garbage collection bitmap marking code.

-fsecond-underscore Fortran
This is the default. See -funderscoring.

-funix-intrinsics-spec Fortran
The spec specifies the status of the UNIX intrinsics. The spec can be any one of the following:

� enable The UNIX intrinsics are recognized and enabled. This is the default.

� hide The UNIX intrinsics are recognized and enabled only if the first mention
of the name of each one is in an INTRINSIC statement.

� disable The UNIX intrinsics are recognized, but references to them must be
made through an INTRINSIC statement.

� delete The UNIX intrinsics are not recognized.

-funroll-all-loops
This option sets -funroll-loops and removes the limit on the size of the loop
to be unrolled, and will unroll the loop even if the number of iterations cannot be
determined. This flag will normally produce slower and bigger code than would
otherwise be produced.

To unroll a loop where the number of iterations cannot be determined exactly, the
loop is unrolled a number of times with a test for an exit at the end of each of the blocks
of code. This creates a larger loop that contains multiple copies of itself, so it will not
iterate as often as it would have otherwise.

-funroll-loops
If it can be determined at compile time that the number of iterations is small enough,
and if the number of instructions inside the loop is small enough, the loop is unrolled
by removing the loop and duplicating the instructions so they will be executed the
correct number of times. A loop is determined to be small enough if the number of
insns in the loop multiplied by the number of iterations is less than a constant
(currently set to 100). This option always sets both -fstrength-reduce and
-frerun-cse-after-loop.

558 G C C : T h e C o m p l e t e R e f e r e n c e

-funsafe-math-optimizations
Removes checking for floating point operations and assumes that values are valid.
It allows math operations to violate IEEE and ANSI standards. This option may also
cause the linker to include code that optimizes the operation of the hardware FPU
(Floating Point Unit) in non-standard ways.

-funsigned-bitfields C
Specifying this option will cause bit fields to be treated as unsigned int data types.
By default, bit fields are treated as signed int data types. Specifying -traditional
also forces all bit fields to be unsigned. Specifying -fno-unsigned-bitfields is
the same as -fsigned-bitfields.

-funsigned-char C
With this option the char data type defaults to unsigned (a value from -127 to +128).
If no flag is used to specify whether char data types should be signed or unsigned, the
default will vary depending on the platform. Specifying -fno-unsigned-char is
the same as -fsigned-char.

-funwind-tables
This option is similar to -fexceptions, except only the necessary static data is generated
and has no other effect on the generated code. This flag is intended for internal use and
should not be specified on the command line.

Also see -fexceptions, -fnon-call-exceptions, and
-fasynchornous-unwind-tables.

-fuse-cxa-atexit C++
Causes global destructors to be run in the reverse order that the constructors completed
instead of the reverse order that the constructors started. The order will differ only if
one global constructor is invoked from inside another. This option will work only if the
cxa_exit() function is part of the C runtime library. Without this option the atexit()
function is used.

-fuse-divide-subroutine Java
A library routine is called to perform integer division, which makes it possible to have
exceptions thrown for integer division by zero.

-fverbose-asm
Inserts more verbose comments than normal into the generated assembly language to
make it more readable.

This option is primarily for debugging the compiler itself by making the assembly
code easier to read. The default, -fno-verbose-asm, is more useful when comparing
assembly listings.

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 559
A

P
P

EN
D

IX
ES

-fversion Fortran
Runs internal tests to verify GNU Fortran is installed correctly, and then displays
the version number. This option is set by both -v and --verbose.

-fvolatile
Treat all memory referenced through pointers as volatile.

Also see -fvolatile-global and -fvolatile-static.

-fvolatile-global
Treat all external and global memory references to contain volatile data. This switch
does not cause static data items (data accessible only within the compilation unit) to
be considered volatile.

Also see -fvolatile and -fvolatile-static.

-fvolatile-static
Treat all memory references to static data items (data accessible anywhere within the
compilation unit) to be volatile.

Also see -fvolatile-global and -fvolatile.

-fvtable-gc C++
Causes the creation of relocation information, making it possible for a linker to eliminate
vtable entries for unused virtual functions. This option requires the use of both the GNU
assembler and linker.

This information can also be used in the removal of unused functions. See
-ffunction-sections and -W1.

-fvxt Fortran
Certain source code constructs can vary in meaning between GNU Fortran and VXT
Fortran. Specifying this option will cause those constructs to be interpreted as VXT Fortran.

Also see -ff90, -ffvxt-intrinsics-, and -ff90-intrinsics-.

-fvxt-intrinsics-spec Fortran
The spec specifies the status of the VXT intrinsics. The spec can be any one of the following:

� enable The VXT intrinsics are recognized and enabled. This is the default.

� hide The VXT intrinsics are recognized and enabled only if the first mention
of the name of each one is in an INTRINSIC statement.

� disable The VXT intrinsics are recognized, but references to them must be
made through an INTRINSIC statement.

� delete The VXT intrinsics are not recognized.

Also see -fvxt.

560 G C C : T h e C o m p l e t e R e f e r e n c e

-fweak C++
This is the default. Specifying -fno-weak will prevent the use of weak symbol support
even if it is supported by the linker. The -fno-weak option should not be used, as it
produces inferior code that has no benefit beyond testing the compiler.

-fwritable-strings C C++
The compiler allows data to be written into string constants. This flag is set by the
-traditional option.

To have the ability to actually write into C++ string constants, you will also need
to specify -fno-const-strings.

-fzeros Fortran
Treat an initial value of zero the same as any other value. Without this option it is
possible to have multiple DATA statements set the initial value of a variable to zero,
and the fact will be undiagnosed by the compiler.

-g[level]
The output includes debugging information in a form that can be used by gdb. The
format and content depends on the object format produced by the compiler (stabs,
COFF, XCOFF, or DWARF).

The level setting is optional. The level number specifies the amount of debugging
information to be included. The default is level 2. Level 1 produces the global information
required for backtraces, but does not include local variables nor line numbers. Level 2
includes all of the level 1 information plus local variables and line numbers. Level 3
includes the level 2 information along with extra information such as macro definitions.

On a system that uses the stabs format, this option will produce debugging information
in a form that can be used only by gdb.

It is possible to use this option in combination with -O to produce optimized code.
With optimization the debugging procedure may not be as easy to follow as it would
have been otherwise because optimization makes changes to the generated code, and there
is no longer a one-to-one correspondence between the source and the object it produced.
Some object code will be relocated, and some source may appear to have not produced
any executable code at all.

Also see -ggdb, -gstabs, -gcoff, -gxcoff, and -gdwarf. This option can be
written --debug.

-gcoff[level]
Produce debugging information in COFF format if it is supported. This format is used
most often by SDB on System V prior to SVR4. The level setting is optional. See -g for
a description of level settings 1, 2, and 3.

-gdwarf[level]
If supported, produce debugging information in DWARF version 1 format. The level
setting is optional. Only if level is set to + will gdb extensions be included, which may
disable the use of other debuggers. See -g for a description of level settings 1, 2, and 3.

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 561
A

P
P

EN
D

IX
ES

This is the format used by SDB on most SVR4 systems.

-gdwarf-2[level]
If supported, produce debugging information in DWARF version 2 format. The level
setting is optional. See -g for a description of level settings 1, 2, and 3.

This is the format used by DBX on IRIX 6.

-gen-decls ObjC
Interface declarations for a class in the input source files are written to a file named
w.decl.

-ggdb[level]
Produce detailed debugging information specifically formatted for gdb, including any
available gdb extensions. The level setting is optional. See -g for a description of level
settings 1, 2, and 3.

-gnatoption Ada
Specifies an option to be provided to GNAT, the Ada front end. All of the options are
single letters that are appended to the option word gnat. For example, to specify the
options e and l, you could specify them this way on the command line:

L D-24 $ gcc -gnate -gnatl

The two options can be combined into one. The following is the same as the previous:

L D-25 $ gcc -gnatel

Some of the options require values to be supplied with them. For example, the k option
is used to specify the maximum number of error message output from the compiler, and
the following command specifies the value as 15:

L D-26 $ gcc -gnatk15

An option that requires a value can be combined with the other options if it is placed
last in the list. The following examples shows a combined specification of e, l, and k:

L D-27 $ gcc -gnatelk15

The following options, specified as numbers without preceding letters, enforce the
restrictions defined for Ada 83 or Ada 95:

L D-28 $ gcc -gnat83

$ gcc -gnat95

The default is -gnat95. Table D-3 contains a list of the available option letters used
with the -gnat prefix.

562 G C C : T h e C o m p l e t e R e f e r e n c e

Letter Description

a Enables assertions. This option enables the specifying of both
Pragma Assert and Pragma Debug. Without this option these
two pragmas are ignored.

b Generate brief messasges to standard error even if the verbose
option is also set.

c Only check syntax and semantics. The .ali file is generated,
but no executable code is generated.

e Error messages are displayed as they occur instead of being saved
and displayed all at once at the end.

E Full dynamic elaboration checks are performed.

f Every possible error is reported. Multiple errors may be detected
on each line. All undefined references are reported, instead of only
the first occurrence.

g Enable Ada style checking (column alignment, indention,
capitalization patterns, and so on).

ichar The value of char specifies the identifier character set. The standard
ASCII characters (values 1 through 127) are always the same, but the
remainder of the 8-bit values (128 through 255) can have different
meanings. The character sets are identied as follows:
1 Latin-1
2 Latin-2
3 Latin-3
4 Latin-4
p IBM PC
f full upper case
n no upper case
w wide character

Table D-3. The Letters and Values Using with the -gnat Option

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 563
A

P
P

EN
D

IX
ES

Letter Description

jchar The value of char specifies the method used to encode wide characters.
The available methods are as follows:
n none
h Hex encoding
u Upper-half coding
s Shift JIS
e EUC coding

knumber The vakue of number specifies an upper limit (1 to 999) to the number
of characters in an identifier.

l Output a full source listing including error messages.

mnumber The value of number is the maximum number of error messages that
will be reported.

n Activate inlining across unit boundaries for subprograms for
which the inline pragma is specified. This option is overridden
if -fno-inline is specified.

N This is the same as specifying -gnatn and adding pragma inline
to each source file. This option is overridden by -fno-inline.

o Enable runtime checking that that is not normally enabled, such as
integer overflow and access before elaboration. This option causes
the program to be larger and run more slowly. (This option has no
effect on floating point operations).

p Suppress all runtime checking. This has the same effect as pragma
Suppress(all_checks). By removing the runtime safety checks,
the program is smallter and runs more efficiently.

q Don’t halt the compiler on a syntax error. The code generation
continues with whatever information the parser was able to gather.

r Requires the column layout format to match that of the
reference manual.

s Only check the syntax.

Table D-3. The Letters and Values Using with the -gnat Option (continued)

-gstabs[level]
If supported, produce debug information in stabs format if. The level setting is optional.
Only if level is set to + will the gdb extensions be included. See -g for a description of
level settings 1, 2, and 3.

This option can be used with DBX on most BSD systems, but doesn’t work with DBX
or SDB on MIPS, Alpha, or SVR4. Also, on SVR4, the GNU assembler is required.

-gvms[level]
If supported, produce debugging information in VMS debug format. The level setting
is optional. See -g for a description of level settings 1, 2, and 3.

This is the format used by DEBUG on VMS.

-gxcoff[level]
If supported, produce debug information in XCOFF format. The level setting is optional.
Only if level is set to + will the gdb extensions be included, which may disable the use
of other debuggers and may cause problems with assemblers other than the GNU
assember. See -g for a description of level settings 1, 2, and 3.

This is the format used by DBX on RS/6000.

-H Pre
Print a nested listing of all the header files used, along with a list of the ones that are
missing a multiple include guard.

This option can be written --trace-includes.

564 G C C : T h e C o m p l e t e R e f e r e n c e

Letter Description

t Produce the .adt tree file used for dead code elimination.

u List all of the units involved in this compilation.

v Verbose mode. Full error output, along with the source lines causing
the errors, to standard ouptut.

wmode The mode determines how warnings are handled. If mode is s,
warning messages are suppressed. If mode is e, warning messages
are treated as error messages. If mode is l (ell), elaboration order
warnings are generated.

ztype Specifies the generation of stubs. If type is r, reciever stubs are
generatred. If type is s, sender stubs are generated.

Table D-3. The Letters and Values Using with the -gnat Option (continued)

--help
Displays a list of the command line options understood by gcc. If the -v option is also
specified, the list will include options accepted by various processes invoked by gcc.
If the -W option is also specified, the undocumented command line options will also be
listed. Also see --target-help.

--include-directory Pre Ada Java
Same as -I.

-I name Pre Ada Java
For the preprocessor, the name is a directory to the primary list of directories to be searched
for include files. This option can be used repeatedly to add several directories.

The directories specified with this option are searched first, so it is possible to override
any system header files that would normally be included.

Specifying the current directory with a dot reference as in -I. specifies the directory
to be the current working directory of the compiler.

For Ada, the name is the directory to be searched for source files.
For Java, the name is path of a location to be searched before any of the others (such

as the ones named by the --classpath option or the CLASSPATH environment variable).
The location is a directory, a jar file, or a zip file. It is recomended that -I be used in
preference to --classpath.

Also see -I-, -isystem, -B, -nostdinc and -withprefixbefore and the
environment variable CPATH. To set up a secondary list of directories searched for
header files, see -idirafter. This option can be written --include-directory.

-I- Pre
The special form -I- may be specified once to declare that all -I directives that came
before it on the command line will work for #include " . . ." but will not work
for #include < . . .>. Any -I options following the -I- option will work for
#include < . . . >.

The -I- option will also omit the default searching of same directory as the source file.
This option can be written --include-barrier.

-idirafter directory Pre
Add the directory name to the second list of directories searched for header files. To find
a header file, GCC looks through the directories in the first list (the one that has names
added to it by the -I option). If the header file is not found in the first list, the second
list is searched.

This option can be written --include-directory-after.

-imacros filename Pre
The preprocessor will read and process the named file prior to reading the program
source code. All information stored in filename is discarded except the macros it defined,
which may be used in the source file.

A
P

P
EN

D
IX

ES
A p p e n d i x D : C o m m a n d L i n e O p t i o n s 565

566 G C C : T h e C o m p l e t e R e f e r e n c e

Any -D or -U options that are also on the command line will be processed before any
-imacros option. The -include and -imacros options are processed in the order
they appear on the command line.

This option can be written --imacros.

-include filename Pre
The preprocessor will read and process the named file prior to reading the program
source code just as if it had been included as the first statement in the source file.

Any -D or -U options that are also on the command line will be processed before any
-include option. The -include and -imacros options are processed in the order
they appear on the command line.

This option can be written --include.

--include-barrier Pre
Same as -I-.

--include-directory-after directory Pre
The same as -idirafter.

--include-prefix prefix Pre
The same as -iprefix.

--include-with-prefix directory Pre
Same as -iwithprefix.

--include-with-prefix-after directory Pre
Same as -iwithprefix.

--include-with-prefix-before directory Pre
Same as -withprefixbefore.

-iprefix prefix Pre
Specifies the prefix is to be used to construct the path to the directories named on the
-iwithprefix and -withprefixbefore options.

This option can be written --include-prefix.

-isystem directory Pre
Adds the named directory at the beginning of the second include path, and the directory
is marked as a system directory so it gets the same special treatment that is used for the
standard system directories.

Also see -I and -B.

-iwithprefix directory Pre
Add the directory name to the second list of directories searched for header files. The
name is constructed by appending the prefix specified by -iprefix with the named
directory. If no prefix has been specified on the command line prior to this option, the
directory containing the installed passes of the compiler itself is used as the default.

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 567
A

P
P

EN
D

IX
ES

To find a header file, GCC looks through the directories in the first list (the one that
has names added to it by the -I option). If the header file is not found in the first list,
the second list is searched.

This option can be written --include-with-prefix or
--include-with-prefix-after.

-iwithprefixbefore directory Pre
Add a name to the list of directories in the main include path. The name is constructed
by appending the prefix specified by -iprefix with the named directory. If no prefix
has been specified on the command line prior to this option, the directory containing
the installed passes of the compiler itself is used as the default.

This option can be written --include-with-prefix-before.

--library-directory directory Linker
Same as -L.

-Ldirectory Linker
Add the named directory as one to be searched for libraries specified with the
-l (ell) option.

Also see -B and the environent variable LIBRARY_PATH. This option can be
written --library-directory.

-llibrary Linker
Specifies the name of a library to be used by the linker in resolving references. The
actual library name is constructed by appending the prefix lib and the suffix .a onto
the specified name. For example, specifying -lconsole results in the library name
libconsole.a.

A search for the named library will be made in the standard set of libraries and in
any directory named using the -L option.

The option -lobjc is a special case required for linking Objective-C programs.
To resolve references, libraries are searched in the order they are found on the

command line, which means the order in which they appear is important. For example,
in the following command line any references made from glower.o to objects in
libjpeg.a will be resolved, but references from flower.o will not be resolved:

L D-29 gcc glower.o -ljpeg flower.o -o showall

This ordering can also be important when a member from one library requires a
member from another library to resolve a reference. It is also possible to have a circular
reference between two libraries requiring that they appear on the line more than once:

L D-30 gcc sprig.o -ldflat -lturbo -ldflat -o sprig

568 G C C : T h e C o m p l e t e R e f e r e n c e

The same library can be specified on the command line as either libjpeg.a or
-ljpeg, but only the -l option instructs the linker to look in the standard directories
and in any directories specified with the -L option.

For POSIX compliance, it is valid to leave a space between the option flag and the
library name.

Also see -L.

--language language
Same as -x.

-M Pre
The preprocessor outputs a rule suitable for inclusion in a makefile. The rule is composed
of the object file name, a colon, the name of the source file and the name of the included
files. The include files are listed on separate lines by their full path names. If the -include
or -imacros options are on the command line, those files are also in the list.

The -M option implies -E.
The resulting rule contains the name of the object file and the list of dependencies;

it does not include a rule to compile the source.
Unless either the -MT or -MQ option is used to specify the name, the object file name

in the produced rule is the same as the input source with the suffix replaced.
The source file can be any of those listed in Table D-1 that require preprocessing.

For example, if the source is Java, the path to the system Jar file is listed.
The other preprocessor options involved with producing makefile rules are -MD,

-MMD, -MF, -MG, -MM, -MP, -MQ, and -MT.
This option can be written --dependencies.

--main=classname Java
Specifies the name of the class containing the main() method that is to be the starting
point of program execution.

It is valid for every class to have its own main() method, so when several are
compiled and linked together it is necessary to specify which one is to be used as the
program’s entry point.

-maligned-data Fortran
This option only applies to Fortran on Intel x86.

Fortran programs that make heavy use of REAL(KIND=2)(DOUBLE PRECISION)
benefit greatly from having double precision floating point data aligned on 64-bit
boundaries.

-MD Pre
This is the same as -M except that -E is not implied. The compilation continues as normal
and the makefile rule is output to a file that has the same base name as the source with
a .d suffix. It is also possible to specify -MF, -o, or -E along with this option to specify
the name of the rule output file.

This option can be written --write-dependencies.

A
P

P
EN

D
IX

ES
A p p e n d i x D : C o m m a n d L i n e O p t i o n s 569

-MMD Pre
The same as -MD except no system header files are listed.

This option can be written --write-user-dependencies.

-MF filename Pre
When used with -M,-MM, -MD, or -MMD, this option specifies the name of the output file.

An alternative way of specifying the name of the output file is to set the environment
variable DEPENDENCIES_OUTPUT.

-MG Pre
This option can be used in conjunction with -M or -MM to specify that missing header
files are assumed to be generated files that reside in the same directory as the source
file. The dependency list is generated just as if the header file existed and included no
other headers.

This option can be written --print-missing-file-dependencies.

-MM Pre
The same as -M except no system header files are listed.

This option can be written --user-dependencies.

-MP Pre
Used in conjunction with -M or -MM to produce a dummy target for each include file.
The only purpose of this is to prevent make from generating error messages when you
remove a header file without updating the makefile.

-MQ filename Pre
This option is the same as -MT except the target name is quoted appropriately for the
makefile. For example, the command gcc -M -MT '$(OBJMRK)mrk.o' brink.c will
produce the following:

L D-31 $$(OBJMRK)mrk.o: brink.c

-MT filename Pre
Used in conjunction with -M or -MM to specify the name of the target file of the produced
makefile rule. By default, the target file is the same name as the input source file with
a .o suffix appended to it. The -MT option can be used to specify a different name, a
complete path name, or a name based on an environment variable. For example, the
command gcc -M -MT '$(OBJMRK)mrk.o' brink.c will produce the following:

L D-32 $(OBJMRK)mrk.o: brink.c

Also see -MQ.

570 G C C : T h e C o m p l e t e R e f e r e n c e

--no-line-commands Pre
Same as -P.

--no-standard-includes Pre Ada
Same as -nostdinc.

--no-standard-libraries Linker
Same as -nostdlib.

--no-warnings
Do not issue warning messages. Same as -w.

-nodefaultlibs Linker
The standard system library routines should not be included as part of the linked
executable program. The only libraries that will be used are the ones specifically
listed on the command line.

It is possible that the compiler will generate calls to the system functions memcpy(),
memcmp(), and memset() (for standard C and for System V) and bcopy(), and bzero()
(for BSD). These references are normally resolved in libc.a, so you will need to resolve
these references by providing the routines yourself.

The library libgcc.a contains a set of special routines that are specific to the target
platform or can be considered part of the compiler, so you should normally specify -lgcc
even when omitting the standard libraries.

Also see -nostartfiles and -nostdlibs.

-nostartfiles Linker
The standard startup object files should not be included as part of the linked
executable program. Also see -nostdlib and -nodefaultlibs.

-nostdinc Pre Ada
Prevents the compiler from searching for heading files in the standard system
directories. The only directories searched are the current directory and those
specified by the -I option.

For Ada, this option specifies that that system library is not to be used for source files.
This option can be written --no-standard-includes.

-nostdinc++ Pre C++
Prevents the compiler from searching for header files in the standard C++ directories,
but continues to search in the other standard directories. This option is specifically for
use in compiling the C++ libraries.

-nostdlib Linker
Only the items you specify on the command line will be passed to the linker. None of
the standard startup files or libraries will be passed to the linker. This option implies
both -nostartfiles and -nodefaultlibs.

This option can be written --no-standard-libraries.

-Olevel
Specifies the level of optimization to be applied to the code generated by the compiler.
There is always a trade-off between optimizing for the size of the code or for speed of
execution. The default is -O0 for no optimization.

If no optimization level is specified, the compiler runs to produce code that matches
the structure of the input source. Optimization not only requires more processing, it
requires much more memory. Compiling without optimization has the double advantage
of shortening the compile time (optimization can take much longer), and the code
produced can be tracked easily in a debugger. Both of these actions are ideal for the
software development process. You can use the debugger on code that has been
optimized, but some of the output code may be rearranged making it much more
difficult to follow.

This option can be written --optimize.

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 571
A

P
P

EN
D

IX
ES

Level Description

-O The compiler attempts to reduce both code size and execution time, but
not to make modifications that would cause difficulties with debugging.
Turns on the options -fno_optimize_size, -fdefer_pop,
-fthread_jumps, -jguess_branch_prob, -cprop-registers,
and -fdelayed_branch. The -fomit_frame_pointer flag is set
only if the debugger is able to work without it on this platform.

-O0 The default. Disables all optimization. Turns off all size optimization
and sets -fno-merge-constants.

-O1 The same as -O.

-O2 This level turns on all optimizations that do not involve size and
speed trade-offs. In addition to the options turned on for -O, this level
turns on -foptimize-sibling-calls, -fcse-follow-jumps,
-fcse-skip-blocks, -fgcse, -fexpensive-optimizations,
-fstrength-reduce, -frerun-cse-after-loop,
-frerun-loop-opt, -fcaller-saves, -fforce-mem,
-fpeephole2, -fschedule-insns,
-fschedule-insn-after-reload, -fregmove,
-fstruct-aliasing, -fdelete-null-pointer-checks,
and -freorder-blocks. This level does no loop unrolling,
inlining, nor register renaming.

Table D-4. The Six Levels of Optimization

572 G C C : T h e C o m p l e t e R e f e r e n c e

The optimization levels are listed in Table D-4.

-o filename
Write the output to the named file. This applies no matter what kind of output is being
generated; it could be preprocessed source, assembly language, an object file, or a linked
executable. Because only one output file can be specified, the -o option should not be
used if several files are being produced.

If the compiler produces a linked executable and the -o option is not specified to
name it, the default name is a.out.

This option can be written --output.

--optimize level
Same as -O.

--output filename
Same as -o.

--output-class-directory=directory Java
Same as -foutput-class-dir.

-p
Include extra code that will output information suitable for analysis by the profiling
program prof. This option must be used both to compile the source files and to link
the object files.

Also see -pg. This option can be written --profile.

-P Pre
The preprocessor is not to generate #line directives when used with the -E option.

This option can be written --no-line-commands.

Level Description

-O3 In addition to the options turned on for –O2, this level turns
on -finline-functions and -frename-registers.

-Os Optimizes for size. All of the -O2 options flags are set. The
-falign-loops, -falign-jumps, -falign-labels, and
-falign-functions are all set to 1, which prevents any space
being inserted for alignment.

Table D-4. The Six Levels of Optimization (continued)

--param name=value
There are some internal limits used by GCC to determine the amount of optimization
to be done, so adjustments to these values are adjustments to the optimization. The
following table lists names and values of the available parameter settings.

This option can be written --param.

A
P

P
EN

D
IX

ES
A p p e n d i x D : C o m m a n d L i n e O p t i o n s 573

Name Value

max-delay-slot-insn-
search

The maximum number of instructions to consider
when looking for one to fill a delay slot. A larger
value can improve the generated code, but slows
compile time. The default is 100.

max-delay-slot-live-
search

The maximum number of blocks to search when
attempting to find a block with valid live register
information. A larger value can improve the
generated code, but slows compile time.
The default is 333.

max-gcse-memory Maximum amount of memory that can be allocated
to perform GCSE (Global Command Subexpression
Elimination). If there is not enough memory to
perform the operation, the optimization is not
performed. The default is 50 megabytes (52428800).

max-gcse-passes Maximum number of iterations of GCSE
(Global Command Subexpression Elimination).
The default is 1.

max-inline-insns Maximum number of instructions in a method
that can be a candidate for being expanded inline.
The default is 600.

max-pending-list-
length

Maximum number of branch elements that
can be stored by the slot scheduler in a pending
dependency list before the tracking mechanism
resets the list and starts over. A large function can
generation thousands of dependencies.
The default is 32.

Table D-5. The Names Accepted By the --params Option

574 G C C : T h e C o m p l e t e R e f e r e n c e

-pass-exit-codes
An exit code from any phase of the compilation process that indicates an error will be
ignored, and the compiler will continue. The return value from GCC is the largest error
code value resulting from any one pass. Normally the compiler halts and returns the
exit code value whenever it is non-zero.

-pedantic C C++ Fortran
Issues warnings required by strict compliance to the ISO standards for C and C++.
Without this option the GNU extensions are enabled, but ISO compliant programs
should compile successfully (although some may require the -ansi option).

For C, the standard applied is the one specified by the -std option. If -std is used
to specify gnu89, then -pedantic applies the rules for C89. The -pedantic option
issues only the diagnostic messages required by the ISO standard, so it is possible for
code that does not comply with the standard to compile without a warning. There are
no plans for GCC to implement an option that would force strict standards compliance.

For C, the -pedantic option does not apply to any expression following
__extension__.

For C++, if nether the -fpermissive nor the -pedantic option is specified, the
-fpedantic-errors option is assumed.

For Fortran, warnings are issued for uses of extensions to Fortran 77. Warnings are
issued for C-like constructs in character constants (such as \n). Warnings are issued
for certain GNU language extensions and some traditional Fortran features, but valid
Fortran 77 should compile properly with or without this option. It should be noted,
however, that this option does not force the program to strictly adhere to the standard.

This option can be written --pedantic.

-pedantic-errors C C++ Fortran
This option is the same as -pedantic, except the diagnostics are issued as errors instead
of warnings.

For C++, if neither the -fpermissive nor the -pedantic option is specified,
the -fpedantic-errors option is assumed.

This option can be written --pedantic-errors.

-pg
Include extra code that will output information suitable for analysis by the profiling
program gprof. This option must be used both to compile the source files and to link
the object files. Also see -p.

-pipe
Use pipes instead of intermediate files to communicate the output from one phase of
the compiler to the input of another. This could fail if the local assembler is incapable
of reading input from a pipe.

This option can be written --pipe.

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 575
A

P
P

EN
D

IX
ES

--prefix prefix
Same as -B.

--preprocess Pre
Same as -E.

-print-file-name=library
Print the full path name of the named library. No other action is taken by the compiler
other than listing the path name. Also see -print-libgcc-file-name and
-print-prog-name.

This option can be written --print-file-name.

-print-libgcc-file-name
Print the full path name of the library named libgcc.a. This option is the same as
-print-file-name=libgcc.a.

This option can be written --print-libgcc-file-name.

--print-missing-file-dependencies Pre
Same as -MG.

-print-multi-directory
Print the directory name corresponding to the library selected by any multilib selection
option specified on the command line. The directory name is determined by the
GCC_EXEC_PREFIX environment variable.

This option can be written --print-multi-directory.

-print-multi-lib
Print the directory names of the multilib selections along with the command line options
used to make the selections.

The output produced by this option uses a semicolon (;) as a separator and uses an
at sign (@) in place of the hyphen - to specify command line option names. This is done
to simplify shell processing of the text.

This option can be written --print-multi-lib.

-print-prog-name=program
Print the full path name of the named program (such as cc1 or cpp0). No other action
is taken by the compiler other than listing the path name. Also see -print-file-name.

This option can be written --print-prog-name.

-print-search-dirs
Print a list of the complete path names of all the directories that GCC will search for
programs to be run as subprocesses and for libraries to be used for linking. No other
action is taken by the compiler.

If a program is not being found, you can either place it in one of the directories
searched or add its directory to the environment variable GCC_EXEC_PREFIX.

This option can be written --print-search-dirs.

576 G C C : T h e C o m p l e t e R e f e r e n c e

--profile
Same as -p.

--profile-blocks
Same as -a.

-Q
The compiler will print the name of each function as it is being compiled, and will print
diagnostic statistics at the end of each pass including the amount of time taken to compile
and link the program.

-remap Pre
This option instructs the preprocessor to check for the existence of a file named
header.gcc in each directory containing include files. If the file exists, it is used to
determine the actual name of the file being sought. Each line of the file contains the
name of the header file being sought followed by the actual file name. For example,
the following lines in a header.gcc file would cause header files with long names
to be found under shorter names:

L D-33 NotSupportedException.h notsup.h

RollbackException.h rollbak.h

TransactionRequiredException.h transreq.h

-s Linker
The symbol table and all relocation information is removed from the executable. The
result is the same as that achieved by running the strip utility.

-S
Do not invoke the assembler nor the linker. This option will allow compiling of source
files into assembly language files, but the assembler will not be run to create an executable.
The output produced is stored in files of the same name as the source file with a .s
suffix. Any input files that do not have a recognizable suffix, as listed in Table D-1,
or do not have their types indicated by -x are ignored.

This option can be written --assemble.

-save-temps
Do not follow the normal procedure of deleting the temporary intermediate files produced
by the compiler. They are left in the current directory with the suffixes indicating their
content. The content of the files can be identified by the file suffixes listed in Table D-1.

This option can be written --save-temps.

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 577
A

P
P

EN
D

IX
ES

-shared Linker
The linker will produce a shared object which can be dynamically linked to a program
at run time to form a complete executable. Also, if the gcc command is being used to
create a shared library as its output, this option will prevent that absence of a main()
method from being considered an error by the linker.

For this to work properly the -fpic, -fPIC, and target platform options should be
used consistently to compile shared object modules that are to be placed in the same
library. In particular this option may require the generation of special code for constructors
to work properly. The errors produced from incorrect flag settings can be very subtle,
and there is no penalty for specifying them unnecessarily.

Also see -shared-libgcc, -static-libgcc, and -static. This option can be
written --shared.

-shared-libgcc Linker
This option specifies that the shared version of libgcc be used. On systems that do not
support shared libraries, or if no shared version of the library was constructed, this option
has no effect.

If the linker is invoked through g++, gcj, or g77 this flag is automatically specified
because of the requirement for throwing exceptions. The shared version of libgcc
should be used when an application is going to throw an exception from code in one
shared library that is to be caught by code in another shared library. Under these
circumstances the shared version of libgcc should be used by both the thrower and
the catcher.

Also see -shared, -static-libgcc, and -static.

-specs=filename
The gcc driver program reads a spec file to determine which flags should be passed
to which subprocesses (as described in Chapter 19). This option can be used to override
the default specifications by naming a spec file to be processed after the default files to
alter the set of rules used to invoke subprocesses.

This option can be written --specs.

-static Linker
The linker will ignore any dynamically linkable libraries and resolve all references by
including static object files directly into the resulting object file. On systems without
dynamic linking capabilities, this option has no effect.

Also see -shared. This option can be written --static.

-static-libgcc Linker
This option specifies that the static version of libgcc be used. This option may cause
problems with exceptions in C++ and Java.

Also see -shared, -shared-libgcc, and -static.

-std=name C
Specifies the C language standard. The names recognized are listed in Table D-6.

This option disables the GNU C extension keywords asm, typeof, and inline,
but the the alternate forms __asm__, __typeof__, and __inline__ remain available.

Also see -ansi. This option can be written --std.

-symbolic Linker
Bind references to global symbols when building shared objects. This is an alternative
to linking an executable as either -shared or -static. Only a few systems support this
option, such as certain SVR4 systems and DG/UX.

This option can be written --symbolic.

-syntax-only
Check the syntax of the input source code, report any warnings or errors, and stop.

578 G C C : T h e C o m p l e t e R e f e r e n c e

Name Description

iso9899:1990 The ISO C 89 standard. This option also sets the flags
-fno-traditional, -fno-writeable-strings,
-fno-asm, -fno-nonansi-builtin, and
-fno-noniso-default-format-attributes.

iso9899:199409 The ISO C 89 standard as amended. This option
also sets the flags
-fno-traditional, -fno-writeable-strings,
-fno-asm, -fno-nonansi-builtin, and
-fno-noniso-default-format-attributes.

iso9899:1999 The ISO C 99 standard. This option also sets the flags
-fno-traditional, -fno-writeable-strings,
-fno-asm, -fno-nonansi-builtin, and
-fno-noniso-default-format-attributes.

c89 Same as iso9899:1990.

c99 Same as iso9899:1999.

gnu89 The ISO C 89 standard with GNU extensions and
some ISO C 99 features. This option also sets the flags
-fno-traditional, -fno-writeable-strings,
-fasm, -fnonansi-builtin, and
-fnoniso-default-format-attributes.

Table D-6. The Options for Specifying the Language Standard

--target machine
Same as -b.

--target-help
Displays a list of the target-specific command-line options. Also see --help.

--trace-includes Pre
Same as -H.

-traditional C
This option is deprecated. It attempts to support characteristics of the original K&R C
language. A traditional program will not compile if it includes the ISO C header files.
This option also sets -traditional-cpp and -fwritable-strings.

Also see -fallow-single-precision. This option can be written
--traditional.

-traditional-cpp C
The C preprocessor supports characteristics of the original preprocessor.

This option can be written --traditional-cpp.

-trigraphs Pre
Support ISO C trigraphs. This option is implied by -ansi and by -std.

With this option set, each of the three-character sequences (each beginning with ??)
that make up the nine trigraphs will be translated into a single character, according to
the following table:

L D-34 ??= # ??([??< {

??/ \ ??)] ??> }

??' ^ ??! | ??- ~

This option can be written --trigraphs.

-time
Output the time consumed by each subprocess to compile a program. The times listed
on each line are the user time (the time spent in the code of the subprocess) and the
system time (the time spent in system calls). The following example shows the output
from compiling a C++ program into an executable object file:

L D-35 gcc -time fortest.cpp -o fortest.o

cc1plus 0.14 0.05

as 0.00 0.01

collect2 0.10 0.03

This option can be written --time.

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 579
A

P
P

EN
D

IX
ES

580 G C C : T h e C o m p l e t e R e f e r e n c e

-u name Linker
The specified name is inserted into the linker’s symbol table as one that must be resolved.
The linker will then resolve the symbol by loading the object module that contains
a definition of the symbol.

This option can be written --force-link.

-Umacro Pre
If it has been previously defined, the macro definition is removed.

All -D options are processed before any -U options, and all -U options are processed
before any -include or -imacros options.

This option can be written --undefine-macro.

-undef Pre
The preprocessor will not predefine any nonstandard macros. This option suppresses
the architecture definitions such as __unix__, __OpenBSD__, __mips__, __linux__,
__vax__, and so on.

--undefine-macro macro Pre
Same as -U.

--use-version version version
Same as -V.

--user-dependencies Pre
Same as -MM.

-v
Displays the current version number of the compiler and displays all of the commands
used to run each phase of the compile and link process. When used alone, this option
will display the current version number of the compiler. When used in combination
with the --help option, a complete list of the command line options is displayed.

Also see -###. This option can be written --verbose. This flag also sets -fversion
for Fortran.

-V version
Specify the version of gcc that is to be run. This option only has meaning if you
have more than one version of the compiler installed. The default is to run the latest
version installed.

This works by modifying the prefix used to select the compiler and its components,
which are normally kept in /usr/local/lib/gcc-lib/machine/version.

Also see -b and -B. This option can be written --use-version.

--verbose
Same as -v.

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 581
A

P
P

EN
D

IX
ES

-w
Do not issue warning messages. Same as --no-warnings.

-W
This option enables the issuing of a family of warning messages dealing primarily with
code that could possibly cause a problem, but it could also be what was intended by the
programmer. This option enables all of the following:

� Comparison A warning is issued if an unsigned value is tested for being
less than zero. For example, because unsigned values can never be negative,
the following test will always be false:

unsigned int x;

. . .

if(x < 0) . . .

� Comparison A warning is issued for the comparison of a signed value with an
unsigned value. An incorrect result can be produced when the unsigned value
is converted to a signed value for the comparison. This warning can be
suppressed by -Wno-sign-compare.

� Comparison Algebraic notation and the C sytnax for comparison are not the
same. A warning will be issued for the following statement:

if(a < b < c) . . .

In algebraic notation this expression is true only if b lies in the open interval
between a and c. In C, this expression is the same as the following, which is
very different:

int result;

result = a < b;

if(result < b) . . .

� Const return Issue a warning for the return value of a function being declared
as const. The const declaration has no meaning here because the return value
from a function is an rvalue.

� Aggregate initializers A warning is issued if initial values are specified for an
aggregate data type, but values are not supplied for all members of the aggregate.
In the following example an error message would be issued for both the array
and the struct:

struct {

int a;

int b;

int c;

} trmp = { 1, 2 };

int arr[10] = { 1, 2, 3, 4, 5 };

582 G C C : T h e C o m p l e t e R e f e r e n c e

� No side effect A warning is issued for a statement that has no effect.
For example, the result of the following addition is not used:

int a = 1;

int b = 2;

a + b;

� Overflow In Fortran, warnings are issued when floating point constant
declarations overflow.

� Return value Issue a warning if a function is written so that it may or may
not return a value, as in the following example which does not return value
if x is negative:

ambigret(int x)

{

if(x >= 0)

return(x);

}

� Static syntax Issue a warning if the keyword static does not come first on
a declaration line. This ordering is no longer a requirement in standard C.

� Unused arguments If either -Wall or -Wunused is specified along with -W,
a warning is issued for any unused arguments in the body of a function.

This option can be written --extra-warnings.

-Wa,optionlist Asm
The optionlist is a list of one or more comma separated lists of options to be passed to
the assembler. The options are split at the commas and each one is provided to the
assembler as a command line option.

Also see -Wp and -Wl. This option can be written as --for-assembler.

-Waggregate-return C C++ ObjC
Issue a warning if a function returns a structure, union, or an array.

-Wall
For C and ObjC, setting this option is the same as setting -Wreturn-type, -Wunused,
-Wimplicit, -Wswitch, -Wformat, -Wparentheses, -Wmissing-braces,
-Wsign-compare, and -Wmultichar. The -Wunknown-pragmas option is set to
detect only those not found in system headers. The -Wunitialized option is set if
-O is also specified.

For C++, the additional options set are -Wctor-dtor-privacy,
-Wnon-virtual-dtor, -Wreorder, and -Wnon-template-friend.

For Fortran, the only option settings that have any effect are -Wunused and
-Wuninitialized.

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 583
A

P
P

EN
D

IX
ES

For Java, this is the same as setting -Wredundant-modifiers,
-Wextraneous-semicolon, and -Wunused.

This option can be written --all-warnings.

--warn-
Same as -W.

-Wbad-function-cast C
Issue a warning whenever a function is cast to a non-matching type. For example, the
following will cause a warning to be issued on the function call:

L D-42 int glim()

{

return(88);

}

. . .

char *cp;

cp = (char *)glim();

-Wcast-align C C++ ObjC
Issue a warning there is a possible problem with the alignment resulting from casting
a pointer to a different type. For example, on some machines it is possible to address
an int only on 2- or 4-byte boundaries, so casting a char pointer to an int pointer
could result in an invalid address value.

-Wcast-qual C C++ ObjC
Issue a warning whenever a function call removes a qualifier. For example, the
following removes the const qualifier:

L D-43 const char *conchp;

char *chp;

. . .

chp = (char *)conchp;

-Wchar-subscripts C C++ ObjC
Issue a warning if a char data type is used as the subscript of an array. Because char
often defaults to being signed, this can be the cause of an error.

-Wcomment C C++ ObjC
Issue a warning when a /* is found inside a /* ... */ comment. Also issue a warning
when a // comment line ends with a backslash (which continues the comment to the
following line).

584 G C C : T h e C o m p l e t e R e f e r e n c e

-Wconversion C C++ ObjC
Issue a warning if a prototype causes a type conversion other than the one that would
occur if the conversion were made without the prototype. This includes converting
between real and integer data types, signed and unsigned values, as well as changing
the width of the value. Warnings are issued only for implicit conversions (coercion),
but not for specific casts. For example, the first of the following assignment statements
will issue a warning but the second will not:

L D-44 unsigned int recp;

recp = -1;

recp = (unsigned int)-1;

-Wctor-dtor-privacy C++
Issue a warning if a class appears to be unusable because it has only private constructors
or destructors, no friends, and no public or static members. This option is set by -Wall.

-Wdeprecated C++
This is the default. Warnings are issued about the use of deprecated features of C++
unless the option -Wno-deprecated is specified.

-Wdeprecated-declarations C C++ ObjC
This is the default. Warnings are issued about the use of items marked with the deprecated
attribute unless -Wno-deprecated=declarations is specified.

-Wdisabled-optimization
Issue a warning if a requested optimization is disabled. This circumstance occurs not
because of a problem with your code, but because of a limitation within the compiler
itself. GCC will refuse to perform optimizations that are too complex and/or will take
too long to perform.

-Wdiv-by-zero
This is the default. Issues a warning when the compiler can detect integer division by zero
unless the option -Wno-div-by-zero is specified. There is no warning for floating
point division by zero.

-Weffc++ C++
Issues warnings for violations of some of the style guidelines from the book Effective
C++ by Scott Myers. The standard library headers do not follow these guidelines, so
you will also get warnings issued from them.

-Werror
Convert all warnings into error messages.

-Werror-implicit-function-declaration C
Issue an error whenever a function is used before being declared. Also see
-Wimplicit-function-declaration.

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 585
A

P
P

EN
D

IX
ES

-Wextern-inline C++
Issue a warning if a function is declared as both extern and inline.

-Wextraneous-semicolon Java
Issue a warning for a semicolon that has no statement to terminate. Empty statements
have been deprecated.

-Wfloat-equal
If two floating point numbers are compared for equality, a warning is issued because
this is often an error in the logic of the program.

It is the nature of floating point arithmetic that calculated real numbers are rarely
equal to one another. This means that comparison for exact equality on two real numbers
can fail even if the numbers are close enough together for the logic of your program to
treat them as if they were identical. The following is a technique for comparing floating
point numbers if your program considers equality being within 0.00001 of one another:

L D-45 double delta = 0.00001;

. . .

if((val1 > val2-delta) && (val1 < val2+delta) {

/* val1 and val2 are considered equal */

}

-Wformat C C++ ObjC
Check the calls to functions such as printf() and scanf() and issue a warning if the
arguments’ types on the command do not match with the ones specified in the formatting
string. For example, the following statement attempts to format a double value as an
int and produces a warning message:

L D-46 double dvalue = 44.44;

. . .

printf("The value %d is bad.\n",dvalue);

The formats are tested against the features supported in GNU libc version 2.2,
which includes the ones in C89, C99, POSIX, and some BSD GNU extensions. If the
-pedantic option is also specified, warnings will be issued for formats that are not
part of the standard.

The functions with format strings tested by this option are printf(), fprintf(),
sprintf(), scanf(), fscanf(), strftime(), vprintf(), vfprintf(), and
vsprintf(). For C99 the list includes snprintf(), vsnprintf(), vscanf(),
vfscanf(), and vsscanf(). For X/Open the list includes strfmon(),
printf_unlocked(), and fprintf_unlocked().

Also see -Wformat-extra-args, -Wformat-nonliteral, and
-Wformat-security. See the section “Attributes” in Chapter 4. This option
is set by -Wall.

586 G C C : T h e C o m p l e t e R e f e r e n c e

-Wformat=2 C C++ ObjC
The same as setting -Wformat, -Wformat-nonliteral, and -Wformat-security.

-Wformat-extra-args C C++ ObjC
This is the default. If -Wformat is specified, specifying -Wno-format-extra-args
will suppress warning messages about extra (unused) arguments passed to the function
calls such as printf() and scanf().

-Wformat-nonliteral C C++ ObjC
Issues a warning if -Wformat is specified and the formatting string on a call to functions
such as printf() and scanf() is not a literal constant, which cannot be checked.

-Wformat-security C C++ ObjC
Issues a warning if -Wformat is specified and a call to a function such as printf() and
scanf() presents a possible security problem. Function calls using a variable instead
of a literal constant string for the formatting is not trusted because it could contain a %n.

-Wformat-y2k C C++ ObjC
This is the default. Specifying -Wno-format-y2k will suppress warnings about
strftime() formats that produce two-digit years.

-Wglobals Fortran
This is the default. Specifying -Wno-globals suppresses warnings about the global name
of a subroutine, function, data block, or common block being the same as the name of
an intrinsic. Warnings are also inhibited about inconsistent invocations of global functions
and subroutines (such as a different number or different types of arguments).

-Wimplicit Fortran
Issue a warning whenever a variable, array, or function is implicitly declared. The effect
is similar to the effect of the declaration IMPLICIT NONE.

-Wimplicit-int C
Issue a warning when a declaration does not specify a type. This option is set by
-Wimplicit and -Wall.

-Wimplicit-function-declaration C
Issue a warning whenever a function is used before being declared. Also see
-Werror-implicit-function-declaration. This option is set by -Wimplicit
and-Wall.

-Wimplicit C
Same as -Wimplicit-int and -Wimplicit-function-definition. This option
is set by -Wall.

-Wimport C C++ ObjC
This is the default. Specifying -Wno-import will suppress warning messages from the
preprocessor about the use of #import.

A
P

P
EN

D
IX

ES
A p p e n d i x D : C o m m a n d L i n e O p t i o n s 587

-Winline C C++ ObjC
Issue a warning if a function that was declared as inline could not be expanded as
inline code.

-Wl,optionlist Linker
The optionlist is a list of one or more comma separated lists of options to be passed to
the linker. The options are split at the commas, and each one is provided to the linker
as a command-line option.

Also see -Xlinker, -Wa and -Wp.

-Wlarger-than-size C C++ ObjC Java
Issue a warning whenever an object larger than size bytes is declared, if the return value
from a function is larger than size bytes.

-Wlong-long C C++ ObjC
This is the default, but will only work if the -pedantic option is also specified. This
option will issue a warning if the long long data type is used. The default can be
overridden by specifying -Wno-long-long.

-Wmain C C++
Issue a warning if the definition of main() looks suspicious. It should be a function that
has external linkage and returns an int. It should have zero, two, or three arguments
of the appropriate types.

-Wmissing-braces C C++ ObjC
Issues a warning if the initial values of an array are not completely bracketed. In the
following example, both arrays a and b are initialized correctly, but braces are used
for array b to be more specific about the placement of the values:

L D-47 int a[2][2] = { 0, 1, 2, 3 };

int b[2][2] = { { 1, 2 }, { 3, 4} };

This option is set by -Wall.

-Wmissing-declarations C
Issue a warning if a global function is defined without a previous declaration with
or without specifying the argument types. Also see -Wstrict-prototypes and
-Wmissing-prototypes.

-Wmissing-format-attribute C C++ ObjC
Issue warnings which might be candidates for the format attribute. It should be noted
that the warnings are issued for possible noreturn candidates. This option has no effect
unless the option -Wformat or -Wall has also been specified.

-Wmissing-noreturn C C++ ObjC
Issues a warning about a function which may be suitable for the noreturn attribute. It
should be noted that the warnings are issued for possible noreturn candidates, and that

588 G C C : T h e C o m p l e t e R e f e r e n c e

care should be taken not to specify the noreturn attribute on a function that actually
returns because it will introduce subtle bugs into your program.

-Wmissing-prototypes C
Issue a warning if a global function is defined without a previous prototype
declaration specifying the argument types. Also see -Wstrict-prototypes
and -Wmissing-declarations.

-Wmultichar C C++ ObjC
This is the default. Issues warnings if a character constant is declared containing more
than one character such as ‘ab’ or ‘Plop’. The code resulting from this kind of declaration
depends on the platform and should never be used in portable code, but the warning
can be suppressed by -Wno-multichar.

-Wnested-externs C
Issue a warning for an extern declaration inside a function.

-Wnon-template-friend C++
This is the default. A warning is issued when a non-templatized friend function
is declared as the member of a template.

Prior to the C++ standards definition, GNU C++ implemented the name of a
friend to be declared as an unqualified id. By default this is no longer the behavior
but, for existing code, you can turn off the warning message by specifying
-Wno-non-template-friend. This option is set by -Wall.

-Wnon-virtual-dtor C++
Issue a warning if a non-virtual destructor should probably be virtual. Non-virtual
destructors will not be executed if an object is destroyed while being referenced as
one of its super classes. This option is set by -Wall.

-Wold-style-cast C++
Issues a warning when a traditional style (C language style) cast is used instead
of one of the new forms from the C++ standard with one of the casting operators
static_cast, const_cast, or reinterpret_cast. For example:

L D-48 class A { ... };

class B: public A { ... };

. . .

A* a = new A();

B* b = a; //implicit conversion

A* a2 = static_cast<A*>(b); //reversing an implicit conversion

-Wout-of-date Java
This is the default. Specifying -Wno-out-of-date will suppress the warning issued
by the compiler when a source file is newer than its class file.

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 589
A

P
P

EN
D

IX
ES

-Woverloaded-virtual C++
Issues a warning when a function declaration hides a virtual function declared in a base
class. In the following example the function fn() in class A is hidden:

L D-49 class A {

virtual void fn();

};

class B: public A {

void fn(int);

};

-Wp,optionlist Pre
The optionlist is a list of one or more comma separated list of options to be passed to
the preprocessor. The options are split at the commas, and each one is provided to the
preprocessor as a command-line option.

Also see -Wa and -Wl.

-Wpacked C C++ ObjC
Issue a warning when the packed attribute is specified, but has no effect. For example,
the following struct would consume four bytes even without the packed attribute:

L D-50 struct fourbyte {

short x;

char a;

char b;

}__attribute__((packed));

See “Attributes” in Chapter 4. Also see -fpack-struct and -Wpadded.

-Wpadded C C++ Objc
Issue a warning if the compiler inserts padding between the members of a structure to
either align an item within the structure or to align the entire structure. In some cases it
is possible to rearrage the members of the structure to align the members and reduce the
size of the structure by removing the padding. For example, the following struct will
cause a byte to be inserted before the short data type to align in on a 2-byte boundary:

L D-51 struct pad {

char a;

short b;

char c;

};

-Wparentheses C C++ ObjC
Issue warnings for constructions that, while syntactically correct, could possibly be
confusing to the programmer because of operator precedence or the structure of the code.

The following expression will cause a warning to be issued because it is difficult to
remember whether logical operators associate left to right or right to left:

L D-52 if(a && b || c) . . .

The following will issue a warning because, in the absence of braces, the relationships
among the if and else statements could be misleading:

L D-53 if(a)

if(b)

m = p;

else

a = 0;

It is apparent from the indention that the programmer intended for the else
statement is to be associated with the first if statement, but it is not.

This option is set by -Wall.

-Wpmf-conversions C++
This is the default. Specifying -Wno-pmf-conversions will cause a warning to be
issued when there is a conversion from a pointer to the address of a member function.

-Wpointer-arith C C++ ObjC
Issue a warning for anything that depends on the size of a function type or the size
of a void. For the sake of pointer arithmetic, the GCC default size for these items is 1.

-Wprotocol ObjC
This is the default. Specifying -Wno-protocol suppresses warnings issued when
methods required by a protocol are not implemented in the class adopting the protocol.

-Wredundant-decls C C++ ObjC
Issue a warning for any item declared more than once in the same scope. This warning
is issued even when the declarations are identical.

-Wredundant-modifiers Java
Issue a warning if an unnecessary modifier is used in a declaration. For example, a warning
is issued if a method in an interface is declared public.

-Wreorder C++
Issue a warning if the compiler rearranges member initializers to match the order in
which they are declared. For example, the following initializers must be rearranged:

590 G C C : T h e C o m p l e t e R e f e r e n c e

L D-54 class Reo {

int i;

int j;

Reo(): j(5), i(10) { }

};

This option is set by -Wall.

-Wreturn-type C C++
Issue a warning when any declared function is declared without a return type and allowed
to default to int. Also issue a warning if there is a return statement without a value in
a function that is not declared as void. This option is set by -Wall.

--write-dependencies Pre
Same as -MD.

--write-user-dependencies Pre
Same as -MMD.

-Wselector ObjC
Issue a warning if a selector defines multiple methods of different types.

-Wsequence-points C
Issues a warning if a variable is referenced more than once in an expression, and one of
the references modifies its value. The definition of the C language allows expressions
between sequence points to be evaluated in any order (as long as operator precedences
are maintained), so modification of a variable in one location makes its value undetermined
if it is used in another.

A sequence point is specified in the code by the presence of one of the
following operators:

L D-55 ; , && || ? :

The following are some examples of expressions that have ambiguous results
because of a sequence point violation:

L D-56 s = a[s++];

s = s--;

a[s++] = b[s];

a[s] = b[s += c];

-Wshadow C C++ ObjC Java
Issue a warning whenever a local variable shadows a parameter, global variable, or another
local variable. Also issue a warning if a built-in function is shadowed.

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 591
A

P
P

EN
D

IX
ES

592 G C C : T h e C o m p l e t e R e f e r e n c e

-Wsign-compare C C++ ObjC
Issue a warning when a comparison between a signed and unsigned value could
produce an incorrect result by converting the signed value to unsigned before making
the comparison. This option is set by -Wall but can be overridden by specifying
-Wno-sign-compare.

-Wsign-promo C++
Issue a warning when overloading from an unsigned (or enumerated type) data type to
a signed data type of the same size. The standard specifies this type of conversion, but
it could cause loss of data.

-Wstrict-prototypes C
Issue a warning if a function is declared or defined without specifying the
type and number of arguments. Also see -Wmissing-prototypes and
-Wmissing-declarations.

-Wsurprising Fortran
This option will issue warnings about constructs that could be interpreted in more than
one way, and cause a surprising result for the programmer. These are language constructs
that are treated differently by different compilers. The warnings include:

� Expressions with two operators in a row. An example of this is x** y * z. In the
absence of parentheses it is possible for a compiler to interpret the expression as
x** (y * z) or as ((x**y) * z. The -fpedantic option also issues warnings
for these situations.

� Expression with an ambiguous unary minus.For example, -2 ** x because the
expression could be interpreted as -(2 ** x) or as (-2)**x. Expressions such as -x*y
can cause surprising results if a value is close to the maximum range of
the x or y data type and the interpretation is -(x*y) instead of (-x)*y.

� ADO loop that uses a real number instead of an integral value as its loop counter
can cause surprising restults. This is not normally a problem, but the result can
vary from one compiler to the next.

-Wswitch C C++ ObjC
Issue a warning if an enumerated type is used as the index for a switch statement and
there is no default and a case statement is not present for all the possible values.
This option is set by -Wall.

-Wsynth C++
Issue a warning when operator synthesis is different from cfront. In the following example
GCC will synthesize the operator A& operator = (const A&); where cfront employs
the user-defined default operator =.

L D-57 class A {

operator int();

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 593
A

P
P

EN
D

IX
ES

A& operator = (int);

};

main() {

A a1;

A a2;

a1 = a2;

}

-Wsystem-headers C C++ ObjC
Issue warning messages for code in the system header files as well in the program being
compiled. Normally warnings caused by system headers are suppressed.

To generate warnings about unknown pragmas in system headers it will be necessary
to specify -Wunknown-pragmas because using -Wall only checks the pragmas in the
program and ignores the ones in the system headers.

-Wtraditional C
Issue warnings for standard C constructs that may have a different meaning, or did not
exist, in traditional C. Some of these are ambiguous or problematic constructs that should
be avoided.

� Conversion Issue a warning for any conversion between a fixed and floating
point number caused by a prototype definition. Also see -Wconversion. For
example, a warning would be issued for the following function call:

void takedouble(double dval);

. . .

int eighty = 80;

takedouble(eighty);

� External Issue a warning if a function is declared as external within a block of
code, and the function is used outside of the scope of the block.

� Initial values Issue a warning for the declaration of an initial value for
an automatic aggregate data type (such as an array or struct declared inside
a function).

� Initial values Issue a warning for specifying an initial value of a union, unless
the value of the initializing constant is zero.

� Label Issue a warning for a label having the same name as a variable.

� Literal constants Warnings are issued for integer constants declared with the
U suffix, and real number constants with the suffixes F or L.

� Literal constants A warning is issued if a base ten standard C literal constant
has a different width or signed/unsigned characeristics than it would have in
traditional C. This warning is only for base ten constants because hexadecimal
and octal constants are assumed to be bit patterns.

� Literal constants A warning is issued for the standard C method of string
constant concatenation.

� Preprocessor A warning is issued for a macro named appearing as part of a
string literal. The string literals of traditional C can contain macro definitions
but standard C does not allow them.

� Preprocessor Issues warnings for any preprocessor directives starting in column
one that are unknown to traditional C. You can specify newer preprocessor
directives, such as #pragma and #elif, by indenting them so they do not begin
in the first column. (The traditional preprocessor requires that all directives
begin in the first column.)

� Preprocessor Issue a warning for a macro defined in the form of a function
but has no arguments.

� Static A warning is issued if a non-static function is declared following
a static function. (This is not accepted by some traditional compilers).

� Switch A warning is issued if a switch statement’s operand is of type long.

� Unary plus Issue a warning for the presence of a unary plus.

-Wtrigraphs C
Issue a warning for a trigraph that may change the meaning of the program. Because
trigraphs are translated everywhere except inside comments, it occasionally happens
that a trigraph appears inside a quoted string. For example, one version of the Linux
kernel contained the string "imm: parity error (???)\n"which standard C translated
to "imm: parity error (?]\n".

-Wundef C C++ ObjC
The proprocessor will issue a warning whenever an undefined identifier is found in an
expression evaluated by an #if directive.

-Wuninitialized
Issue a warning if an automatic variable is used before it is initialized. Also issue a warning
if a setjmp() call may destroy the value of an automatic variable. This option can only
be used in conjunction with -O because it is the optimizing data flow information that
is required for these situations to be detected.

Because this option requires data flow analysis, it is not possible for it to be completely
accurate. For example, in the following code it is not possible to guarantee that value
will or will not be initialized for the printf() statement:

L D-59 int value;

if(a < b)

value = 5;

else if(a > c)

594 G C C : T h e C o m p l e t e R e f e r e n c e

value = 10;

printf("%d\n",value);

Because of the nature of the data flow analysis, this option does not apply to structures,
unions, arrays, any variable declared as volatile, any variable that has its address
taken, or a variable used to compute a value that is never used.

The data flow analysis is aware of the setjmp() statement, but it has no way of
knowing from where longjmp() may be called, so a warning could be issued when
there is no problem.

The same sort of data flow analysis is required for Fortran source, as demonstrated
by the following example where it may not be possible to determine whether TVAL is
always initialized:

L D-60 IF (IVAL .EQ. 1) TVAL = 5

IF (IVAL .EQ. 2) TVAL = 10

CALL SMON(TVAL)

Some of the false warnings issued by this option can be suppressed by declaring
functions that do not return as noreturn.

This option is set by -Wall if the -O option is also specified.

-Wunknown-pragmas
Issue a warning if an unknown #pragma directive is encountered. This option will issue
warnings for any unknown #pragma directives in the system header files unless it has
been set by -Wall.

-Wunreachable-code
Issue a warning if code is detected that cannot be reached during the execution of the
program. This can happen if the code follows a branch that will always be taken or
follows a function call that does not return.

Care should be taken in removing code causing this warning to be issued. It is possible
to get a warning from a function that generated inline code or from the expansion of
a macro, but there are other instances of the code that do not generate unreachable
code. Also, unreachable code could be the result of a compile-time option causing code
to be intentionally skipped.

-Wunused
This option sets the options -Wunused-function, -Wunused-label,
-Wunused-parameter, -Wunused-value, and -Wunused-variable.

For Fortran, a warning is issued whenever a variable is declared but not used.
This option is set by -Wall.

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 595
A

P
P

EN
D

IX
ES

596 G C C : T h e C o m p l e t e R e f e r e n c e

-Wunused-function
Issue a warning for the definition of a static function that is not used or for a static function
that is declared but not defined. This option is also set by -Wunused and -Wall.

-Wunused-label
Issue a warning for an unused label defined without the unused attribute. This option
is also set by -Wunused and -Wall.

-Wunused-parameter
Issue a warning for an unused parameter declared without the unused attribute. This
option is also set by -Wunused and -Wall.

-Wunused-value
Issue a warning for an unused local variable or non-constant static variable declared
without the unused attribute. This option is also set by -Wunused and -Wall.

-Wunused-variable
Issue a warning for an unused local variable or non-constant static variable declared
without the unused attribute. This option is also set by -Wunused and -Wall.

-Wwrite-strings C C++
Issue a warning if a C program stores the address of a literal string constant into a
pointer that is not declared as const. Issue a warning if a C++ converts string constants
to type char *.

This option is useful only if care has been taken in writing the code to declare data
types and prototypes as const, otherwise the warnings can become a nuisance.

-xlanguage
Specifies the content of files named on the command line. Without this option the content
of the files is assumed from the suffixes on the file names. This option applies to all names
following it on the command line. The following example specifies that the files named
morg.jmp and frampl are both C source code files:

L D-61 gcc -xc morg.jmp frampl

The option can be used more than once to change the expected language, and the
special name none can be used to turn the option off again. For example, the following
command line specifies that the files named murk and stim.wad both contain C++
source code, the file named hummer.c is actually Java source code, while slamm.c
defaults to being C source code:

L D-62 gcc -xc++ murk stim.wad -xjava hummer.c -xnone slamm.c

The -x option can be written --language. See Table D-7.

-Xlinker option Linker
Pass an option through to the linker. This is primarily used to specify system-specific
linker options.

For example, if you are using the System V linker and want to specify the -all option
for it, you can do that by specifying -Xlinker -all. It is necessary to use -Xlinker
repeatedly to specify more than one item on the linker’s command line. For example, to
specify -woff 5,17 you would need to specify it as -Xlinker -woff -Xlinker 5,17.
It will not work as -Xlinker "-woff 5,17".

Also see -Wl. This option can be written --for-linker.

A p p e n d i x D : C o m m a n d L i n e O p t i o n s 597
A

P
P

EN
D

IX
ES

Language Name Description

ada Ada source code.

assembler Assembler langauge that is not to be preprocesssed.

assembler-with-cpp Assembler language that is to be preprocessed.

c C source code that is to be preprocessed.

c++ C++ source code that is to be preprocessed.

c++-cpp-output C++ source code that is not to be preprocessed.

c-header C header file

cpp-output C source code that is not to be preprocessed.

f77 Fortran source code that is not to be preprocessed.

f77-cpp-input Fortran source code that is to be preprocessed.

java Java source code.

objc-cpp-output Objective C source code that is not to be preprocessed.

objective-c Objective C source code that is to be preprocessed.

ratfor Fortran source code to be preprocessed by a
RATFOR preprocessor.

Table D-7. The Language Specifiers of the -x Option

This page intentionally left blank.

Appendix E
Glossary

599

absolute address
An absolute address is a unique numeric value that specifies a specific byte of memory.
Also see relative address.

address
See absolute address and relative address.

aggregate
A data type that contains more than one of the fundamental data types. For example,
an array is an aggregate, as is a C struct.

aliasing
The same memory location being addressed directly or indirectly by two or more
different names, and possibly different data types, is known as aliasing. This is a special
consideration for optimization because it is common to retain values in registers.

ANSI (American National Standards Institute)
An organization that administers and coordinates U.S. voluntary standardization.

archive
See library.

assembler
A platform-specific program that reads assembly language source (mnemonic
representations of the hardware opcodes) and translates it into a binary object file
that can be fed to the linker.

backtrace
The GNU debugger can print a list of function names and addresses that were called
to get the program to the current point of execution. This information, which includes
function addresses and argument values, is called a backtrace.

BFD (Binary File Descriptor)
A library that includes routines that work with the various binary file formats to perform
low-level operations.

BSD (Berkeley Software/Standard Distribution)
A UNIX operating system. It is also the basis of several other modern UNIX systems.
Also see SVR4.

600 G C C : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x E : G l o s s a r y 601
A

P
P

EN
D

IX
ES

bss
The uninitialized data segment of an executable file produced by a UNIX linker. It
contains data that has an address but contains no space. Therefore, no space is allocated
until the program is loaded. In the executable file, a bss variable is assigned only a
name, size, and location. Also see text and data.

built in function
Function bodies generated by the compiler are called built in functions. A built in
function can be an optimized version of a standard library function, an added feature
of the compiler, or a function used internally to implement such things as variable
length argument lists.

bytecode
The portable form of object code produced from compiling Java programs. The bytecode
is interpreted by the Java Virtual Machine to execute Java programs.

C89
The 1989 ANSI C standard.

C99
The 1999 ANSI C standard.

calling convention
See calling sequence.

calling sequence
The sequence of assembly language statements used to call a function. The sequence
sets up the arguments to be passed, stores the return address so it can be found by the
called function, makes the call, and then manages the return value (if any). This is also
called the calling convention.

CCP (Conditional Code Propagation)
An optimization technique that discovers values that are constant for all possible paths
of execution and uses this fact to detect and delete any code that cannot be executed.

cfront
The original version of C++ was implemented as an AT&T program named cfront that
translated C++ source code into C source code.

602 G C C : T h e C o m p l e t e R e f e r e n c e

class
1. In object-oriented programming, a class is an object type definition. Objects produced
from it are said to be in the same class because they have the same interface and set of
behaviors. 2. In Java, the file that contains a compiled class is called a class file, or simply
a class.

clobber
If a storage location (usually a register) has been used as a temporary work area,
causing it to no longer contain the expected value, the storage location is said to have
been clobbered.

CNI (Cygnus Native Interface)
A facility for writing native Java methods in C++. Also see JNI.

code
A term used to refer to any form of a list of instructions to be executed on a computer.
Code can be anything from human-readable programming source to machine-readable
opcode bit patterns.

code propagation
See CPP.

coercion
The automatic conversion from one fundamental data type to another (without casting
or making a function call).

COFF (Common Object File Format)
A standard format for object files that is portable across systems and known to different
assemblers and linkers. Also see ECOFF and XCOFF.

COMDAT (Common Data)
A data or executable item (or set of items) that may be duplicated in more than one
object file. The linker removes all but one of them when the object files are combined
into a library or an executable. This is also referred to as folding or comdat folding.

common
The attribute of a global variable that is allocated to the common block.

A p p e n d i x E : G l o s s a r y 603
A

P
P

EN
D

IX
ES

common block
The GNU linker creates a common block as an area to allocate space for global variables.
If identical global variables are declared in separate object files, they are resolved into
a single variable in the common block. See COMDAT.

compilation unit
A single unit of source code that can be compiled into a single object file. It is often a
single source file, but it also encompasses other source code that compiles with it (such
as the #include files of a C program). This is also called a translation unit.

compiler
A set of software that reads the source (or text) of a computer program and translates
the instructions into forms that then can be executed on a computer. A compiler is also
called a translator.

copyleft
A general license that states that a program is free software and that all modified and
extended versions of the software will also be free software. See GPL.

cross compile
Using a compiler to create executable files that can be executed on an entirely
different platform.

CPP (C Preprocessor)
The preprocessor reads program source text and processes the directives to produce
a modified version of the source.

cruft
As software ages and goes through cycles of bug fixes and upgrades, some of its code is
no longer used but remains part of the source. Such code is know as cruft. The size
of a piece of cruft can range from one or two useless lines to entire source modules.
Removal of cruft can be difficult because it is often hard to identify.

CSE (Common Subexpression Elimination)
An optimization technique that recognizes duplicate expressions and reuses the value
instead of performing the calculations again. Also called GCSE.

ctor
A common abbreviation of constructor. Also see dtor.

CVS (Concurrent Version System)
A version control system that maintains revision history information on text files. It is
designed for access by many different people in widely separated locations.

data
The segment of an executable file produced by a UNIX linker that contains data with
initial values. The segment contains items that have a name, a size, and is allocated
space to contain a value. Also see bss and text.

DBX
An interactive debugger that can be used to track the execution of a program line by
line. DBX is a command-line debugger, but in various incarnations it has an X GUI
interface and an emacs interface.

DCE (Dead Code Elimination)
An optimization technique that removes any code that would never be executed.

dead code
During optimization, it is possible for some code to be left over that will never be
executed. This is known as dead code. The optimizer should remove such code.

demangle
The process of extracting the descriptive information encoded in a mangled function
name. See mangle.

deprecated
Any compiler option or feature that is no longer needed (or is considered inappropriate
for some other reason) is declared as deprecated. It still exists but may be removed from
a future version of the compiler.

dereference
Expressions may involve an address stored in a pointer. A pointer being used in this
way is said to be dereferenced.

directive
1. A command in the source preceded by a hash (#) character that is to be acted
upon by the preprocessor. 2. In assembly language, a directive is an instruction to

604 G C C : T h e C o m p l e t e R e f e r e n c e

the assembler rather than an opcode that will produce code. An assembler directive
is also called a pseudo-op.

distention
The name applied to certain Fortran language extensions that are now considered
“ugly” and should not be used. Some of the distentions are supported in g77 via
-fugly-* flags.

dtor
A common abbreviation for destructor. Also see ctor.

DWARF (Debugging With Attribute Format)
A format used for the insertion debugging information into object code.

DWARF2 (Debugging With Attribute Format 2)
A more recent version of DWARF, this format is used for the insertion of debugging
information into object code.

dynamic library
See library.

ECOFF (Extended Common Object File Format)
A standard format for object files that is portable across systems and known to different
assemblers and linkers. Also see COFF and XCOFF.

EH
Short for exception handling.

elaborate
In Ada, the final step prior to execution is to elaborate the code by inserting the necessary
initial values and executable instructions, which often require the content of other
compilation units in the same program. Also see preelaborable.

elaboration
In the Ada language, elaboration is name of the process requied to elaborate a package.

ELF (Executable and Linkable Format)
The Linux binary object file format that contains information for dynamically loading
libraries as well as executable code. ELF is derived from, and very similar to, the
COFF format.

A p p e n d i x E : G l o s s a r y 605
A

P
P

EN
D

IX
ES

606 G C C : T h e C o m p l e t e R e f e r e n c e

elide
An elided function is one that produces its return value value by using the return
location of the caller as its work space instead of creating its own internal work space
and having the value copied into the return location later. Function calls may be elided
by the optimizer.

entry point
The address inside an executable program where its execution is to begin is called the
entry point.

fetch
When a computer reads an instruction from a program in memory and loads it into the
CPU to execute it, this is known as an instruction fetch. Also see prefetch.

FPU (Floating Point Unit)
A hardware processor that works along with the CPU to perform floating-point operations.
Computers without an FPU will require software to emulate floating-point operations.

folding
See COMDAT.

frame
See stack frame.

function
A function is a block of executable code that is assigned a name and can be called from
another location. A function may also be defined with parameters to specify a list of
argument values that can be passed to the function by the caller. Also see member function
and method.

garbage collection
The process of a running program automatically recovering dynamically allocated
memory that is no longer being used. There are many schemes for doing this, but all
are considered garbage collection.

GCSE (Global Common Subexpression Elimination)
An optimization technique that recognizes duplicate expressions and reuses the value
instead of performing the calculations again. Also called CSE.

GNAT (GNU Ada Translator)
The name of the original Ada front end that has now become a part of GCC.

A p p e n d i x E : G l o s s a r y 607
A

P
P

EN
D

IX
ES

GNATS (GNU Bug Tracking System)
An online system used to track bugs for GCC and other GNU software.

GOT (Global Offset Table)
A table inside an object file that contains a list of offsets that can be used to relocate the
executable code. See PIC.

GPL (General Public License)
A license under which software is made into free software in the form of copyleft.

header
A header file is included in the source text file by the preprocessor executing an
include directive. In C, C++, and Objective-C, it is traditional to name the files with
a .h suffix.

Hollerith field
In Fortran, quoted strings are stored as a character count followed by the characters
themselves. A string of characters can be created by using a Hollerith field, which
is a length followed by the letter H and the string of characters (for example,
10HPhillips66).

host
See platform.

i18n
A short form of the word internationalization, which begins with the letter i, followed
by 18 letters, and ends with the letter n. Also see l10n.

if-conversion
An optimization procedure for modifying the generated code so that the path following
the branch most likely to be taken is more efficient than the one taken less often.

immediate
An immediate value is a constant that is specified as an operand with an assembly
language opcode.

include guard
It is customary to use the preprocessor conditional compilation commands to defined an
environment variable that can be tested at the top of a header file to prevent it from
being compiled more than once. If the variable is not yet defined, the header is compiled.

induction variable
A variable that is incremented during a loop. A loop counter.

inline
The entire body of a function (or other similar language element) is included at the
point of the function call. That is, the function body is expanded inline in the code
instead of existing only as a call to the function body existing elsewhere.

insn
A machine languages or RTL intermediate language instruction. There are special-
purpose insns, but the most important ones form a sort of meta assembly language
that can be translated into assembly language instuctions of the target machine.

instantiation
The creation of the instance of an object from a class definition.

intrinsic
In Fortran, an intrinsic function is a built-in function that appears to be part of the
language because it can be used without being declared.

invariant expression
An expression inside a loop that evaluates to the same value every time is an invariant
and, for optimization, can be moved outside the loop.

ISO (International Organization or Standardization)
An international standards organization founded in 1946, ISO’s membership is composed
of standards organizations, including ANSI, from 75 countries.

jar
An archive file that contains one or more Java class files. It also contains a manifest,
which is a text file containing a list of the names of the classes in the jar file.

Java Virtual Machine
See JVM.

JNI (Java Native Interface)
A standard programming interface for writing Java native methods and embedding
the JVM into native applications. Also see CNI.

608 G C C : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x E : G l o s s a r y 609
A

P
P

EN
D

IX
ES

JVM (Java Virtual Machine)
A program that is capable of reading a file in the standard Java bytecode format and
executing the instructions found in the file. Porting the JVM and the standard set of
classes to a platform effectively ports all Java programs to that platform.

l10n
A short form of the word localization, which begins with the letter l (ell), followed by
10 letters, and ends with the letter n. Also see i18n.

lexical analysis
Also called lexical scan, lexical analysis is the reading of the stream of input characters
from a program source file and grouping them in such a way that they construct
names, numbers, and punctuation. The unit made up of a collection of characters is
called a token.

LGPL (Lesser General Public License)
A license used by some, but not all, GNU libraries. This license allows for the use of
the library routines in proprietary programs, where the GPL does not.

library
A library is a single file that contains one or more object files that can be linked with
other object files to create an executable program. A static library is one that contains
modules that are attached permanently to an executable program by the linker. A static
library is also called an archive. A shared library is one that contains modules that are
attached temporarily to an executing program as it is loaded into memory to be run. A
shared library is also called a dynamic library. An executable program that is dynamically
linked is one that contains only references to the functions it will need to run, and
when the program runs, it loads the functions from a shared library. Also see static
library and relative address.

life analysis
The process of determining which values should remain in registers for later use,
as well as determining which register can be used because the data it contains is no
longer alive.

link editor
Same as linker.

610 G C C : T h e C o m p l e t e R e f e r e n c e

linkage
When a call is made to a function, there must be a standard method for storing and
retrieving the arguments passed to the function and the value received from its return.
This kind of protocol is known as linkage and is the main problem to solve when mixing
two languages.

linker
A platform-specific program that combines a set of object files (some of which must
be extracted from libraries) to produce an executable program.

lvalue
An expression of any kind that resolves into the address of a location in memory. The
term originates from left value, referring to the value on the left side of an assignment
statement. Also see rvalue.

macro
In the preprocessor, a name and value declared by the #define directive is a macro,
which can subsequently be used for text substitution in the source.

makefile
A file containing a set of rules used by the make utility to compile and link programs,
as well as perform other tasks, based on the date- and timestamps of files. The makefile
is usually named either makefile or Makefile.

mangle
The C++ (and Java) compilers modify the names of member functions (and methods)
to produce a name that is unique according to the number and types of parameters it
accepts. This process, known as mangling, allows for overloading of the simple member
function (and method) names. Also see demangle.

manifest
See jar.

marshaling
The act of serializing (converting to a transmittable stream of bytes) the arguments to
be passed to a remote function, and serializing the value to be returned from a remote
function, is called marshaling. Converting a marshaled stream back into data is called
unmarshaling. Also see serialize.

A p p e n d i x E : G l o s s a r y 611
A

P
P

EN
D

IX
ES

member function
In C++, a function that is defined inside a class is considered to be a member of the
class and is called a member function. Unless the member function is declared as static,
it is always called in the context of a specific object of the class and has a this pointer
that can be used inside the function to refer to the object. A member function is to C++
what a method is to Java.

method
In Java, a method is a function defined inside a class and is a part of the class definition.
Unless the method is declared as static, it is always called in the context of a specific
object of the class and has a this pointer that can be used inside the method to refer
to the object. A method is to Java what a member function is to C++.

MFC (Microsoft Foundation Class)
A class hierarchy that is a wrapper around the Win32 user interface API.

mirror
A site on the Internet that duplicates another to make files more available for download.

mnemonic
A name representing a value for the purpose of making it easier to remember. This
term is often used to refer to the names assigned to CPU opcodes recognized by an
assembler when translating assembly language into binary code. Also see opcode.

multilib
If a single target requires more than one version of a library, this is referred to as
a multilib. For example, a particular platform may or may not have floating-point
hardware installed, so the same library of math functions would need to compiled
twice with different option settings, making it possible to link programs for either
situation.

NaN (Not a Number)
The IEEE standard term for an invalid floating-point number. A number of this kind
can be produced from underflow, overflow, or some other invalid floating-point
operation.

NEXTSTEP
A computer operating environment that provides a GUI interface and can be used
on HP, NeXT, Sun, and other computers. It was originally developed for the NeXT
computer system.

612 G C C : T h e C o m p l e t e R e f e r e n c e

NLM (Netware Loadable Module)
An executable program that has been formatted to be executed on the NetWare system.

NLS (Native Language Support)
The ability of the GCC compiler to output diagnostic messages in a language other
than American English. NLS is the combination of i18n and l10n.

noop
An assembly language instruction that does nothing (no operation). It is often inserted
as a filler byte in executable code or is used as the instruction at the target of a branch.

object
1. In object-oriented programming, an object is a collection of data items and the methods
(or functions) used to operate on these data items. Also see class. 2. The output from the
compilation process is the object file (or object code) because generating a file of that
form is the objective of running the compiler or linker.

opcode
A single instruction to a computer’s CPU. An opcode can be an instruction to add two
numbers, load a number in a register, store a value in memory, or anything else that the
hardware knows how to do. The opcode is the portion of the machine instruction that
does not include the data. Also see mnemonic.

ordered comparison
An ordered comparison between two floating-point numbers is one in which an
exception will be thrown if either value is NaN. Also see unordered comparison.

package
In Java, a package is a collection of classes. In Ada, a package is a collection
of procedures.

pass
Each time the software reads through the input for parsing, optimization, code generation,
preprocessing, or whatever, is known as a pass. A pass may modify the form of the
input for the next pass, or it may only generate tables.

peephole optimization
An optimization technique that only looks at a few adjacent instructions to determine
whether they can be replaced with a set of improved instructions.

A p p e n d i x E : G l o s s a r y 613
A

P
P

EN
D

IX
ES

PIC (Position Independent Code)
Code suitable for use in a shared library because it can be stored at any location in
memory and executed from there. All its internal addresses are relative internal offsets
or reference a global table. See GOT.

platform
A specific computer hardware and operating system combination. The compiler must
be configured to run on a specific operating system, running on a specific hardware
computer. A platform is also called a host or a target.

PMF (Pointer to Member Function)
A special data type in C++ that is capable of holding the address of a member function
of a specific object.

POSIX
A UNIX standard specification that was formed by merging the IEEE standard with
the Open Group’s Single UNIX specification.

pragma
A command inserted in the source code that is a compiler-specific message that is
ignored by all compilers that do not understand the message.

preelaborable
If an Ada compilation unit can be elaborated without requiring information from
another unit, it can be elaborated in a standalone manner and is said to be preelaborable.
Also see elaborate.

prefetch
When a computer reads an instruction from a program and loads it into the CPU
in preparation to execute it, this is known as an instruction fetch. Many CPUs will
simultaneously load several instructions, which is known as a prefetch.

preprocessor
A text processor that reads program source code and replaces names with numeric values
(or other names), expands macros by textual substitution, and evaluates expressions to
determine whether certain code is to be eliminated.

pseudo-op
See directive.

614 G C C : T h e C o m p l e t e R e f e r e n c e

Ratfor (Rational Fortran)
A publicly available preprocessor of source code that allows Fortran written with C-like
syntax to be converted into standard Fortran.

relative address
A relative address is an offset from a known location. This type of addressing is used in
relocatable (shared library) modules because only the location of the top of the module
itself is all that needs to be known for the executable code to work when it is loaded
into memory. Also see absolute address.

relocatable
See relative address.

RM
For Ada, this is short for the reference manual, which is the document defining the
Ada 95 standard.

RTL (Register Transfer Language)
The internal code generated from the source code of the language and from which the
output assembly language is generated. While in RTL form, it is possible to perform
optimization and other operations.

RTTI (Runtime Type Identification)
In object-oriented programming it is possible for an object of one type to masquerade
as another. The RTTI facilities can be used to make a runtime determination of the true
type of an object.

runtime
Also called the runtime package, the runtime is a collection of functions that are
distributed with the compiler and linked to the compiled programs because they are
called when the application is running.

rvalue
An expression of any kind that results in a single value. The term originates from right
value, referring to the value calculated from the expression on the right side of an
assignment statement. Also see lvalue.

A p p e n d i x E : G l o s s a r y 615
A

P
P

EN
D

IX
ES

scheduler
If a machine is capable of executing more than one instruction at a time, the instructions
can be rearranged (scheduled) so that several fast instructions can be executed
simultaneously with one slow one.

scope
The region in which a definition is known. In C, a variable defined inside a function
has the entire function as its scope. A variable defined inside a block delimited by a
pair of braces is known only inside that block, whereas a variable declared outside
a function can be addressed by a number of functions.

semantics
The meaning of a programming language statement. The actual meaning of a statement
can depend on its context. For example, the expression a+b could be the integer addition,
floating-point addition, or even string concatenation. The process of determining the
meaning is known as semantic analysis.

serialize
In Java, an object can be converted to a string of characters and transmitted (or stored
for later retrieval) and converted back into an executing object. Also see marshaling.

sequence point
A point in the execution of a program when all evaluations have been completed and
the variables all contain the correct results. At this point it is valid to begin evaluating
any new expression. Some optimization techniques modify or reorder the sequence of
operations between two sequence points.

shared library
See library.

sibling call
See tail call.

side effect
An operation of some sort (such as a function call or arithmetic expression) that makes
some changes to data either in memory or in files. These changes are known as the side
effects operation. Most side effects are intentional and are necessary to make a program
work, but there are circumstances in which side effects can be detrimental.

616 G C C : T h e C o m p l e t e R e f e r e n c e

slot scheduler
See scheduler.

Single UNIX Specification
See POSIX.

Smalltalk
An object-oriented language developed at Xerox PARC in the 1970s. Smalltalk was the
programming language of the SIMULA interface system that introduced the mouse
and windows.

spec file
A file that contains a set of rules controlling which arguments gcc is to pass to each
subprocess as well as what form the arguments should take.

STABS (Symbol TABle directiveS)
Operators and data locations inserted into the source code of assembly language to
provide debugging information. The assembler and linker then include these tables
in the object code and executable programs for the purposes of debugging.

static library
See library.

SSA (Static Single Assignment)
A special form representing the logic flow through a block of code. SSA is used for
certain types of optimization, such as the elimination of dead code. One of the
advantages of SSA is the ability to track the values stored in registers.

stack frame
The area on the stack that holds local variables and the saved register values for the
current function. The exact format depends on the processor and on the function-calling
convention being used.

static link
An executable program that is statically linked is one that includes all the functions it
needs. When the program is linked, the functions are extracted from the runtime
library and copied into the linked program. Also see shared library.

A p p e n d i x E : G l o s s a r y 617
A

P
P

EN
D

IX
ES

static single assignment
See SSA.

stringize
The action by the preprocessor of converting a macro argument to a quoted string
instead of simply inserting it into the source as it is.

strip
The strip command can be used on an executable file to remove all debugging
information. Depending on the amount of debugging information compiled into the
executable, the reduction in size can be dramatic.

stderr (Standard Error)
Every UNIX program begins with this output stream open, which by default is directed
to the terminal. This stream is used mostly for error message output.

stdin (Standard Input)
Every UNIX program begins with this input stream open, which by default reads
keystrokes from the keyboard.

stdout (Standard Output)
Every UNIX program begins with this output stream open, which by default is directed
to the terminal. This stream is used mostly for the standard data ouptut from a program.

strength reduction
An optimization technique that replaces expensive operations with cheaper ones, such
as replacing a multiplication operation with addition or a shift.

stub
A local function that, when called by a local program, packages the calling information
and transmits the call to the actual function, which may be located on another computer.

subexpression
Part of an expression. For example, in the expression a * (b + c), the factor (b + c)
is a subexpression. A subexpression can be very complicated or as simple as an address
being loaded into a register.

SVR4 (System Five Release Four)
A version of UNIX produced by AT&T. SVR4 is the basis of many modern versions of
UNIX. Also see BSD.

syntax
The physical structure of a programming language. The syntax determines the form of
the language by enforcing rules that determine valid ordering and the structure of the
text of the language itself.

tail call
If a function recursively calls itself as its very last statement, the logic can be changed
to a loop instead of a call to save the amount of stack space required. This same
optimization technique can be used when two or more functions recursively call one
another—this kind of optimization is called sibling call.

target
See platform.

text
The segment of an executable file produced by a UNIX linker that contains the executable
code. Also see bss and data.

thunk
A piece of code used to generate an address. Introduced in ALGOL 60 to pass arguments
by name by generating code that would resolve addresses at runtime, today thunk is also
used to refer to the act of overwriting a list of addresses with a new set of addresses.

time slice
The amount of time the operating system allows a process to run before it is halted and
another process has its time slice.

token
See lexical analysis.

translation unit
Another name for compilation unit.

translator
Another name for a compiler, because the job of a compiler is to translate source code
into executable code. See compiler.

618 G C C : T h e C o m p l e t e R e f e r e n c e

A p p e n d i x E : G l o s s a r y 619
A

P
P

EN
D

IX
ES

trap
A hardware signal issued to a running program to indicate a program execution error
has been detected by the hardware. This involves such things as floating-point division
by zero and invalid memory addresses.

trigraph
A three-character sequence in standard C that translates into a single character. It was
devised to enable programming in C for computers not supporting the full ASCII
character set. There are nine trigraphs:

??= # ??([??< {

??/ \ ??)] ??> }

??' ^ ??! | ??- ~

unalias
To remove all but one possible reference to a memory location is to unalias the location.
See aliasing.

unordered comparison
An ordered comparison between two floating-point numbers is one in which an exception
will not be thrown if either or both values are NaN. Also see ordered comparison.

unroll
To optimize code, a loop that is small enough and has a fixed number of iterations can
be unrolled by having its code duplicated the number of times it would have iterated,
and the iteration can be removed.

UTF-8 (Unicode Transformation Format)
This is also written as UTF8, Utf8, or just UTF. Unicode encoded in such a way that all
ASCII characters are stored as only 8 bits, which means an ASCII text file can be treated
as if it were UTF-8 encoded.

vague linkage
Information included in an object file that is needed for linking and running a program,
but is something other than the data required to resolve address references. An example
is the virtual function table in C++.

620 G C C : T h e C o m p l e t e R e f e r e n c e

variadic macro
A variadic macro is one that has a variable number of arguments. The GCC preprocessor
is capable of expanding macros with a variable number of arguments by storing the text
of the argument list in a variable named __VA_ARGS__.

vector
A contiguous collection of data items that are all the same type and size.

volatile
A location in memory that could be modified elsewhere (without the routine’s knowledge)
is considered volatile. This is important to a compiler because it is more efficient to hold
things in registers than to load them from memory each time they are needed.

vtable (virtual function table)
Object-oriented language objects maintain internal tables, called vtables, containing
the addresses of functions. By replacing these addresses, a subclass can override and
replace selected functions (the virtual functions) of its parent class.

VXT
A dialect of Fortran that is very much like VAX Fortran and somewhat similar to
Fortran 90.

weak alias
Same as weak symbol.

weak symbol
Having two or more global symbols of the same name will not cause a conflict as long
as all but one of them are declared as being weak symbols. The linker ignores the definitions
of the weak symbols and uses the normal global symbol definition to resolve all references,
but the weak symbols will be used if the normal global symbol is not available. A weak
symbol can be used to name functions and data that can be overridden by user code. A
weak symbol is also referred to as a weak alias, or simply weak.

width
The term width is often used to refer to the relative size of a fundamental data type. For
example, in C, a char may take up a single byte, whereas a short may require two bytes.
In this case, the short is said to be wider than the char.

word
The size of the native integer on a machine. On a 16-bit machine, a word is 16 bits; on
a 32-bit machine, a word is 32 bits.

whitespace
The whitespace characters are the ones that do not normally show up visibly and are
ignored as input when compiling modern free-form languages. These are normally the
space, tab, vertical tab, form feed, linefeed, and carriage return characters.

XCOFF (Extended Common Object File Format)
A standard format for object files that is portable across systems and known to different
assemblers and linkers. Also see COFF and ECOFF.

A p p e n d i x E : G l o s s a r y 621
A

P
P

EN
D

IX
ES

I n d e x 623

Index

A
Absolute, relative, and boundaries,

320–321
Ada, 10

calling C from, 237–239, 239–242
command-line options specific to,

192–196
data types, 238
front end is newest addition to

GCC, 184
general command-line options that

pertain to, 191
Ada, compiling, 183–213

Ada utilities, 197–213
fundamental compiling, 186–190
installation, 184–186
multiple source to executable,

189–190
options, 191–196
single source to executable, 187–189
source to assembly language, 190

Ada, mixing and C, 237–242
calling C from Ada, 237–239
calling C from Ada with

arguments, 239–242
Ada programming, file name suffixes in,

186–187
Ada utilities, 197–213

gnatbind, 197–200
gnatchop, 205
gnatfind, 207–208
gnatkr, 208–209
gnatlink, 200–201
gnatls, 211
gnatmake, 201–205
gnatprep, 209–211
gnatpsta, 211–213
gnatpsys, 211–213
gnatxref, 205–207

Add () method, 161
Address boundaries, 321

Addresses
function return, 93–94
label, 95

Advanced RISC Machines (ARM), 427
.ali file, 197
Alignment, 76–77
Alpha options, 421–426
Alpha/VMS options, 426
Alternative characters, 154
AMD x86-64 options, 441–446
Anonymous unions, 77
Ar command, 262
Ar options

that modify action to be taken,
263–264

that specify action to be taken,
262–263

Ar utility, 164
Archive files defined, 261
Archives defined, 260
Argument construction, function, 88–90
Arguments

calling C from Ada with, 239–242
macros with variable, 97–98
passing to native methods, 230–231

Arithmetic, pointer, 98
ARM (Advanced RISC Machines), 427
ARM options, 427–433
Arrays

of variable length, 78
of zero length, 78–80

Asm construct, 322–323
Assembler code, 351–352
Assembler directives, 325–336

list of, 326
Assemblers

command-line of GNU, 318–320
control of case output to, 148
and linkers, 27

Assemblers, GNU, 317–336
absolute, relative, and boundaries,

320–321
assembler directives, 325–336

assembling from command line,
318–320

inline assembly, 322–325
Assembling from command line, 318–320
Assembly, inline, 322–325

asm construct, 322–323
assembly language templates, 323
input and output operands,

324–325
list of clobbered registers, 325

Assembly language
generating, 71, 108, 140–141,

163–164
source to, 190
templates, 323

Attributes, 80–86, 113
that can be used in data

declarations, 84–85
that can be used in data type

definitions, 85–86
that can be used in function

declarations, 81–83
Autoconf

family of tools, 310–311
make and, 299
makefile keywords defined by, 315
utility, 310–316

AVR options, 433

B
Back end, 372

front end functions called from
GCC, 384–386

front end variables addressed from
GCC, 383–384

Back, from front to, 372–373
Back to front, connecting, 383–386
BFD (Binary File Descriptor), 37, 356
Bfdname, 274
Bin directory, 344
Binary download, 18–19
Binary executable

624 G C C : T h e C o m p l e t e R e f e r e n c e

multiple source files to, 161–162
single source to, 158–159

Binary File Descriptor (BFD), 37, 356
Binary installation, Win32, 38–40
Binary .mo files, producing from .po file,

254–255
Binary object files, single source to, 160
Binary opcodes, translating mnemonic

opcodes into, 325
Binutils, 36–38

building for targets, 340–341
installing, 18
source code, 340

Bison command, 380
Boundaries

absolute, relative and, 320–321
address, 321

Building cross compilers, 342
Bytecodes defined, 10

C
C

calling C++ from, 218
calling Fortran from, 235–237
calling from Ada, 237–239
calling from Ada with arguments,

239–242
calling from C++, 216–217
calling from Fortran, 234–235
calling from Objective-C, 219
calling Java class methods from,

231–233
calling Objective-C from, 219–221
data types, 238
is fundamental language, 9
mixing C++ and, 216–218
mixing Fortran and, 233–237

C and Fortran, compatible data types
between, 234

C Compiler (CC), 68
C, compiling, 67–102

C language extensions, 76–102

fundamental compiling, 68–75
standards, 75–76

C, compiling Objective;
See Objective-C, compiling

C language extensions, 76–102
alignment, 76–77
anonymous unions, 77
arrays of variable length, 78
arrays of zero length, 78–80
attributes, 80–86
compound statements returning

values, 86–87
conditional operand omission, 88
enum incomplete types, 88
function argument construction,

88–90
function inlining, 90–91
function name, 91
function nesting, 91–92
function prototypes, 93
function return addresses, 93–94
identifiers, 94
integers, 94
keyword alternates, 94
label addresses, 95
labels declared locally, 96
lvalue expressions, 96–97
macros with variable arguments,

97–98
pointer arithmetic, 98
stack frames, 93–94
strings, 98
switch/case, 99
typedef name creation, 99–100
typeof references, 100–101
union casting, 101–102

C language version, options controlling, 76
C, mixing Ada and, 237–242

calling C from Ada, 237–239
calling C from Ada with

arguments, 239–242
C, mixing Java and, 227–233

I n d e x 625

calling Java class methods from C,
231–233

Java classes with native methods,
227–229

passing arguments to native
methods, 230–231

C, mixing Objective-C and, 218–221
C++

calling C from, 216–217
calling from C, 218
class hierarchy, 363
intermediate tree, 362
Java primitive types defined for, 227
mixing Java and, 221–227
was first addition, 9

C++ and C, mixing, 216–218
C++, compiling, 103–123

compiler operation, 118–123
compiling template

instantiations, 123
creating shared libraries, 110–112
creating static libraries, 108–110
extensions to C++ language,

113–118
fundamental compiling, 104–112
generating assembly language, 108
libraries, 118–119
linkage, 122–123
mangling names, 119–122
multiple source files to

executable, 106
preprocessing, 107–108
single source file to executable,

104–105
source file to object file, 107

C++ language, extensions to, 113–118
attributes, 113
function names, 114–115
header files, 114
interface and implementation,

115–116
<? operators, 116–117
>? operators, 116–117
restrict, 117–118

Callback methods, return and parameter
types for, 233

Calling
C from Ada, 237–239
C from Ada with arguments,

239–242
C from C++, 216–217
C++ from C, 218
C from Fortran, 234–235
C from Objective-C, 219
Fortran from C, 235–237
Java class methods from C, 231–233
Objective-C from C, 219–221
static methods, 222–223

Case; See also Switch/case
Case combinations, input and output, 149
Case output, control of, 148
Case requirements

four possible, 148
upper and lower, 148

Case sensitivity, 147–149
Casting, union, 101–102
Cat class, 130
Cat.m file, 130, 131
Cat.o object file, 131
CC (C Compiler), 68
Character encodings known

to jv-convert, 175
Character strings, 150
Characters, alternative, 154
Chill is gone, 10
Clang.tab.h header file, 380
Clang.y input source file, 380
Class codes of RTL, 394
Class files, 166

to native executable, 160–161
single source to, 159–160

Class hierarchy, C++, 363
Classes

Cat, 130
instantiating Java, 223–225
Java, 227–229
loading Java, 223–225
mode, 411–415

626 G C C : T h e C o m p l e t e R e f e r e n c e

names of mode, 414
Say, 162
WordCat, 161

Clobbered registers, list of, 325
CNI (Cygnus Native Interface), 221
CNI, data types of, 226–227
Cni.h header file, 222
Code form, source, 146–147
Codes

assembler, 351–352
binutils source, 340
CVS repository and source, 22
description of RTL, 394
downloading source, 37
expression, 391
generation, 27
Java source, 163
RTX, 391
six fundamental expression,

388–390
source, 63
test result summary, 41
two ways to get source, 18
used to specify RTX operand types,

392–393
COFF (Common Object File Format),

283–284
COFF format, 283–284
Collect2 program, 264
COMDAT, 123
Command line

assembling from, 318–320
cross-references, 505–514
order on, 517

Command-line options, 5–6, 64–65,
350–351, 515–597

alphabetical list of options, 519–597
available for gij, 168
general, 6
for gnatbind utility, 198–200
for gnatchop, 205–206
for gnatfind, 208
of gnatlink, 201

for gnatls, 212–213
for gnatmake, 202–204
for gnatprep, 210
for gnatxref, 206–207
of GNU assembler, 318–320
for grepjar, 176
of jar, 168–169
for jcf-dump, 172–173
for jv-convert, 175
for jv-scan, 173–174
language specific, 6
for ldconfig, 270–271
of make, 305–309
for msgfmt, 254–255
for msgmerge, 253
of nm utility, 272–273
option prefixes, 516–519
platform specific, 6
for rmic, 178–179
for rmiregistry, 179
specific to Ada, 192–196
for strip, 274–276
for xgettext, 247–249

Command-line options, GCC, 421–490
Alpha options, 421–426
Alpha/VMS options, 426
AMD x86-64 options, 441–446
ARC options, 426–427
ARM options, 427–433
AVR options, 433
CRIS options, 433–437
D30V options, 437
of gcjh, 170–171
H8/300 options, 437–438
HPPA options, 438–440
IA-64 options, 440–441
Intel 386 options, 441–446
Intel 960 options, 446–448
M32R/D options, 448–449
M680xO options, 449–452
M68HCIx options, 452
M88K options, 452–455
Mcore options, 456

I n d e x 627

MIPS options, 457–462
MMIX options, 462–464
MN10200 options, 464
MN10300 options, 464
NS32K options, 464–467
PDP-11 options, 467–468
PowerPC options, 468–477
RS/6000 options, 468–477
RT options, 478
S/390 options, 478–479
SH options, 479–481
SPARC options, 481–485
System V options, 486
TMS320C3x/C4x options, 486–489
V850 options, 489–490
VAX options, 490
Xstormy16 options, 490
zSeries options, 478–479

Commands
ar, 262
bison, 380
flex, 381
gcc, 381
gcj, 158, 160, 163, 165
INPUT, 356
OUTPUT_FORMAT, 356
ps, 293
quit, 295
run, 290
some miscellaneous script, 356
step, 290

Comments, 147
Common Object File Format (COFF),

283–284
Comparison operators, 153–154

original, 154
Compatible data types, 234
Compile, time to, 365
Compiler debugging information,

verbose, 366–369
Compiler operation, 118–123
Compiler options, machine-specific,

419–490

GCC command-line options,
421–490

machine lists, 420
Compilers

are never still, 5
building cross, 342
g++, 362, 363
installing native, 339–340
measuring, 4–5
parse programs into

internal trees, 358
precompiled versions of GCC, 19
running cross, 343
what they do, 7–8

Compilers, acquiring and installing, 17–41
binary download, 18–19
binutils, 36–38
compiling and installing GCC, 24–36
CVS source download, 21–24
FTP source download, 20–21
running test suites, 40–41
Win32 binary installation, 38–40

Compilers and linkers, setting up, 348–349
Compilers, creating cross, 339–343

building binutils for targets, 340–341
building cross compilers, 342
configurable library libgcc1.a,

341–342
installing files from target

machines, 341
installing native compilers, 339–340
running cross compilers, 343

Compilers, information about, 365–369
subprocess switches, 366
time to compile, 365
verbose compiler debugging

information, 366–369
Compilers, output from, 357–370

information about compilers,
365–369

information about files and
directories, 370

628 G C C : T h e C o m p l e t e R e f e r e n c e

information about your programs,
358–363

information for makefiles, 363–364
Compiling

Ada, 183–213
C, 67–102
C++, 103–123
Cygwin GUI programs, 345
Fortran, 137–155
and installing GCC, 24–36
Java, 157–181
Java programs, 158
Objective-C, 125–135
objects, 127–129
programs for debugging, 284–286
simple Cygwin console

programs, 344
template instantiations, 123

Compiling, fundamental, 68–75, 104–112,
126–133, 138–144, 158–166, 186–190

creating shared libraries, 73–75
creating static library, 71–73
generating assembly language, 71
multiple source files to executable,

70–71
overriding naming conventions, 75
preprocessing, 71
single source to executable, 69
source file to object file, 70

Compound statements returning values,
86–87

Concatenation directive, 57
Concurrent Versions System (CVS), 21
Configurable library libgcc1.a, 341–342
Configuration options, 26–36

assemblers and linkers, 27
code generation, 27
enable and disable, 26
file names, 26
languages, 26
libraries, 26
platforms, 27
prefix directory names, 26
with and without, 26

Configure.in script, m4 macros used in,
312–314

Configuring searches for shared
libraries, 269–271

Console programs
compiling simple Cygwin, 344
Windows, 343

Constants
character string, 150
integer, 153

Construct, asm, 322–323
Construct names, 150
Construction, function argument, 88–90
Contact, 15–16
Conventions, overriding naming, 75
Copyleft defined, 494
CPUs that can be specified by name, 34
Creating

cross compilers, 339–343
interface declarations, 133–134
jar files, 166
Java strings, 222–223
new .po file, 246–250
parse trees, 381–382
shared libraries, 73–75, 110–112,

132–133, 144, 165
static libraries, 108–110, 129–132,

142–143, 164–165
CRIS options, 433–437
Cross compilers

building, 342
running, 343

Cross compilers, creating, 339–343
building binutils for targets,

340–341
building cross compilers, 342
configurable library libgcc1.a,

341–342
installing files from target

machines, 341
installing native compilers, 339–340
running cross compilers, 343

Cross compiling and Windows ports,
337–345

I n d e x 629

creating cross compilers, 339–343
Cygwin, 344–345
MinGW (Minimalist GNU for

Windows), 343–344
target machines, 338–339

Cross references, 506–514
command line, 505–514

CVS (Concurrent Versions System), 21
CVS repository tracks and

source code, 22
CVS source download, 21–24

experimental version, 23–24
previous releases, 23

CVS source files, 21
CYCLE and EXIT, 150–151
Cygnus Native Interface (CNI), 221
Cygwin, 38–39

compiling Cygwin GUI
programs, 345

compiling simple Cygwin console
programs, 344

licensing of, 38

D
D30V options, 437
Data declarations, attributes that can be

used in, 84–85
Data, kinds of, 154–155
Data type definitions, attributes that can

be used in, 85–86
Data types

Ada, 238
C, 238
of CNI, 226–227
compatible, 234

Dcngettext() function, 252
Debuggers

attaching to running programs,
292–295

gdb, 295
loading programs into, 287–291

Debuggers, using GNU, 281–298

attaching debuggers to running
programs, 292–295

compiling programs for
debugging, 284–286

debugging information formats,
282–284

loading programs into debuggers,
287–291

performing postmortem, 291–292
Debugging, compiling programs for,

284–286
Debugging information

formats, 282–284
inserting, 285–286
three levels of, 285
verbose compiler, 366–369

Declarations
attributes that can be used in data,

84–85
attributes that can be used in

function, 81–83
creating interface, 133–134

#define, 46–50
Definitions

attributes that can be used in data
type, 85–86

internal, 302–304
viewing, 303–304

Dependencies, listing shared library,
276–277

DEPENDENCIES_OUTPUT
environment variable, 364

Dependency defined, 300
Dependency, #pragma GCC, 56
Diagnostics, 351
Directives, 46–57

##, 57
assembler, 325–336
concatenation, 57
#define, 46–50
#elif, 51–52
#else, 51–52, 52–53
#endif, 51–52, 52–53

630 G C C : T h e C o m p l e t e R e f e r e n c e

#error, 50–51
#if, 51–52
#ifdef, 52–53
#import, 128
#include, 53–54
INCLUDE, 153
#include_next, 54–55
#line, 55
list of assembler, 326
_Pragma, 57
#pragma and _Pragma, 56–57
#undef, 57
understood by GNU

preprocessor, 47
#warning, 50–51

Directories
bin, 344
gcc, 383
information about files and, 370
object files in, 260

Directory names, prefix, 26
Dlfcn.h header file, 268
Dngettext() function, 252
DO forever, 151–152
DO WHILE statement, 151
Dollar signs, 147
Domains

plurality from another, 252
translation from another, 251

Download
binary, 18–19
FTP source, 20–21

Download, CVS source, 21–24
experimental version, 23–24
previous releases, 23

Downloading
source code, 37
specific versions of GCC, 22–23

Drawcircle() function, 380
Drawrectangle() function, 380
DWARF format, 283
Dynamic libraries, 165, 260

object files in, 264

E
#elif, 51–52
#else, 51–52, 52–53
Embedded systems, 347–356

choosing languages, 349–350
GCC embedding facilities, 350–352
GNU linker scripting language,

353–356
libraries, 352–353
setting up compilers and linkers,

348–349
Embedding facilities, GCC, 350–352

assembler code, 351–352
command line options, 350–351
diagnostics, 351

Encodings, character, 175
#endif, 51–52, 52–53
_EndOfData symbol, 356
Enum incomplete types, 88
Environment variables, 64–65, 501–504

DEPENDENCIES_OUTPUT, 364
LD_PRELOAD, 266
MAKEFLAGS, 309
PATH, 344

#error, 50–51
Error messages, including location

information in, 62–63
Example, translatable, 244–246
Exceptions, 226
Executable

class files to native, 160–161
multiple source files to,

70–71, 106, 140
multiple source files to binary,

161–162
multiple source to, 189–190
single source file to, 104–105
single source to, 69, 126–127,

138–139, 187–189
single source to binary, 158–159

Executable program, frammis, 301
Executables, multiple input files to,

162–163

I n d e x 631

EXIT, CYCLE and, 150–151
Experimental version, 23–24
Expression codes, 391

six fundamental, 388–390
Expressions

lex with regular, 374–375
lvalue, 96–97
machine modes that are applied to,

411–413
Extensions and variations, GNU Fortran,

146–155
Extensions, C language, 76–102
Extensions to C++ language, 113–118

F
-f prefix, 516–517
Facilities, embedding GCC, 350–352
File format, XCOFF object, 284
File name suffixes

in Ada programming, 186–187
in Fortran programming, 139
in Java programming, 159
in Objective-C programming, 127

File names, 26
File types, 518–519
Files

.ali, 197
archive, 261
Cat.m, 130, 131
Cat.o object, 131
clang.tab.h header, 380
class, 160–161, 166
creating jar, 166
creating new .po, 246–250
CVS source, 21
displaying internals of object,

277–280
dlfcn.h, 268
header, 53, 62, 114, 341, 359–360
howdy.abs, 189
installing from target machines, 341
jar (Java archive), 168

listing symbols names in object,
271–273

merging two .po, 252–253
messages.po, 249
multiple source, 70–71, 106, 140,

161–162
object, 260–264
producing binary .mo files from

.po, 254–255
project, 201–204
removing unused information from

object, 274–276
single source, 104–105
single source to binary object, 160
single source to class, 159–160
source file to object, 70, 107
status codes gnatls assigns to

source, 211
tar source, 21
three levels of debugging

information in object, 285
utility programs to use with object,

269–280
Files and directories, information

about, 370
Files to binary executable, multiple

source, 161–162
Files to executables, multiple input,

162–163
Flag indicators, meaning of, 415–417
Flags, 415–417
Flex command, 381
Formats

COFF, 283–284
DWARF, 283
STABS, 282–283
XCOFF object file, 284

Formats, debugging information,
282–284

COFF (Common Object File
Format), 283–284

DWARF, 283
STABS, 282–283
XCOFF, 284

632 G C C : T h e C o m p l e t e R e f e r e n c e

Forms, source code, 146–147
Fortran, 9–10

calling C from, 234–235
calling from C, 235–237
compatible data types between C

and, 234
intrinsics, 9

Fortran 90 features, specific, 150–155
character strings, 150
comparison operators, 153–154
construct names, 150
CYCLE and EXIT, 150–151
DO forever, 151–152
DO WHILE statement, 151
IMPLICIT NONE statement, 152
INCLUDE directive, 153
integer constants, 153
kinds of data, 154–155

Fortran and C, mixing, 233–237
Fortran, compiling, 137–155

creating shared libraries, 144
creating static libraries, 142–143
fundamental compiling, 138–144
generating assembly language,

140–141
GNU Fortran extensions and

variations, 146–155
multiple source files to

executable, 140
preprocessing, 141–142
Ratfor (Rational Fortran), 144–145
single source to executable, 138–139

Fortran extensions and variations, GNU,
146–155

Fortran programming, file name suffixes
in, 139

Frames, stack, 93–94
Frammis executable program, 301
Front, connecting back to, 383–386
Front end, 372

functions called from GCC back
end, 384–386

for linkers, 264–265
variables addressed from GCC

back end, 383–384
Front to back, from, 372–373
FTP

alternatives to, 37
source download, 20–21

Function; See also Functions
argument construction, 88–90
declarations, 81–83
inlining, 90–91
names, 91, 114–115
nesting, 91–92
prototypes, 93
return addresses, 93–94

Function table, virtual, 122
Functions

dcngettext(), 252
dngettext(), 252
drawcircle(), 380
drawrectangle (), 380
front end, 384–386
gettext(), 246
inline, 123
loading from shared libraries,

266–269
main(), 288, 380
print(), 290
sayhello, 266
setcolor(), 380
setlocation(), 380
startProcess(), 241
stopProcess, 241
yyerror(), 380
yywrap(), 380

Functions, use of gettext(), 250–252
plurality, 251
plurality from another domain, 252
static strings, 250–251
translation from another

domain, 251
Fundamental language, C is, 9

I n d e x 633

G
G++ compiler, 362, 363
GCC

Ada front end is newest addition
to, 184

downloading specific versions of,
22–23

embedding facilities, 350–352
is resident on your target

machine, 341
software tools used with, 12–14

GCC back end
front end functions called from,

384–386
front end variables addressed from,

383–384
Gcc command, 381
GCC command-line options, 421–490
GCC compilers, precompiled versions

of, 19
GCC, compiling and installing, 24–36

configuration options, 26–36
installation procedure, 24–26

GCC dependency, #pragma, 56
Gcc directory, 383
GCC evaluation platforms

primary, 7
secondary, 7

GCC (GNU C Compiler), 68
GCC, introduction to, 3–16

command-line options, 5–6
contact, 15–16
GNU, 4
languages, 8–10
measuring compilers, 4–5
parts list, 11–14
platforms, 6–7
what compilers do, 7–8

GCC mailing lists
open, 15
read-only, 16

GCC poison, #pragma, 56
Gcc program, 366

GCC system_header, #pragma, 57
Gcj command, 158, 160, 163, 165
Gcjh

command-line options of, 170–171
utility, 170–172

Gdb
debugger, 295
useful commands of, 296–298

Generation, code, 27
Generic intrinsic, 146
Gettext, 28
Gettext() functions, 246
Gettext() functions, use of, 250–252

plurality, 251
plurality from another domain, 252
static strings, 250–251
translation from another domain, 251

Gij
command-line options available

for, 168
utility, 166–168

GNAT (GNU NYU Ada95 Translator), 184
Gnatbind utility, 197–200

command-line options for, 198–200
Gnatchop

command-line options for, 205–206
utility, 205

Gnatfind
command-line options for, 208
utility, 207–208

Gnatkr utility, 208–209
Gnatlink

command-line options of, 201
utility, 200–201

Gnatls
command-line options for, 212–213
status codes, 211

Gnatls utility, 211
Gnatmake

command-line options for, 202–204
utilities, 201–205

Gnatprep
command-line options for, 210
utility, 209–211

634 G C C : T h e C o m p l e t e R e f e r e n c e

Gnatpsta, 211–213
Gnatpsys, 211–213
Gnatxref

command-line options for, 206–207
utility, 205–207

GNU assembler, 317–336
absolute, relative, and boundaries,

320–321
assembler directives, 325–336
assembling from command line,

318–320
command-line options of, 318–320
inline assembly, 322–325

GNU C Compiler (GCC), 68
GNU debugger, using, 281–298

attaching debuggers to running
programs, 292–295

compiling programs for
debugging, 284–286

debugging information formats,
282–284

loading programs into debuggers,
287–291

performing postmortem, 291–292
GNU defined, 4
GNU Fortran extensions and variations,

146–155
case sensitivity, 147–149
comments, 147
dollar signs, 147
intrinsics, 146
source code form, 146–147
specific Fortran 90 features,

150–155
GNU General Public License (GNU

GPL), 493–500
GNU GPL (GNU General Public

License), 493–500
preamble, 494–500

GNU linker scripting language, 353–356
GNU NYU Ada95 Translator (GNAT), 184
GNU preprocessor, directives

understood by, 47

Goaround() function, 293
GPL; See GNU GPL (GNU General

Public License)
Grepjar

command-line options for, 176
utility, 176

GUI programs, compiling Cygwin, 345

H
H8/300 options, 437–438
Header files, 53, 62, 114, 359–360

clang.tab.h, 380
cni.h, 222
jni.h, 229
from target machine, 341

Hello world program, 69
HelloRemote.class, 178
Hierarchies, C++ class, 363
Home Web site, 15
Hosts, 27
Howdy.abs file, 189
HPPA options, 438–440

I
IA-64 options, 440–441
Identification, runtime type, 122
Identifiers, 94
#if, 51–52
#ifdef, 52–53
IMPLICIT NONE statement, 152
#import directive, 128
#include, 53–54
INCLUDE directive, 153
#include_next, 54–55
Information

about compilers, 365–369
about files and directories, 370
about your program, 358–363
inserting debugging, 285–286
for makefiles, 363–364
removing unused, 274–276

I n d e x 635

three levels of debugging, 285
verbose compiler debugging,

366–369
Information formats, debugging, 282–284

COFF (Common Object File
Format), 283–284

DWARF, 283
STABS, 282–283
XCOFF, 284

Init method, 130
Inline assembly, 322–325

asm construct, 322–323
assembly language templates, 323
input and output operands,

324–325
list of clobbered registers, 325

Inline functions, 123
Inlining, function, 90–91
Input and output operands, 324–325
INPUT command, 356
Input files to executables, multiple,

162–163
Input source files, clang.y, 380
Inserting debugging information, 285–286
Insns

defined, 388
meaning of flag indicators for

different, 415–417
type and content of, 388–411

Installation procedure, 24–26
Installation, Win32 binary, 38–40
Installing

binutils, 18
compilers, acquiring and, 17–41
files from target machines, 341
GCC, compiling and, 24–36
MinGW, 343–344
native compilers, 339–340

Instantiations, compiling template, 123
Integer constants, 153
Integers, 94
Intel 386 options, 441–446
Intel 960 options, 446–448

Interface declarations, creating, 133–134
Intermediate tree, C++, 362
Internal definitions, 302–304
Internal trees, compilers parse programs

into, 358
Internalization, 243–255

creating new .po file, 246–250
merging two .po files, 252–253
producing binary .mo file from .po

file, 254–255
translatable example, 244–246
use of gettext() functions, 250–252

Intrinsics, 146
Fortran, 9
generic, 146
specific, 146

J
Jar

command-line options of, 168–169
utility, 166

Jar files, 168–170
creating, 166

Jar (Java archive) file, 168
Java, 10
Java and C++, mixing, 221–227
Java and C, mixing, 227–233

calling Java class methods from C,
231–233

Java classes with native methods,
227–229

passing arguments to native
methods, 230–231

Java class methods, calling, 231–233
Java classes

instantiating, 223–225
loading, 223–225
with native methods, 227–229

Java, compiling, 157–181
class files to native executable,

160–161
creating jar files, 166

636 G C C : T h e C o m p l e t e R e f e r e n c e

creating shared libraries, 165
creating static libraries, 164–165
fundamental compiling, 158–166
generating assembly language,

163–164
Java utilities, 166–176
multiple input files to executables,

162–163
multiple source files to binary

executable, 161–162
properties, 180–181
RMI (Remote Method Invocation),

177–179
single source to binary executable,

158–159
single source to binary

object files, 160
single source to class file, 159–160

Java primitive types defined for C++, 227
Java programs

compiling, 158
file name suffixes in, 159

Java source code, 163
Java strings, creating, 222–223
Java utilities, 166–176

gcjh, 170–172
gij utility, 166–168
grepjar, 176
jar file, 168–170
jcf-dump, 172–173
jv-convert, 174–175
jv-scan, 173–174

Java Virtual Machine (JVM), 158
Jcf-dump

command-line options for, 172–173
utility, 172–173

Jni.h header file, 229
Jv-convert

character encodings known to, 175
command-line options for, 175
utility, 174–175

Jv-scan
command-line options for, 173–174
utility, 173–174

JVM (Java Virtual Machine), 158

K
Keyword alternates, 94
Keywords

makefile, 315
restrict, 117

KIND notation, numbers defined for, 155

L
Label addresses, 95
Labels declared locally, 96
LALR1(1) parser, 378
Language; See also Languages

C is fundamental, 9
extensions to C++, 113–118
generating assembly, 71, 108,

140–141, 163–164
source to assembly, 190

Language templates, assembly, 323
Languages, 8–10, 26

Ada, 10
C is fundamental language, 9
C++ was first addition, 9
Chill is gone, 10
choosing, 349–350
Fortran, 9–10
Java, 10
Objective-C, 9
structures of, 10

Languages, GNU linker scripting,
353–356

script example 1, 354–355
script example 2, 355–356
some miscellaneous script

commands, 356
Languages, implementing, 371–386

connecting back to front, 383–386
creating parse trees, 381–382
from front to back, 372–373
lexical scan, 373–375
parsing, 375–381

Languages, mixing, 215–242
mixing Ada and C, 237–242
mixing C++ and C, 216–218

I n d e x 637

mixing Fortran and C, 233–237
mixing Java and C, 227–233
mixing Java and C++, 221–227
mixing Objective-C and C, 218–221

Ldconfig
command-line options for, 270–271
utility, 269

Ldd utility, 276
LD_PRELOAD environmental

variable, 266
Lesser General Public License (LGPL), 494
Lex

with regular expressions, 374–375
simple, 374

Lexical scan, 373–375
lex with regular expressions,

374–375
simple lex, 374

Lex.yy.c program, 374
LGPL (Lesser General Public License), 494
Libgcc1.a, configurable library, 341–342
Libgcc.a library, 370
Libraries, 26, 118–119, 352–353

configuring searches for shared,
269–271

creating shared, 73–75, 110–112,
132–133, 144, 165

creating static, 71–73, 108–110,
129–132, 142–143, 164–165

dynamic, 165, 260
libgcc.a, 370
libraries designed for embedded

systems, 353
loading functions from shared,

266–269
object files and, 260–264
object files in dynamic, 264
object files in static, 261–264
shared, 264
trimming standard, 352–353
trimming standard libraries,

352–353
utility programs to use with,

269–280

Libraries, linking in, 259–280
front end for linkers, 264–265
loading functions from shared

libraries, 266–269
locating libraries, 265–266
object files and libraries, 260–264
utility programs to use with

libraries, 269–280
utility programs to use with object

files, 269–280
Libraries, locating, 265–266

locating libraries at link time, 265
locating libraries at runtime, 266

Libraries, locating at link time, 265
Libraries, locating at runtime, 266
Library dependencies, listing shared,

276–277
Library libgcc1.a, configurable, 341–342
Library of object modules, 142
Library suppression, variant, 29
Libsupc++.a, 119
#line, 55
Lines

assembling from command,
318–320

order on command, 517
Link time, locating libraries at, 265
Linkage, 122–123

COMDAT, 123
inline functions, 123
runtime type identification, 122
vague, 122
virtual function table, 122

Linker scripting language, GNU, 353–356
script example 1, 354–355
script example 2, 355–356
some miscellaneous script

commands, 356
Linkers

assemblers and, 27
front end for, 264–265
setting up compilers and, 348–349

Linking and libraries, 259–280
front end for linkers, 264–265

638 G C C : T h e C o m p l e t e R e f e r e n c e

loading functions from shared
libraries, 266–269

locating libraries, 265–266
object files and libraries, 260–264
utility programs to use with

libraries, 269–280
utility programs to use with object

files, 269–280
Lists

machine, 420
open GCC mailing, 15
parts, 11–14
primary source of information is

through mailing, 15
read-only GCC mailing, 16

LMA (loadable memory address), 354
Loadable memory address (LMA), 354
Loading Java class, 223–225
Localization defined, 244
Location information, including in error

messages, 62–63
Logical operators, named form of, 61
LR1(1) parser, 378
Lvalue expressions, 96–97

M
M32R/D options, 448–449
M4 macros used in configure.in script,

312–314
M680xO options, 449–452
M68HCIx options, 452
M88K options, 452–455
Machine lists, 420
Machine modes that are applied to

expressions, 411–413
Machine-specific compiler options,

419–490
GCC command-line options,

421–490
machine lists, 420

Machines
GCC is resident under target, 341
header files from target, 341
installing files from target, 341
target, 338–339

Macros, 302
m4, 312–314
predefined, 58–61
with variable arguments, 97–98

Mailing lists
open GCC, 15
primary source of information is

through, 15
read-only GCC, 16

Main() function, 288, 380
Make

command-line options of, 305–309
options of, 305–309

Make and Autoconf, 299
Make and Autoconf, internal definitions,

302–304
macros, 302
suffix rules, 302–303
viewing definitions, 303–304

Make utility, 300–309
options of make, 305–309
writing makefiles, 304–305

Makefile keywords defined by
Autoconf, 315

Makefiles
information for, 363–364
producing, 63–64
writing, 304–305

MAKEFLAGS environment. variable, 309
Mangling

naming and, 135
schemes, 122

Manifest, 166
Marshaling defined, 177
Mcore options, 456
Memory required by programs, 360–361

I n d e x 639

Messages, including location
information in error, 62–63

Messages.po file, 249
Methods

add (), 161
calling Java class, 231–233
calling static, 222–223
init, 130
Java classes with native, 227–229
ngettext, 251
passing arguments to native,

230–231
return and parameter types for

callback, 233
MinGW (Minimalist GNU for

Windows), 343–344
Minimalist GNU for Windows

(MinGW), 343–344
MIPS options, 457–462
Mixing

Ada and C, 237–242
C++ and C, 216–218
Fortran and C, 233–237
Java and C, 227–233
Java and C++, 221–227
languages, 215–242
Objective-C and C, 218–221

MMIX options, 462–464
MN10200 options, 464
MN10300 options, 464
Mnemonic opcodes, translating into

binary opcodes, 325
.mo files, producing binary, 254–255
Mode classes, 411–415

names of, 414
Modes, 411–415

machine, 411–413
Modules, library of object, 142
Msgfmt

command-line options for, 254–255
utility, 254

Msgmerge, command-line options for, 253
Multiple input files to executables,

162–163
Multiple source files

to binary executable, 161–162
to executable, 106, 140

Multiple source to executable, 189–190

N
Name creation, typedef, 99–100
Names

construct, 150
CPUs that can be specified by, 34
file, 26
function, 91, 114–115
listing symbols, 271–273
mangling, 119–122
of mode classes, 414
prefix directory, 26
used to select thread support, 30

Naming and mangling, 135
Naming conventions, overriding, 75
Native compilers, installing, 339–340
Native executable, class files to, 160–161
Native language support (NLS), 244
Native methods

Java classes with, 227–229
passing arguments to, 230–231

Nesting, function, 91–92
NetWare Loadable Module (NLM), 14
New .po file, creating, 246–250
Ngettext() method, 251
NLM (NetWare Loadable Module), 14
NLS (native language support), 244
Nm utility, command-line options of,

272–273
Notation, numbers defined for KIND, 155
Notes, general Objective-C, 133–135
NS32K options, 464–467

640 G C C : T h e C o m p l e t e R e f e r e n c e

O
Objdump

modifier command-line options
for, 278–280

short and long forms and, 277–278
utility, 277

Object file format, XCOFF, 284
Object files

Cat.o, 131
in directories, 260
displaying internals of, 277–280
in dynamic libraries, 264
and libraries, 260–264
listing symbols names in, 271–273
removing unused information

from, 274–276
single source to binary, 160
source file to, 70, 107
source files to, 70
in static libraries, 261–264
three levels of debugging

information in, 285
utility programs to use with, 269–280

Object modules, library of, 142
Objective-C, 9

calling C from, 219
calling from C, 219–221
predefined types of, 134

Objective-C and C, mixing, 218–221
Objective-C, compiling, 125–135

compiling objects, 127–129
creating shared libraries, 132–133
creating static libraries, 129–132
fundamental compiling, 126–133
general Objective-C notes, 133–135
single source to executable, 126–127

Objective-C notes, general, 133–135
creating interface declarations,

133–134
naming and mangling, 135
predefined types, 133

Objective-C programming, file name
suffixes in, 127

Objects, compiling, 127–129
Opcodes, translating mnemonic, 325
Operand omission, conditional, 88
Operand types, codes used to specify

RTX, 392–393
Operands

input and output, 324–325
number and types of, 394

<? operators, 116–117
>? operators, 116–117
Operators

<?, 116–117
>?, 116–117
comparison, 153–154
named form of logical, 61
original comparison, 154

Option prefixes, 516–519
-f prefix, 516–517
file types, 518–519
order on command line, 517
- prefix, 516
-w prefix, 517

Options
Alpha, 421–426
Alpha/VMS, 426
alphabetic list of, 519–597
AMD x86-64, 441–446
ar, 262–263, 263–264
ARC, 426–427
ARM, 427–433
AVR, 433
configuration, 26–36
controlling C language version, 76
CRIS, 433–437
D30V, 437
GCC command-line, 421–490
general command-line, 191
H8/300, 437–438
HPPA, 438–440
IA-64, 440–441
Intel 386, 441–446
Intel 960, 446–448
M32R/D, 448–449

I n d e x 641

M680xO, 449–452
M68HCIx, 452
M88K, 452–455
machine-specific compiler, 419–490
Mcore, 456
MIPS, 457–462
MMIX, 462–464
MN10200, 464
MN10300, 464
NS32K, 464–467
PDP-11, 467–468
PowerPC, 468–477
RS/6000, 468–477
RT, 478
S/390, 478–479
SH, 479–481
SPARC, 481–485
System V, 486
TMS320C3x/C4x, 486–489
V850, 489–490
VAX, 490
Xstormy16, 490
zSeries, 478–479

Options, GCC command-line
Alpha options, 421–426
Alpha/VMS options, 426
AMD x86-64 options, 441–446
ARC options, 426–427
ARM options, 427–433
AVR options, 433
CRIS options, 433–437
D30V options, 437
H8/300 options, 437–438
HPPA options, 438–440
IA-64 options, 440–441
Intel 386 options, 441–446
Intel 960 options, 446–448
M32R/D options, 448–449
M680xO options, 449–452
M68HCIx options, 452
M88K options, 452–455
Mcore options, 456
MIPS options, 457–462

MMIX options, 462–464
MN10200 options, 464
MN10300 options, 464
NS32K options, 464–467
PDP-11 options, 467–468
PowerPC options, 468–477
RS/6000 options, 468–477
RT options, 478
S/390 options, 478–479
SH options, 479–481
SPARC options, 481–485
System V options, 486
TMS320C3x/C4x options, 486–489
V850 options, 489–490
VAX options, 490
Xstormy16 options, 490
zSeries options, 478–479

Original comparison operators, 154
Output, control of case, 148
Output operands, input and, 324–325
OUTPUT_FORMAT command, 356

P
Parse trees, 358–359

creating, 381–382
Parsers

LALR1(1), 378
LR1(1), 378

Parsing, 375–381
Parts list, 11–14
PATH environment variable, 344
PDP-11 options, 467–468
PIC (position independent code), 144
PID (Process ID), 293
Platforms, 6–7, 27

defined, 6
primary GCC evaluation, 7
secondary GCC evaluation, 7
variant library suppression by, 29

Plurality, 251–252
.po files

creating new, 246–250

642 G C C : T h e C o m p l e t e R e f e r e n c e

merging two, 252–253
producing binary .mo file from,

254–255
Pointer arithmetic, 98
Poison, #pragma GCC, 56
Ports, cross compiling and Windows,

337–345
creating cross compilers, 339–343
Cygwin, 344–345
MinGW (Minimalist GNU for

Windows), 343–344
target machines, 338–339

Ports defined, 372
Position independent code (PIC), 144
Postmortem, performing, 291–292
PowerPC options, 468–477
_Pragma, 57
#pragma and _Pragma, 56–57
#pragma GCC dependency, 56
#pragma GCC poison, 56
#pragma GCC system_header, 57
_Pragma, #pragma and, 56–57
Predefined macros, 58–61
Predefined types, 133
- prefix, 516
Prefix directory names, 26
Prefixes, option, 516–519

-f prefix, 516–517
file types, 518–519
order on command line, 517
- prefix, 516
-w prefix, 517

Preprocessing, 71, 107–108, 141–142
Preprocessors, 45–65

command-line options, 64–65
directives, 46–57
directives understood by, 47
environment variables, 64–65
header files, 62
including header file only once, 62
including location information in

error messages, 62–63
predefined macros, 58–61
producing makefiles, 63–64

removing source code in place, 63
source code, 63

Primitive types, Java, 227
Printf()

function, 290
statement, 79

Procedures, installation, 24–26
Process ID (PID), 293
Processors; See Preprocessors
Production defined, 378
Programming

file name suffixes in Ada, 186–187
file name suffixes in Fortran, 139
file name suffixes in Java, 159
file name suffixes in

Objective-C, 127
Programs

attaching debuggers to running,
292–295

collect2, 264
compiling Cygwin GUI, 345
compiling for debugging, 284–286
compiling Java, 158
compiling simple Cygwin

console, 344
frammis executable, 301
gcc, 366
hello world, 69
lex.yy.c, 374
loading into debuggers, 287–291
memory required by, 360–361
rmiregistry, 179
utility, 269–280
Windows console, 343

Programs, information about your, 358–363
C++ class hierarchy, 363
C++ intermediate tree, 362
header files, 359–360
memory required by programs,

360–361
parse trees, 358–359
time consumed, 361–362

Project file, 201–204
Prototypes, function, 93
Ps command, 293

I n d e x 643

Q
Quit command, 295

R
Ratfor (Rational Fortran), 144–145
Rational Fortran (Ratfor), 144–145
Read-only GCC mailing lists, 16
References

cross, 506–514
defined, 222
typeof, 100–101

Register Transfer Language (RTL), 8, 372,
373, 382

Register Transferred Language (RTL),
387–417

Registers, list of clobbered, 325
Relative, absolute, and boundaries,

320–321
Releases, previous, 23
Remote Method Invocation (RMI),

177–179
RMI (Remote Method Invocation),

177–179
rmic utility, 177–179
rmiregistry, 179

Rmic
command-line options for, 178–179
utility, 177–179

Rmiregistry, 179
command-line options for, 179
programs, 179

RS/6000 options, 468–477
RT options, 478
RTL codes, description of, 394
RTL insns, 388–411

six fundamental expression codes,
388–390

type and content of spell insns,
388–411

RTL (Register Transfer Language), 8, 372,
373, 382, 387–417

class codes of, 394

flags, 415–417
mode classes, 411–415
modes, 411–415
RTL insns, 388–411

RTX code, 391
RTX, format and content of, 391
RTX operand types, codes used to

specify, 392–393
Rules, suffix, 302–303
Run command, 290
Running programs, attaching debuggers

to, 292–295
Running tests on your system, 40–41
Runtime

locating libraries at, 266
type identification, 122

S
S/390 options, 478–479
Say class, 162
Sayhello function, 266
Scan, lexical, 373–375
Script commands,

some miscellaneous, 356
Script example 1, 354–355
Script example 2, 355–356
Script, m4 macros used in configure.in,

312–314
Scripting language, GNU linker, 353–356

script example 1, 354–355
script example 2, 355–356
some miscellaneous script

commands, 356
Searches, configuring for shared

libraries, 269–271
Sensitivity, case, 147–149
Setcolor() function, 380
Setlocale(), categories of locales known

to, 245
Setlocation() function, 380
SH options, 479–481
Shared libraries, 264

644 G C C : T h e C o m p l e t e R e f e r e n c e

I n d e x 645

configuring searches for, 269–271
creating, 73–75, 110–112, 132–133,

144, 165
loading functions from, 266–269

Shared library dependencies, listing,
276–277

Single source
to binary executable, 158–159
to binary object files, 160
to class file, 159–160
to executable, 126–127, 138–139,

187–189
Single source file to executable, 104–105
Sites, home Web, 15
Software tools used with GCC, 12–14
Source codes, 63

binutils, 340
CVS repository and, 22
downloading, 37
forms, 146–147
Java, 163
two ways to get, 18

Source download
CVS, 21–24
FTP, 20–21

Source files
clang.y input, 380
CVS, 21
multiple, 70–71, 106, 140, 161–162
to object files, 70, 107
single, 104–105
status codes gnatls assigns to, 211
tar, 21

Source files to binary executable,
multiple, 161–162

Source to assembly language, 190
Source to executable, single, 69
Source trees, 28
Sources

multiple, 189–190
single, 126–127, 138–139, 158–159,

159–160, 187–189
SPARC options, 481–485

Specific intrinsic, 146
STABS format, 282–283
Stack frames, 93–94
Standard libraries, trimming, 352–353
Standards, 75–76
_StartOfData symbol, 356
StartProcess () function, 241
Statements

compound, 86–87
CYCLE, 150–151
DO WHILE, 151
EXIT, 150–151
IMPLICIT NONE, 152
printf (), 79
step, 290

Static libraries
creating, 71–73, 108–110, 129–132,

142–143, 164–165
object files in, 261–264

Static methods, calling, 222–223
Static strings, 250–251
Status codes gnatls assigns to source

files, 211
Step

command, 290
statements, 290

StopProcess() function, 241
Strings, 98

character, 150
creating Java, 222–223
static, 250–251

Strip
command-line options for, 274–276
utility, 274

Subprocess switches, 366
Suffix rules, 302–303
Suffixes, file name, 127, 139, 159, 186–187
Suites, running test, 40–41
Summary codes, test result, 41
Support, names used to select thread, 30
Suppression, variant library, 29
Switch/case, 99
Switches, subprocess, 366

646 G C C : T h e C o m p l e t e R e f e r e n c e

Symbols
_EndOfData, 356
_StartOfData, 356

Symbols names, listing, 271–273
System, running tests on your, 40–41
System V options, 486
System_header, #pragma GCC, 57
Systems, embedded, 347–356

choosing languages, 349–350
GCC embedding facilities, 350–352
GNU linker scripting language,

353–356
libraries, 352–353
setting up compilers and linkers,

348–349

T
Table, virtual function, 122
Tags, 22
Tar source files, 21
Target defined, 300
Target machines, 338–339

GCC is resident on your, 341
header files from, 341
installing files from, 341

Targets, 27
building binutils for, 340–341

Tasks defined, 349
Template instantiations, compiling, 123
Templates, assembly language, 323
Test result summary codes, 41
Test suites, running, 40–41
Tests, running on your system, 40–41
Thread support, names used to select, 30
Time

to compile, 365
consumed, 361–362
locating libraries at link, 265

TMS320C3x/C4x options, 486–489
Tokens, 373
Tools

Autoconf family of, 310–311
software, 12–14

Translatable example, 244–246
Trees

C++ intermediate, 362
compilers parse programs into

internal, 358
creating parse, 381–382
parse, 358–359
source, 28

Type identification, runtime, 122
Typedef name creation, 99–100
Typeof references, 100–101
Types

enum incomplete, 88
predefined, 133

U
#undef, 57
Union casting, 101–102
Unions, anonymous, 77
Unused information, removing, 274–276
Utilities

Ada, 197–213
ar, 164
Autoconf, 310–316
command-line options of nm,

272–273
gij, 166–168
gnatbind, 197–200
gnatchop, 205
gnatfind, 207–208
gnatkr, 208–209
gnatlink, 200–201
gnatls, 211
gnatmake, 201–205
gnatprep, 209–211
gnatxref, 205–207
grepjar, 176
jar, 166
Java, 166–176
jv-convert, 174–175
jv-scan, 173–174
ldconfig, 269
ldd, 276

I n d e x 647

make, 300–309
msgfmt, 254
objdump, 277
rmic, 177–179
strip, 274
xgettext, 247

Utility programs
to use with libraries, 269–280
to use with object files, 269–280

V
V850 options, 489–490
Vague linkage, 122
Values, compound statements returning,

86–87
Variable arguments, macros with, 97–98
Variable length, arrays of, 78
Variables

DEPENDENCIES_OUTPUT
environment, 364

environment, 64–65, 501–504
front end, 383–384
LD_PRELOAD, 266
MAKEFLAGS environment, 309
PATH environment, 344

Variant library suppression
by platform, 29

Variations, GNU Fortran extensions and,
146–155

VAX options, 490
Verbose compiler debugging

information, 366–369
Versions

experimental, 23–24
options controlling C language, 76

Virtual function table, 122
Virtual memory address (VMA), 354
VMA (virtual memory address), 354
VMS options; See Alpha/VMS options
Vtable, 122

W
-w prefix, 517
#warning, 50–51
Web site, home, 15
Win32 binary installation, 38–40

Cygwin, 38–39
Windows console program, 343
Windows ports, cross compiling, 337–345

creating cross compilers, 339–343
Cygwin, 344–345
MinGW (Minimalist GNU for

Windows), 343–344
target machines, 338–339

WordCat class, 161
Writing makefiles, 304–305

X
XCOFF object file format, 284
Xgettext

command-line options for, 247–249
utility, 247

Xstormy16 options, 490

Y
Yacc (Yet Another Compiler

Compiler), 375
Yet Another Compiler Compiler

(yacc), 375
Yyerror() function, 380
Yywrap() function, 380

Z
Zero length, arrays of, 78–80

ZSeries options, 478–479

INTERNATIONAL CONTACT INFORMATION

AUSTRALIA
McGraw-Hill Book Company Australia Pty. Ltd.
TEL +61-2-9415-9899
FAX +61-2-9415-5687
http://www.mcgraw-hill.com.au
books-it_sydney@mcgraw-hill.com

CANADA
McGraw-Hill Ryerson Ltd.
TEL +905-430-5000
FAX +905-430-5020
http://www.mcgrawhill.ca

GREECE, MIDDLE EAST,
NORTHERN AFRICA
McGraw-Hill Hellas
TEL +30-1-656-0990-3-4
FAX +30-1-654-5525

MEXICO (Also serving Latin America)
McGraw-Hill Interamericana Editores S.A. de C.V.
TEL +525-117-1583
FAX +525-117-1589
http://www.mcgraw-hill.com.mx
fernando_castellanos@mcgraw-hill.com

SINGAPORE (Serving Asia)
McGraw-Hill Book Company
TEL +65-863-1580
FAX +65-862-3354
http://www.mcgraw-hill.com.sg
mghasia@mcgraw-hill.com

SOUTH AFRICA
McGraw-Hill South Africa
TEL +27-11-622-7512
FAX +27-11-622-9045
robyn_swanepoel@mcgraw-hill.com

UNITED KINGDOM & EUROPE
(Excluding Southern Europe)
McGraw-Hill Education Europe
TEL +44-1-628-502500
FAX +44-1-628-770224
http://www.mcgraw-hill.co.uk
computing_neurope@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:
Osborne/McGraw-Hill
TEL +1-510-549-6600
FAX +1-510-883-7600
http://www.osborne.com
omg_international@mcgraw-hill.com

	GCC: Complete Reference
	Copyright
	About the Author
	Contents at a Glance
	Contents
	Acknowledgments
	Introduction
	Part1 Free Software Compiler
	Ch1 Introduction to GCC
	Ch2 Acquiring & Installing Compiler

	Part2 Using Compiler Collection
	Ch4 Compiling C
	Ch3 Preprocessor
	Ch5 Compiling C++
	Ch6 Compiling Objective-C
	Ch7 Compiling Fortran
	Ch8 Compiling Java
	Ch9 Compiling Ada
	Ch10 Mixing Languages
	Ch11 Internationalization

	Part3 Peripherals & Internals
	Ch12 Linking & Libraries
	Ch13 Using GNU Debugger
	Ch14 Make & Autoconf
	Ch15 GNU Assembler
	Ch16 Cross Compiling & Windows Ports
	Ch17 Embedded Systems
	Ch18 Output from Compiler
	Ch19 Implementing a Language
	Ch20 Register Transfer Language
	Ch21 Machine-Specific Compiler Options

	Part4 Appendixes
	AppA GNU General Public License
	AppB Environment Variables
	AppC Command-Line Cross Reference
	AppD Command Line Options
	AppE Glossary

	Index

