
 0

Practical C Programming, 3rd Edition

By Steve Oualline

3rd Edition August 1997

ISBN: 1-56592-306-5

This new edition of "Practical C Programming" teaches users not only the mechanics or

programming, but also how to create programs that are easy to read, maintain, and

debug. It features more extensive examples and an introduction to graphical

development environments. Programs conform to ANSI C.

 TEAM FLY PRESENTS

 1

Table of Contents

 Preface

 How This Book is Organized

 Chapter by Chapter
 Notes on the Third Edition
 Font Conventions

 Obtaining Source Code

 Comments and Questions

 Acknowledgments
 Acknowledgments to the Third Edition

 I. Basics

1. What Is C?

 How Programming Works

 Brief History of C
 How C Works
 How to Learn C

2. Basics of Program Writing
 Programs from Conception to Execution

 Creating a Real Program
 Creating a Program Using a Command-Line Compiler
 Creating a Program Using an Integrated Development Environment

 Getting Help on UNIX

 Getting Help in an Integrated Development Environment

 IDE Cookbooks
 Programming Exercises

3. Style
 Common Coding Practices
 Coding Religion

 Indentation and Code Format

 Clarity
 Simplicity

 Summary

4. Basic Declarations and Expressions
 Elements of a Program

 Basic Program Structure
 Simple Expressions
 Variables and Storage

 TEAM FLY PRESENTS

 2

 Variable Declarations
 Integers

 Assignment Statements
 printf Function
 Floating Point

 Floating Point Versus Integer Divide

 Characters
 Answers
 Programming Exercises

5. Arrays, Qualifiers, and Reading Numbers
 Arrays
 Strings

 Reading Strings

 Multidimensional Arrays
 Reading Numbers

 Initializing Variables
 Types of Integers
 Types of Floats

 Constant Declarations

 Hexadecimal and Octal Constants
 Operators for Performing Shortcuts
 Side Effects

 ++x or x++

 More Side-Effect Problems
 Answers

 Programming Exercises

6. Decision and Control Statements

 if Statement
 else Statement

 How Not to Use strcmp

 Looping Statements
 while Statement
 break Statement

 continue Statement

 Assignment Anywhere Side Effect
 Answer

 Programming Exercises

7. Programming Process
 Setting Up

 Specification

 TEAM FLY PRESENTS

 3

 Code Design
 Prototype

 Makefile
 Testing
 Debugging

 Maintenance

 Revisions
 Electronic Archaeology
 Marking Up the Program

 Using the Debugger

 Text Editor as a Browser
 Add Comments

 Programming Exercises

 II. Simple Programming

8. More Control Statements
 for Statement
 switch Statement

 switch, break, and continue

 Answers

 Programming Exercises

9. Variable Scope and Functions

 Scope and Class
 Functions
 Functions with No Parameters

 Structured Programming

 Recursion
 Answers

 Programming Exercises

10. C Preprocessor
 #define Statement

 Conditional Compilation
 include Files
 Parameterized Macros

 Advanced Features

 Summary
 Answers
 Programming Exercises

11. Bit Operations
 Bit Operators

 The and Operator (&)

 TEAM FLY PRESENTS

 4

 Bitwise or (|)
 The Bitwise Exclusive or (^)

 The Ones Complement Operator (Not) (~)
 The Left- and Right-Shift Operators (<<, >>)
 Setting, Clearing, and Testing Bits

 Bitmapped Graphics

 Answers
 Programming Exercises

12. Advanced Types

 Structures
 Unions
 typedef

 enum Type

 Casting
 Bit Fields or Packed Structures

 Arrays of Structures
 Summary
 Programming Exercises

13. Simple Pointers

 Pointers as Function Arguments
 const Pointers

 Pointers and Arrays

 How Not to Use Pointers
 Using Pointers to Split a String

 Pointers and Structures
 Command-Line Arguments
 Programming Exercises

 Answers

14. File Input/Output
 Conversion Routines

 Binary and ASCII Files

 The End-of-Line Puzzle
 Binary I/O
 Buffering Problems

 Unbuffered I/O

 Designing File Formats
 Answers

 Programming Exercises

15. Debugging and Optimization
 Debugging

 Interactive Debuggers

 TEAM FLY PRESENTS

 5

 Debugging a Binary Search
 Runtime Errors

 The Confessional Method of Debugging
 Optimization
 Answers

 Programming Exercises

16. Floating Point
 Floating-Point Format

 Floating Addition/Subtraction

 Multiplication
 Division
 Overflow and Underflow

 Roundoff Error

 Accuracy
 Minimizing Roundoff Error

 Determining Accuracy
 Precision and Speed
 Power Series

 Programming Exercises

 III. Advanced Programming Concepts

17. Advanced Pointers

 Pointers and Structures
 free Function
 Linked List

 Structure Pointer Operator

 Ordered Linked Lists
 Double-Linked Lists

 Trees
 Printing a Tree
 Rest of Program

 Data Structures for a Chess Program

 Answers
 Programming Exercises

18. Modular Programming

 Modules
 Public and Private

 The extern Modifier

 Headers
 The Body of the Module

 A Program to Use Infinite Arrays

 TEAM FLY PRESENTS

 6

 The Makefile for Multiple Files
 Using the Infinite Array

 Dividing a Task into Modules
 Module Division Example: Text Editor

 Compiler

 Spreadsheet
 Module Design Guidelines
 Programming Exercises

19. Ancient Compilers

 K&R-Style Functions
 Library Changes

 Missing Features

 Free/Malloc Changes
 lint

 Answers

20. Portability Problems
 Modularity

 Word Size
 Byte Order Problem
 Alignment Problem

 NULL Pointer Problem

 Filename Problems
 File Types
 Summary

 Answers

21. C's Dustier Corners
 do/while

 goto

 The ?: Construct
 The , Operator

 volatile Qualifier
 Answer

22. Putting It All Together

 Requirements

 Specification
 Code Design

 Coding

 Functional Description

 TEAM FLY PRESENTS

 7

 Expandability

 Testing
 Revisions
 A Final Warning

 Program Files

 Programming Exercises

23. Programming Adages

 General

 Design
 Declarations
 switch Statement

 Preprocessor

 Style
 Compiling

 Final Note
 Answer

 IV. Other Language Features

A. ASCII Table

B. Ranges and Parameter Passing Conversions

C. Operator Precedence Rules

D. A Program to Compute a Sine Using a Power Series

 Glossary

 Index

 TEAM FLY PRESENTS

 8

Preface

This book is devoted to practical C programming. C is currently the
premier language for software developers. That's because it's widely
distributed and standard. Newer languages are available, such as
C++, but these are still evolving. C is still the language of choice for
robust, portable programming.

This book emphasizes the skills you will need to do real-world
programming. It teaches you not only the mechanics of the C
language, but the entire life cycle of a C program as well (including the
program's conception, design, code, methods, debugging, release,
documentation, maintenance, and revision).

Good style is emphasized. To create a good program yo u must do
more than just type in code. It is an art in which writing and
programming skills blend themselves together to form a masterpiece.
True art can be created. A well-written program not only functions
correctly, but is simple and easy to understand. Comments allow the
programmer to include descriptive text inside the program. When
clearly written, a commented program is highly prized.

A program should be as simple as possible. A programmer should
avoid clever tricks. This book stresses simple, practical rules. For
example, there are 15 operator precedence rules in C. These can be
simplified into two rules:

1. Multiply and divide come before add and subtract.
2. Put parentheses around everything else.

Consider two programs. One was written by a clever programmer
using all the tricks. The program contains no comments, but it works.
The other program is well commented and nicely structured, but it
doesn't work. Which program is more useful? In the long run, the
broken one. It can be fixed. Although the clever program works now,
sooner or later all programs have to be modified. The worst thing that
you will ever have to do is to modify a cleverly written program.

This handbook is written for people with no previous programming
experience or programmers who already know C and want to improve
their style and reliability. You should have access to a computer and

 TEAM FLY PRESENTS

 9

know how to use the basic functions such as a text editor and the
filesystem.

Specific instructions are given for producing and running programs
using the UNIX operating system with a generic cc compiler or the
Free Software Foundation's gcc compiler. For MS-DOS/Windows users,
instructions are included for Borland C++, Turbo C++, and Microsoft
Visual C++. (These compilers compile both C and C++ code.) The
book also gives examples of using the programming utility make for
automated program production.

How This Book is Organized

You must crawl before you walk. In Part I we teach you how to crawl.
These chapters enable you to write very simple programs. We start
with the mechanics of programming and programming style. Next,
you learn how to use variables and very simple decision and control
statements. In Chapter 7, we take you on a complete tour of the
software life cycle to show you how real programs are created.

Part II describes all of the other simple statements and operators that
are used in programming. You'll also learn how to organize these
statements into simple functions.

In Part III we take our basic declarations and statements and learn
how they can be used in the construction of advanced types such as
structures, unions, and classes. We'll also introduce the concept of
pointers. Finally, a number of miscellaneous features are described
Part IV .

Chapter by Chapter

Chapter 1 gives a brief description of the C language and its use. This chapter

includes some background on the history of the language.

Chapter 2 explains the basic programming process and gives you enough

information to write a very simple program.

Chapter 3 discusses programming style. Commenting a program is covered, as well

as writing clear and simple code.

 TEAM FLY PRESENTS

 10

Chapter 4 introduces you to simple C statements. Basic variables and the

assignment statement are covered in detail, along with arithmetic operators +, -, *,

/, and %.

Chapter 5 covers arrays and more co mplex variables. Shorthand operators such as

++ and %= are also described.

Chapter 6 explains simple decision statements including if, else, and for. A

discussion of == versus = is presented.

Chapter 7 takes you through all the necessary steps to create a simple program

from specification through release. Structured programming, fast prototyping, and

debugging are also discussed.

Chapter 8 describes additional control statements. Included are while, break, and

continue. The switch statement is discussed in detail.

Chapter 9 introduces local variables, functions, and parameters.

Chapter 10 describes the C preprocessor, which gives the programmer tremendous

flexibility in writing code. The chapter also provides the programmer with a

tremendous number of ways to mess up. Simple rules that help keep the

preprocessor from becoming a problem are described.

Chapter 11 discusses the logical C operators that work on bits.

Chapter 12 explains structures and other advanced types. The sizeof operator and

the enum type are included.

Chapter 13 introduces C pointer variables and shows some of their uses.

Chapter 14 describes both buffered and unbuffered input/output. ASCII and binary

files are discussed, and you are shown how to construct a simple file.

Chapter 15 describes how to de bug a program, as well as how to use an interactive

debugger. You are shown not only how to debug a program, but also how to write a

program so that it is easy to debug. This chapter also describes many optimization

techniques for making your program run faster and more efficiently.

Chapter 16 uses a simple decimal floating-point format to introduce you to the

problems inherent in floating point, such as roundoff error, precision lo ss, overflow,

and underflow.

Chapter 17 describes advanced uses of pointers for constructing dynamic structures

such as linked lists and trees.

 TEAM FLY PRESENTS

 11

Chapter 18 shows how to split a program into several files and use modular

programming techniques. The make utility is explained in more detail.

Chapter 19 describes the old, pre-ANSI C language and associated compilers.

Although such compilers are rare today, a lot of code was written for them and there

are still a large number of programs out there that use the old syntax.

Chapter 20 describes the problems that can occur when you port a program (move

it from one machine to another).

Chapter 21 describes the do/while statement, the , operator, and the ? and :

operators.

Chapter 22 details the steps necessary to take a complex program from conception

to completion. Information-hiding and modular programming techniques are

emphasized.

Chapter 23 lists some programming adages that will help you construct good C

programs.

Appendix A lists the octal, hexadecimal, and decimal representations of the ASCII

character set that is now in almost universal use.

Appendix B lists the limits you can expect to come up against in handling numbers

with various sizes of memory allocation.

Appendix C lists those impossible-to-remember rules, to h elp you when you

encounter code written by rude people who didn't use enough parentheses.

Appendix D , illustrates the manipulation of floating -point (real) numbers, which did

not receive complete attention in the rest of the book.

The Appendix A defines many of the technical terms used throughout the book.

Computer languages are best learned by writing and debugging programs.

Sweating over a broken program at 2:00 in the morning only to find you typed "="

where you should have typed "= =" is a very effective learning experience. There

are many programming examples used throughout this book. Some examples don't

work as expected and are posed as questions for the reader to solve. You are

encouraged to enter each into your computer, run the program, and debug it. These

exercises will introduce you to common errors in short programs so that you will

know how to spot and correct them in larger programs of your own. You will find

answers to questions at the end of each chapter. Also, at the end of many chapters,

you will find a section called "Programming Exercises." These sections contain

 TEAM FLY PRESENTS

 12

exercises that might be used in a programming class to test your knowledge of C

programming.

Notes on the Third Edition

The C language has evolved since the first edition of Practical C Programming was

published. Back then, ANSI compilers were rare and compilers that accepted the

K&R syntax were common. Now the reverse is true.

The third edition reflects the industry shift to ANSI compilers. All programs and

examples have been updated to conform to the ANSI standard. In fact, the older

K&R syntax is discussed only in Chapter 19.

Other changes/additions to the book include:

• Additional instructions for more compilers including a generic UNIX compiler,

the Free Software Foundations gcc compilers, Borland C++, Turbo C++, and

Microsoft Visual C++.

• A completely rewritten Chapter 22. This chapter now uses a statistics

program that should be more relevant to a larger number of readers.

Finally, I am a practical person. I tend to believe that if you know what I mean and

I know what I mean, then the language has served its purpose. Throughout this

book, I use the word "he" to denote a programmer. A few people in the "Politically

Correct" crowd have labeled this practice as sexist. They also have labeled some

passages in the book as being violent or racist.

Please note that when I use "he," I refer to a programmer, with no regard to gender.

Secondly, when I suggest that some bad programmers should be shot, I do not

speak literally.

My style has always been to communicate things clearly, concisely, and with a bit of

humor. I regret any offense that this might cause anyone.

Font Conventions

The following conventions are used in this book:

Italic

is used for directories and filenames, and to emphasize new terms and

concepts when they are introduced. Italic is also used to highlight comments

in examples.

 TEAM FLY PRESENTS

 13

Bold

is used for C keywords.

Constant Width

is used in text for programs and the elements of a prog ram and inexamples

to show the contents of files or the output from commands. A reference in

text to a word or item used in an example or code fragment is also shown in

constant-width font.

Constant Bold

is used in examples to show commands or other text that should be typed

literally by the user. (For example, rm foo instructs you to type "rm foo"

exactly as it appears in the text or example.)

Constant Italic

is used in examples to show variables for which a context -specific
substitution should be made. (The variable filename, for example, would be

replaced by some actual filename.)

" "

are used to identify system messages or code fragments in explanatory text.

%

is the UNIX shell prompt.

[]

surround optional values in a description of program syntax. (The brackets

themselves should never be typed.)

. . .

stands for text (usually computer output) that's been omitted for clarity or to

save space.

The notation CTRL-X or ̂ X indicates use of control characters. The notation instructs

you to hold down the "control" key while typing the character "x". We denote other

keys similarly (e.g., RETURN indicates a carriage return).

All examples of command lines are followed by a RETURN unless otherwise indicated.

 TEAM FLY PRESENTS

 14

Obtaining Source Code

The exercises in this book are available electronically by FTP and FTPMAIL. Use FTP
if you are directly on the Internet. Use FTPMAIL if you are not on the Internet but

can send and receive electronic mail to Internet sites. (This includes CompuServe

users.)

FTP

If you have an Internet connection (permanent or dialup), the easiest way to use

FTP is via your web browser or favorite FTP client. To get the examples, simply point

your browser to:

ftp://ftp.oreilly.com/published/oreilly/nutshell/practical_c3/examples.tar.gz

If you don't have a web browser, you can use the command-line FTP client included

with Windows NT (or Windows 95). If you are on a PC, you can get examples.zip

instead o f examples.tar.gz.

% ftp ftp.oreilly.com
Connected to ftp.oreilly.com.
220 ftp.oreilly.com FTP server (Version 6.34 Thu Oct 22 14:32:01 EDT 1992)

ready.

Name (ftp.oreilly.com:username): anonymous

331 Guest login ok, send e-mail address as password.
Password: username@hostname Use your username and host here

230 Guest login ok, access restrictions apply.

ftp> cd /published/oreilly/nutshell/practical_c3
250 CWD command successful.

ftp> binary
200 Type set to I.
ftp> get examples.tar.gz

200 PORT command successful.

150 Opening BINARY mode data connection for examples.tar.gz (xxxx bytes).

226 Transfer complete. local: exercises remote: exercises
xxxx bytes received in xxx seconds (xxx Kbytes/s)

ftp> quit

221 Goodbye.
%

 TEAM FLY PRESENTS

 15

FTPMAIL

FTP MAIL is a mail server available to anyone who can send electronic mail to, and

receive electronic mail from, Internet sites. Any company or service provider that

allows email connections to the Internet can access FTPMAIL.

You send mail to ftpmail@online.oreilly.com . In the message body, give the FTP

commands you want to run. The server will run anonymous FTP for you, and mail

the files back to you. To get a complete help file, send a message with no subject

and the single word "help" in the body. The follo wing is an example mail message

that gets the examples. This command sends you a listing of the files in the selected

directory and the requested example files. The listing is useful if you are interested

in a later version of the examples. If you are on a PC, you can get examples.zip

instead of examples.tar.gz.

Subject:

reply-to username@hostname (Message Body) Where you want files

mailed
open

cd /published/oreilly/nutshell/practical_c3

dir
mode binary

uuencode
get examples.tar.gz
quit

.

A signature at the end of the message is acceptable as long as it appears after
"quit."

Comments and Questions

We have tested and verified all of the information in this book to the best of our

ability, but you may find that features have changed (or even that we h ave made

mistakes!). Please let us know about any errors you find, as well as your

suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

1-800-998-9938 (in US or Canada)

1-707-829-0515 (international/local)

1-707-829-0104 (FAX)

 TEAM FLY PRESENTS

 16

You can also send us messages electronically. To be put on the mailing list or

request a catalog, send email to:

info@oreilly.com (via the Internet)

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com (via the Internet)

We have a web site for the book, where we'll list examples, errata, and any plans for

future editions. You ca n access this page at:

http://www.oreilly.com/catalog/pcp3/

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

 TEAM FLY PRESENTS

 17

Acknowledgments

I wish to thank my father for his help in editing and Arthur Marquez for his aid in
formatting this book.

I am grateful to all the gang at the Writers' Haven and Bookstore, Pearl, Alex, and

Clyde, for their continued support. Thanks to Peg Kovar for help in editing. Special
thanks to Dale Dougherty for ripping apart my book and forcing me to put it

together right. My thanks also go to the production group of O'Reilly &

Associates—especially Rosanne Wagger and Mike Sierra—for putting the finishing

touches on this book. Finally, Jean Graham deserves a special credit for putting up

with my writing all these years.

 TEAM FLY PRESENTS

 18

Acknowledgments to the Third Edition

Special thanks to Andy Oram, the technical editor. Thanks also to the production
staff at O'Reilly & Associates. Nicole Gipson Arigo was the project manager.

Clairemarie Fisher O'Leary and Sheryl Avruch performed quality control checks.

Mike Sierra worked with the tools to create the book. Chris Reilley and Robert

Romano fine-tuned the figures. Nancy Priest designed the interior book layout, and

Edie Freedman designed the front cover. Production assistance, typesetting, and

indexing provided by Benchmark Productions, Inc.

 TEAM FLY PRESENTS

 19

Part I: Basics

This part of the book teaches you the basic constructs of the C language. When

you're finished, you'll be able to write well-designed and well-thought-out C

programs. Style is emphasized early so that you can immediately start writing

programs using a good programming style. Although you'll be limited to small

programs throughout this part, they'll be well-written ones.

Chapter 1 gives a brief description of the C language and its use. This chapter

includes some background on the history of the language.

Chapter 2 explains the basic programming process and gives you enough

information to write a very simple program.

Chapter 3 discusses programming style. Commenting a program is covered, as well

as writing clear and simple code.

Chapter 4 introduces you to simple C statements. Basic variables and the

assignment statement are covered in detail, along with arithmetic operators +, -, *,

/, and %.

Chapter 5 covers arrays and more complex variables. Shorthand operators such as

++ and %= are also described.

Chapter 6 explains simple decision statements including if, else, and for. A

discussion of == versus = is presented.

Chapter 7 takes you through all the necessary steps to create a simple program

from specification through release. Structured programming, fast prototyping, and

debugging are also discussed.

 TEAM FLY PRESENTS

 20

Chapter 1. What Is C?

Profanity is the one language that all programmers understand.

—Anon.

The ability to organize and process information is the key to success in
the modern age. Computers are designed to handle and process large
amounts of information quickly and efficiently, but they can't do
anything until someone tells them what to do.

That's where C comes in. C is a programming language that allows a
software engineer to efficiently communicate with a computer.

C is a highly flexible and adaptable language. Since its creation in
1970, it's been used for a wide variety of programs including firmware
for micro-controllers, operating systems, applications, and graphics
programming.

C is one of the most most widely used languages in the world and is
fairly stable. An improved C language called C++ has been invented,
but it is still in development, and its definition is still being worked on.
C++, originally known as C with Classes, adds a number of new
features to the C language, the most important of which is the class.
Classes facilitate code reuse through object-oriented design (OOD).

Which is better, C or C++? The answer depends on who you talk to.
C++ does great things for you behind your back, such as
automatically calling constructors and destructors for variables. This
processing makes some types of programming easy, but it makes
static checking of programs difficult, and you need to be able to tell
exactly what your program is doing if you are working on embedded
control applications. So some people consider C++ the better
language because it does things automatically and C doesn't. Other
people consider C better for precisely the same reason.

Also, C++ is a relatively new language that's still changing. Much
more C code exists than C++ code, and that C code will need to be
maintained and upgraded. So C will be with us for a long time to
come.

 TEAM FLY PRESENTS

 21

1.1 How Programming Works

Communicating with computers is not easy. They require instructions
that are exact and detailed. It would be nice if we could write
programs in English. Then we could tell the computer, "Add up all my
checks and deposits, then tell me the total," and the machine would
balance our checkbook.

But English is a lousy language when it comes to writing exact
instructions. The language is full of ambiguity and imprecision. Grace
Hopper, the grand old lady of computing, once commented on the
instructions she found on a bottle of shampoo:

Wash
Rinse
Repeat

She tried to follow the directions, but she ran out of shampoo.
(Wash-Rinse-Repeat. Wash-Rinse-Repeat. Wash-Rinse-Repeat...)

Of course, we can try to write in precise English. We'd have to be
careful and make sure to spell everything out and be sure to include
instructions for every contingency. But if we worked really hard, we
could write precise English instructions.

It turns out that there is a group of people who spend their time trying
to write precise English. They're called the government, and the
documents they write are called government regulations.
Unfortunately, in their effort to make the regulations precise, the
government has made them almost unreadable. If you've ever read
the instruction book that comes with your tax forms, you know what
precise English can be like.

Still, even with all the extra verbiage that the government puts in,
problems can occur. A few years ago California passed a law requiring
all motorcycle riders to wear a helmet. Shortly after this law went into
effect, a cop stopped a guy for not wearing one. The man suggested
the policeman take a closer look at the law.

The law had two requirements: 1) that motorcycle riders have an
approved crash helmet and 2) that it be firmly strapped on. The cop
couldn't give the motorcyclist a ticket because he did have a helmet
firmly strapped on—to his knee.

 TEAM FLY PRESENTS

 22

So English, with all its problems, is out. Now, how do we communicate
with a computer?

The first computers cost millions of dollars, while at the same time a
good programmer cost about $15,000 a year. Programmers were
forced to program in a language in whic h all the instructions were
reduced to a series of numbers, called machine language. This
language could be directly input into the computer. A typical
machine-language program looks like:

1010 1111
0011 0111
0111 0110
.. and so on for several hundred instructions

While machines "think" in numbers, people don't. To program these
ancient machines, software engineers would write their programs
using a simple language in which each word in the language stood for
a single instruction. This language was called assembly language
because the programmers had to hand translate, or assemble, each
line into machine code.

A typical program might look like:

Program Translation
MOV A,47 1 010 1111
ADD A,B 0011 0111
HALT 0111 0110
.. and so on for several hundred instructions

This process is illustrated by Figure 1-1.

Figure 1-1. Assembling a program

 TEAM FLY PRESENTS

 23

Translation was a difficult, tedious, and exacting task. One software
engineer decided that this was a perfect job for a computer, so he
wrote a program called an assembler that would do the job
automatically.

He showed his new creation to his boss and was immediately chewed
out: "How dare you even think of using such an expensive machine for
a mere `clerical' task." Given the cost of an hour of computer time
versus the cost of an hour of programmer time, this attitude was not
unreasonable.

Fortunately, as time passed the cost of programmers went up and the
cost of computers went down. So letting the programmers write
programs in assembly language and then using a program called an
assembler to translate them into machine language became very cost
effective.

Assembly language organized programs in a way that was easy for
the programmers to understand. However, the program was more
difficult for the machine to use. The program had to be translated
before the machine could execute it. This method was the start of a
trend. Programming languages became more and more convenient
for the programmer to use, and started requiring more and more
computer time for translation into something useful.

Over the years, a series of higher-level languages have been devised.
These languages attempt to let the programmer write in a medium
that is easy for him to understand, and that is also precise and simple
enough for the computer to understand.

Early high-level languages were designed to handle specific types of
applications. FORTRAN was designed for number crunching, COBOL
was for writing business reports, and PASCAL was for student use.
(Many of these languages have far outgrown their initial uses.
Nicklaus Wirth has been rumored to have said, "If I had known that
PASCAL was going to be so successful, I would have been more
careful in its design.")

1.2 Brief History of C

In 1970 a programmer, Dennis Ritchie, created a new language called
C. (The name came about because it superceded the old
programming language he was using: B.) C was designed with one
goal in mind: writing operating systems. The language was extremely

 TEAM FLY PRESENTS

 24

simple and flexible, and soon was used for many different types of
programs. It quickly became one of the most popular programming
languages in the world.

C's popularity was due to two major factors. The first was that the
language didn't get in the way of the programmer. He could do just
about anything by using the proper C construct. (As we will see, this
flexibility is also a drawback, as it allows the program to do things that
the programmer never intended.)

The second reason that C is popular is that a portable C compiler was
widely available. Consequently, people could attach a C compiler for
their machine easily and with little expense.

In 1980, Bjarne Stroustrup started working on a new language, called
"C with Classes." This language improved on C by adding a number of
new features. This new language was improved and augmented, and
finally became C++.

One of the newest languages, Java, is based on C++. Java was
designed to be "C++ with the bugs fixed." At the time of this writing,
Java has limited use despite being heavily marketed by Sun
Microsystems and others.

1.3 How C Works

C is designed as a bridge between the programmer and the raw
computer. The idea is to let the programmer organize a program in a
way that he can easily understand. The compiler then translates the
language into something that the machine can use.

Computer programs consist of two main parts: data and instructions.
The computer imposes little or no organization on these two parts.
After all, computers are designed to be as general as possible. The
programmer should impose his organization on the computer, not the
other way around.

The data in a computer is stored as a series of bytes. C organizes
those bytes into useful data. Data declarations are used by the
programmer to describe the information he is working with. For
example:

int total; /* Total number accounts */

 TEAM FLY PRESENTS

 25

tells C that we want to use a section of the computer's memory to

store an integer named total. We let the compiler decide what

particular bytes of memory to use; that decision is a minor
bookkeeping detail that we don't want to worry about.

Our variable total is a simple variable. It can hold only one integer

and describe only one total. A series of integers can be organized into
an array as follows:

int balance[100]; /* Balance (in cents) for all 100 accounts
*/

Again, C will handle the details of imposing that organization on the
computer's memory. Finally, there are more complex data types. For
example, a rectangle might have a width, a height, a color, and a fill
pattern. C lets us organize these four items into one group called a
structure.

struct rectangle {
 int width; /* Width of rectangle in pixels */
 int height; /* Height of rectangle in pixels */
 color_type color; /* Color of the rectangle */
 fill_type fill; /* Fill pattern */
};

The point is that structures allow the programmer to arrange the data
to suit his needs no matter how simple or complex that data is.
Translation of this data description into something the computer can
use is the job of the compiler, not the programmer.

But data is only one part of a program. We also need instructions. As
far as the computer is concerned, it knows nothing about the layout of
the instructions. It knows what it's doing for the current instruction
and where to get the next one, but nothing more.

C is a high-level language. It lets us write a high-level statement like:

area = (base * height) / 2.0; /* Compute area of triangle */

The compiler will translate this statment into a series of cryptic
low-level machine instructions. This sort of statement is called an
assignment statement. It is used to compute and store the value of an
arithmetic expression.

 TEAM FLY PRESENTS

 26

We can also use control statements to control the order of processing.
Statements like the if and switch statements enable the computer to
make simple decisions. Statements can be repeated over and over
again by using looping statements such as while and for.

Groups of statements can be wrapped to form functions. Thus, we
only have to write a general-purpose function to draw a rectangle
once, and then we can reuse it whenever we want to draw a new
rectangle.

C provides the program with a rich set of standard functions that
perform common functions such as searching, sorting, input, and
output.

A set of related functions can be grouped together in a single source
file. Many source files can be compiled and linked together to form a
program.

One of the major goals of the C language is to organize instructions
into reusable components. After all, you can write programs much
faster if you can "borrow" most of your code from somewhere else.
Groups of reusable functions can be combined into a library. In this
manner, when you need, for example, a sort routine, you can grab the

standard function qsort from the library and link it into your program.

The data declarations, structures and control statements, and other C
language elements, are not for the computer's benefit. The computer
can't tell the difference between a million random bytes and a real
program. All the C language elements are designed to allow the
programmer to express and organize his ideas clearly in a manner
tailored to him, not to the computer.

Organization is the key to writing good programs. For example, in this
book you know that the Table of Contents is in the front and the Index
is in the back. We use this structure because books are organized that
way. Organization makes this book easier to use.

The C language lets you organize your programs using a simple yet
powerful syntax. This book goes beyond the C syntax and teaches you
style rules that enable you to make highly readable and reliable
programs. By combining a powerful syntax with good programming
style, you can create powerful programs that perform complex and
wonderful operations, yet are also organized in a way that makes
them easy for you to understand when change time comes around.

 TEAM FLY PRESENTS

 27

1.4 How to Learn C

There is only one way to learn how to program and that is to write programs. You'll
learn a lot more by writing and debugging programs than you ever will by reading

this book. This book contains many programming exercises. You should try to do as

many of them as possib le. When you do the exercises, keep good programming

style in mind. Always comment your programs, even if you're only doing the

exercises for yourself. Commenting helps you organize your thoughts and keeps

you in practice when you go into the real world.

Don't let yourself be seduced by the idea that "I'm only writing these programs for

myself, so I don't need to comment them." First of all, code that looks obvious to a

programmer as he writes it is often confusing and cryptic when he revisits it a week

later. Writing comments also helps you to get organized before you write the actual

code. (If you can write out an idea in English, you're halfway to writing it in C.)

Finally, programs tend to be around far longer than expected. I once wrote a

program that was designed to work only on the computer at Caltech. The program

was highly system-dependent. Because I was the only one who would ever use it,

the program would print the following message if you got the command line wrong:

?LSTUIT User is a twit

A few years later, I was a student at Syracuse University, and the Secretary at the

School of Computer Science needed a program that was similar to my Caltech listing

program. So I adapted my program for her use. Unfortunately, I forgot about the

error message.

Imagine how horrified I was when I came into the Computer Science office and was

accosted by the Chief Secretary. This lady had so much power that she could make

the Dean cringe. She looked at me and said, "User is a twit, huh!" Luckily she had a

sense of humor, or I wouldn't be here today.

Sprinkled throughout this book are many broken programs. Spend the time to

figure out why they don't work. Often, the problem is very subtle, such as a

misplaced semicolon or the use of = instead of ==. These programs let you learn how

to spot mistakes in a small program. Then, when you make similar mistakes in a big

program, and you will make mistakes, you will be trained to spot them.

 TEAM FLY PRESENTS

 28

Chapter 2. Basics of Program Writing

The first and most important thing of all, at least for writers today, is
to strip language clean, to lay it bare down to the bone.

—Ernest Hemingway

Programs start as a set of instructions written by a human being.
Before they can be used by the computer, they must undergo several
transformations. In this chapter, we'll learn how to enter a program,
transform it into something the machine can use, and run it. Detailed
steps are provided for the most popular UNIX and DOS/Windows
compilers.

2.1 Programs from Conception to Execution

C programs are written in a high-level language using letters,
numbers, and the other symbols you find on a computer keyboard.
Computers actually execute a very low-level language called machine
code (a series of numbers). So, before a program level can be used, it
must undergo several transformations.

Programs start out as an idea in a programmer's head. He uses a text
editor to write his thoughts into a file called a source file, containing
source code. This file is transformed by the compiler into an object file.
Next, a program called the linker takes the object file, combines it
with predefined routines from a standard library, and produces an
executable program (a set of machine-language instructions). In the
following sections, we'll see how these various forms of the program
work together to produce the final program.

Figure 2-1 shows the steps that must be taken to transform a
program written in a high-level language into a executable program.

 TEAM FLY PRESENTS

 29

Figure 2-1. Transformation of a high-level language

into a program

2.1.1 Wrappers

Fortunately you don't have to run the compiler, assembler, and linker
individually. Most C compilers use "wrapper" programs that
determine which tools need to be run and then run them.

Some programming systems go even further and provide the
developer with an Integrated Development Environment (IDE). The
IDE contains an editor, compiler, linker, project manager, debugger,
and more in one convenient package. Both Borland and Microsoft
provide IDEs with their compilers.

2.2 Creating a Real Program

Before we can actually start creating our own programs, we need to
know how to use the basic programming tools. In this section, we will
take you step by step through the process of entering, compiling, and
running a simple program.

 TEAM FLY PRESENTS

 30

We will describe how to use two different types of compilers. The first
type is the standalone or command-line compiler. This type of
compiler is operated in a batch mode from the command line. In other
words, you type in a command, and the compiler turns your source
code into an executable program.

The other type of compiler is contained in an IDE. The IDE contains an
editor, compiler, project manager, and debugger in one package.

Most UNIX systems use command-line compilers. There are a few IDE
compilers available for UNIX, but they are rare. On the other hand,
almost every compiler for MS-DOS/Windows contains an IDE. For the
command-line die-hards, these compilers do contain a command-line
compiler as well.

2.3 Creating a Program Using a Command-Line

Compiler

In this section, we'll go through the step-by-step process needed to create a

program using a command-line compiler. Instructions are provided for a generic

UNIX compiler (cc), the Free Software Foundation's gcc compiler, Turbo C++,

Borland C++, and Microsoft Visual C++.[1]

[1] Turbo C++, Borland C++, and Microsoft Visual C++ are all C++ compilers that can also compile C code.

However, if you are using a Borland or Microsoft compiler, you might want to skip

ahead to the section on using the IDE.

2.3.1 Step 1. Create a Place for Your Program

You can more easily manage things if you create a separate directory for each

program that you're working on. In this case, we'll create a directory called hello to

hold our hello program.

On UNIX type:

% mkdir hello
% cd hello

On MS-DOS type:

C:> MKDIR HELLO

C:> CD HELLO

 TEAM FLY PRESENTS

 31

2.3.2 Step 2. Create the Program

A program starts out as a text file. Example 2 -1 shows our program in source form.

Example 2-1. hello/hello.c

[File: hello/hello.c]
#include <stdio.h>

int main()

{
 printf("Hello World\n");
 return (0);

}

Use your favorite text editor to enter the program. Your file should be named

hello.c.

MS-DOS/Windows users should not use a word
processor such as MS-Word or WordPerfect to write
their programs. Word processors add formatting
codes to files, which confuse the compiler. You must
use a text ed itor such as the MS-DOS "EDIT" program
that is capable of editing ASCII files.

2.3.3 Step 3. Run the Compiler

The compiler takes the source file you've just made and converts it into an

executable program. Each compiler has a different command line. The commands

for the most popular compilers are listed below.

2.3.3.1 UNIX cc compiler (generic UNIX)

Most UNIX -based compilers follow the same generic standard. The C compiler is

named cc, and to compile our hello program we need the following command:

% cc -g -ohello hello.c

The -g option enables debugging. (The compiler adds extra information to the

program to make the program easier to debug.) The switch -ohello tells the

compiler that the program is to be called hello, and the final hello.c is the name

of the source file. See your compiler manual for details on all the possible options.

 TEAM FLY PRESENTS

 32

There are several different C compilers for UNIX, so your command line may be

slightly different.

2.3.3.2 Free Software Foundation's gcc compiler

The Free Software Foundation, the GNU people, publish a number of high-quality

programs. (See the Glossary entry for information on how to get their software.)
Among their offerings is a C compiler called gcc.

To compile a program using the gcc compiler use the following command line:

% gcc -g -Wall -ohello hello.c

The additional switch -Wall turns on the warnings.

The GNU compiler contains several extensions to the basic C language. If you want

to turn these features off, use the following command line:

% gcc -g -Wall -ansi -pedantic -ohello hello.c

The switch -ansi turns off features of GNU C that are incompatible with ANSI C. The

-pedantic switch causes the compiler to issue a warning for any non-ANSI feature

it encounters.

2.3.3.3 Borland's Turbo C++ under MS-DOS

Borland International makes a low-cost MS-DOS C++ compiler called Turbo C++.

This compiler will compile both C and C++ code. We will describe only how to

compile C code. Turbo C++ is ideal for learning. The command line for Turbo C++

is:

C:> tcc -ml -v -N -w -ehello hello.c

The -ml tells Turbo C++ to use the large -memory model. (The PC has a large

number of different memory models. Only expert PC programmers need to know

the difference between the various models. For now, just use the large model until

you know more.)

The -v switch tells Turbo C++ to put debugging information in the program.

Warnings are turned on by -w; stack checking is turned on by -N. Finally -ehello

tells Turbo C++ to create a program named HELLO with hello.c being the name of

the source file. See the Turbo C++ reference manual for a complete list of options.

 TEAM FLY PRESENTS

 33

Windows Programming

You may wonder why we describe MS-DOS programming when
Windows is widely used. We do so because programming in
Windows is much more complex than programming in
MS-DOS.

For example, to print the message "Hello World" in MS-DOS,
you merely print the message.

In Windows, you must create a window, create a function to
handle the messages from that window, select a font, select a
place to put the font, and output the message.

You must learn to walk before you can run. Therefore, we limit
you to the MS-DOS or Easy-Win (Simplified Windows)
programs in this book.

2.3.3.4 Borland C++ under MS-DOS and Windows

In addition to Turbo C++, Borland International also makes a full-featured,

profe ssional compiler for MS-DOS/Windows called Borland C++. Its command line

is:

C:> bcc -ml -v -N -P -w -ehello hello.c

The command-line options are the same for both Turbo C++ and Borland C++.

2.3.3.5 Microsoft Visual C++

Microsoft Visual C++ is another C++/C compiler for MS-DOS/Windows. To compile,

use the following command line:

C:> cl /AL /Zi /W1 hello.c

The /AL option tells the program to use the large memory model. Debugging is

turned on with the /Zi option and warnings with the /W1 option.

2.3.4 Step 4. Execute the Program

To run the program (on UNIX or MS-DOS/Windows) type:

 TEAM FLY PRESENTS

 34

% hello

and the message:

Hello World

will appear on the screen.

2.4 Creating a Program Using an Integrated

Development Environment

Integrated Development Environments (IDEs) provide a one -stop shop for

programming. They take a compiler, editor, and debugger and wrap them into one

neat package for the program.

2.4.1 Step 1. Create a Place for Your Program

You can more easily manage things if you create a separate directory for each

program that you're working on. In this case, we'll create a directory called HELLO

to hold our hello program.

On MS-DOS type:

C:> MKDIR HELLO

C:> CD HELLO

2.4.2 Step 2. Enter, Compile, and Run Your Program

Using the IDE

Each IDE is a little different, so we've included separate instructions for each one.

2.4.2.1 Turbo C++

1. Start the Turbo C++ IDE with the command:

C:> TC

2. Select the Window|Close All menu item to clear the desktop of any old

windows. We'll want to start clean. The screen should look like Figure 2-2.

 TEAM FLY PRESENTS

 35

Figure 2-2. Clean desktop

3. Select the Options|Compiler|Code Generation menu item to pull up the Code

Generation dialog as seen in Figure 2-3. Change the memory model to

Large.

Figure 2-3. Code Generation dialog

4. Select the Options|Compiler|Entry/Exit menu item and turn on "Test stack

overflow" as seen in Figure 2 -4.

 TEAM FLY PRESENTS

 36

Figure 2-4. Entry/Exit Code Generation dialog

5. Select the Options|Compiler|Messages|Display menu item to bring up the

Compiler Messages dialog as seen in Figure 2-5. Select All to display all the

warning messages.

Figure 2-5. Compiler Messages dialog

6. Select the Options|Save menu item to save all the options we've used so far.

7. Select the Project|Open menu item to select a project file. In this case, our

project file is called HELLO.PRJ. The screen should look like Figure 2 -6 when

you're done.

 TEAM FLY PRESENTS

 37

Figure 2-6. Open Project File dialog

8. Press the INSERT key to add a file to the project. The file we want to add is

HELLO.C as seen in Figure 2-7.

Figure 2-7. Add to Project List dialog

9. Press ESC to get out of the add-file cycle.

10. Press UP-ARROW to go up one line. The line with HELLO.C should now be

highlighted as seen in Figure 2-8.

 TEAM FLY PRESENTS

 38

Figure 2-8. Hello project

11. Press ENTER to edit this file.

12. Enter Example 2-2.

Example 2-2. hello/hello.c

[File: hello/hello.c]

#include <stdio.h>
int main()
{

 printf("Hello World\n");
 return (0);

}

The results should look like Figure 2 -9.

 TEAM FLY PRESENTS

 39

Figure 2-9. Finished project

13. Select the Run|Run menu item to execute the program.

14. After the program runs, control returns to the IDE. This control change

means that you can't see what your program output. To see the results of

the program you must switch to the user screen by selecting the

Window|User menu item.

To return to the IDE, press any key. Figure 2-10 shows the output of the

program.

Figure 2-10. User screen

 TEAM FLY PRESENTS

 40

15. When you are finished, you can save your program by selecting the File|Save

menu item.

16. To exit the IDE, select the File|Quit menu item.

2.4.2.2 Borland C++

1. Create a directory called \HELLO to hold the files for our Hello World program.

You can create a directory using the Windows' File Manager program or by

typing the following command at the MS-DOS prompt:

C:> mkdir \HELLO

2. From Windows, double-click on the "Borland C++" icon to start the IDE.

Select the Window|Close all menu item to clean out any old junk. The

program begins execution and displays a blank workspace as seen in Figure

2-11.

Figure 2-11. Borland C++ initial screen

3. Select the Project|New Project menu item to create a project for our

program. Fill in the "Project Path and Name:" blank with c:\hello\hello.ide.
For the Target Type, select EasyWin(.exe). The Target Model is set to Large.

The results are shown in Figure 2-12.

 TEAM FLY PRESENTS

 41

Figure 2-12. New Target dialog

4. Click on the Advanced button to bring up the Advanced Options dialog. Clear

the .rc and .def items and set the .c Node items as shown in Figure 2 -13.

5. Click on OK to return to the New Target dialog. Click on OK again to return to

the main window.

Figure 2-13. Advanced Options dialog

 TEAM FLY PRESENTS

 42

6. Press ALT-F10 to bring up the node submenu shown in Figure 2-14.

Figure 2-14. Target Options submenu

7. Select the Edit node attributes menu item to bring up the dialog shown in

Figure 2 -15. In the Style Sheet blank, select the item Debug Info and

Diagnostics. Click on OK to return to the main window.

Figure 2-15. Node Attributes dialog

 TEAM FLY PRESENTS

 43

8. Go to the Project Options dialog by selecting the Options|Project Options

menu item. Go down to the Compiler item and click on the + to expand the

options.

Turn on the Test stack overflow option as seen in Figure 2 -16. Click on OK to

save these options.

Figure 2-16. Project Options dialog

9. Click on OK to return to the main window. Press DOWN-ARROW to select the

hello[.C] item in the project as seen in Figure 2-17.

 TEAM FLY PRESENTS

 44

Figure 2-17. Hello project

10. Press RETURN to start editing the file hello.c. Type in Example 2 -3.

Example 2-3. hello/hello.c

#include <stdio.h>
int main()
{

 printf("Hello World\n");
 return (0);

}

When you finish, your screen will look like Figure 2 -18.

 TEAM FLY PRESENTS

 45

Figure 2-18. Hello World program

11. Compile and run the program by selecting the Debug|Run menu item. The

program will run and display "Hello World" in a window as seen in Figure

2-19.

Figure 2-19. Hello World program after

execution

 TEAM FLY PRESENTS

 46

2.4.2.3 Microsoft Visual C++

1. Create a directory called \HELLO to hold the files for our Hello World program.

You can create a directory using the Windows' File Manager program or by

typing the following command at the MS-DOS prompt:

C:> mkdir \HELLO

2. From Windows, double-click on the Microsoft Visual C++ to start the IDE.

Clear out any old junk by selecting the Window|Close All menu item. A blank

workspace will be displayed as seen in Figure 2-20.

Figure 2-20. Microsoft Visual C++ initial screen

3. Click on the Project|New menu item to bring up the New P roject dialog as

shown in Figure 2 -21.

 TEAM FLY PRESENTS

 47

Figure 2-21. New Project dialog

Fill in the Project Name blank with " \hello \hello.mak". Change the Project

Type to QuickWin application (.EXE).

4. Visual C++ goes to the Edit dialog to allow you to name the source files in

this project (see Figure 2 -22). In this case, we have only file hello.c. Click on

Add to put this in the project and Close to tell Visual C++ that there are no

more files in the program.

 TEAM FLY PRESENTS

 48

Figure 2-22. Edit Project dialog

5. Select the Options|Project Options menu item to bring up the Project Options

dialog as seen in Figure 2-23.

Figure 2-23. Project Options dialog

Click on the Compiler button to change the compiler options.

 TEAM FLY PRESENTS

 49

6. Go down to the Custom Options menu item under Category and change the

Warning Level to 4 as seen in Figure 2 -24.

Figure 2-24. C/C++ Compiler Options dialog

7. Select the Memory Model category and change the Model to Large (see

Figure 2 -25).

Figure 2-25. Memory Model options

 TEAM FLY PRESENTS

 50

8. Close the dialog by clicking on the OK button. You return to the Project

Options dialog. Click on OK to dismiss this dialog as well.

9. Select the File|New menu item to start a new program file. Type in Example

2-4.

Example 2-4. hello/hello.c

[File: hello/hello.c]

#include <stdio.h>
int main()

{
 printf("Hello World\n");

 return (0);

}

Your results should look Figure 2-26.

Figure 2-26. Microsoft Visual C++ with Hello

World entered

10. Use the File|Save As menu item to save the file under the name hello.c.

11. Use the Project|Build menu item to compile the program. The compiler will

output messages as it builds. When the compiler is finished, your screen

should look like Figure 2 -27.

 TEAM FLY PRESENTS

 51

Figure 2-27. Microsoft Visual C++ project build

screen

12. The program can now be started with the Debug|Go menu item. The results

appear in Figure 2-28.

Figure 2-28. Hello World results

 TEAM FLY PRESENTS

 52

2.5 Getting Help on UNIX

Most UNIX systems have an online documentation system called the manpages.
These manpages can be read with the man command. (UNIX uses man as an

abbreviation for manual.) To get information about a particular subject, use the

following command:

man subject

For example, to find out about the classes defined in the printf function, you would

type:

man printf

The command also has a keyword search mode:

man -k keyword

To determine the name of manpage with the word "output" in its title, use the
command:

man -k output

2.6 Getting Help in an Integrated Development

Environment

IDEs such as Turbo C++, Borland C++, and Microsoft C++ have a Help menu item.

This item activates a hypertext -based help system.

2.7 IDE Cookbooks

This section contains a brief summary of the commands used to enter, compile, and

execute a simple program using the three IDEs described in this chapter.

2.7.1 Turbo C++

1. Window|Close All Clean out any old junk.

2. Options|Compiler|Code Generation For simple program, use large memory

model.

 TEAM FLY PRESENTS

 53

Memory Model = Large

3.
Options|Compiler|Entry/Exit

Test stack overflow = On

Turn on test for a common programming

error.

4.
Options|Compiler|Messages|Display

Display warnings = All

Tell compiler that you want all diagnostics

that it can give you.

5. Options|Save Save options.

6.
Project|Open

Project file = program.PRJ

Create a new project.

7.
Insert

Add file program.c

Add program file to project.

8. ESC Get out of "add -file" cycle.

9. UP-ARROW Move to program.c line.

10. RETURN Edit program file.

11. Type in the program Enter text of program.

12. Run|Run Execute program.

13. Window|User Display results of the program.

14. File|Save Save the program.

15. File|Quit Exit Turbo C++ IDE.

2.7.2 Borland C++

1. Window|Close All Clean out any old junk.

2.

Project|New Project

Project Path and Name = c.\

program\program.ide

Target Type = EasyWin(.exe)

Target Model = Large

Create new project.

3.

Click on Advanced button

Set .c Node

Clear .rc and .def

Setup a simple C program.

4. Click on OK
Return to New Target

window.

 TEAM FLY PRESENTS

 54

5. Click on OK Return to main window.

6. ALT-F10 Select node submenu.

7.
Edit|Node Attributes

Style Sheet = Debug Info and Diagnostics

Turn on debugging.

8. Click on OK button Return to main menu.

9.

Options|Project Options

Click on + under Compiler

Test stack overflow = On

Turn on valuable run-time

test.

10. Click on OK button Save options.

11. Click on OK button Return to main window.

12. DOWN-ARROW Move to program [.c] line.

13. RETURN Edit program file.

14. Type in the program Enter text of program.

15. Debug|Run Run program.

2.7.3 Microsoft Visual C++

1. Window|Close All Clean out any old junk.

2.

Project|New

Project Name =

\program\program.mak

Project Type =

QuickWin application (.EXE)

Start project.

Set up project.

Click on OK button.

Go to Edit dialog.

3. File name = program .c Enter program name.

4. Click on Add button Add program to project.

5. Click on Close button
Tell Visual C++ that there are no more

files.

6. Options|Project Options Get to Project Options dialog.

7. Click on Compiler button Go to C|C++ Compiler Options dialog.

8.
Select Custom Options category

Warning Level = 4

Turn on all warnings.

9. Select the Memory Model category For simple program, use large-memory

model.

 TEAM FLY PRESENTS

 55

Memory Model = Large

10. Click on OK button Return to Project Options dialog.

11. Click on OK button Return to main window.

12. File|New Open program file.

13. Type in the program Edit program file.

14. File|Save As — File name = program.c Save file.

15. Project|Build Compile program.

16. Debug|Go Execute program.

These instructions are for version 4.0 of Microsoft
Visual C++. Microsoft frequently changes the user
interface from version to version, so these
instructions may require some slight modification.

2.8 Programming Exercises

Exercise 2-1: On your computer, type in the hello program and execute it.

Exercise 2-2: Take several programming examples from any source, enter them

into the computer, and run them.

 TEAM FLY PRESENTS

 56

Chapter 3. Style

There is no programming language, no matter how structured, that will prevent

programmers from writing bad programs.

—L. Flon

It is the nobility of their style which will make our writers of 1840 unreadable forty

years from now.

—Stendhal

This chapter discusses how to use good programming style to create a simple,

easy-to-read program. Discussing style before we know how to program might

seem backward, but style is the most important part of programming. Style is what

separates the gems from the junk. It is what separates the programming artist from

the butcher. You must learn good programming style first, before typing in your first

line of code, so that everything you write will be of the highest quality.

Contrary to popular belief, programmers do not spend most of their time writing

programs. Far more time is spent maintaining, upgrading, and debugging existing

code than is ever spent on creating new wo rks. According to Datamation, the

amount of time spent on maintenance is skyrocketing. From 1980 to 1990, the

average number of lines in a typical application went from 23,000 to 1,200,000. The

average system age went from 4.75 to 9.4 years.

What's worse, 74% of the managers surveyed at the 1990 Annual Meeting and

Conference of the Software Maintenance Association reported that they "have

systems in their department, that have to be maintained by specific individuals

because no one else understands them."

Most software is built on existing software. I recently completed the code for 12 new

programs. Only one of these was created from scratch; the other 11 are adaptations

of existing programs.

Some programmers believe that the purpose of a program is only to present the

computer with a compact set of instructions. This concept is not true. Programs

written only for the machine have two problems:

• They are difficult to correct because sometimes even the author does not

understand them.

• Modifications and upgrades are difficult to make because the maintenance

programmer must spend a considerable amount of time figuring out what

the program does from its code. Ideally, a program serves two purposes:

 TEAM FLY PRESENTS

 57

first, it presents the computer with a set of instructions, and second, it

provides the programmer with a clear, easy-to-read description of what the

program does.

Example 2 -1 contains a glaring error that many programmers still make, and that

causes more trouble than any other problem. The program contains no comments.

A working but uncommented program is a time bomb waiting to explode. Sooner or

later, someone will have to fix a bug in the program, modify it, or upgrade it, and the

lack of comments will make the job much more difficult. A well-commented, simple

program is a work of art. Learning how to comment is as important as learning how

to code properly.

Comments in C start with a slash asterisk (/*) and end with an asterisk slash (*/).

Example 3 -1 is an improved version of Example 2-1.

Example 3-1. hello2/hello2.c

[File: hello2/hello2.c]
/**

 * hello -- program to print out "Hello World". *

 * Not an especially earth-shattering program. *
 * *

 * Author: Steve Oualline. *

 * *
 * Purpose: Demonstration of a simple program. *

 * *
 * Usage: *

 * Runs the program and the message appears. *
 **/

#include <stdio.h>

int main()

{

 /* Tell the world hello */
 printf("Hello World\n");

 return (0);
}

In this example, we put the beginning comments in a box of asterisks (*) called a

comment box. This formatting is done to emphasize the more important comments,

much as we use bold characters for the headings in this book. Less important

comments are not boxed. For example:

 TEAM FLY PRESENTS

 58

/* Tell the world hello */
printf("Hello World\n");

In order to write a program, you must have a clear idea of what you are going to do.
One of the best ways to organize your thoughts is to write them down in a language

that is clear and easy to understand. After the process has been clearly stated, it can

be translated into a computer program.

Understanding what you are doing is the most important part of programming. I

once wrote two pages of comments describing a complex graphics algorithm. The

comments were revised twice before I even started coding. The actual instructions

took only half a page. Because I had organized my thoughts well (and was lucky),

the program worked the first time.

Your program should read like an essay. It should be as clear and easy to

understand as possible. Good programming style comes from experience and

practice. The style described in the following pages is the result of many years of

programming experience. It can be used as a starting point for developing your own

style. These are not rules, only suggestions. Only one rule exists: make your

program as clear, concise, and simple as possible.

Poor Man's Typesetting

In typesetting, you can use letter size, bold , and italic to make
different parts of your text stand out. In programming, you are limited
to a single, mono-spaced font. However, people have come up with
ingenious ways to get around the limitations of the typeface.

Some of the various commenting tricks are:

/**
 **
 ******** WARNING: This is an example of a *******
 ******** warning message that grabs the *******
 ******** attention of the programmer. *******
 **
 **/

/*------------> Another, less important warning <--------*/

/*>>>>>>>>>>>> Major section header <<<<<<<<<<<<<<<< */

/**
 * We use boxed comments in this book to denote the *

 TEAM FLY PRESENTS

 59

 * beginning of a section or program. *
 **/

/*--*\
 * This is another way of drawing boxes. *
--/

/*
 * This is the beginning of a section.
 * ^^^^ ^^ ^^^ ^^^^^^^^^ ^^ ^ ^^^^^^^
 *
 * In the paragraph that follows, we explain what
 * the section does and how it works.
 */

/*
 * A medium-level comment explaining the next
 * dozen (or so) lines of code. Even though we don't have
 * the bold typeface, we can **emphasize** words.
 */

/* A simple comment explaining the next line */

At the beginning of the program is a comment block that contains information about

the program. Boxing the comments makes them stand out. The list that follows

contains some of the sections that should be included at the b eginning of your

program. Not all programs will need all sections, so use only those that apply:

• Heading. The first comment should contain the name of the program. Also

include a short description of what the program does. You may have the

most amazing program, one that slices, dices, and solves all the world's

problems, but the program is useless if no one knows what it is.

• Author. You've gone to a lot of trouble to create this program. Take credit

for it. Also, anyone who has to modify the program can come to you for

information and help.

• Purpose. Why did you write this program? What does it do?

• Usage. In this section, give a short explanation of how to run the program.
In an ideal world, every program would come with a set of documents

describing how to use it. The world is not ideal. Oualline's law of

documentation states: 90% of the time the documentation is lost. Of the

remaining 10%, 9% of the time the revision of the documentation is

different from the revision of the program and therefore completely useless.

The 1% of the time you actually have documentation and the correct revision

of the documentation, the information will be written in Chinese [1] .

 TEAM FLY PRESENTS

 60

[1] My wife comes from Hong Kong and has a talking electronic translator. It is a very expensive and

complex device, and comes with a 150-page manual, written entirely in Chinese.

To avoid Oualline's law of documentation, put the documentation in the

program.

• References. Creative copying is a legitimate form of programming (if you

don't break the copyright laws in the process). In the real world, you needn't

worry about how you get a working program, as long as you get it, but give

credit where credit is due. In this section, you should reference the original

author of any work you copied.

• File formats. List the files that your program reads or writes and a short

description of their formats.

• Restrictions. List any limits or restrictions that apply to the program, such

as "The data file must be correctly formatted" or "The program does not

check for input errors."

• Revision history. This section contains a list indicating who modified the

program, and when and what changes were made. Many computers have a

source control system (RCS and SCCS on UNIX; PCVS and MKS-RCS on

MS-DOS/Windows) that will keep track of this information for you.

• Error handling. If the program detects an error, describe what the program

does with it.

• Notes. Include special comments or other information that has not already

been covered.

The format of your beginning comments will depend on what is needed for the

environment in which you are programming. For example, if you are a student, the

instructor may ask you to include in the program heading the assignment number,

your name and student identification number, and other information. In industry, a

project number or part number might be included.

Comments should explain everything the programmer needs to know about the

program, but no more. You can overcomment a program. (This case is rare, but it

does occur.) When deciding on the format for your heading comments, make sure

there is a reason for everything you include.

Inserting Comments—The Easy Way

If you are using the UNIX editor vi, put the following in your .exrc

file to make constructing boxes easier:

:abbr #b
/**

 TEAM FLY PRESENTS

 61

:abbr #e
**/

These two lines define vi abbreviations #b and #e, so that typing:

#b

at the beginning of a block will cause the string:

/**

to appear (for beginning a comment box). Typing:

#e

will end a box. The number of stars was carefully selected so that
the end of the box is aligned on a tab stop.

Similar macros or related tools are available in most other
editors. For instance, GNU Emacs lets you achieve the a similar
effect by putting the following LISP code in a file named .emacs in
your home directory:

(defun c-begin-comment-box ()

 "Insert the beginning of a comment, followed by a string
of asterisks."

 (interactive)

 (insert
"/**\n")

)

(defun c-end-comment-box ()

 "Insert a string of asterisks, followed by the end of
a comment."

 (interactive)

 (insert
"**/\n")

 TEAM FLY PRESENTS

 62

)

(add-hook 'c-mode-hook

 '(lambda ()

 (define-key c-mode-map "\C-cb"
'c-begin-comment-box)

 (define-key c -mode-map "\C-ce" 'c-end-comment-box)

)

)

The actual code for your program consists of two parts: variables and executable

instructions. Variables are used to hold the data used by your program. Executable

instructions tell the computer what to do with the data.

3.1 Common Coding Practices

A variable is a place in the computer's memory for storing a value. C identifies that
place by the variable name. Names can be of any length and should be chosen so

their meanings are clear. (Actually, a length limit exists, but it is so large that you

probably will never encounter it.) Every variable in C must be declared. Variable

declarations will be discussed in Chapter 9. The following declaration tells C that

we're going to use three integer (int) variables: p, q , and r:

int p,q,r;

But what are these variables for? The reader has no idea. They could represent the

number of angels on the head of a pin or the location and acceleration of a plasma

bolt in a game of Space Invaders. Avoid abbreviations. Exs. abb. are diff. to rd. and
hd. to ustnd. (Excess abbreviations are difficult to read and hard to understand.)

Now consider another declaration:

int account_number;

int balance_owed;

Now we know that we're dealing with an accounting program, but we could still use
some more information. For example, is the balance_owed in dollars or cents? We

 TEAM FLY PRESENTS

 63

should have added a comment after each declaration to explain what we were doing.

For example:

int account_number; /* Index for account table */

int balance_owed; /* Total owed us (in pennies)*/

By putting a comment after each declaration, we, in effect, create a mini-dictionary

where we define the meaning of each variable name. Because the definition of each

variable is in a known place, it's easy to look up the meaning of a name.

(Programming tools like editors, cross-referencers, and searching tools such as

grep can also help you quickly find a variable's definition.)

Units are very important. I was once asked to modify a program that converted plot

data files from one format to another. Many different units of length were used

throughout the program, and none of the variable declarations were commented. I

tried very hard to figure out what was going on, but I could not determine what units

were being used in the program. Finally, I gave up and put the following comment

in the program:

/**
 * Note: I have no idea what the input units are, nor *

 * do I have any idea what the output units are, *

 * but I have discovered that if I divide by 3 *
 * the plot sizes look about right. *

 **/

You should take every opportunity to make sure that your program is clear and easy

to understand. Do not be clever. Clever kills. Clever makes for unreadable and

unmaintainable programs. Programs, by their nature, are extremely complex.

Anything that you can to do to cut down on this complexity will make your programs

better. Consider the following code, written by a very clever programmer:[2]

[2] Note that the first version of this code:

while ('\n' != (*p++ = *q++));

It is almost impossible for the reader to tell at a glance what this mess does.

Properly written this should be:

while (1) {

 *destination_ptr = *source_ptr;
 if (*destination_ptr == '\n')
 break; /* Exit the loop if at end of line */

 destination_ptr++;

 source_ptr++;

 TEAM FLY PRESENTS

 64

}

Although the second version is longer, it is much clearer and easier to understand.[3]

Even a novice programmer who does not know C well can tell that this program has

something to do with moving data from a source to a destination.

[3] Expert C programmers can spot a slight difference between the two versions, but both do the required job.

The computer doesn't care which version is used. A good compiler will generate the

same machine code for both versions. The programmer is the beneficiary of the

verbose code.

3.2 Coding Religion

Computer scientists have devised many programming styles. These include
structured programming, top-down programming, goto -less programming, and

object-oriented design (OOD). Each of these styles has its own following or cult. I

use the term "religion" because people are taught to follow the rules blindly without

knowing the reasons behind them. For example, followers of the goto -less cult will

never use a goto statement, even when it is natural to do so.

The rules presented in this book result from years of programming experience. I

have discovered that by following these rules, I can create better programs. You do

not have to follow them blindly. If you find a better system, by all means use it. (If

your solution really works, drop me a line. I'd like to use it too.)

3.3 Indentation and Code Format

In order to make programs easier to understand, most programmers indent their
programs. The general rule for a C program is to indent one level for each new block

or conditional. In our previous example, there are three levels of logic, each with its

own indentation level. The while statement is outermost. The statements inside the

while are at the next level. Finally, the statement inside the if (break) is at the

innermost level.

There are two styles of indentation, and a vast religious war is being raged in the

programming community as to which style is better. The first is the short form:

while (! done) {
 printf("Processing\n");
 next_entry();

}

if (total <= 0) {

 TEAM FLY PRESENTS

 65

 printf("You owe nothing\n");
 total = 0;

} else {
 printf("You owe %d dollars\n", total);
 all_totals = all_totals + total;

}

In this case, curly braces ({}) are put on the same line as the statements. The other
style puts the {} on lines by themselves:

while (! done)

{
 printf("Processing\n");

 next_entry();

}
if (total <= 0)

{
 printf("You owe nothing\n");
 total = 0;

}

else

{
 printf("You owe %d dollars\n", total);

 all_totals = all_totals + total;

}

Both formats are frequently used. You should use the format you feel most

comfortable with. This book uses the short format because it's more compact and

therefore saves book space.

The amount of indentation is left to the programmer. Two, four, and eight spaces

are common. Studies have shown that a four-space indent makes the code most

readable. However, being consistent in your indentation is far more important than

the indention size you use.

Some editors, like the UNIX Emacs editor, the Turbo C++, Borland C++, and

Microsoft Visual C++ internal editors, contain code that automatically indents your

programs as you create them. Although these editor-based indentation systems are

not perfect, they do go a long way to helping you create properly formatted code.

3.4 Clarity

A program should read like a technical paper. It should be organized into sections
and paragraphs. Procedures form a natural section boundary. (We'll learn about

 TEAM FLY PRESENTS

 66

function in Chapter 9.) You must organize your code into paragraphs. You should

begin a paragraph with a t opic-sentence comment and separate the comment from

other paragraphs with a blank line. For example:

/* poor programming practice */
temp = box_x1;

box_x1 = box_x2;
box_x2 = temp;
temp = box_y1;

box_y1 = box_y2;

box_y2 = temp;

A better version would be:

/*
 * Swap the two corners
 */

/* Swap X coordinate */
temp = box_x1;

box_x1 = box_x2;
box_x2 = temp;

/* Swap Y coordinate */

temp = box_y1;
box_y1 = box_y2;
box_y2 = temp;

3.5 Simplicity

Your program should be simple. Some general rules of thumb are:

• A single function should not be longer than two or three pages. (See Chapter

9.) If the function gets longer, it can probably be split into two simpler

functions. Th is rule comes about because the human mind can only hold so
much in short-term memory. Three pages are about the most that the

human mind can wrap itself around in one sitting.

Also if your function goes beyond the three -page limit, it probably doesn't

define a single operation, or probably contains too much detail.

• Avoid complex logic like multiply nested ifs. The more complex your code,

the more indentation levels you will need. When you start running into the

 TEAM FLY PRESENTS

 67

right margin, you should consider splitting your code into multiple

procedures, to decrease the level of complexity.

• Did you ever read a sentence, like this one, in which the author went on and

on, stringing together sentence after sentence with the word "and," and

didn't seem to understand the fact that several shorter sentences would do

the job much better, and didn't it bother you? C statements should not go on

forever. Long statements should be avoided. If it looks like an equation or

formula is going to be longer than one or two lines, you should split it into

two shorter equations.

• Finally, the most important rule: make your program as simple and easy to

understand as possible, even if you must break some of the rules. The goal

is clarity, and the rules given in this chapter are designed to help you

accomplish that goal. If they get in the way, get rid of them. I have seen one

program with a single statement that spanned over 20 pages; however,

because of the specialized nature of the program, this statement was simple

and easy to understand.

3.6 Summary

A program should be concise and easy to read. It must serve as a set of computer

instructions, but also as a reference work describing the algorithms and data used

inside it. Everything should be documented with comments. Comments serve two

purpo ses. First, they tell the programmer to follow the code, and second, they help

the programmer remember what he did.

Class discussion: Create a style sheet for class assignments. Discuss what

comments should go into the programs and why.

 TEAM FLY PRESENTS

 68

Chapter 4. Basic Declarations and

Expressions

A journey of a thousand miles must begin with a single step.

—Lao-zi

If carpenters made buildings the way programmers make programs, the first

woodpecker to come along would destroy all of civilization.

—Weinberg's Second Law

4.1 Elements of a Program

If you are going to construct a building, you need two things: the bricks and a

blueprint that tells you how to put them together. In computer programming, you

need two things: data (variables) and instructions (code or functions). Variables are

the basic building blocks of a program. Instructions tell the computer what to do

with the variables.

Comments are used to describe the variables and instructions. They are notes by

the author documenting the program so that the program is clear and easy to read.

Comments are ignored by the computer.

In construction, before we can start, we must order our materials: "We need 500

large bricks, 80 half-size bricks, and 4 flagstones." Similarly, in C, we must declare

our variables before we can use them. We must name each one of our "bricks" and

tell C what type of brick to use.

After our variables are defined, we can begin to use them. In construction, the basic

structure is a room. By combining many rooms, we form a building. In C, the basic

structure is a function. Functions can be combined to form a program.

An apprentice builder does not start out building the Empire State Building, but

rather starts on a one -room house. In this chapter, we will concentrate on

constructing simple one-function programs.

4.2 Basic Program Structure

The basic elements of a program are the data declarations, functions, and

comments. Let's see how these can be organized into a simple C program.

 TEAM FLY PRESENTS

 69

The basic structure of a one-function program is:

/**

 * ...Heading comments... *

 **/
...Data declarations...

int main()
{
 ...Executable statements...

 return (0);

}

Heading comments tell the programmer about the program, and data declarations

describe the data that the program is going to use.

Our single function is named main. The name main is special, because it is the first

function called. Other functions are called directly or indirectly from main. The

function main begins with:

int main()
{

and ends with:

return (0);

}

The line return(0); is used to tell the operating system (UNIX or

MS-DOS/Windows) that the program exited normally (Status=0). A nonzero status

indicates an e rror—the bigger the return value, the more severe the error. Typically,

a status of 1 is used for the most simple errors, like a missing file or bad

command-line syntax.

Now, let's take a look at our Hello World program (Example 3-1).

At the beginning of the program is a comment box enclosed in /* and */. Following

this box is the line:

#include <stdio.h>

This statement signals C that we are going to use the standard I/O package. The
statement is a type of data declaration.[1] Later we use the function printf from this

package.

[1] Technically, the statement causes a set of data declarations to be taken from an include file. Chapter 10,

discusses include files.

 TEAM FLY PRESENTS

 70

Our main routine contains the instruction:

printf("Hello World\n");

This line is an executable statement instructing C to print the message "Hello World"
on the screen. C uses a semicolon (;) to end a statement in much the same way we

use a period to end a sentence. Unlike line-oriented languages such as BASIC, an

end-of-line does not end a statement. The sentences in this book can span several

lines—the end of a line is treated just like space between words. C works the same

way. A single statement can span several lines. Similarly, you can put several

sentences on the same line, just as you can put several C statements on the same

line. However, most of the time your program is more readable if each statement

starts on a separate line.

The standard function printf is used to output our message. A library routine is a

C procedure or function that has been written and put into a library or collection of

useful functions. Such routines perform sorting, input, output, mathematical

functions, and file manipulation. See your C reference manual for a complete list of

library functions.

Hello World is one of the simplest C programs. It contains no computations; it

merely sends a single message to the screen. It is a starting point. After you have

mastered this simple program, you have done a number of things correctly.

4.3 Simple Expressions

Computers can do more than just print strings—they can also perform calculations.

Expressions are used to specify simple computations. The five simple operators in C

are listed in Table 4 -1.

Table 4-1. Simple Operators

Operator Meaning

* Multiply

/ Divide

+ Add

- Subtract

% Modulus (return the remainder after division)

Multiply (*), divide (/), and modulus (%) have precedence over add (+) and subtract

(-). Parentheses, (), may be used to group terms. Thus:

 TEAM FLY PRESENTS

 71

(1 + 2) * 4

yields 12, while:

1 + 2 * 4

yields 9.

Example 4 -1 computes the value of the expression (1 + 2) * 4.

Example 4-1. simple/simple.c

int main()

{

 (1 + 2) * 4;

 return (0);
}

Although we calculate the answer, we don't do anything with it. (This program will

generate a "null effect" warning to indicate that there is a correctly written, but

useless, statement in the program.)

Think about how confused a workman would be if we were constructing a building

and said,

"Take your wheelbarrow and go back and forth between the truck and the building

site."

"Do you want me to carry bricks in it?"

"No. Just go back and forth."

We need to store the results of our calculations.

4.4 Variables and Storage

C allows us to store values in variables . Each variable is identified by a variable

name.

In addition, each variable has a variable type. The type tells C how the variable is

going to be used and what kind of numbers (real, integer) it can hold. Names start

with a letter or underscore (_), followed by any number of letters, digits, or
underscores. Uppercase is different from lowercase, so the names sam, Sam, and SAM

 TEAM FLY PRESENTS

 72

specify three different variables. However, to avoid confusion, you should use

different names for variables and not depend on case differences.

Nothing prevents you from creating a name beginning with an underscore; however,

such names are usually reserved for internal and system names.

Most C programmers use all-lowercase variable names. Some names like int, while,

for, and float have a special meaning to C and are considered reserved words . They

cannot be used for variable names.

The following is an example of some variable names:

average /* average of all grades */
pi /* pi to 6 decimal places */

number_of_students /* number students in this class */

The following are not variable names:

3rd_entry /* Begins with a number */
all$done /* Contains a "$" */
the end /* Contains a space */

int /* Reserved word */

Avoid variable names that are similar. For example, the following illustrates a poor
choice of variable names:

total /* total number of items in current entry */

totals /* total of all entries */

A much better set of names is:

entry_total /* total number of items in current entry */
all_total /* total of all entries */

4.5 Variable Declarations

Before you can use a variable in C, it must be defined in a declaration statement.

A variable declaration serves three purposes:

1. It defines the name of the variable.

2. It defines the type of the variable (integer, real, character, etc.).

3. It gives the programmer a description of the variable. The declaration of a

variable answer can be:

 TEAM FLY PRESENTS

 73

int answer; /* the result of our expression */

The keyword int tells C that this variable contains an integer value. (Integers are
defined below.) The variable name is answer. The semicolon (;) marks the end of

the statement, and the comment is used to define this variable for the programmer.

(The requirement that every C variable declaration be commented is a style rule. C

will allow you to omit the comment. Any experienced teacher, manager, or lead

engineer will not.)

The general form of a variable declaration is:

type name; /* comment */

where type is one of the C variable types (int, float, etc.) and name is any valid

variable name. This declaration explains what the variable is and what it will be used

for. (In Chapter 9 , we will see how local variables can be declared elsewhere.)

Variable declarations appear just before the main() line at the top of a program.

4.6 Integers

One variable type is integer. Integer numbers have no fractional part or decimal

point. Numbers such as 1, 87, and -222 are integers. The number 8.3 is not an

integer because it contains a decimal point. The general form of an integer

declaration is:

int name; /* comment */

A calculator with an 8-digit display can only handle numbers between 99999999 and

-99999999. If you try to add 1 to 99999999, you will get an overflow error.

Computers have similar limits. The limits on integers are implementation dependent,

meaning they change from computer to computer.

Calculators use decimal digits (0-9). Computers use binary digits (0 -1) called bits.

Eight bits make a byte. The number of bits used to hold an integer varies from

machine to machine. Numbers are converted from binary to decimal for printing.

On most UNIX machines, integers are 32 bits (4 bytes), providing a range of

2147483647 (2 31-1) to -2147483648. On the PC, most compilers use only 16 bits (2

bytes), so the range is 32767 (215-1) to -32768. These sizes are typical. The

standard header file limits.h defines constants for the various numerical limits. (See

Chapter 18, for more information on header files.)

 TEAM FLY PRESENTS

 74

The C standard does not specify the actual size of numbers. Programs that depend

on an integer being a specific size (say 32 bits) frequently fail when moved to

another machine.

Question 4-1: The following will work on a UNIX machine, but will fail on a PC :

int zip; /* zip code for current address */
.........
zip = 92126;

Why does this fail? What will be the result when it is run on a PC? (Click here for the

answer Section 4.12)

4.7 Assignment Statements

Variables are given a value through the use of assignment statements. For

example:

answer = (1 + 2) * 4;

is an assignment. The variable answer on the left side of the equal sign (=) is

assigned the value of the expression (1 + 2) * 4 on the right side. The semicolon

(;) ends the statement.

Declarations create space for variables. Figure 4 -1A illustrates a variable

declaration for the variable answer. We have not yet assigned it a value so it is

known as an uninitialized variable. The question mark indicates that the value of this

variable is unknown.

 TEAM FLY PRESENTS

 75

Figure 4-1. Declaration of answer and assigning it a

value

Assignment statements are used to give a variable a value. For example:

answer = (1 + 2) * 4;

is an assignment. The variable answer on the left side of the equals operator (=) is

assigned the value of the expression (1 + 2) * 4 . So the variable answer gets the

value 12 as illustrated in Figure 4-1B.

The general form of the assignment statement is:

variable = expression;

The = is used for assignment. It literally means: Compute the expression and assign

the value of that expression to the variable. (In some other languages, such as

PASCAL, the = operator is used to test for equality. In C, the operator is used for

assignment.)

In Example 4-2 , we use the variable term to store an integer value that is used in

two later expressions.

Example 4-2. term/term.c

[File: term/term.c]
int term; /* term used in two expressions */

int term_2; /* twice term */

 TEAM FLY PRESENTS

 76

int term_3; /* three times term */
int main()

{
 term = 3 * 5;
 term_2 = 2 * term;

 term_3 = 3 * term;

 return (0);
}

A problem exists with this program. How can we tell if it is working or not? We need

some way of printing the answers.

4.8 printf Function

The library function printf can be used to print the results. If we add the

statement:

printf("Twice %d is %d\n", term, 2 * term);

the program will print:

Twice 15 is 30

The special characters %d are called the integer conversion specification . When

printf encounters a %d, it prints the value of the next expression in the list

following the format string. This is called the parameter list .

The general form of the printf statement is:

printf(format, expression-1, expression-2, ...);

where format is the string describing what to print. Everything inside this string is
printed verbatim except for the %d conversions. The value of expression -1 is printed

in place of the first %d , expression -2 is printed in place of the second, and so o n.

Figure 4 -2 shows how the elements of the printf statement work together to

generate the final result.

 TEAM FLY PRESENTS

 77

Figure 4-2. printf structure

The format string "Twice %d is %d\n" tells printf to display Twice followed by a
space, the value of the first expression, then a space followed by is and a space, the

value of the second expression, finishing with an end -of-line (indicated by \n).

Example 4 -3 shows a program that computes term and prints it via two printf

functions.

Example 4-3. twice/twice.c

[File: twice/twice.c]

#include <stdio.h>

int term; /* term used in two expressions */

int main()
{

 term = 3 * 5;
 printf("Twice %d is %d\n", term, 2*term);

 printf("Three times %d is %d\n", term, 3*term);
 return (0);

}

The number of %d conversions in the format should exactly match the number of

expressions in the printf. C will not verify this. (Actually, the GNU gcc compiler will

check printf arguments, if you turn on the proper warnings.) If too many

expressions are supplied, the extra ones will be ignored. If there are not enough

expressions, C will generate strange numbers for the missing expressions.

 TEAM FLY PRESENTS

 78

4.9 Floating Point

Because of the way they are stored internally, real numbers are also known as
floating-point numbers. The numbers 5.5 , 8.3, and -12.6 are all floating -point

numbers. C uses the decimal point to distinguish between floating-point numbers

and integers. So 5.0 is a floating-point number, while 5 is an integer. Floating-point

numbers must contain a decimal point. Floating-point numbers include: 3.14159,

0.5, 1.0, and 8.88.

Although you could omit digits before the decimal point and specify a number as .5

instead of 0.5, the extra clearly indicates that you are using a floating-point number.

A similar rule applies to 12. versu s 12.0. A floating-point zero should be written as

0.0.

Additionally, the number may include an exponent specification of the form:

e + exp

For example, 1.2e34 is a shorthand version of 1.2 x 1034.

The form of a floating-point declaration is:

float variable; /* comment */

Again, there is a limit on the range of floating-point numbers that the computer can

handle. This limit varies widely from computer to computer. Floating-point accuracy

will be discussed further in Chapter 16.

When a floating-point number using printf is written , the %f conversion is used.

To print the expression 1.0/3.0, we use this statement:

printf("The answer is %f\n", 1.0/3.0);

4.10 Floating Point Versus Integer Divide

The division operator is special. There is a vast difference between an integer divide

and a floating-point divide. In an integer divide, the result is truncated (any

fractional part is discarded). So the value of 19/10 is 1.

If either the d ivisor or the dividend is a floating-point number, a floating-point divide
is executed. So 19.0/10.0 is 1.9. (19/10.0 and 19.0/10 are also floating-point

divides; however, 19.0/10.0 is preferred for clarity.) Several examples appear in

Table 4 -2.

 TEAM FLY PRESENTS

 79

Table 4-2. Expression Examples

Expression Result Result type

1 + 2 3 Integer

1.0 + 2.0 3.0 Floating Point

19 / 10 1 Integer

19.0 / 10.0 1.9 Floating Point

C allows the assignme nt of an integer expression to a floating-point variable. C will

automatically perform the conversion from integer to floating point. A similar

conversion is performed when a floating-point number is assigned to an integer. For

example:

int integer; /* an integer */

float floating; /* a floating-point number */

int main()
{

 floating = 1.0 / 2.0; /* assign "floating" 0.5 */
 integer = 1 / 3; /* assign integer 0 */

 floating = (1 / 2) + (1 / 2); /* assign floating 0.0 */

 floating = 3.0 / 2.0; /* assign floating 1.5 */
 integer = floating; /* assign integer 1 */

 return (0);

}

Notice that the expression 1 / 2 is an integer expression resulting in an integer

divide and an integer result of 0.

Question 4-2: Why is the result of Example 4 -4 0.0"? What must be done to this

program to fix it? (Click here for the answer Section 4.12)

Example 4-4. q_zero/q_zero.c

#include <stdio.h>

float answer; /* The result of our calculation */

int main()
{

 answer = 1/3;

 TEAM FLY PRESENTS

 80

 printf("The value of 1/3 is %f\n", answer);
 return (0);

}

Question 4 -3: Why does 2 + 2 = 5928? (Your results may vary. See Example 4 -5.)

(Click here for the answer Section 4.12)

Example 4-5. two/two.c

[File: two/two.c]

#include <stdio.h>

/* Variable for computation results */
int answer;

int main()

{

 answer = 2 + 2;

 printf("The answer is %d\n");

 return (0);
}

Question 4-4: Why is an incorrect result printed? (See Example 4 -6.) (Click here

for the answer Section 4.12)

Example 4-6. div/div.c

[File: div/div.c]
#include <stdio.h>

float result; /* Result of the divide */

int main()
{
 result = 7.0 / 22.0;

 printf("The result is %d\n", result);
 return (0);
}

 TEAM FLY PRESENTS

 81

4.11 Characters

The type char represents single characters. The form of a character d eclaration is:

char variable; /* comment */

Characters are enclosed in single quotes (©). ©A©, ©a©, and ©!© are character

constants. The backslash character (\) is called the escape character. It is used to
signal that a special character follows. For example, the characters \" can be used

to put a double quote inside a string. A single quote is represented by \©. \n is the

newline character. It causes the output device to go to the beginning of the next line
(similar to a return key on a typewriter). The characters \\ are the backslash itself.

Finally, characters can be specified by \nnn , where nnn is the octal code for the

character. Table 4-3 summarizes these special characters. Appendix A contains a

table of ASCII character codes.

Table 4-3. Special Characters

Character Name Meaning

\b Backspace Move the cursor to the left by one character

\f Form Feed Go to top of new page

\n Newline Go to next line

\r Return Go to beginning of current line

\t Tab Advance to next tab stop (eight column boundary)

\© Apostrophe Character ©

\" Double quote Character ".

\\ Backslash Character \.

\nnn Character number nnn (octal)

While characters are enclosed in single quotes (©), a
different data type, the string, is enclosed in double

quotes ("). A good way to remember the difference

between these two types of quotes is to remember
that single characters are enclosed in single quotes.
Strings can have any number of characters (including
one), and they are enclosed in double quotes.

Characters use the printf conversion %c. Example 4 -7 reverses three characters.

 TEAM FLY PRESENTS

 82

Example 4-7. rev/rev.c

[File: rev/rev.c]
#include <stdio.h>

char char1; /* first character */

char char2; /* second character */
char char3; /* third character */

int main()
{

 char1 = 'A';

 char2 = 'B';
 char3 = 'C';

 printf("%c%c%c reversed is %c%c%c\n",
 char1, char2, char3,

 char3, char2, char1);
 return (0);

}

When executed, this program prints:

ABC reversed is CBA

4.12 Answers

Answer 4 -1: The largest number that can be stored in an int on most UNIX

machines is 2147483647. When using Turbo C++, the limit is 32767. The zip code

92126 is larger than 32767, so it is mangled, and the result is 26590.

This problem can be fixed by using a long int instead of just an int. The various

types of integers will be discussed in Chapter 5.

Answer 4 -2: The problem concerns the division: 1/3. The number 1 and the

number 3 are both integers, so this question is an integer divide. Fractions are

truncated in an integer divide. The expression should be written as:

answer = 1.0 / 3.0

Answer 4 -3: The printf statement:

printf("The answer is %d\n");

 TEAM FLY PRESENTS

 83

tells the program to print a decimal number, but there is no variable specified. C
does not check to make sure printf is given the right number of parameters.

Because no value was specified, C makes one up. The proper printf statement

should be:

printf("The answer is %d\n", answer);

Answer 4 -4 : The problem is that in the printf statement, we used a %d to specify

that an integer was to be printed, but the parameter for this conversion was a

floating-point number. The printf function has no way of checking its parameters

for type. So if you give the function a floating-point number, but the format specifies

an integer, the function will treat the number as an integer and print unexpected

results.

4.13 Programming Exercises

Exercise 4-1: Write a program to print your name, social security number, and

date of birth.

Exercise 4-2: Write a program to print a block E using asterisks (*), where the E

has a height of seven characters and a width of five characters.

Exercise 4-3: Write a program to compute the area and perimeter of a rectangle

with a width of three inches and a height of five inches. What changes must be made

to the program so that it works for a rectangle with a width of 6.8 inches and a

length of 2.3 inches?

Exercise 4-4: Write a program to print "HELLO" in big block letters; each letter

should have a height of seven characters and width of five characters.

Exercise 4-5: Write a program that deliberately makes the following mistakes:

• Prints a floating-point number using the %d conversion.

• Prints an integer using the %f conversion.

• Prints a character using the %d conversion.

 TEAM FLY PRESENTS

 84

Chapter 5. Arrays, Qualifiers, and

Reading Numbers

That mysterious independent variable of political calculations, Public Opinion.

—Thomas Henry Huxley

5.1 Arrays

In constructing our building, we have identified each brick (variable) by name. That

process is fine for a small number of bricks, but what happens when we want to

construct something larger? We would like to point to a stack of bricks and say,

"That's for the left wall. That's brick 1, brick 2, brick 3..."

Arrays allow us to do something similar with variables. An array is a set of

consecutive memory locations used to store data. Each item in the array is called an

element. The number of elements in an array is called the dimension of the array. A

typical array declaration is:

/* List of data to be sorted and averaged */
int data_list[3];

The above example declares data_list to be an array of three elements.

data_list[0], data_list[1], and data_list[2] are separate variables. To

reference an element of an array, you use a number called the index—the number

inside the square brackets ([]). C is a funny language that likes to start counting at

0. So, our three elements are numbered to 2.

Common sense tells you that when you declare

data_list to be three elements long, data_list[3]

would be valid. Common sense is wrong and

data_list[3] is illegal.

Example 5 -1 computes the total and average of five numbers.

Example 5-1. array/array.c

[File: array/array.c]

 TEAM FLY PRESENTS

 85

#include <stdio.h>

float data[5]; /* data to average and total */
float total; /* the total of the data items */
float average; /* average of the items */

int main()
{
 data[0] = 34.0;

 data[1] = 27.0;

 data[2] = 45.0;
 data[3] = 82.0;

 data[4] = 22.0;

 total = data[0] + data[1] + data[2] + data[3] + data[4];

 average = total / 5.0;

 printf("Total %f Average %f\n", total, average);
 return (0);
}

This program outputs:

Total 210.000000 Average 42.000000

5.2 Strings

Strings are sequences of characters. C does not have a built-in string type; instead,
strings are created out of character arrays. In fact, strings are just character arrays

with a few restrictions. One of these restrictions is that the special character '\0'

(NUL) is used to indicate the end of a string.

For example:

char name[4];

int main()

{

 name[0] = 'S';
 name[1] = 'a';

 name[2] = 'm';
 name[3] = '\0';

 return (0);
}

 TEAM FLY PRESENTS

 86

This code creates a character array of four elements. Note that we had to allocate

one character for the end-of-string marker.

String constants consist of text enclosed in double quotes (""). You may have

noticed that the first parameter to printf is a string constant. C does not allow one

array to be assigned to another, so we can't write an assignment of the form:

name = "Sam"; /* Illegal */

Instead we must use the standard library function strcpy to copy the string

constant into the variable. (strcpy copies the whole string, including the

end-of-string character.) To initialize the variable name to Sam, we would write:

#include <string.h>

char name[4];
int main()
{

 strcpy(name, "Sam"); /* Legal */

 return (0);
}

C uses variable -length strings. For example, the declaration:

#include <string.h>
char string[50];

int main()

{
 strcpy(string,"Sam");

}

create s an array (string) that can contain up to 50 characters. The size of the array

is 50, but the length of the string is 3. Any string up to 49 characters long can be

stored in string. (One character is reserved for the NUL that indicates

end-of-string.)

String and character constants are very different.

Strings are surrounded by double quotes (") and

characters by single quotes ('). So "X" is a

one-character string, while 'Y' is just a single

character. (The string "X" takes up two bytes, one for

 TEAM FLY PRESENTS

 87

the X and one for the end-of-string (\0). The

character 'Y' takes up one byte.)

There are several standard routines that work on string variables, as shown in Table

5-1.

Table 5-1. Partial List of String Functions

Function Description

strcpy(string1, string2) Copy string2 into string1

strcat(string1, string2) Concatenate string2 onto the end of string1

length = strlen(string) Get the length of a string

strcmp(string1, string2)
0if string1 equals string2,

otherwise nonzero

The printf function uses the conversion %s for printing string variables, as shown

in Example 5 -2 .

Example 5-2. str/str.c

#include <string.h>

#include <stdio.h>

char name[30]; /* First name of someone */
int main()
{

 strcpy(name, "Sam"); /* Initialize the name */

 printf("The name is %s\n", name);
 return (0);
}

Example 5 -3 takes a first name and a last name and combines the two strings.

The program works by initializing the variable first to the first name (Steve). The

last name (Oualline) is put in the variable last. To construct the full name, the first

name is copied into full_name. Then strcat is used to add a space. We call strcat

again to tack on the last name.

 TEAM FLY PRESENTS

 88

The dimension of the string variable is 100 because we know that no one we are

going to encounter has a name more than 99 characters long. (If we get a name

more than 99 characters long, our program will mess up. What actually happens is

that you write into memory that you shouldn't access. This access can cause your

program to crash, run normally and give incorrect results, or behave in other

unexpected ways.)

Example 5-3. full/full.c

#include <string.h>

#include <stdio.h>

char first[100]; /* first name */

char last[100]; /* last name */
char full_name[200]; /* full version of first and last name */

int main()
{

 strcpy(first, "Steve"); /* Initialize first name */
 strcpy(last, "Oualline"); /* Initialize last name */

 strcpy(full_name, first); /* full = "Steve" */

 /* Note: strcat not strcpy */

 strcat(full_name, " "); /* full = "Steve " */
 strcat(full_name, last); /* full = "Steve Oualline" */

 printf("The full name is %s\n", full_name);
 return (0);

}

The output of this program is:

The full name is Steve Oualline

5.3 Reading Strings

The standard function fgets can be used to read a string from the keyboard. The

general form of an fgets call is:

fgets(name, sizeof(name), stdin);

 TEAM FLY PRESENTS

 89

where name identifies a string variable. (fgets will be explained in detail in Chapter

14.)

The arguments are:

name

is the name of a character array. The line (including the end -of-line character)

is read into this array.

sizeof(name)

indicates the maximum number of characters to read (plus one for the
end-of-string character). The sizeof function provides a convenient way of

limiting the number of characters read to the maximum numbers that the

variable can hold. This function will be discussed in more detail in Chapter

14.

stdin

is the file to read. In this case, the file is the standard input or keyboard.

Other files are discussed in Chapter 14.

Example 5 -4 reads a line from the keyboard and reports its length.

Example 5-4. length/length.c

#include <string.h>

#include <stdio.h>

char line[100]; /* Line we are looking at */

int main()

{
 printf("Enter a line: ");

 fgets(line, sizeof(line), stdin);

 printf("The length of the line is: %d\n", strlen(line));

 return (0);
}

When we run this program, we get:

Enter a line: test

The length of the line is: 5

 TEAM FLY PRESENTS

 90

But the string test is only four characters. Where's the extra character coming from?

fgets includes the end-of-line in the string. So the fifth character is newline (\n).

Suppose we wanted to change our name program to ask the user for his first and

last name. Example 5 -5 shows how we could write the program.

Example 5-5. full1/full1.c

#include <stdio.h>

#include <string.h>

char first[100]; /* First name of person we are working with */

char last[100]; /* His last name */

/* First and last name of the person (computed) */

char full[200];

int main() {
 printf("Enter first name: ");

 fgets(first, sizeof(first), stdin);

 printf("Enter last name: ");

 fgets(last, sizeof(last), stdin);

 strcpy(full, first);

 strcat(full, " ");

 strcat(full, last);

 printf("The name is %s\n", full);

 return (0);

}

However, when we run this program we get the results:

% name2
Enter first name: John

Enter last name: Doe
The name is John

 Doe
%

What we wanted was "John Doe" on the same line. What happened? The fgets

function gets the entire line, including the end-of-line. We must get rid of this

character before printing.

 TEAM FLY PRESENTS

 91

For example, the name "John" would be stored as:

first[0] = 'J'

first[1] = 'o'

first[2] = 'h'
first[3] = 'n'

first[4] = '\n'
first[5] = '\0' /* end of string */

By setting first[4] to NUL ('\0'), we can shorten the string by one character and

get rid of the unwanted newline. This change can be done with the statement:

first[4] = '\0';

The problem is that this method will work only for four-character names. We need a

general algorit hm to solve this problem. The length of this string is the index of the

end-of-string null character. The character before it is the one we want to get rid of.

So, to trim the string, we use the statement:

first[strlen(first)-1] = '\0';

Our new program is shown in Example 5-6.

Example 5-6. full2/full2.c

#include <stdio.h>

#include <string.h>

char first[100]; /* First name of person we are working with */

char last[100]; /* His last name */

/* First and last name of the person (computed) */

char full[200];

int main() {
 printf("Enter first name: ");

 fgets(first, sizeof(first), stdin);
 /* trim off last character */

 first[strlen(first)-1] = '\0';

 printf("Enter last name: ");

 fgets(last, sizeof(last), stdin);

 /* trim off last character */
 last[strlen(last)-1] = '\0';

 TEAM FLY PRESENTS

 92

 strcpy(full, first);

 strcat(full, " ");
 strcat(full, last);

 printf("The name is %s\n", full);

 return (0);
}

Running this program gives us the following results:

Enter first name: John
Enter last name: Smith

The name is John Smith

5.4 Multidimensional Arrays

Arrays can have more than one dimension. The declaration for a two-dimensiona l

array is:

type variable[size1][size2]; /* Comment */

For example:

int matrix[2][4]; /* a typical matrix */

Notice that C does not follow the notation used in other languages of

matrix[10,12].

To access an element of the matrix, we use the notation:

matrix[1][2] = 10;

C allows the programmer to use as many dimensions as needed (limited only by the
amount of memory available). Additional dimensions can be tacked on:

four_dimensions[10][12][9][5];

Question 5-1: Why does Example 5 -7 print the wrong answer? (Click here for the

answer Section 5.15)

 TEAM FLY PRESENTS

 93

Example 5-7. p_array/p_array.c

#include <stdio.h>

int array[3][2]; /* Array of numbers */

int main()
{

 int x,y; /* Loop indicies */

 array[0][0] = 0 * 10 + 0;

 array[0][1] = 0 * 10 + 1;

 array[1][0] = 1 * 10 + 0;
 array[1][1] = 1 * 10 + 1;

 array[2][0] = 2 * 10 + 0;
 array[2][1] = 2 * 10 + 1;

 printf("array[%d] ", 0);

 printf("%d ", array[0,0]);

 printf("%d ", array[0,1]);
 printf("\n");

 printf("array[%d] ", 1);
 printf("%d ", array[1,0]);

 printf("%d ", array[1,1]);
 printf("\n");

 printf("array[%d] ", 2);

 printf("%d ", array[2,0]);

 printf("%d ", array[2,1]);
 printf("\n");

 return (0);
}

5.5 Reading Numbers

So far, we have only read simple strings, but we want more. We want to read
numbers as well. The function scanf works like printf, except that scanf reads

numbers instead of writing them. scanf provides a simple and easy way of reading

numbers that almost never works . The function scanf is notorious for its poor

end-of-line handling, which makes scanf useless for all but an expert.

 TEAM FLY PRESENTS

 94

However, we've found a simple way to get around the deficiencies of scanf—we

don't use it. Instead, we use fgets to read a line of input and sscanf to convert the

text into numbers. (The name sscanf stands for "string scanf". sscanf is like

scanf, but works on strings instead of the standard input.)

Normally, we use the variable line for lines read from the keyboard:

char line[100]; /* Line of keyboard input */

When we want to process input, we use the statements:

fgets(line, sizeof(line), stdin);

sscanf(line, format, &variable1, &variable2 . . .;

Here fgets reads a line and sscanf processes it. format is a string similar to the

printf format string. Note the ampersand (&) in front of the variable names. This

symbol is used to indicate that sscanf will change the value of the associated

variables. (For information on why we need the ampersand, see Chapter 13.)

If you forget to put & in front of each variable for

sscanf, the result could be a "Segmentation violation

core dumped" or "Illegal memory access" error. In
some cases a random variable or instruction will be
changed. On UNIX, damage is limited to the current
program; however, on MS-DOS/Windows, with its
lack of memory protection, this error can easily cause

more damage. On MS-DOS/Windows, omitting & can

cause a program or system crash.

In Example 5-8 , we use sscanf to get and then double a number from the user.

Example 5-8. double/double.c

[File: double/double.c]

#include <stdio.h>
char line[100]; /* input line from console */

int value; /* a value to double */

int main()

{

 TEAM FLY PRESENTS

 95

 printf("Enter a value: ");

 fgets(line, sizeof(line), stdin);
 sscanf(line, "%d", &value);

 printf("Twice %d is %d\n", value, value * 2);

 return (0);
}

This program reads in a single number and then doubles it. Notice that there is no

\n at the end of Enter a value:. This omission is intentional because we do not

want the computer to print a newline after the prompt. For example, a sample run

of the program might look like:

Enter a value: 12
Twice 12 is 24

If we replaced Enter a value: with Enter a value:\n, the result would be:

Enter a value:
12

Twice 12 is 24

Question 5-2: Example 5 -9 computes the area of a triangle, given the triangle's

width and height. For some strange reason, the compiler refuses to believe that we
declared the variable width. The declaration is right there on line 2, just after the

definition of height. Why isn't the compiler seeing it? (Click here for the answer

Section 5.15)

Example 5-9. tri/tri.c

#include <stdio.h>

char line[100];/* line of input data */
int height; /* the height of the triangle

int width; /* the width of the triangle */

int area; /* area of the triangle (computed) */

int main()

{
 printf("Enter width height? ");

 fgets(line, sizeof(line), stdin);

 sscanf(line, "%d %d", &width, &height);

 TEAM FLY PRESENTS

 96

 area = (width * height) / 2;
 printf("The area is %d\n", area);

 return (0);
}

5.6 Initializing Variables

C allows variables to be initialized in the declaration statement. For example, the
following statement declares the integer counter and initializes it to 0 :

int counter = 0; /* number cases counted so far */

Arrays can also be initialized in this manner. The element list must be enclosed in

curly braces ({}). For example:

/* Product numbers for the parts we are making */
int product_codes[3] = {10, 972, 45};

The previous initialization is equivalent to:

product_codes[0] = 10;

product_codes[1] = 972;
product_codes[2] = 45;

The number of elements in {} does not have to match the array size. If too many

numbers are present, a warning will be issued. If an insufficient amount of n umbers

are present, C will initialize the extra elements to 0.

If no dimension is given, C will determine the dimension from the number of

elements in the initialization list. For example, we could have initialized our variable
product_codes with the state ment:

/* Product numbers for the parts we are making */
int product_codes[] = {10, 972, 45};

Initializing multidimensional arrays is similar to initializing single-dimension arrays.

A set of brackets ([]) encloses each dimension. The declaration:

int matrix[2][4]; /* a typical matrix */

can be thought of as a declaration of an array of dimension 2 with elements that are
arrays of dimension 4. This array is initialized as follows:

/* a typical matrix */

 TEAM FLY PRESENTS

 97

int matrix[2][4] =
 {

 {1, 2, 3, 4},
 {10, 20, 30, 40}
 };

Strings can be initialized in a similar manner. For example, to initialize the variable
name to the string "Sam", we use the statement:

char name[] = {'S', 'a', 'm', '\0'};

C has a special shorthand for initializing strings: Surround the string with double
quotes ("") to simplify initialization. The previous example could have been written:

char name[] = "Sam";

The dimension of name is 4, because C allocates a place for the '\0' character that

ends the string.

The following declaration:

char string[50] = "Sam";

is equivalent to:

char string[50];

.

.

.

strcpy(string,"Sam");

An array of 50 characters is allocated but the length of the string is 3.

5.7 Types of Integers

C is considered a medium-level language because it allows you to get very close to

the actual hardware of the machine. Some languages, like BASIC [1] , go to great

lengths to completely isolate the user fro m the details of how the processor works.

This simplification comes at a great loss of efficiency. C lets you give detailed

information about how the hardware is to be used.

[1] Some more advanced versions of BASIC do have number types. However, for this example, we are talking

about basic BASIC.

 TEAM FLY PRESENTS

 98

For example, most machines let you use different length numbers. BASIC provides

the programmer with only one numeric type. Though this restriction simplifies the

programming, BASIC programs are extremely inefficient. C allows the programmer

to specify many different flavors of integers, so that the programmer can make best

use of hardware.

The type specifier int tells C to use the most efficient size (for the machine you are

using) for the integer. This can be two to four bytes depending on the machine.

(Some less common machines use strange integer sizes such as 9 or 40 bits.)

Sometimes you need extra digits to store numbers larger than those allowed in a

normal int. The declaration:

long int answer; /* the result of our calculations */

is used to allocate a long integer. The long qualifier informs C that we wish to
allocate extra storage for the integer. If we are going to use small numbers and wish

to reduce storage, we use the qualifier short. For example:

short int year; /* Year including the 19xx part */

C guarantees that the size of storage for short <= int <= long. In actual practice,

short almost always allocates two bytes, long four bytes, and int two or four bytes.

(See Appendix B, for numeric ranges.)

The type short int usually uses 2 bytes, or 16 bits. 15 bits are used normally for the

number and 1 bit for the sign. This format gives the type a range of -32768 (-215) to

32767 (215 - 1). An unsigned short int uses all 16 bits for the number, giving it the

range of to 65535 (216). All int declarations default to signed, so that the

declaration:

signed long int answer; /* final result */

is the same as:

long int answer; /* final result */

Finally, we consider the very short integer of type char. Character variables use 1

byte. They can also be used for numbers in the range of -128 to 127 (signed char)

or to 255 (unsigned char). Unlike integers, they do not default to signed ; the

default is compiler dependent.[2] Very short integers may be printed using the
integer conversion (%d).

[2] Turbo C++ and GNU's gcc even have a command-line switch to make the default for type char either signed

or unsigned.

 TEAM FLY PRESENTS

 99

You cannot read a very short integer directly. You must read the number into an

integer and then use an assignment statement. For example:

#include <stdio.h>

signed char ver_short; /* A very short integer */
char line[100]; /* Input buffer */

int temp; /* A temporary number */

int main()

{

 /* Read a very short integer */
 fgets(line, sizeof(line), stdin);
 sscanf(line, "%d", &temp);

 very_short = temp;

}

Table 5 -2 contains the printf and sscanf conversions for integers.

Table 5-2. Integer printf/sscanf Conversions

%Conversion Uses

%hd (signed) short int

%d (signed) int

%ld (signed) long int

%hu unsigned short int

%u unsigned int

%lu unsigned long int

The range of the various flavors of integers is listed in Appendix B.

long int declarations allow the program to explicitly specify extra precision where it

is needed (at the expense of memory). short int numbers save space but have a

more limited range. The most compact integers have type char. They also have the

most limited range.

unsigned numbers provide a way of doubling the positive range at the expense of

eliminating negative numbers. They are also useful for things that can never be

negative, like counters and indices.

The flavor of number you use will depend on your program and storage

requirements.

 TEAM FLY PRESENTS

 100

5.8 Types of Floats

The float type also comes in various flavors. float denotes normal precision
(usually 4 bytes). double indicates double precision (usually 8 bytes).

Double-precision variables give the programmer many times the range and

precision of single-precision (float) variables.

The qualifier long double denotes extended precision. On some systems, this is the

same as double; on others, it offers additional precision. All types of floating-point

numbers are a lways signed.

Table 5 -3 contains the printf and sscanf conversions for floating-point numbers.

Table 5-3. Float printf/sscanf Conversions

% Conversion Uses Notes

%f float printf only.[3]

%lf double scanf only.

%Lf long double Not available on all compilers.

[3] The %f format works for printing double and float because of an automatic conversion built into C's parameter

passing.

On some machines, single-precision, floating-point instructions execute faster (but

less accurately) than double -precision instructions. Double-precision instructions

gain accuracy at the expense of time and storage. In most cases, float is adequate;

however, if accuracy is a problem, switch to double. (See Chapter 16.)

5.9 Constant Declarations

Sometimes you want to use a value that does not change, such as . The keyword

const indicates a variable that never changes. For example, to declare a value for
PI, we use the statement:

const float PI = 3.1415927; /* The classic circle constant */

By convention, variable names use only lowercase
and constant names use only uppercase. However,
the language does not require this case structure,

 TEAM FLY PRESENTS

 101

and some exotic coding styles use a different
convention.

Constants must be initialized at declaration time and can never be changed. For
example, if we tried to reset the value of PI to 3.0, we would generate an error

message:

PI = 3.0; /* Illegal */

Integer constants can be used as a size parameter when declaring an array:

/* Max. number of elements in the total list.*/
const int TOTAL_MAX = 50;

float total_list[TOTAL_MAX]; /* Total values for each category */

This way of specifying the use of integer constants is
a relatively new innovation in the C language and is
not yet fully supported by all compilers.

5.10 Hexadecimal and Octal Constants

Integer numbers are specified as a string of digits, su ch as 1234, 88, -123, etc.
These strings are decimal (base 10) numbers: 174 or 17410. Computers deal with

binary (base 2) numbers: 10101110. The octal (base 8) system easily converts to

and from binary. Each group of three digits (23 = 8) can be transformed into a single

octal digit. Thus, 10101110 can be written as 10 101 110 and changed to the octal

256. Hexadecimal (base 16) numbers have a similar conversion; only 4 bits are

used at a time.

The C language has conventions for representing octal and hexade cimal values.

Leading zeros are used to signal an octal constant. For example, 0123 is 123 (octal)

or 83 (decimal). Starting a number with "0x" indicates a hexadecimal (base 16)

constant. So, 0x15 is 21 (decimal). Table 5 -4 shows several numbers in all three

bases.

Table 5-4. Integer Examples

Base 10 Base 8 Base 16

6 06 0x6

 TEAM FLY PRESENTS

 102

9 011 0x9

15 017 0xF

5.11 Operators for Performing Shortcuts

C not only provides you with a rich set of declarations, but also gives you a large

number of special-purpose operators.

Frequently, the programmer wants to increment (increase by 1) a variable. Using a

normal assignment statement, this operation would look like:

total_entries = total_entries + 1;

C provides us with a shorthand for performing this common task. The ++ operator is

used for incrementing:

++total_entries;

A similar operator, --, can be used for decrementing (decreasing by 1) a variable:

--number_left;
/* is the same as */

number_left = number_left - 1;

But suppose that we want to add 2 instead of 1. Then we can use the following

notation:

total_entries += 2;

This notation is equivalent to:

total_entries = total_entries + 2;

Each of the simple operators, as shown in Table 5-5, can be used in this manner.

Table 5-5. Shorthand Operators

Operator Shorthand Equivalent Statement

+= x += 2; x = x + 2;

-= x -= 2; x = x - 2;

 TEAM FLY PRESENTS

 103

*= x *= 2; x = x * 2;

/= x /= 2; x = x / 2;

%= x %= 2; x = x % 2;

5.12 Side Effects

Unfortunately, C allows the programmer to use side effects. A side effect is an

operation that is performed in addition to the main operation executed by the

statement. For example, the following is legal C code:

size = 5;
result = ++size;

The first statement assigns to size the value of 5. The second statement assigns to

result the value of size (main operation) and increments size (side effect).

But in what order are these processes performed? There are four possible answers.

1. result is assigned the value of size (5), and then size is incremented.

result is 5 and size is 6.

2. size is incremented, and then result is assigned the value of size (6).

result is 6 and size is 6.

3. The answer is compile r-dependent and varies from computer to computer.

4. If we don't write code like this, then we don't have to worry about such

questions.

The correct answer is number 2: the increment occurs before the assignment.

However, number 4 is a much better answer. Th e main effects of C are confusing

enough without having to worry about side effects.

Some programmers value compact code very highly.
This attitude is a holdover from the early days of
computing when storage cost a significant amount of
money. I believe that the art of programming has
evolved to the point where clarity is much more
valuable than compactness. (Great novels, which a
lot of people enjoy reading, are not written in
shorthand.)

C actually provides two flavors of the ++ operator. One is variable++ and the other is

++variable. The first:

 TEAM FLY PRESENTS

 104

number = 5;
result = number++;

evaluates the expressions, and then increments the number; result is 5. The

second:

number = 5;
result = ++number;

increments the number first, and then evaluates the expression; result is 6.

However, using ++ or -- in this way can lead to some surprising code:

o = --o - o--;

The problem with this line is that it looks as if someone wrote Morse code. The
programmer doesn't read this statement, but rather decodes it. If we never use ++
or -- as part of any other statement, and instead always put them on lines by

themselves, the difference between the two flavors of these operators will not be

noticeable.

5.13 ++x or x++

The two forms of the increment operator are called the prefix form (++x) and the

postfix form (x++). Which form should you use? Actually in C your choice doesn't

matter. However, if you use C++ with its overloadable operators, the prefix version
(++x) is more efficient.[4] So, to develop good habits for learning C++, use the prefix

form.[5]

[4] For details, see the book Practical C++ Programming (O'Reilly & Associates).

[5] Consider the irony of a language with its name in postfix form (C++) working more efficiently with prefix

forms of the increment and decrement operators. Maybe the name should be ++C.

5.14 More Side-Effect Problems

More complex side effects can confuse even the C compiler. Consider the following

code fragment:

value = 1;
result = (value++ * 5) + (value++ * 3);

 TEAM FLY PRESENTS

 105

This expression tells C to perform the following steps:

1. Multiply value by 5, and add 1 to value.

2. Multiply value by 3, and add 1 to value.

3. Add the results of the two multiplications together.

Steps 1 and 2 are of equal priority (unlike in the previous e xample) so the compiler

can choose the order of execution. Suppose the compiler executes step 1 first, as

shown in Figure 5 -1.

Figure 5-1. Expression evaluation method 1

Or suppose the compiler executes step 2 first, as shown in Figure 5 -2.

Figure 5-2. Expression evaluation method 2

 TEAM FLY PRESENTS

 106

By using the first method, we get a result of 11. By using the second method, we get

a result of 13. The result of this expression is ambiguous. Depending on how the

compiler was implemented, the result may be 11 or 13. Even worse, some compilers

change the behavior if optimization is turned on. So what was "working" code may

break when optimized.

By using the operator ++ in the middle of a larger expression, we created a problem.

(This problem is not the only problem that ++ and - - can cause. We will get into

more trouble in Chapter 10.)

In order to avoid trouble and keep the program simple, always put ++ and -- on a

line by themselves.

5.15 Answers

Answer 5 -1: The problem is the use of the expression array[x,y] in the printf

statement:

printf("%d ", array[x,y]);

Each index to a multidimension array must be placed inside its own set of square

brackets ([]). The statement should read:

printf("%d ", array[x][y]);

For those of you who want to read ahead a little, the comma operator can be used

to string multiple expressions together. The value of this operator is the value of the
last expressions. As a result x,y is equivalent to y; and array[y] is actually a

pointer to row y of the array. Because pointers have strange values, the printf

outputs strange results. (See Chapter 17, and Chapter 21.)

Answer 5 -2: The programmer accidentally omitted the end comment (*/) after the

comment for height. The comment continues onto the next line and engulfs the

declaration, as shown in Example 5-10.

 TEAM FLY PRESENTS

 107

Example 5-10. Comment Answer

Consider another minor problem with this program. If width and height are both

odd, we get an answer that's slightly wrong. (How would you correct this error?)

5.16 Programming Exercises

Exercise 5-1: Write a program that converts Centigrade to Fahrenheit.

Exercise 5-2: Write a program to calculate the volume of a sphere.

Exercise 5-3: Write a program that prints the perimeter of a rectangle given its

height and width. perimeter = 2 · (width + height)

Exercise 5-4: Write a program that converts kilometers per hour to miles per h our.

miles = (kilometer · 0.6213712

Exercise 5-5: Write a program that takes hours and minutes as input, and then
outputs the total number of minutes. (1 hour 30 minutes = 90 minutes).

Exercise 5-6: Write a program that takes an integer as the number of minutes, and

outputs the total hours and minutes (90 minutes = 1 hour 30 minutes).

 TEAM FLY PRESENTS

 108

 TEAM FLY PRESENTS

 109

Chapter 6. Decision and Control

Statements

Once a decision was made, I did not worry about it afterward.

—Harry Truman

Calculations and expressions are only a small part of computer programming.

Decision and control statements are needed. They specify the order in which

statements are to be executed.

So far, we have constructed linear programs, that is, programs that execute in a

straight line, one statement after another. In this chapter, we will see how to

change the control flow of a program with branching statements and looping

statements. Branching statements cause one section of code to be executed or not

executed, depending on a conditional clause. Looping statements are used to repeat

a section of code a number of times or until some condition occurs.

6.1 if Statement

The if statement allows us to put some decision-making into our programs. The

general form of the if statement is:

if (condition)
 statement;

If the condition is true (nonzero), the statement will be executed. If the condition is

false (0), the statement will not be executed. For example, suppose we are writing

a billing program. At the end, if the customer owes us nothing or has a credit (owes

us a negative amount), we want to print a message. In C, this program is written:

if (total_owed <= 0)
 printf("You owe nothing.\n");

The operator <= is a relational operator that represents less than or equal to. This

statement reads "if the total_owed is less than or equal to zero, print the

message." The complete list of relational operators is found in Table 6 -1.

 TEAM FLY PRESENTS

 110

Table 6-1. Relational Operators

Operator Meaning

<= Less than or equal to

< Less than

> Greater than

>= Greater than or equal to

== Equal[1]

!= Not equal

[1] The equal test (==) is different from the assignment operator (=). One of the most common problems the C

programmer faces is mixing them up.

Multiple statements may be grouped by putting them inside curly braces ({}). For

example:

if (total_owed <= 0) {

 ++zero_count;
 printf("You owe nothing.\n");

}

For readability, the statements enclosed in {} are usually indented. This allows the

programmer to quickly tell which statements are to be conditionally executed. As we

will see later, mistakes in indentation can result in programs that are misleading and

hard to read.

6.2 else Statement

An alternate form of the if statement is:

if (condition)

 statement;
else

 statement;

If the condition is true (nonzero), the first statement is executed. If it is false (0),

the second statement is executed. In our accounting example, we wrote out a

message only if nothing was owed. In real life, we probably would want to tell the

customer how much is owed if there is a balance due:

if (total_owed <= 0)

 TEAM FLY PRESENTS

 111

 printf("You owe nothing.\n");
else

 printf("You owe %d dollars\n", total_owed);

Now, consider this program fragment (with incorrect indentation):

if (count < 10) /* if #1 */
 if ((count % 4) == 2) /* if #2 */
 printf("Condition:White\n");

 else

 printf("Condition:Tan\n");

Note to PASCAL programmers: unlike PASCAL, C
requires you to put a semicolon at the end of the
statement preceding else.

There are two if statements and one else. Which if does the else belong to?

1. It belongs to if #1.

2. It belongs to if #2.

3. If you never write code like this, don't worry about this situation.

The correct answer is "c." According to the C syntax rules, the else goes with the

nearest if, so "b" is syntactically correct. But writing code like this violates the KISS

principle (Keep It Simple, Stupid). We should write code as clearly and simply as

possible. This code fragment should be written as:

if (count < 10) { /* if #1 */

 if ((count % 4) == 2) /* if #2 */
 printf("Condition:White\n");

 else
 printf("Condition:Tan\n");

}

In our original example, we could not clearly determine which if statement had the

else clause; however, by adding an extra set of braces, we improve readability,

understanding, and clarity.

6.3 How Not to Use strcmp

The function strcmp compares two strings, and then returns zero if they are equal

or nonzero if they are different. To check if two strings are equal, we use the code:

/* Check to see if string1 == string2 */

 TEAM FLY PRESENTS

 112

if (strcmp(string1, string2) == 0)
 printf("Strings equal\n");

else
 printf("Strings not equal\n");

Some programmers omit the comment and the == 0 clause. These omissions lead to

the following confusing code:

if (strcmp(string1, string2))

 printf("......");

At first glance, this program obviously compares two strings and executes the
printf statement if they are equal. Unfortunately, the obvious is wrong. If the

strings are equal, strcmp returns 0, and the printf is not executed. Because of this

backward behavior of strcmp , you should be very careful in your use of strcmp and

always comment its use. (It also helps to put in a comment explaining what you're

doing.)

6.4 Looping Statements

Looping statements allow the program to repeat a section of code any number of

times or until some condition occurs. For example, loops are used to count the

number of words in a document or to count the number of accounts that have

past-due balances.

6.5 while Statement

The while statement is used when the program needs to perform repetitive tasks.
The general form of a while statement is:

while (condition)
 statement;

The program will repeatedly execute the statement inside the while until the

condition becomes false (0). (If the condition is initially false, the statement will not

be executed.)

For example, Example 6 -1 later in this chapter will compute all the Fibonacci

numbers that are less than 100. The Fibonacci sequence is:

1 1 2 3 5 8

The terms are computed from the equations:

 TEAM FLY PRESENTS

 113

1
1

2 = 1 + 1
3 = 1 + 2
5 = 2 + 3

etc.

In general terms this is:

f n = fn-1 + fn-2

This is a mathematical equation using mathematical variable names (fn).

Mathematicians use this very terse style of naming variables. In programming,

terse is dangerous, so we translate these names into something verbose for C. Table

6-2 shows this translation.

Table 6-2. Math to C Name Translation

Math-style name C-style name

fn next_number

fn-1 current_number

fn-2 old_number

In C code, the equation is expressed as:

next_number = current_number + old_number;

We want to loop until our current term is 100 or larger. The while loop:

while (current_number < 100)

will repeat our computation and printing until we reach this limit.

Figure 6 -1 shows what happens to the variable during the execution of the program.

At the beginning, current_number and old_number are 1. We print the value of the

current term. Then the variable next_number is computed (value 2). Next we

advance one term by putting next_number into current_number and

current_number into old_number . This process is repeated until we compute the

last term and the while loop exits.

 TEAM FLY PRESENTS

 114

Figure 6-1. Fibonacci execution

This completes the body of the loop. The first two terms of the Fibonacci sequence

are 1 and 1. We initialize our first two terms to these values. Putting it all together,

we get the code in Example 6 -1 .

Example 6-1. fib/fib.c

#include <stdio.h>
int old_number; /* previous Fibonacci number */
int current_number; /* current Fibonacci number */

int next_number; /* next number in the series */

int main()

{
 /* start things out */

 old_number = 1;

 current_number = 1;

 printf("1\n"); /* Print first number */

 while (current_number < 100) {

 printf("%d\n", current_number);

 next_number = current_number + old_number;

 old_number = current_number;

 current_number = next_number;

 TEAM FLY PRESENTS

 115

 }
 return (0);

}

6.6 break Statement

We have used a while statement to compute the Fibonacci numbers less than 100.
The loop exits when the condition after the while becomes false (0). Loops can be

exited at any point through the use of a break statement.

Suppose we want to add a series of numbers, but we don't know how many numbers

are to be added together. We need some way of letting the program know that we

have reached the end of our list. In Example 6-2 , we use the number zero (0) to

signal the end-of-list.

Note that the while statement begins with:

while (1) {

Left to its own devices, the program will loop forever because the while will exit

only when the expression 1 is 0. The only way to exit this loop is through a break

statement.

When we see the end of the list indicator (0), we use the statement:

if (item == 0)

 break;

to exit the loop.

Example 6-2. total/total.c

#include <stdio.h>

char line[100];/* line of data for input */
int total; /* Running total of all numbers so far */
int item; /* next item to add to the list */

int main()

{

 total = 0;
 while (1) {
 printf("Enter # to add \n");

 printf(" or 0 to stop:");

 TEAM FLY PRESENTS

 116

 fgets(line, sizeof(line), stdin);
 sscanf(line, "%d", &item);

 if (item == 0)
 break;

 total += item;
 printf("Total: %d\n", total);
 }

 printf("Final total %d\n", total);

 return (0);
}

6.7 continue Statement

The continue statement is very similar to the break statement, except that instead

of terminating the loop, continue starts reexecuting the body of the loop from the

top. For example, if we want to modify the previous program to total only numbers

larger than 0, we could write a program such as Example 6-3.

Example 6-3. totalb/totalb.c

[File: totalb/totalb.c]

#include <stdio.h>
char line[100]; /* line from input */
int total; /* Running total of all numbers so far */

int item; /* next item to add to the list */
int minus_items; /* number of negative items */

int main()
{
 total = 0;

 minus_items = 0;

 while (1) {
 printf("Enter # to add\n");

 printf(" or 0 to stop:");

 fgets(line, sizeof(line), stdin);

 sscanf(line, "%d", &item);

 if (item == 0)

 break;

 TEAM FLY PRESENTS

 117

 if (item < 0) {

 ++minus_items;
 continue;
 }

 total += item;

 printf("Total: %d\n", total);
 }

 printf("Final total %d\n", total);

 printf("with %d negative items omitted\n",
 minus_items);

 return (0);
}

6.8 Assignment Anywhere Side Effect

C allows the use of assignment statements almost anywhere. For example, you can

put assignment statements inside assignment statements:

/* don't program like this */
average = total_value / (number_of_entries = last - first);

This is the equivalent of saying:

/* program like this */
number_of_entries = last - first;
average = total_value / number_of_entries;

The first version buries the assignment of number_of_entries inside the expression.

Programs should be clear and simple and should not hide anything. The most

important rule of programming is keep it simple.

C also allows the programmer to put assignment statements in the while

conditional. For example:

/* do not program like this */
while ((current_number = last_number + old_number) < 100)

 printf("Term %d\n", current_number);

Avoid this type of programming. Notice how much clearer the logic is in the version

below:

/* program like this */

 TEAM FLY PRESENTS

 118

while (1) {
 current_number = last_number + old_number;

 if (current_number >= 100)
 break;
 printf("Term %d\n", current_number);

}

Question 6 -1: For some strange reason, Example 6 -4 thinks that everyone owes a
balance of dollars. Why? (Click here for the answer Section 6.9)

Example 6-4. owe0/owe0.c

#include <stdio.h>
char line[80]; /* input line */
int balance_owed; /* amount owed */

int main()

{
 printf("Enter number of dollars owed:");

 fgets(line, sizeof(line), stdin);

 sscanf(line, "%d", &balance_owed);

 if (balance_owed = 0)
 printf("You owe nothing.\n");
 else

 printf("You owe %d dollars.\n", balance_owed);

 return (0);
}

Sample output:

Enter number of dollars owed: 12

You owe 0 dollars.

6.9 Answer

Answer 6 -1 : This program illustrates one of the most common and frustrating of C

errors. The problem is that C allows assignment statements inside if conditionals.

The statement:

if (balance_owed = 0)

 TEAM FLY PRESENTS

 119

uses a single equal sign (=) instead of the double equal sign (==). C will assign
balance_owed the value and test the result (which is 0). If the result was nonzero

(true), the if clause would be executed. Because the result is (false), the else clause

is executed and the program prints the wrong answer.

The statement:

if (balance_owed = 0)

is equivalent to:

balance_owed = 0;

if (balanced_owed != 0)

The statement should be written:

if (balance_owed == 0)

This e rror is the most common error that beginning C programmers make.

6.10 Programming Exercises

Exercise 6-1: Write a program to find the square of the distance between two

points. (For a more advanced problem, find the actual distance. This problem
involves u sing the standard function sqrt. Use your help system to find out more

about how to use this function.)

Exercise 6-2: A professor generates letter grades using Table 6 -3.

Table 6-3. Grade Values

% Right Grade

0-60 F

61-70 D

71-80 C

81-90 B

91-100 A

Given a numeric grade, print the letter.

 TEAM FLY PRESENTS

 120

Programmers frequently have to modify code that
someone else wrote. A good exercise is to take
someone else's code, such as the program that
someone wrote for Chapter 6, and then modify it.

Exercise 6-3: Modify the pre vious program to print a + or - after the letter grade,

based on the last digit of the score. The modifiers are listed in Table 6-4.

Table 6-4. Grade Modification Values

Last digit Modifier

1-3 -

4-7 <blank>

8-0 +

For example, 81=B-, 94=A, and 68=D+. Note: An F is only an F. There is no F+ or
F-.

Exercise 6-4: Given an amount of money (less than $1.00), compute the number

of quarters, dimes, nickels, and pennies needed.

Exercise 6-5: A leap year is any year divisible by 4, unless the year is divisible by

100, but not 400. Write a program to tell if a year is a leap year.

Exercise 6-6: Write a program that, given the number of hours an employee

worked and the hourly wage, computes the employee's weekly pay. Count any

hours over 40 as overtime at time and a half.

 TEAM FLY PRESENTS

 121

Chapter 7. Programming Process

It's just a simple matter of programming.

—Any boss who has never written a program

Programming is more than just writing code. Software has a life cycle. It is born,

grows up, becomes mature, and finally dies, only to be replaced by a newer,

younger product. Figure 7-1 illustrates the life cycle of a program. Understanding

this cycle is important because, as a programmer, you will spend only a small

amount of time writing new code. Most programming time is spent modifying and

debugging existing code. Software does not exist in a vacuum; it must be

docume nted, maintained, enhanced, and sold. In this chapter, we will take a look at

a small programming project using one programmer. Larger projects that involve

many people will be discussed in Chapter 18. Although our final code is less than

100 lines, the principles used in its construction can be applied to programs with

thousands of lines of code.

 TEAM FLY PRESENTS

 122

Figure 7-1. Software life cycle

The major steps in making a program are:

• Requirements. Programs start when someone gets an idea and starts to

implement it. The requirement document describes, in very general terms,

what is wanted.

• Program specification. The specification is a description of what the

program does. In the beginning, a preliminary specification is used to

describe what the program is going to do. Later, as the program becomes

more refined, so does the specification. Finally, when the program is finished,

the specification serves as a complete description of what the program does.

• Code design. The programmer does an overall design of the program. The

design should include major algorithms, module definitions, file formats, and

data structures.

 TEAM FLY PRESENTS

 123

• Coding. The next step is writing the program. This step involves first writing

a prototype and then filling it in to create the full program.

• Testing. The programmer should design a test plan and then use it to test

his program. When possible, the programmer should have someone else test

the program.

• Debugging. Unfortunately, very few programs work the first time. They

must be corrected and tested again.

• Release. The program is packaged, documented, and sent out into the

world to be used.

• Maintenance. Programs are never perfect. Bugs will be found and will need

correction. This step is the maintenance phase of programming.

• Revision and updating. After a program has been working for a while, the

users will want changes, such as more features or more intelligent

algorithms. At this point, a new specification is created and the process

starts again.

7.1 Setting Up

The operating system allows you to group files in directories. Just as file folders

serve as a way of keeping papers together in a filing cabinet, directories serve as a

way of keeping files together. (Windows 95 goes so far as to call its directories

"folders.") In this chapter, we create a simple calculator program. All the files for

this program are stored in a directory named calc. In UNIX, we create a new

directory under our home directory and then move to it, as shown in the following

example:

% cd ~

% mkdir calc
% cd ~/calc

On MS-DOS type:

C:\> cd \

C:\> mkdir calc
C:\> cd \calc
C:\CALC>

This directory setup is extremely s imple. As you generate more and more programs,

you will probably want a more elaborate directory structure. More information on

how to organize directories or folders can be found in your operating system

manual.

 TEAM FLY PRESENTS

 124

7.2 Specification

For this chapter, we assume that we have the requirement to "write a program that
acts like a four-function calculator." Typically, the requirements that you are given

is vague and incomplete. The programmer refines it into something that exactly

defines the program that he is going to produce. So the first step is to write a

preliminary users' specification document that describes what your program is

going to do and how to use it. The document does not describe the internal structure

of the program or the algorithm you plan on u sing. A sample specification for our

four-function calculator appears below in Calc: A Four-Function Calculator.

The preliminary specification serves two purposes. First, you should give it to your

boss (or customer) to make sure that you agree on what each of you said. Second,

you can circulate it among your colleagues and see if they have any suggestions or

corrections.

This preliminary specification was circulated and received the comments:

• How are you going to get out of the program?

• What happens when you try to divide by 0?

Calc: A Four-Function Calculator

Preliminary Specification

Dec. 10, 1989

Steve Oualline

Warning: This document is a preliminary specification. Any
resemblance to any software living or dead is purely
coincidental.

Calc is a program that allows the user to turn a $2,000
computer into a $1.98 four-function calculator. The program
will add, subtract, multiply, and divide simple integers.

When the program is run, it will zero the result register and
display the register's contents. The user can then type in an
operator and number. The result will be updated and
displayed. The following operators are valid:

Operator Meaning

 TEAM FLY PRESENTS

 125

+ Addition

- Subtraction

* Multiplication

/ Division

For example (user input is in boldface):

calc
Result: 0
Enter operator and number: + 123
Result: 123
Enter operator and number: - 23
Result: 100
Enter operator and number: / 25
Result: 4
Enter operator and number: * 4
Result: 16
0

So, we add a new operator, q for quit, and we add the statement:

"Dividing by 0 results in an error message and the result register is left

unchanged."

IV + IX = XIII?

A college instructor once gave his students an assignment to
"write a four-function calculator." One of his students noticed
that this assignment was a very loose specification and decided
to have a little fun. The professor didn't say what sort of
numbers had to be used, so the student created a program
that worked only with Roman numerals (V+ III = VIII). The
program came with a complete user manual—written in Latin.

7.3 Code Design

After the preliminary specification has been approved, we can start designing code.
In the code design phase, the programmer plans his work. In large programming

projects involving many people, the code would be broken up into modules, to be

assigned to the programmers. At this stage, file formats are planned, data

structures are designed, and major algorithms are decided upon.

 TEAM FLY PRESENTS

 126

Our simple calculator uses no files and requires no fancy data structures. What's left

for this phase is to design the major algorithm. Outlined in pseudo code, a

shorthand halfway between English and real code, the major algorithm is:

Loop
 Read an operator and number

 Do the calculation
 Display the result
End-Loop

7.4 Prototype

After the code design is completed, we can begin writing the program. But rather

than try to write the entire program at once and then debug it, we will use a method

called fast prototyping. We implement the smallest portion of the specification that

will still do something. In our case, we will cut our four functions down to a

one-function calculator. After we get this small part working, we can build the rest

of the functions onto this stable foundation. Also, the prototype gives the boss
something to look at and play with, giving him a good idea of the project's direction.

Good communication is the key to good programming, and the more you can show

someone the better. The code for th e first version of our four-function calculator is

found in Example 7 -1.

Example 7-1. calc1/calc1.c

#include <stdio.h>

char line[100];/* line of data from the input */

int result; /* the result of the calculations */
char operator; /* operator the user specified */
int value; /* value specified after the operator */

int main()

{

 result = 0; /* initialize the result */

 /* Loop forever (or till we hit the break statement) */

 while (1) {

 printf("Result: %d\n", result);

 printf("Enter operator and number: ");

 fgets(line, sizeof(line), stdin);
 sscanf(line, "%c %d", &operator, &value);

 TEAM FLY PRESENTS

 127

 if (operator = '+') {
 result += value;

 } else {
 printf("Unknown operator %c\n", operator);
 }

 }

}

The program begins by initializing the variable result to 0. The main body of the

program is a loop starting with:

while (1) {

This loop will repeat until a break statement is reached. The code:

printf("Enter operator and number: ");
 fgets(line, sizeof(line), stdin);

 sscanf(line,"%c %d", &operator, &value);

asks the user for an operator and number. These are scanned and stored in the
variables operator and value. Next, we start checking the operators. If the

operator is a plus sign (+), we perform an addition using the line:

if (operator = '+') {
 result += value;

So far, we only recognize the plus (+) operator. As soon as this operator works

correctly, we will add more operators by adding more if statements.

Finally, if an illegal operator is entered, the line:

} else {
 printf("Unknown operator %c\n", operator);

}

writes an error message telling the user that he made a mistake.

7.5 Makefile

After the source has been entered, it needs to be compiled and linked. Up until now

we have been running the compiler manually. This process is somewhat tedious and

prone to error. Also, larger programs consist of many modules and are extremely

difficult to compile by hand. Fortunately, both UNIX and MS-DOS/Windows have a

utility called make[1] that will handle the details of compilation. For now, use this

example as a template and substitute the name of your program in place of "calc."

 TEAM FLY PRESENTS

 128

make will be discussed in detail in Chapter 18. The program looks at the file called

Makefile for a description of how to compile your program and runs the compiler for

you.

[1] Microsoft's Visual C++ calls this utility nmake.

Because the Makefile contains the rules for compilation, it is customized for the

compiler. The following is a set of Makefiles for all of the compilers described in this

book.

7.5.1 Generic UNIX

File: calc1/makefile.unx
#---#

Makefile for Unix systems #
using a GNU C compiler #

#---#

CC=gcc
CFLAGS=-g

Compiler flags:
-g -- Enable debugging

calc1: calc1.c

 $(CC) $(CFLAGS) -o calc1 calc1.c

clean:

 rm -f calc1

The make utility is responsible for one of the nastiest
surprises for unsuspecting users. The line:

$(CC) $(CFLAGS) -o calc1 calc1.c

must begin with a tab. Eight spaces won't work. A
space and a tab won't work. The line must start with
a tab. Check your editor and make sure that you can
tell the difference between a tab and bunch of
spaces.

 TEAM FLY PRESENTS

 129

7.5.2 UNIX with the Free Software Foundation's gcc

Compiler

File: calc1/makefile.gcc
#---#

Makefile for UNIX systems #
using a GNU C compiler #

#---#

CC=gcc
CFLAGS=-g -D__USE_FIXED_PROTOTYPES__ -ansi

Compiler flags:
-g -- Enable debugging

-Wall -- Turn on all warnings (not used since it gives away
the bug in this program)

-D__USE_FIXED_PROTOTYPES__
-- Force the compiler to use the correct headers

-ansi -- Don't use GNU extensions. Stick to ANSI C.

calc1: calc1.c

 $(CC) $(CFLAGS) -o calc1 calc1.c

clean:

 rm -f calc1

7.5.3 Borland C++

[File: calc1/makefile.bcc]

Makefile for Borland's Borland-C++ compiler

CC=bcc

Flags

-N -- Check for stack overflow
-v -- Enable debugging
-w -- Turn on all warnings

-ml -- Large model

CFLAGS=-N -v -w -ml

calc1.exe: calc1.c

 TEAM FLY PRESENTS

 130

 $(CC) $(CFLAGS) -ecalc1 calc1.c

clean:
 erase calc1.exe

7.5.4 Turbo C++

File: calc1/makefile.tcc

#---#
Makefile for DOS systems #

using a Turbo C compiler. #
#---#

CC=tcc

CFLAGS=-v -w -ml

calc1.exe: calc1.c

 $(CC) $(CFLAGS) -ecalc1.exe calc1.c

clean:
 del calc1.exe

7.5.5 Visual C++

[File: calc1/makefile.msc]
#---#
Makefile for DOS systems #

using a Microsoft Visual C++ compiler. #
#---#

CC=cl

Flags

AL -- Compile for large model

Zi -- Enable debugging

W1 -- Turn on warnings

CFLAGS=/AL /Zi /W1

calc1.exe: calc1.c

 $(CC) $(CFLAGS) calc1.c

clean:

 erase calc1.exe

 TEAM FLY PRESENTS

 131

To compile the program, just execute the make command. make will determine which

compilation commands are needed and then execute them.

make uses the modification dates of the files to determine whether or not a compile

is necessary. Compilation creates an object file. The modification date of the object

file is later than the modification date of its source. If the source is edited, the

source's modification date is updated, and the object file is then out of date. make

checks these dates, and if the source was modified after the object, make recompiles

the object.

7.6 Testing

After the program is compiled without errors, we can move on to the testing phase.

Now is the time to start writing a test plan. This document is simply a list of the steps

we perform to make sure the program works. It is written for two reasons:

• If a bug is found, we want to be able to reproduce it.

• If we change the program, we will want to retest it to make sure new code

did not break any of the sections of the program that were previously

working.

Our test plan starts out as:

Try the following operations:

+ 123 Result should be 123

+ 52 Result should be 175
x 37 Error message should be output

After we run the program, we get:

Result: 0

Enter operator and number: + 123
Result: 123
Enter operator and number: + 52

Result: 175

Enter operator and number: x 37

Result: 212

Something is clearly wrong. The entry x 37 should have generated an error message,

but it didn't. A bug is in the progra m. So we begin the debugging phase. One of the

advantages of making a small working prototype is that we can isolate errors early.

 TEAM FLY PRESENTS

 132

7.7 Debugging

First we inspect the program to see if we can detect the error. In such a small
program we can easily spot the mistake. However, let's assume that instead of a

21-line program, we have a much larger program containing 5,000 lines. Such a

program would make inspection more difficult, so we need to proceed to the next

step.

Most systems have C debugging programs; however, each system is different.

Some systems have no debugger. In such a case, we must resort to a diagnostic

print statement. The technique is simple: put a printf at the points at which you
know the data is good (just to make sure the data is really good). Then put a printf

at points at which the data is bad. Run the program and keep putting in printf

statements until you isolate the area in the program that contains the mistake. Our
program, with diagnostic printf statements added, looks like:

printf("Enter operator and number: ");

fgets(line, sizeof(line), stdin);
sscanf("%d %c", &value, &operator);

printf("## after scanf %c\n", operator);
if (operator = '+') {
 printf("## after if %c\n", operator);

 result += value;

The ## at the beginning of each printf is used to

indicate a temporary debugging printf. When the

debugging is complete, the ## makes the associated
statements easy to identify and remove.

Running our program again results in:

Result: 0
Enter operator and number: + 123

Result: 123
Enter operator and number: + 52

after scanf +

after if +
Result: 175

Enter operator and number: x 37

after scanf x
after if +

 TEAM FLY PRESENTS

 133

Result: 212

From this example we see that something is going wrong with the if statement.

Somehow, the variable operator is an "x" going in and a "+" coming out. Closer

inspection reveals that we have made the old mistake of using = instead of ==.

After we fix this bug, the program runs correctly. Building on this working

foundation, we add code for the other operators: dash (-), asterisk (*), and slash

(/). The result is shown in Example 7-2.

Example 7-2. calc2/calc2.c

#include <stdio.h>

char line[100];/* line of text from input */

int result; /* the result of the calculations */

char operator; /* operator the user specified */

int value; /* value specified after the operator */

int main()

{

 result = 0; /* initialize the result */

 /* loop forever (or until break reached) */
 while (1) {
 printf("Result: %d\n", result);

 printf("Enter operator and number: ");

 fgets(line, sizeof(line), stdin);
 sscanf(line, "%c %d", &operator, &value);

 if ((operator == 'q') || (operator == 'Q'))
 break;

 if (operator == '+') {
 result += value;

 } else if (operator == '-') {

 result -= value;

 } else if (operator == '*') {
 result *= value;

 } else if (operator == '/') {

 if (value == 0) {
 printf("Error:Divide by zero\n");

 printf(" operation ignored\n");
 } else

 TEAM FLY PRESENTS

 134

 result /= value;
 } else {

 printf("Unknown operator %c\n", operator);
 }
 }

 return (0);

}

We expand our test plan to include the new operators and try it again:

+ 123 Result should be 123

+ 52 Result should be 175
x 37 Error message should be output

- 175 Result should be zero

+ 10 Result should be 10
/ 5 Result should be 2

/ 0 Divide by zero error
* 8 Result should be 16
q Program should exit

While testing the prog ram, we find that, much to our surprise, the program works.

The word "Preliminary" is removed from the specification, and the program, test

plan, and specification are released.

7.7 Debugging

First we inspect the program to see if we can detect the error. In such a small

program we can easily spot the mistake. However, let's assume that instead of a

21-line program, we have a much larger program containing 5,000 lines. Such a

program would make inspection more difficult, so we need to proceed to the next

step.

Most systems have C debugging programs; however, each system is different.

Some systems have no debugger. In such a case, we must resort to a diagnostic

print statement. The technique is simple: put a printf at the points at which you

know the data is good (just to make sure the data is really good). Then put a printf
at points at which the data is bad. Run the program and keep putting in printf

statements until you isolate the area in the program that contains the mistake. Our
program, with diagnostic printf statements added, looks like:

printf("Enter operator and number: ");

fgets(line, sizeof(line), stdin);
sscanf("%d %c", &value, &operator);
printf("## after scanf %c\n", operator);

 TEAM FLY PRESENTS

 135

if (operator = '+') {
 printf("## after if %c\n", operator);

 result += value;

The ## at the beginning of each printf is used to

indicate a temporary debugging printf. When the

debugging is complete, the ## makes the associated
statements easy to identify and remove.

Running our program again results in:

Result: 0

Enter operator and number: + 123
Result: 123

Enter operator and number: + 52
after scanf +

after if +
Result: 175

Enter operator and number: x 37

after scanf x
after if +

Result: 212

From this example we see that something is going wrong with the if statement.
Somehow, the variable operator is an "x" going in and a "+" coming out. Closer

inspection reveals that we have made the old mistake of using = instead of ==.

After we fix this bug, the program runs correctly. Building on this working
foundation, we add code for the other operators: dash (-), asterisk (*), and slash

(/). The result is shown in Example 7-2.

Example 7-2. calc2/calc2.c

#include <stdio.h>

char line[100];/* line of text from input */

int result; /* the result of the calculations */

char operator; /* operator the user specified */
int value; /* value specified after the operator */

int main()
{

 TEAM FLY PRESENTS

 136

 result = 0; /* initialize the result */

 /* loop forever (or until break reached) */
 while (1) {
 printf("Result: %d\n", result);

 printf("Enter operator and number: ");

 fgets(line, sizeof(line), stdin);
 sscanf(line, "%c %d", &operator, &value);

 if ((operator == 'q') || (operator == 'Q'))
 break;

 if (operator == '+') {
 result += value;

 } else if (operator == '-') {

 result -= value;
 } else if (operator == '*') {
 result *= value;

 } else if (operator == '/') {

 if (value == 0) {
 printf("Error:Divide by zero\n");

 printf(" operation ignored\n");
 } else
 result /= value;

 } else {

 printf("Unknown operator %c\n", operator);
 }
 }

 return (0);

}

We expand our test plan to include the new operators and try it again:

+ 123 Result should be 123
+ 52 Result should be 175

x 37 Error message should be output
- 175 Result should be zero
+ 10 Result should be 10

/ 5 Result should be 2

/ 0 Divide by zero error

* 8 Result should be 16
q Program should exit

 TEAM FLY PRESENTS

 137

While testing the program, we find that, much to our surprise, the program works.

The word "Preliminary" is removed from the specification, and the program, test

plan, and specification are released.

7.8 Maintenance

Good programme rs put each program through a long and rigorous testing process
before releasing it to the outside world. Then the first user tries the program and

almost immediately finds a bug. This step is the maintenance phase. Bugs are fixed,

the program is tested (t o make sure that the fixes didn't break anything), and the

program is released again.

7.9 Revisions

Although the program is officially finished, we are not done with it. After the

program is in use for a few months, someone will come to us and ask, "Can you add

a modulus operator?" So we revise the specifications, add the change to the

program, update the test plan, test the program, and then release the program

again.

As time passes, more people will come to us with additional requests for changes.

Soon o ur program has trig functions, linear regressions, statistics, binary arithmetic,

and financial calculations. Our design is based on the concept of one-character

operators. Soon we find ourselves running out of characters to use. At this point, our

program is doing work far in excess of what it was initially designed to do. Sooner or

later we reach the point where the program needs to be scrapped and a new one

written from scratch. At that point, we write a preliminary specification and start the

process again.

7.10 Electronic Archaeology

Electronic archeology is the art of digging through old code to discover amazing

things (like how and why the code works).

Unfortunately, most programmers don't start a project at the design step. Instead,

they are immedia tely thrust into the maintenance or revision stage and must face

the worst possible job: understanding and modifying someone else's code.

Your computer can aid greatly in your search to discover the true meaning of

someone else's code. Many tools are available for examining and formatting code.

Some of these tools include:

 TEAM FLY PRESENTS

 138

• Cross references. These programs have names like xref, cxref, and

cross. System V Unix has the utility cscope. A cross reference prints out a

list of variables and indicates where each variable is used.
• Program indenters. Programs like cb and indent will take a program and

indent it correctly (correct indentation is something defined by the tool

maker).

• Pretty printers. A pretty printer such as vgrind or cprint will take the

source and typeset it for printing on a laser printer.
• Call graphs. On System V Unix the program cflow can be used to analyze

the program. On other systems there is a public-domain utility, calls, which

produces call graphs. The call graphs show who calls whom and who is called

by whom.

Which tools should you use? Whichever work for you. Different programmers work

in different ways. Some of the techniques for examining code are listed in the

sections below. Choose the ones that work for you and use them.

7.11 Marking Up the Program

Take a printout of the program and make notes all over it. Use red or blue ink so that

you can tell the difference between the printout and the notes. Use a highlighter to

emphasize important sections. These notes are useful; put them in the program as

comments, then make a new printout and start the process again.

7.12 Using the Debugger

The debugger is a great tool for understanding how something works. Most

debuggers allow the user to step through the program one line at a time, examining

variables and discovering how things really work. After you find out what the code

does, make notes and put them in the program as comments.

7.13 Text Editor as a Browser

One of the best tools for going through someone else's code is your text editor.
Suppose you want to find out what the variable sc is used for. Use the search

command to find the first place sc is used. Search again and find the second time it

is used. Continue searching until you know what the variable does.

Suppose you find out that sc is used as a sequence counter. Because you're already

in the editor, you can easily do a global search and replace to change sc to

sequence_counter. (Disaster warning: Before you make the change, make sure

that sequence_counter is not already defined as a variable. Also, watch out for

 TEAM FLY PRESENTS

 139

unwanted replacements, such as changing the sc in "escape.") Comment the

declaration and you're on your way to creating an understandable program.

7.14 Add Comments

Don't be afraid of putting any information you have, no matter how little, into the

comments. Some of the comments I've used include:

int state; /* Controls some sort of state machine */

int rmxy; /* Something to do with color correction ? */

Finally, there is a catch-all comment:

int idn; /* ??? */

which means "I have no idea what this variable does." Even though the variable's

purpose is unknown, it is now marked as something that needs more work.

As you go through someone else's code adding comments and improving style, the

structure will become clearer to you. By inserting notes (comments), you make the

code better and easier to understand for future programmers.

For example, suppose we are confronted with the following program written by

someone from "The-Terser-the-Better" school of programming. Our assignment is

to figure out what this code does. First, we pencil in some comments, as shown in

Figure 7 -2.

 TEAM FLY PRESENTS

 140

Figure 7-2. A terse program

Our mystery program requires some work. After going through it and applying the

principles described in this section, we get a well-commented, easy-to-understand
program, such as Example 7-3.

Example 7-3. good/good.c

/***

 * guess -- A simple guessing game. *
 * *

 * Usage: *

 * guess *

 * *
 * A random number is chosen between 1 and 100. *
 * The player is given a set of bounds and *

 * must choose a number between them. *
 * If the player chooses the correct number, he wins. *

 * Otherwise, the bounds are adjusted to reflect *

 * the player's guess and the game continues. *
 * *

 * *

 * Restrictions: *

 TEAM FLY PRESENTS

 141

 * The random number is generated by the statement *
 * rand() % 100. Because rand() returns a number *

 * 0 <= rand() <= maxint this slightly favors *
 * the lower numbers. *
 ***/

#include <stdio.h>

#include <stdlib.h>
int number_to_guess; /* random number to be guessed */
int low_limit; /* current lower limit of player's range */

int high_limit; /* current upper limit of player's range */

int guess_count; /* number of times player guessed */
int player_number; /* number gotten from the player */

char line[80]; /* input buffer for a single line */
int main()
{

 while (1) {

 /*
 * Not a pure random number, see restrictions
 */

 number_to_guess = rand() % 100 + 1;

 /* Initialize variables for loop */

 low_limit = 0;
 high_limit = 100;
 guess_count = 0;

 while (1) {
 /* tell user what the bounds are and get his guess */
 printf("Bounds %d - %d\n", low_limit, high_limit);

 printf("Value[%d]? ", guess_count);

 ++guess_count;

 fgets(line, sizeof(line), stdin);
 sscanf(line, "%d", &player_number);

 /* did he guess right? */
 if (player_number == number_to_guess)
 break;

 /* adjust bounds for next guess */
 if (player_number < number_to_guess)

 low_limit = player_number;
 else

 TEAM FLY PRESENTS

 142

 high_limit = player_number;

 }
 printf("Bingo\n");
 }

}

7.15 Programming Exercises

For each of these assignments, follow the software life cycle from specification

through release.

Exercise 7-1: Write a program to convert English units to metric (i.e., miles to

kilometers, gallons to liters, etc.). Include a specification and a code design.

Exercise 7-2: Write a program to perform date arithmetic such as how many days

there are between 6/6/90 and 4/3/92. Include a specification and a code design.

Exercise 7-3: A serial transmission line can transmit 960 characters each second.

Write a program that will calculate the time required to send a file, given the file's

size. Try the prog ram on a 400MB (419,430,400 -byte) file. Use appropriate units.

(A 400MB file takes days.)

Exercise 7-4: Write a program to add an 8% sales tax to a given amount and round

the result to the nearest penny.

Exercise 7-5: Write a program to tell if a number is prime.

Exercise 7-6: Write a program that takes a series of numbers and counts the

number of positive and negative values.

 TEAM FLY PRESENTS

 143

Part II: Simple Programming

This part builds on the basics to round out our description of simple C programming.

In this part, we learn the rest of the control statements as well as some more

advanced operations such as bit operations. Finally, we get an introduction to some

more sophisticated programming tasks such as file I/O and debugging.

Chapter 8 describes additional control statements. Included are for, break, and

continue. The switch statement is discussed in detail.

Chapter 9 introduces local variables, functions, and parameters.

Chapter 10 describes the C preprocessor, which gives the programmer tremendous

flexibility in writing code. The chapter also provides the programmer with a

tremendous number of ways to mess up. Simple rules that help keep the

preprocessor from becoming a problem are described.

Chapter 11 discusses the logical C operators that work on bits.

Chapter 12 explains structures and other advanced types. The sizeof operator and

the enum type are included.

Chapter 13 introduces C pointer variables and shows some of their uses.

Chapter 14 describes both buffered and unbuffered input/output. ASC II versus

binary files are discussed, and you are shown how to construct a simple file.

Chapter 15 describes how to debug a program, as well as how to use an interactive

debugger. You are shown not only how to debug a program, but also how to write a

program so that it is easy to debug. This chapter also describes many optimization

techniques for making your program run faster and more efficiently.

Chapter 16 uses a simple decimal floating-point format to introduce you to the

problems inherent in floating point, such as roundoff error, precision loss, overflow,

and underflow.

 TEAM FLY PRESENTS

 144

Chapter 8. More Control Statements

Grammar, which knows how to control even kings...

—Molière

8.1 for Statement

The for statement allows the programmer to execute a block of code for a specified

number of times. The general form of the for statement is:

for (initial-statement; condition; iteration-statement)

 body-statement;

This statement is equivalent to:

initial-statement;

while (condition) {

 body-statement;
 iteration-statement;

}

For example, Example 8 -1 uses a while loop to add five numbers.

Example 8-1. total5w/totalw.c

#include <stdio.h>

int total; /* total of all the numbers */
int current; /* current value from the user */

int counter; /* while loop counter */

char line[80]; /* Line from keyboard */

int main() {
 total = 0;

 counter = 0;

 while (counter < 5) {
 printf("Number? ");

 fgets(line, sizeof(line), stdin);

 TEAM FLY PRESENTS

 145

 sscanf(line, "%d", ¤t);
 total += current;

 ++counter;
 }

 printf("The grand total is %d\n", total);

 return (0);
}

The same program can be rewritten using a for statement as shown in Example 8 -2.

Example 8-2. total5f/total5f.c

#include <stdio.h>

int total; /* total of all the numbers */

int current; /* current value from the user */

int counter; /* for loop counter */

char line[80]; /* Input from keyboard */

int main() {

 total = 0;
 for (counter = 0; counter < 5; ++counter) {
 printf("Number? ");

 fgets(line, sizeof(line), stdin);

 sscanf(line, "%d", ¤t);
 total += current;

 }

 printf("The grand total is %d\n", total);
 return (0);

}

Note that counter goes from to 4. Ordinarily, you count five items as 1, 2, 3, 4, 5;

but you will perform much better in C if you change your thinking to zero-based

counting and then count five items as 0, 1, 2, 3, 4. (One-based counting is one of

the main causes of array overflow errors. See Chapter 5.)

Careful examination of the two flavors of our program reveals the similarities

between the two versions as seen in Figure 8-1.

 TEAM FLY PRESENTS

 146

Figure 8-1. Similarities between "while" and "for"

Many other programming languages do not allow you to change the control variable
(in this case, counter) inside the loop. C is not so picky. You can change the control

variable at any time —you can jump into and out of the loop and generally do things

that would make a PASCAL or FORTRAN programmer cringe. (Although C gives you

the freedom to do such insane things, that doesn't mean you should do them.)

Question 8-1: When Example 8 -3 runs, it prints:

Celsius:101 Fahrenheit:213

and nothing more. Why? (Click here for the answer Section 8.4)

Example 8-3. cent/cent.c

#include <stdio.h>
/*

 * This program produces a Celsius to Fahrenheit conversion
 * chart for the numbers 0 to 100.

 */

/* The current Celsius temperature we are working with */

int celsius;

int main() {

 for (celsius = 0; celsius <= 100; ++celsius);
 printf("Celsius:%d Fahrenheit:%d\n",

 TEAM FLY PRESENTS

 147

 celsius, (celsius * 9) / 5 + 32);
 return (0);

}

Question 8-2: Example 8 -4 reads a list of five numbers and counts the number of

3s and 7s in the data. Why does it give us the wron g answers? (Click here for the

answer Section 8.4)

Example 8-4. seven/seven.c

#include <stdio.h>
char line[100]; /* line of input */

int seven_count; /* number of 7s in the data */
int data[5]; /* the data to count 3 and 7 in */
int three_count; /* the number of 3s in the data */

int index; /* index into the data */

int main() {

 seven_count = 0;

 three_count = 0;
 printf("Enter 5 numbers\n");

 fgets(line, sizeof(line), stdin);
 sscanf(line, "%d %d %d %d %d",
 &data[1], &data[2], &data[3],

 &data[4], &data[5]);

 for (index = 1; index <= 5; ++index) {

 if (data[index] == 3)

 ++three_count;

 if (data[index] == 7)
 ++seven_count;
 }

 printf("Threes %d Sevens %d\n",

 three_count, seven_count);

 return (0);
}

When we run this program with the data 3 7 3 0 2, the results are:

Threes 4 Sevens 1

 TEAM FLY PRESENTS

 148

(Your results may vary.)

8.2 switch Statement

The switch statement is similar to a chain of if/else statements. The general form

of a switch statement is:

switch (expression) {
 case constant1 :

 statement

 break ;

 case constant2 :
 statement

 /* Fall through */

 default:

 statement

 break ;

 case constant3 :
 statement

 break ;

}

The switch statement evaluates the value of an expression and branches to one of

the case labels. Duplicate labels are not allowed, so only one case will be selected.

The expression must evaluate an integer, character, or enumeration.

The case labels can be in any order and must be constants. Th e default label can

be put anywhere in the switch. No two case labels can have the same value.

When C sees a switch statement, it evaluates the expression and then looks for a

matching case label. If none is found, the default label is used. If no default is

found, the statement does nothing.

The switch statement is very similar to the PASCAL
case statement. The main difference is that while
PASCAL allows only one statement after the label, C

 TEAM FLY PRESENTS

 149

allows many. C will keep executing until it hits a
break statement. In PASCAL, you can't fall through
from one case to another, but in C you can.

Another difference between the C Switch and PASCAL
case statements is that PASCAL requires that the
default statement (otherwise statement) appear at
the end. C allows the default statement to appear
anywhere.

Example 8 -5 contains a series of if and else statements:

Example 8-5. Syntax for if and else

if (operator == '+') {

 result += value;

} else if (operator == '-') {
 result -= value;
} else if (operator == '*') {

 result *= value;

} else if (operator == '/') {
 if (value == 0) {
 printf("Error:Divide by zero\n");

 printf(" operation ignored\n");
 } else

 result /= value;

 } else {
 printf("Unknown operator %c\n", operator);
 }

This section of code can easily be rewritten as a switch statement. In this switch ,
we use a different case for each operation. The default clause takes care of all the

illegal operators.

Rewriting our program using a switch statement makes it not only simpler, but
easier to read. Our revised calc program is shown as Example 8 -6.

Example 8-6. calc3/calc3.c

#include <stdio.h>

char line[100]; /* line of text from input */

 TEAM FLY PRESENTS

 150

int result; /* the result of the calculations */

char operator; /* operator the user specified */
int value; /* value specified after the operator */
int main()

{

 result = 0; /* initialize the result */

 /* loop forever (or until break reached) */

 while (1) {

 printf("Result: %d\n", result);
 printf("Enter operator and number: ");

 fgets(line, sizeof(line), stdin);
 sscanf(line, "%c %d", &operator, &value);

 if ((operator == 'q') || (operator == 'Q'))
 break;
 switch (operator) {

 case '+':

 result += value;
 break;

 case '-':
 result -= value;
 break;

 case '*':

 result *= value;
 break;
 case '/':

 if (value == 0) {

 printf("Error:Divide by zero\n");
 printf(" operation ignored\n");

 } else
 result /= value;
 break;

 default:

 printf("Unknown operator %c\n", operator);
 break;
 }

 }

 return (0);
}

 TEAM FLY PRESENTS

 151

A break statement inside a switch tells the computer to continue execution after

the switch. If a break statement is not there, execution will continue with the next

statement.

For example:

control = 0;
/* a not so good example of programming */
switch (control) {

 case 0:

 printf("Reset\n");

 case 1:
 printf("Initializing\n");

 break;

 case 2:
 printf("Working\n");

}

In this case, when control == 0, the program will print:

Reset

Initializing

case 0 does not end with a break statement. After printing Reset, the program falls

through to the next statement (case 1) and prints Initializing.

A problem exists with this syntax. You cannot determine if the program is supposed
to fall through from case 0 to case 1, or if the programmer forgot to put in a break

statement. In order to clear up this confusion, a case section should always end
with a break statement or the comment /* Fall through */, as shown in the

following example:

/* a better example of programming */
switch (control) {
 case 0:

 printf("Reset\n");

 /* Fall through */
 case 1:
 printf("Initializing\n");

 break;

 case 2:
 printf("Working\n");

}

 TEAM FLY PRESENTS

 152

Because case 2 is last, it doesn't need a break statement. A break would cause the

program to skip to the end of the switch, and we're already there.

Suppose we modify the program slightly and add another case to the switch:

/* We have a little problem */

switch (control) {
 case 0:
 printf("Reset\n");

 /* Fall through */

 case 1:

 printf("Initializing\n");
 break;

 case 2:

 printf("Working\n");
 case 3:

 printf("Closing down\n");
}

Now when control == 2, the program prints:

Working

Closing down

This result is an unpleasant surprise. The problem is caused by the fact that case 2

is no longer the last case. We fall through. (Unintentionally—otherwise, we would
have included a /* Fall through */ comment.) A break is now necessary. If we

always put in a break statement, we don't have to worry about whether or not it is

really needed.

/* Almost there */

switch (control) {

 case 0:
 printf("Reset\n");
 /* Fall through */

 case 1:

 printf("Initializing\n");
 break;

 case 2:
 printf("Working\n");
 break;

}

 TEAM FLY PRESENTS

 153

Finally, we ask the question: what happens when control == 5? In this case,

because no matching case or default clause exists, the entire switch statement is

skipped.

In this example, the programmer did not include a default statement because

control will never be anything but 0, 1, or 2. However, variables can get assigned

strange values, so we need a little more defensive programming, as shown in the

following example:

/* The final version */

switch (control) {

 case 0:
 printf("Reset\n");

 /* Fall through */

 case 1:
 printf("Initializing\n");

 break;
 case 2:
 printf("Working\n");

 break;

 default:

 printf(
 "Internal error, control value (%d) impossible\n",

 control);

 break;
}

Although a default is not required, it should be put in every switch. Even though

the default may be:

default:

 /* Do nothing */

 break;

it should be included. This method indicates, at the very least, that you want to

ignore out-o f-range data.

8.3 switch, break, and continue

The break statement has two uses. Used inside a switch , break causes the

program to go to the end of the switch. Inside a for or while loop, break causes

a loop exit. The continue statement is valid only inside a loop. Continue will cause

the program to go to the top of the loop. Figure 8-2 illu strates both continue and

break inside a switch statement.

 TEAM FLY PRESENTS

 154

The program in Figure 8 -2 is designed to convert an integer with a number of

different formats into different bases. If you want to know the value of an octal

number, you would enter o (for octal) and the number. The command q is used to

quit the program. For example:

Enter conversion and number: o 55

Result is 45
Enter conversion and number: q

The help command is special because we don't want to print a number after the

command. After all, the result of help is a few lines of text, not a number. So a

continue is used inside the switch to start the loop at the beginning. Inside the

switch, the continue statement works on the loop, while the break statement

works on the switch.

There is one break outside the switch that isdesigned to let the user exit the

program. The control flow for this program can be seen in Figure 8 -2.

 TEAM FLY PRESENTS

 155

Figure 8-2. switch/continue

8.4 Answers

Answer 8 -1: The problem lies with the semicolon (;) at the end of the for

statement. The body of the for statement is between the closing parentheses and
the semicolon. In this case, the body does not exist. Even though the printf

statement is indented, it is not part of the for statement. The indentation is

misleading. The C compiler does not look at indentation. The program does nothing

until the expression:

celsius <= 100

 TEAM FLY PRESENTS

 156

becomes false (celsius == 101). Then the printf is executed.

Answer 8 -2: The problem is that we read the number into data[1] through

data[5]. In C, the range o f legal array indices is to array-size-1, or in this case, to

4. data[5] is illegal. When we use it, strange things happen; in this case, the

variable three_count is changed. The solution is to only use data[0] to data[4].

So, we need to change the sscanf line to read:

sscanf(line, "%d %d %d %d %d",

 &data[0], &data[1], &data[2], &data[3], &data[4]);

Also, the for loop must be changed from:

for (index = 1; index <= 5; ++index)

to:

for (index = 0; index < 5; ++index)

Experienced C programmers could look at our broken
for loop and immediately sense that something was
wrong. Two clues that something strange is going on
are 1) the for loop starts at 1, and 2) there is a <=
operator in the loop. Most C for loops start at and use
< for termination.

8.5 Programming Exercises

Exercise 8-1: Print a checker board (8-by-8 grid). Each square should be 5 -by-3

characters wide. A 2-b y-2 example follows:

+-----+-----+
| | |

| | |
| | |
+-----+-----+

| | |

| | |
| | |
+-----+-----+

Exercise 8-2: The total resistance of n resistors in parallel is:

 TEAM FLY PRESENTS

 157

Suppose we have a network of two resistors with the values 400 and 200 .

Then our equation would be:

Substituting in the value of the resistors we get:

So the total resistance of our two-resistor network is 133.3 .

Write a program to compute the total resistance for any number of parallel resistors.

Exercise 8-3: Write a program to average n numbers.

Exercise 8-4: Write a program to print out the multiplication table.

Exercise 8-5: Write a program that reads a character and prints out whether or not

it is a vowel or a consonant.

Exercise 8-6: Write a program that converts numbers to words. For example, 895

results in "eight nine five."

Exercise 8-7: The number 85 is pronounced "eighty-five," not "eight five." Modify

the previous program to handle the numbers through 100 so that all numbers come

out as we really say them. For example, 13 would be "thirteen" and 100 would be

"one hundred."

 TEAM FLY PRESENTS

 158

Chapter 9. Variable Scope and Functions

But in the gross and scope of my opinion

This bodes some strange eruption to our state.

—Shakespeare [Hamlet, Act 1, Scene 1]

So far, we have been using only global variables. In this chapter, we will learn about

other kinds of variables and how to use them. This chapter also tells you how to

divide your code into functions.

9.1 Scope and Class

All variables have two attributes: scope and class. The scope of a variable is the area

of the program in which the variable is valid. A global variable is valid everywhere

(hence the name global), so its scope is the whole program. A local variable has a

scope that is limited to the block in which it is declared and cannot be accessed

outside that block. A block is a section of code enclosed in curly braces ({}). Figure

9-1 shows the difference between local and global variables.

Figure 9-1. Local and global variables

You can declare a local variable with the same name as a global variable. Normally,

the scope of the variable count (first declaration) would be the whole program. The

declaration of a second local count takes precedence over the global declaration

inside the small block in which the local count is declared. In this block, the global

count is hidden . You can also nest local declarations and hide local variables. Figure

9-2 illustrates a hidden variable.

 TEAM FLY PRESENTS

 159

Figure 9-2. Hidden variables

The variable count is declared as both a local variable and a global variable.

Normally, the scope of count (global) is the entire program; however, when a

variable is declared inside a block, that instance of the variable becomes the active

one for the length of the block. The global count has been hidden by the local count

for the scope of this block. The shaded block in the figure shows where the scope of
count (global) is hidden.

A problem exists in that when you have the statement:

count = 1;

you cannot tell easily to which count you are referring. Is it the global count, the one

declared at the top of main, or the one in the middle of the while loop? You should
give these variables different names, like total_count , current_count , and

item_count.

The class of a variable may be either permanent or temporary. Global variables are

always permanent. They are created and initialized before the program starts and

rema in until it terminates. Temporary variables are allocated from a section of

memory called the stack at the beginning of the block. If you try to allocate too

many temporary variables, you will get a "Stack overflow" error. The space used by

the temporary variables is returned to the stack at the end of the block. Each time

the block is entered, the temporary variables are initialized.

 TEAM FLY PRESENTS

 160

The size of the stack depends on the system and compiler you are using. On many

UNIX systems, the program is automatically allocated the largest possible stack. On

other systems, a default stack size is allocated that can be changed by a compiler

switch. On MS-DOS/Windows systems, the stack space must be less than 65,536

bytes. This may seem like a lot of space; however, several large arrays can eat it up

quickly. You should consider making all large arrays permanent.

Local variables are temporary unless they are declared static.

static has an entirely different meaning when used
with global variables. It indicates that a variable is
local to the current file. See Chapter 18.

Example 9 -1 illustrates the difference between permanent and temporary variables.

We have chosen obvious names: temporary is a temporary variable, while
permanent is permanent. The variable temporary is initialized each time it is

created (at the beginning of the for statement block). The variable permanent is

initialized only once, at startup time.

In the loop, both variables are incremented. However, at the top of the loop,

temporary is initialized to one, as shown in Example 9-1.

Example 9-1. vars/vars.c

#include <stdio.h>

int main() {

 int counter; /* loop counter */
 for (counter = 0; counter < 3; ++counter) {

 int temporary = 1; /* A temporary variable */
 static int permanent = 1; /* A permanent variable */

 printf("Temporary %d Permanent %d\n",

 temporary, permanent);
 ++temporary;

 ++permanent;

 }
 return (0);

}

The output of this program is:

 TEAM FLY PRESENTS

 161

Temporary 1 Permanent 1
Temporary 1 Permanent 2

Temporary 1 Permanent 3

Temporary variables are sometimes referred to as
automatic variables because the space for them is
allocated automatically. The qualifier auto can be
used to denote a temporary variable; however, in
practice it is almost never used.

Table 9 -1 describes the different ways in which a variable can be declared.

Table 9-1. Declaration Modifiers

Declared Scope Class Initialized

Outside all blocks Global Permanent Once

static outside all blocks Global[1] Permanent Once

Inside a block Local Temporary Each time block is entered

static inside a block Local Permanent Once

[1] A static declaration made outside blocks indicates the variable is local to the file in which it is declared. (See

Chapter 18 for more information on programming with multiple files.)

9.2 Functions

Functions allow us to group commonly used code into a compact unit that can be
used repeatedly. We have already encountered one function, main. It is a special

function called at the beginning of the program. All other functions are directly or

indirectly called from main.

Suppose we want to write a program to compute the area of three triangles. We

could write out the formula three times, or we could create a function to do the work.

Each function should begin with a comment block containing the following:

Name

Name of the function

Description

Description of what the function does

 TEAM FLY PRESENTS

 162

Parameters

Description of each of the parameters to the function

Returns

Description of the return value of the function

Additional sections may be added such as file formats, references, or notes. Refer to

Chapter 3 , for other suggestions.

Our function to compute the area of a triangle begins with:

/***
 * triangle -- Computes area of a triangle. *

 * *

 * Parameters *
 * width -- Width of the triangle. *

 * height -- Height of the triangle. *
 * *
 * Returns *

 * area of the triangle. *

 ***/

The function proper begins with the line:

float triangle(float width, float height)

float is the function type. The two parameters are width and height. They are of

type float also.

C uses a form of parameter passing called "Call by value". When our procedure
triangle is called, with code such as:

triangle(1.3, 8.3);

C copies the value of the parameters (in this case 1.3 and 8.3) into the function's
parameters (width and height) and then starts executing the function's code. With

this form of parameter passing, a function cannot pass data back to the caller using

parameters.[2]

[2] This statement is not strictly true. We can trick C into passing information back through the use of pointers,

as we'll see in Chapter 13.

 TEAM FLY PRESENTS

 163

The function type is not required by C. If no function
type is declared, the type defaults to int. However, if
no type is provided, the maintainer cannot determine
if you wanted to use the default (int) or if you simply
forgot to declare a type. To avoid this confusion,
always declare the function type and do not use the
default.

The function computes the area with the statement:

area = width * height / 2.0;

What's left is to give the result to the caller. This step is done with the return

statement:

return (area);

Example 9 -2 shows our full triangle function.

Example 9-2. tri-sub/tri-sub.c

#include <stdio.h>
/**

 * triangle -- Computes area of a triangle. *

 * *
 * Parameters *
 * width -- Width of the triangle. *

 * height -- Height of the triangle. *

 * *
 * Returns *
 * area of the triangle. *

 **/
float triangle(float width, float height)

{

 float area; /* Area of the triangle */

 area = width * height / 2.0;

 return (area);

}

The line:

size = triangle(1.3, 8.3);

 TEAM FLY PRESENTS

 164

is a call to the function triangle. C assigns 1.3 to the parameter width and 8.3 to

height.

If functions are the rooms of our building, then parameters are the doors between

the rooms. In this case, the value 1.3 is going through the door marked width.

Parameters' doors are one way. Things can go in, but they can't go out. The return

statement is how we get data out of the function. In our triangle example, the

function assigns the local variable area the value 5.4, then executes the statement

return (area);.

The return value of this function is 5.4, so our statement:

size = triangle (1.3, 8.3)

assigns size the value 5.4.

Example 9 -3 computes the area of three triangles.

Example 9-3. tri-prog/tri-prog.c

[File: tri-sub/tri-prog.c]

#include <stdio.h>

/**

 * triangle -- Computes area of a triangle. *
 * *

 * Parameters *

 * width -- Width of the triangle. *
 * height -- Height of the triangle. *

 * *
 * Returns *

 * area of the triangle. *
 **/

float triangle(float width, float height)

{
 float area; /* Area of the triangle */

 area = width * height / 2.0;
 return (area);

}

int main()
{

 TEAM FLY PRESENTS

 165

 printf("Triangle #1 %f\n", triangle(1.3, 8.3));
 printf("Triangle #2 %f\n", triangle(4.8, 9.8));

 printf("Triangle #3 %f\n", triangle(1.2, 2.0));
 return (0);
}

If we want to use a function before we define it, we must declare it just like a

variable to inform the compiler about the function. We use the declaration:

/* Compute a triangle */

float triangle (float width, float height);

for the triangle function. This declaration is called the function prototype.

The variable names are not required when declaring a function prototype. Our

prototype could have just as easily been written as:

float triangle(float, float);

However, we use the longer version because it gives the programmer additional
information, and it's easy to create prototypes using the editor's cut and paste

functions.

Strictly speaking, the prototypes are optional for some functions. If no prototype is

specifie d, the C compiler assumes the function returns an int and takes any number

of parameters. Omitting a prototype robs the C compiler of valuable information

that it can use to check function calls. Most compilers have a compile -time switch

that warns the programmer about function calls without prototypes.

9.3 Functions with No Parameters

A function can have any number of parameters, including none. But even when

using a function with no parameters, you still need the parentheses:

value = next_index();

Declaring a prototype for a function without parameters is a little tricky. You can't

use the statement:

int next_index();

because the C compiler will see the empty parentheses and assume that this is a

K&R-style function declaration. See Chapter 19, for details on this older style. The

keyword void is used to indicate an empty parameter list. So the prototype for our

next_index function is:

 TEAM FLY PRESENTS

 166

int next_index(void);

void is also used to indicate that a function does not return a value. (Void is similar

to the FORTRAN subroutine or PASCAL procedure.) For example, this function just

prints a result; it does not return a value:

void print_answer(int answer)
{
 if (answer < 0) {

 printf("Answer corrupt\n");

 return;

 }
 printf("The answer is %d\n", answer);

}

Question 9-1: Example 9 -4 should compute the length of a string.[3] Instead, it

insists that all strings are of length 0. Why? (Click here for the answer Section 9.6)

[3] This function performs the same function as the library function strlen .

Example 9-4. len/len.c

/**

 * Question: *

 * Why does this program always report the length *

 * of any string as 0? *
 * *

 * A sample "main" has been provided. It will ask *

 * for a string and then print the length. *
 **/

#include <stdio.h>

/**

 * length -- Computes the length of a string. *

 * *

 * Parameters *
 * string -- The string whose length we want. *

 * *

 * Returns *
 * the length of the string. *

 **/
int length(char string[])
{

 int index; /* index into the string */

 TEAM FLY PRESENTS

 167

 /*

 * Loop until we reach the end of string character
 */
 for (index = 0; string[index] != '\0'; ++index)

 /* do nothing */

 return (index);
}

int main()

{
 char line[100]; /* Input line from user */

 while (1) {
 printf("Enter line:");

 fgets(line, sizeof(line), stdin);

 printf("Length (including newline) is: %d\n", length(line));
 }

}

9.4 Structured Programming

Computer scientists spend a great deal of time and effort studying how to program.
The result is that they come up with absolutely, positively, the best programming

methodology—a new one each month. Some of these systems include flow charts,

top-down programming, bottom-up programming, structured programming, and

object-oriented design (OOD).

Now that we have learned about functions, we can talk about using structured

programming techniques to design programs. These techniques are ways of

dividing up or structuring a program into small, well -defined functions. They make

the program easy to write and easy to understand. I don't claim that this method is

the absolute best way to program. It happens to be the method that works best for

me. If another system works better for you, use it.

The first step in programming is to decide what you are going to do. This has already

been described in Chapter 7 . Next, decide how you are going to structure your data.

Finally, the coding phase begins. When writing a paper, you start with an outline of

each section in the paper described by a single s entence. The details will be filled in

later. Writing a program is a similar process. You start with an outline, and this
becomes your main function. The details can be hidden within other functions. For

example, Example 9-5 solves all the world's problems.

 TEAM FLY PRESENTS

 168

Example 9-5. Solve the World's Problems

int main()
{

 init();
 solve_problems();

 finish_up();
 return (0);

}

Of course, some of the details will have to be filled in later.

Start by writing the main function. It should be less than three pages long. If it

grows longer, consider splitting it up into two smaller, simpler functions. After the

main function is complete, you can start on the others.

This type of structured programming is called top-down programming. You start at

the top (main) and work your way down.

Another type of coding is called bottom -up programming. This method involves

writing the lowest-level function first, testing it, and then building on that working

set. I tend to use some bottom-up techniques when I'm working with a new
standard function that I haven't used before. I write a small function to make sure

that I really know how the function works, and then continue from there. This

approach is used in Chapter 7 to construct the calculator program.

So, in actual practice, both techniques are useful. A mostly top-down, partially

bottom-up technique results. Computer scientists have a term for this methodology:

chaos. The one rule you should follow in programming is "Use what works best."

9.5 Recursion

Recursion occurs when a function calls itself directly or indirectly. Some

programming functions, such as the factorial, lend themselves naturally to recursive

algorithms.

A recursive function must follow two basic rules:

• It must have an ending point.

• It must make the problem simpler.

A definition of factorial is:

fact(0) = 1

 TEAM FLY PRESENTS

 169

fact(n) = n * fact(n-1)

In C, this definition is:

int fact(int number)

{
 if (number == 0)
 return (1);

 /* else */

 return (number * fact(number-1));

}

This definition satisfies our two rules. First, it has a definite ending point (when

number == 0). Second, it simplifies the problem because the calculation of

fact(number-1) is simpler than fact(number).

Factorial is legal only for number >= 0. But what happens if we try to compute

fact(-3)? The program will abort with a stack overflow or similar message.

fact(-3) calls fact(-4), which calls fact(-5), etc. No ending point exists. This

error is referred to as an infinite recursion error.

Many things that we do iteratively can be done recursively—for example, summing

up the elements of an array. We define a function to add eleme nts m-n of an array

as follows:

• If we have only one element, then the sum is simple.

• Otherwise, we use the sum of the first element and the sum of the rest.

In C, this function is:

int sum(int first, int last, int array[])

{
 if (first == last)
 return (array[first]);

 /* else */

 return (array[first] + sum(first+1, last, array));

}

For example:

Sum(1 8 3 2) =
 1 + Sum(8 3 2) =

 8 + Sum(3 2) =

 3 + Sum (2) =

 TEAM FLY PRESENTS

 170

 2
 3 + 2 = 5

 8 + 5 = 13
 1 + 13 = 14
Answer = 14

9.6 Answers

Answer 9 -1: The programmer went to a lot of trouble to explain that the for loop
did nothing (except increment the index). However, there is no semicolon (;) at the

end of the for. C keeps on reading until it sees a statement (in this case
return(index)), and then puts that statement in the for loop. Properly done, this

program should look like Example 9-6.

Example 9-6. len2/len2.c

#include <stdio.h>

int length(char string[])

{
 int index; /* index into the string */

 /*

 * Loop until we reach the end-of-string character
 */
 for (index = 0; string[index] != '\0'; ++index)

 continue; /* do nothing */
 return (index);

}

int main()
{

 char line[100]; /* Input line from user */

 while (1) {
 printf("Enter line:");

 fgets(line, sizeof(line), stdin);

 printf("Length (including newline) is: %d\n", length(line));

 }
}

 TEAM FLY PRESENTS

 171

9.7 Programming Exercises

Exercise 9-1: Write a procedure that counts the number of words in a string. (Your
documentation should describe exactly how you define a word.) Write a program to

test your new procedure.

Exercise 9-2: Write a function begins(string1,string2) that returns true if

string1 begins string2. Write a program to test the function.

Exercise 9-3: Write a function count(number, array, length) that counts the

number of times number appears in array. The array has length e lements. The

function should be recursive. Write a test program to go with the function.

Exercise 9 -4: Write a function that takes a character array and returns a primitive

hash code by adding up the value of each character in the array.

Exercise 9-5: Write a function that returns the maximum value of an array of

numbers.

Exercise 9 -6: Write a function that scans a character array for the character - and

replaces it with _.

 TEAM FLY PRESENTS

 172

Chapter 10. C Preprocessor

The speech of man is like embroidered tapestries, since like them this has to be

extended in order to display its patterns, but when it is rolled up it conceals and

distorts them.

—Themistocles

In the early days, when C was still being developed, it soon became apparent that

C needed a facility for handling named constants, macros, and include files. The

solution was to create a preprocessor that recognized these constructs in the

programs before they were passed to the C compiler. The preprocessor is nothing

more than a specialized text editor. Its syntax is completely different from that of C,

and it has no understanding of C constructs.

The preprocessor was very useful, and soon it was merged into the main C compiler.

On some systems, like UNIX, the preprocessor is still a separate program,

automatically execu ted by the compiler wrapper cc. Some of the new compilers, like

Turbo C++ and Microsoft Visual C++, have the preprocessor built in.

10.1 #define Statement

Example 10-1 init ializes two arrays (data and twice). Each array contains 10

elements. Suppose we wanted to change the program to use 20 elements. Then we

would have to change the array size (two places) and the index limit (one place).

Aside from being a lot of work, multiple changes can lead to errors.

Example 10-1. init2a/init2a.c

int data[10]; /* some data */

int twice[10]; /* twice some data */

int main()
{

 int index; /* index into the data */

 for (index = 0; index < 10; ++index) {

 data[index] = index;
 twice[index] = index * 2;

 }

 return (0);
}

 TEAM FLY PRESENTS

 173

We would like to be able to write a generic program in which we can define a

constant for the size of the array, and then let C adjust the dimensions of our two

arrays. By using the #define statement, we can do just that. Example 10-2 is a new

version of Example 10-1.

Example 10-2. init2b/init2b.c

#define SIZE 20 /* work on 20 elements */

int data[SIZE]; /* some data */

int twice[SIZE]; /* twice some data */

int main()

{
 int index; /* index into the data */

 for (index = 0; index < SIZE; ++index) {
 data[index] = index;

 twice[index] = index * 2;
 }

 return (0);
}

The line #define SIZE 20 acts as a command to a special text editor to globally
change SIZE to 20. This line takes the drudgery and guesswork out of making

changes.

All preprocessor commands begin with a hash mark (#) in column one. Although C

is free format, the preprocessor is not, and it depends on the hash mark's being in

the first column. As we will see, the preprocessor knows nothing about C. It can be

(and is) used to edit things other than C programs.

You can easily forget that the preprocessor and the C
compile use different syntaxes. One of the most
common errors new programmers make is to try to
use C constructs in a preprocessor directive.

A preprocessor directive terminates at the end -of-line. This format is different from
that of C, where a semicolon (;) is used to end a statement. Putting a semicolon at

the end of a preprocessor directive can lead to unexpected results. A line may be

continued by putting a backslash (\) at the end.

 TEAM FLY PRESENTS

 174

The simplest use of the preprocessor is to define a replacement macro. For example,

the command:

#define FOO bar

causes the preprocessor to re place the word "FOO" with the word "bar" everywhere

"FOO" occurs. It is common programming practice to use all uppercase letters for

macro names. This practice makes telling the difference between a variable (all

lowercase) and a macro (all uppercase) very easy.

The general form of a simple define statement is:

#define name substitute-text

where name can be any valid C identifier and substitute-text can be anything. You

could use the following definition:

#define FOR_ALL for(i = 0; i < ARRAY_SIZE; i++)

and use it like this:

/*

 * Clear the array
 */
FOR_ALL {

 data[i] = 0;

}

However, defining macros in this manner is considered bad programming practice.

Such definitions tend to obscure the basic control flow of the program. In this

example, a programmer who wants to know what the loop does would have to
search the beginning of the program for the definition of FOR_ALL.

An even worse practice is to define macros that do large-scale replacement of basic

C programming constructs. For example, you can define the following:

#define BEGIN {

#define END }

. . .
 if (index == 0)

 BEGIN
 printf("Starting\n");
 END

The problem is that you are no longer programming in C, but in a half-C/half-Pascal

mongrel. You can find the extremes to which such mimicry can be taken in the

 TEAM FLY PRESENTS

 175

Bourne shell, which uses preprocessor directives to define a language that looks a

lot like Algol-68.

Here's a sample section of code:

IF (x GREATER_THAN 37) OR (Y LESS_THAN 83) THEN

 CASE value OF
 SELECT 1:
 start();

 SELECT 3:

 backspace();

 OTHERWISE:
 error();

 ESAC

FI

Most programmers encountering this program curse at first, and then use the editor

to turn the source back into a reasonable version of C.

The preprocessor can cause unexpected problems because it does not check for

correct C syntax. For example, Example 10-3 generates an error on line 11.

Example 10-3. big/big.c

1 #define BIG_NUMBER 10 ** 10

 2
 3 main()

 4 {

 5 /* index for our calculations */
 6 int index;

 7
 8 index = 0;
 9

10 /* syntax error on next line */

11 while (index < BIG_NUMBER) {

12 index = index * 8;
13 }

14 return (0);

15 }

The problem is in the #define statement on line 1, but the error message points to

line 11. The definition in line 1 causes the preprocessor to expand line 11 to look

like:

 TEAM FLY PRESENTS

 176

while (index < 10 ** 10)

Because ** is an illegal operator, this expansion generates a syntax error.

Question 10-1: Example 10-4 generates the answer 47 instead of the expected

answer 144. Why? (See the hint below.)

Example 10-4. first/first.c

#include <stdio.h>

#define FIRST_PART 7

#define LAST_PART 5
#define ALL_PARTS FIRST_PART + LAST_PART

int main() {

 printf("The square of all the parts is %d\n",

 ALL_PARTS * ALL_PARTS);
 return (0);

}

Hint: The answer may not be readily apparent. Luckily, C allows you to run your
program through the preprocessor and view the output. In UNIX, the command:

% cc -E prog.c

will send the output of the preprocessor to the standard output.

In MS-DOS/Windows, the command:

C:> cpp prog.c

will do the same thing.

Running this program through the preprocessor gives us:

1 "first.c"
1 "/usr/include/stdio.h" 1

... listing of data in include file <stdio.h>

2 "first.c" 2

main() {

 TEAM FLY PRESENTS

 177

 printf("The square of all the parts is %d\n",
 7 + 5 * 7 + 5);

 return (0);
}

(Click here for the answer Section 10.7 .)

Question 10-2: Example 10-5 generates a warning that counter is used before it

is set. This warning is a surprise to us because the for loop should set it. We also get

a very strange warning, "null effect," for lin e 11.

Example 10-5. max/max.c

1 /* warning, spacing is VERY important */

 2
 3 #include <stdio.h>

 4

 5 #define MAX =10
 6

 7 int main()

 8 {
 9 int counter;

10
11 for (counter =MAX; counter > 0; --counter)

12 printf("Hi there\n");
13

14 return (0);

15 }

Hint: Take a look at the preprocessor output. (Click here for the answer Section

10.7)

Question 10-3: Example 10-6 computes the wrong value for size . Why? (Click

here for the answer Section 10.7)

Example 10-6. size/size.c

#include <stdio.h>

#define SIZE 10;

#define FUDGE SIZE -2;

int main()
{

 TEAM FLY PRESENTS

 178

 int size;/* size to really use */

 size = FUDGE;
 printf("Size is %d\n", size);
 return (0);

}

Question 10-4: Example 10-7 is supposed to print the message "Fatal Error:
Abort" and exit when it receives bad data. But when it gets good data, it exits. Why?

(Click here for the answer Section 10.7)

Example 10-7. die/die.c

1 #include <stdio.h>
 2 #include <stdlib.h>

 3

 4 #define DIE \

 5 fprintf(stderr, "Fatal Error:Abort\n");exit(8);
 6

 7 int main() {

 8 /* a random value for testing */
 9 int value;

10
11 value = 1;
12 if (value < 0)

13 DIE;

14

15 printf("We did not die\n");
16 return (0);

17 }

10.1.1 #define vs. const

The const keyword is relatively new. Before const, #define was the only keyword
available to define constants, so most older code uses #define directives.

However,the useof const is preferred over #define for several reasons. First of all,

C checks the syntax of const statements immediately. The #define directive is not

checked until the macro is used. Also const use s C syntax, while the #define has

a syntax all its own. Finally, const follows normal C scope rules, while

constantsdefined by a #define directive continue on forever.

So, in most cases, a const statement is preferred over #define . Here are two ways

of defining the same constant:

 TEAM FLY PRESENTS

 179

#define MAX 10 /* Define a value using the preprocessor */
 /* (This definition can easily cause problems) */

const int MAX = 10; /* Define a C constant integer */
 /* (safer) */

Some compilers will not allow you to use a constant
to define the size of an array. They should, but they
have not caught up to the standard yet.

The #define directive can only define simple constants. The const statement can

define almost any type of C constant, including things like structure classes. For

example:

struct box {
 int width, height; /* Dimensions of the box in pixels */

};
const box pink_box ={1.0, 4.5};/* Size of a pink box to be used for input

*/

The #define directive is, however, essential for things like conditional compilation

and other specialized uses.

10.2 Conditional Compilation

One of the problems programmers have is writing code that can work on many

different machines. In theory, C code is portable; in actual practice, different

operating systems have little quirks that must be accounted for. For example, this

book covers both the MS-DOS/Windows compiler and UNIX C. Although they are
almost the same, there are differences, especially when you must access the more

advanced features of the operating system.

Another portability problem is caused by the fact that the standard leaves some of
the features of the language up to the implementers. For example, the size of an

integer is implementation dependent.

The preprocessor, through the use of conditional compilation, allows the

programmer great flexibility in changing the code generated. Suppose we want to

put debugging code in the program while we are working on it, and then remove it

in the production version. We could do so by including the code in a #ifdef/#endif

section:

#ifdef DEBUG

 printf("In compute_hash, value %d hash %d\n", value, hash);

 TEAM FLY PRESENTS

 180

#endif /* DEBUG */

You do not have to put the /* DEBUG */ after the

#endif; however, the entry is very useful as a

comment.

If the beginning of the program contains the directive:

#define DEBUG /* Turn debugging on */

the printf will be included. If the program contains the directive:

#undef DEBUG /* Turn debugging off */

the printf will be omitted.

Strictly speaking, the #undef DEBUG is unnecessary. If there is no #define DEBUG

statement, then DEBUG is undefined. The #undef DEBUG statement is used to indicate

explicitly that DEBUG is used for conditional compilation and is now turned off.

The directive #ifndef will cause the code to be compiled if the symbol is not

defined:

#ifndef DEBUG

 printf("Production code, no debugging enabled\n");

#endif /* DEBUG */

The #else directive reverses the sense of the conditional. For example:

#ifdef DEBUG
 printf("Test version. Debugging is on\n");

#else DEBUG

 printf("Production version\n");

#endif /* DEBUG */

A programmer may wish to remove a section of code temporarily. One common

method is to comment out the code by enclosing it in /* */. This method can cause

problems, as shown by the following example:

1: /***** Comment out this section

2: section_report();
3: /* Handle the end of section stuff */

4: dump_table();

 TEAM FLY PRESENTS

 181

5: **** end of commented out section */

This code generates a syntax error for the fifth line. Why?

A better method is to use the #ifdef construct to remove the code:

#ifdef UNDEF

 section_report();

 /* Handle the end of section stuff */
 dump_table();

#endif /* UNDEF */

(Of course, the code will be included if anyone defines the symbol UNDEF ; however,

anyone who does so should be shot.)

The compiler switch -Dsymbol allows symbols to be defined on the command line.

For example, the command:

% cc -DDEBUG -g -o prog prog.c

compiles the program prog.c and includes all the code in between #ifdef DEBUG

and #endif DEBUG even though there is no #define DEBUG in the program.

The general form of the option is -Dsymbol or -Dsymbol=value. For example, the

following sets MAX to 10:

% cc -DMAX=10 -o prog prog.c

Notice that the programmer can override the command-line options with directives

in the program. For example, the directive:

#undef DEBUG

will result in DEBUG being undefined whether or not you use -DDEBUG.

Most C compilers automatically define some system-dependent symbols. For

example, Turbo C++ defines the symbols _ _TURBOC_ _ and _ _MSDOS_ _. The ANSI

Standard compiler defines the symbol _ _STDC_ _. Most UNIX compilers define a

name for the system (i.e., SUN, VAX, Celerity, etc.); however, they are rarely
documented. The symbol _ _unix_ _ is always defined for all UNIX machines.

10.3 include Files

The #include directive allows the program to use source code from another file.

 TEAM FLY PRESENTS

 182

For example, we have been using the directive:

#include <stdio.h>

in our programs. This directive tells the preprocessor to take the file stdio.h

(Standard I/O) and insert it in the progra m. Files that are included in other

programs are called header files . (Most #include directives come at the head of the
program.) The angle brackets (<>) indicate that the file is a standard header file. On

UNIX, these files are located in /usr/include. On MS-DOS/Windows, they are located

in whatever directory was specified at the time the compiler was installed.

Standard include files define data structures and macros used by library routines.
For example, printf is a library routine that prints data on the standard output. The

FILE structure used by printf and its related routines is defined in stdio.h .

Sometimes the programmer may want to write her own set of include files. Local

include files are particularly useful for storing constants and data structures when a

program spans several files. They are especially useful for information passing when

a team of programmers is working on a single project. (See Chapter 18.)

Local include files may be specified by using double quotes ("") around the file

name, for example:

#include "defs.h"

The filename defs.h can be any valid filename. This specification can be a simple

file, defs.h; a relative path, ../../data.h; or an absolute path,

/root/include/const.h. (On MS-DOS/Windows, you should use backslash (\)

instead of slash (/) as a directory separator.)

Absolute pathnames should be avoided in #include
directives because they make the program very
nonportable.

Include files may be nested, and this feature can cause problems. Suppose you

define several useful constants in the file const.h. If the files data.h and io.h both

include const.h and you put the following in your program:

#include "data.h"

#include "io.h"

you will generate errors because the preprocessor will set the definitions in const.h

twice. Defining a constant twice is not a fatal error; however, defining a data

structure or union twice is a fatal error and must be avoided.

 TEAM FLY PRESENTS

 183

One way around this problem is to have const.h check to see if it has already been

included and does not define any symbol that has already been defined. The

directive #ifndef symbol is true if the symbol is not defined. The directive is the

reverse of #ifdef.

Look at the following code:

#ifndef _CONST_H_INCLUDED_
/* define constants */

#define _CONST_H_INCLUDED_

#endif /* _CONST_H_INCLUDED_ */

When const.h is included, it defines the symbol _CONST_H_INCLUDED_ . If that

symbol is already defined (because the file was included earlier), the #ifndef

conditional hides all defines so they don't cause trouble.

Anything can be put in a header file. This includes not
only definitions and types, but also code, initialization
data, and yesterday's lunch menu. However, good
programming practices dictate that you should limit
header files to types and definitions only.

10.4 Parameterized Macros

So far, we have discussed only simple #defines or macros. But macros can take

parameters. The following macro will compute the square of a number:

#define SQR(x) ((x) * (x)) /* Square a number */

No spaces must exist between the macro name (SQR)

and the parenthesis.

When used, the macro will replace x by the text of the following argument:

SQR(5) expands to ((5) * (5))

Always put parentheses, (), around the parameters of a macro. Example 10-8

illustrates the problems that can occur if this rule is not followed.

 TEAM FLY PRESENTS

 184

Example 10-8. sqr/sqr.c

#include <stdio.h>
#define SQR(x) (x * x)

int main()

{
 int counter; /* counter for loop */

 for (counter = 0; counter < 5; ++counter) {
 printf("x %d, x squared %d\n",

 counter+1, SQR(counter+1));

 }
 return (0);

}

Question 10-5: What does Example 10-8 output? Try running it on your machine.

Why did it output what it did? Try checking the output of the preprocessor. (Click

here for the answer Section 10.7)

The keep-it-simple system of programming tells us to use the increment (++) and

decrement (--) operators only on line, by themselves. When used in a macro

parameter, they can lead to unexpected results, as illustrated by Example 10-9.

Example 10-9. sqr-i/sqr-i.c

#include <stdio.h>
#define SQR(x) ((x) * (x))

int main()

{
 int counter; /* counter for loop */

 counter = 0;

 while (counter < 5)

 printf("x %d square %d\n", counter, SQR(++counter));

 return (0);
}

Question 10-6: Why will Example 10-9 not produce the expected output? By how

much will the counter go up each time? (Click here for the answer Section 10.7)

 TEAM FLY PRESENTS

 185

Question 10-7: Example 10-10 tells us that we have an undefined variable number,

but our only variable name is counter . (Click here for the answer Section 10.7)

Example 10-10. rec/rec.c

#include <stdio.h>

#define RECIPROCAL (number) (1.0 / (number))

int main()
{

 float counter; /* Counter for our table */

 for (counter = 1.0; counter < 10.0;

 counter += 1.0) {

 printf("1/%f = %f\n",

 counter, RECIPROCAL(counter));
 }

 return (0);
}

10.5 Advanced Features

This book does not cover the complete list of C preprocessor directives. Among the

more advanced features are an advanced form of the #if directive for conditional

compilations, and the #pragma directive for inserting compiler-dependent

commands into a file. See your C reference manual for more information about

these features.

10.6 Summary

The C preprocessor is a very useful part of the C language. It has a completely

different look and feel, though, and it must be treated apart from the main C

compiler.

Problems in macro definitions often do not show up where the macro is defined, but

result in errors much further down in the program. By following a few simple rules,

you can decrease the chances of having problems:

• Put parentheses () around everything. In particular, they should enclose

#define constants and macro parameters.

 TEAM FLY PRESENTS

 186

• When defining a macro with more than one statement, enclose the code in
curly braces ({}).

• The preprocessor is not C. Don't use = and ;. Finally, if you got this far, be

glad that the worst is over.

10.7 Answers

Answer 10-1: After the program has been run through the preprocessor, the
printf statement is expanded to look like:

printf("The square of all the parts is %d\n",
 7 + 5 * 7 + 5);

The equation 7 + 5 * 7 + 5 evaluates to 47. Put parentheses around all expressions

in macros. If you change the definition of ALL_PARTS to:

#define ALL_PARTS (FIRST_PART + LAST_PART)

the program will execute correctly.

Answer 10-2: The preprocessor is a very simple -minded program. When it defines

a macro, everything past the identifier is part of the macro. In this case, the
definition of MAX is literally = 10. When the for statement is expanded, the result is:

for (counter==10; counter > 0; --counter)

C allows you to compute a result and throw it away. (This will generate a null- effect
warning in some compilers.) For this statement, the program checks to see if

counter is 10, and then discards the answer. Removing the = from the definition will

correct the problem.

Answer 10-3: As with the previous problem, the preprocessor does not respect C

syntax conventions. In this case, the programmer used a semicolon (;) to end the

statement, but the preprocessor included it as part of the definition for SIZE. The

assignment statement for SIZE, when expanded, is:

size = 10; -2;;

The two semicolons at the end do not hurt us, but the one in the middle is the killer.

This line tells C to do two things:

• Assign 10 to size.
• Compute the value -2 and throw it away (this code results in the null -effect

warning). Removing the semicolons will fix the problem.

 TEAM FLY PRESENTS

 187

Answer 10-4: The output of the preprocessor looks like:

void exit();

main() {

 int value;

 value = 1;
 if (value < 0)
 printf("Fatal Error:Abort\n");exit(8);

 printf("We did not die\n");

 return (0);
}

The problem is that two statements follow the if line. Normally, they would be put

on two lines. Let's look at this program properly indented:

#include <stdio.h>

#include <stdlib.h>

main() {

 int value; /* a random value for testing */

 value = 1;

 if (value < 0)

 printf("Fatal Error:Abort\n");

 exit(8);

 printf("We did not die\n");
 return (0);

}

With this new format, we can easily determine why we always exit. The fact that

there were two statements after the if was hidden from us by using a single

preprocessor macro.

The cure for this problem is to put curly braces ({}) around all multistatement

macros; for example:

#define DIE {printf("Fatal Error:Abort\n");exit(8);}

Answer 10-5: The program prints:

x 1 x squared 1
x 2 x squared 3

 TEAM FLY PRESENTS

 188

x 3 x squared 5
x 4 x squared 7

x 5 x squared 9

The problem is with the SQR(counter+1) expression. Expanding this expression we

get:

SQR(counter+1)
(counter + 1 * counter + 1)

So our SQR macro does not work. Putting parentheses around the parameters

solves this problem:

#define SQR(x) ((x) * (x))

Answer 10-6: The answer is that the counter is incremented by two each time
through the loop. This incrementation occurs because the macro call:

SQR(++counter)

is expanded to:

((++counter) * (++counter))

Answer 10-7: The only difference between a parameterized macro and one

without parameters is the parenthesis immediately following the macro name. In

this case, a space follows the definition of RECIPROCAL, so the macro is not

parameterized. Instead, it is a simple text-replacement macro that will replace
RECIPROCAL with:

(number) (1.0 / number)

Removing the space between RECIPROCAL and (number) will correct the problem.

10.8 Programming Exercises

Exercise 10-1: Write a macro that returns TRUE if its parameter is divisible by 10

and FALSE otherwise.

Exercise 10-2: Write a macro is_digit that returns TRUE if its argument is a

decimal digit.

Exercise 10-3: Write a second macro is_hex that returns true if its argument is a

hex digit (0-9, A-F, a-f). The second macro should reference the first.

 TEAM FLY PRESENTS

 189

Exercise 10-4: Write a preprocessor macro that swaps two inte gers. (For the real

hacker, write one that does not use a temporary variable declared outside the

macro.)

 TEAM FLY PRESENTS

 190

Chapter 11. Bit Operations

To be or not to be, that is the question

—— Shakespeare, on boolean algebra [Hamlet, Act 3, Scene 1]

This chapter discusses bit-oriented operations. A bit is the smallest unit of

information. Normally, it is represented by the values 1 and 0. (Other

representations include on/off, true/false, and yes/no.) Bit manipulations are used

to control the machine at the lowest level. They allow the programmer to get under

the hood of the machine. Many higher-level programs will never need bit operations.

Low-level coding, like writing device drivers or pixel-level graphic programming,

requires bit operations.

Eight bits together form a byte, represented by the C data type char.[1]

[1] Technically speaking, the C standard does not specify the number of bits in a character. However, on every

machine I know of, a C character is 8 bits.

A byte might contain the following bits:

01100100

This bit structure can also be written as the hexadecimal number 0x64. (C uses the

prefix "0x" to indicate a hexadecimal (base 16) number.) Hexadecimal is convenient

for representing binary data because each hexadecimal digit represents 4 binary

bits. Table 11-1 gives the hexadecimal-to-binary conversion:

Table 11-1. Hexadecimal and Binary

Hexadecimal Binary Hexadecimal Binary

0 0000 8 1000

1 0001 9 1001

2 0010 A 1010

3 0011 B 1011

4 0100 C 1100

5 0101 D 1101

6 0110 E 1110

7 0111 F 1111

So the hexadecimal number 0xAF represents the binary number 10101111.

 TEAM FLY PRESENTS

 191

The printf format for hexadecimal is %x; for octal the format is %o . So:

int number = 0xAF;

printf("Number is %x %d %o\n", number, number, number);

prints:

af 175 257

Many novice programmers get a number confused with its representation . They ask

questions like, "How does a number know if it's a hexadecimal number or decimal?"

To illustrate the difference between these two concepts, consider a bag of marbles

as illustrated in Figure 11-1.

Figure 11-1. A bag of marbles

This bag contains 17 marbles. But is that hexadecimal 0x11, decimal 17, octal 021,
or binary 10001? The answer is that the number is 17 no matter what. How we

choose to represent it (octal, decimal, hex, or binary) is up to us. The marbles don't

care how we count them.

11.1 Bit Operators

Bit operators allow the programmer to work on individual bits. For example, a short
integer holds 16 bits (on most machines). The bit operators treat each bit as

independent. By contrast, an add operator treats the 16 bits as a single 16-bit

number.

Bit operators allow the programmer to set, clear, test, and perform other operations

on bits. The bit operators are listed in Table 11-2.

 TEAM FLY PRESENTS

 192

Table 11-2. Bitwise Operators

Operator Meaning

& Bitwise and

| Bitwise or

^ Bitwise exclusive or

~ Complement

<< Shift left

>> Shift right

These operators work on any integer or character data type.

11.2 The and Operator (&)

The and operator compares two bits. If they both are one, the result is one. The

results of the and operator are defined according to Table 11-3.

Table 11-3. and Operator

Bit1 Bit2 Bit1 & Bit2

0 0 0

0 1 0

1 0 0

1 1 1

When two eight-bit variables (char variables) are "anded" together, the and

operator works on each bit independently. The following program segment

illustrates this operation:

int c1, c2;

c1 = 0x45;
c2 = 0x71;
printf("Result of %x & %x = %x\n", c1, c2, (c1 & c2));

The output of this program is:

Result of 45 & 71 = 41

 TEAM FLY PRESENTS

 193

This is because:

 c1 = 0x45 binary 01000101

& c2 = 0x71 binary 01110001

= 0x41 binary 01000001

The bitwise and (&) is similar to the logical and (&&). In the logical and, if both
operands are true (nonzero), the result is true (1). In the bitwise and (&), if the

corresponding bits of both the operands are true (ones), then the corresponding bits

of the results are true (ones). So, the bitwise and (&) works on each bit

independently while the logical and (&&) works on the operands as a whole.

However & and && are different operators, as Example 11-1 illustrates.

Example 11-1. and/and.c

#include <stdio.h>

int main()
{

 int i1, i2; /* two random integers */

 i1 = 4;

 i2 = 2;

 /* Nice way of writing the conditional */

 if ((i1 != 0) && (i2 != 0))
 printf("Both are not zero\n");

 /* Shorthand way of doing the same thing */

 /* Correct C code, but rotten style */

 if (i1 && i2)
 printf("Both are not zero\n");

 /* Incorrect use of bitwise and resulting in an error */
 if (i1 & i2)

 printf("Both are not zero\n");

 return (0);
}

Question: Why does test #3 fail to print Both are not zero?

Answer: The operator & is a bitwise and. The result of the bitwise and is zero.

 TEAM FLY PRESENTS

 194

 i1=4 00000100
 i2=2 00000010

& 00000000

The result of the bitwise and is 0, and the conditional is false. If the programmer had

used the first form:

if ((i1 != 0) && (i2 != 0))

and made the mistake of using & instead of &&:

if ((i1 != 0) & (i2 != 0))

the program would still have executed correctly.

(i1 != 0) is true (result = 1)

(i2 != 0) is true (result = 1)

1 bitwise and 1 is 1 so the expression is true.[2]

[2] Soon after I discovered the bug illustrated by this program, I told my office mate, "I now understand the

difference between and and and and," and he understood me. How we understand language has always

fascinated me, and the fact that I could utter such a sentence and have someone understand it without trouble

amazed me.

You can use the bitwise and operator to test if a number is even or odd. In base 2,

the last digit of all even numbers is zero and the last digit of all odd numbers is one.

The following function uses the bitwise and to pick off this last digit. If it is zero (an

even number), the result of the function is true.

int even(const int value)

{
 return ((value & 1) == 0);

}

This procedure uses a programming technique known
by the technical name "a cute trick." Normally, cute
tricks should be avoided whenever possible. Better
programming practice would be to use the modulus
(%) operator in this case. The only reason we've used
the and operator (&) is because we are discussing it
in this section.

 TEAM FLY PRESENTS

 195

11.3 Bitwise or (|)

The inclusive or operator (also known as just the or operator) compares its two
operands and if one or the other bit is a one, the result is a one. Table 11-4 lists the

truth table for the or operator.

Table 11-4. or Operator

Bit1 Bit2 Bit1 | Bit2

0 0 0

0 1 1

1 0 1

1 1 1

On a byte, this would be:

 i1=0x47 01000111

| i2=0x53 01010011

= 0x57 01010111

11.4 The Bitwise Exclusive or (^)

The exclusive or (also known as xor) operator results in a one when either of its two

operands is a one, but not both. The truth table for the exclusive or operator is listed
in Table 11-5.

Table 11-5. Exclusive or

Bit1 Bit2 Bit1 ^ Bit2

0 0 0

0 1 1

1 0 1

1 1 0

On a byte this would be:

 TEAM FLY PRESENTS

 196

 i1=0x47 01000111
^ i2=0x53 01010011

= 0x14 00010100

11.5 The Ones Complement Operator (Not)

(~)

The not operator (also ca lled the invert operator, or bit flip) is a unary operator that

returns the inverse of its operand as shown in Table 11-6.

Table 11-6. not Operator

Bit ~Bit

0 1

1 0

On a byte, this is:

c= 0x45 01000101

~c= 0xBA 10111010

11.6 The Left- and Right-Shift Operators (<<,

>>)

The left -shift operator moves the data to the left a specified number of bits. Any bits

that are shifted out the left side disappear. New bits coming in from the right are

zeros. The right shift does the same thing in the other direction. For example:

 c=0x1C 00011100

c << 1 c=0x38 00111000

c >> 2 c=0x07 00000111

Shifting left by one (x << 1) is the same as multiplying by 2 (x * 2). Shifting left by

two (x << 2) is the same as multiplying by 4 (x * 4 , or x * 22). You can see a pattern

forming here. Shifting left by n places is the same as multiplying by 2n. Why shift

instead of multiply? Shifting is faster than multiplication, so:

 TEAM FLY PRESENTS

 197

i = j << 3; /* Multiple j by 8 (2**3) */

is faster than:

i = j * 8;

Or it would be faster if compilers weren't smart enough to turn "multiply by power

of two" into "shift."

Many clever programmers use this trick to speed up their programs at the cost of

clarity. Don't you do it. The compiler is smart enough to perform the speedup

automatically. The result of putting in a shift gains you nothing at the expense of

clarity.

The left-shift operator multiplies; the right-shift operator divides. So:

q = i >> 2;

is the same as:

q = i / 4;

Again, this trick is clever but should not be used in modern code.

11.6.1 Right-Shift Details

Right shifts are particularly tricky. When a variable is shifted to the right, C needs to

fill the space on the left-hand side with something. For signed variables, C uses the
value of the sign bit. For unsigned variables, C uses zero. Table 11 -7 illustrates

some typical shifts.

Table 11-7. Right-Shift Examples

 signed char signed char unsigned char

Expression 9 >> 2 -8 >> 2 248 >> 2

Binary Value >> 2 0000 1010 >> 2 1111 1000 >> 2 1111 1000 >> 2

Result ??00 0010 ??11 1110 ??11 1110

Fill Sign Bit (0) Sign Bit (1)[3] Zero

Final Result (Binary) 0000 0010 1111 1110 0011 1110

Final Result (short int) 2 -2 62

 TEAM FLY PRESENTS

 198

[3] The ANSI standard specifies that right shifts may be arithmetic (sign bit fill) or logical (zero bit fill). Almost all

compilers use the arithmetic right shift.

11.7 Setting, Clearing, and Testing Bits

A character (char) contains eight bits. Each of these can be treated as a separate

flag.

Bit operations can be used to pack eight single-bit values in a single byte. For

example, suppose we are writing a low-level communications program. We are

going to store the characters in an 8k buffer for later use. With each character we

will also store a set of status flags. The flags are listed in Table 11-8.

Table 11-8. Communications Status Values

Name Description

ERROR True if any error is set.

FRAMING_ERROR A framing error occurred for this character.

PARITY_ERROR Character had the wrong parity.

CARRIER_LOST The carrier signal went down.

CHANNEL_DOWN Power was lost on the communication device.

We could store each of these flags in its own character variable. That format would

mean that for each character buffered, we would need five bytes of status storage.

For a large buffer, that storage adds up. If we instead assign each status flag its own

bit within an 8-bit status character, we cut our storage requirements down to

one-fifth of our original need.

We assign our flags the bit numbers listed in Table 11-9.

Table 11-9. Bit Assignments

Bit Name

0 ERROR

1 FRAMING_ERROR

2 PARITY_ERROR

3 CARRIER_LOST

4 CHANNEL_DOWN

 TEAM FLY PRESENTS

 199

Bits are numbered 76543210 by convention, as seen in Table 11 -9. In the Bit

numbers table, we have bits 4 and 1 set.

Bit numbers

7 6 5 4 3 2 1 0

0 0 0 1 0 0 1 0

The constants for each bit are defined in Table 11-10.

Table 11-10. Bit Values

Bit Binary value Hexadecimal constant

7 10000000 0x80

6 01000000 0x40

5 00100000 0x20

4 00010000 0x10

3 00001000 0x08

2 00000100 0x04

1 00000010 0x02

0 00000001 0x01

The definitions could be:

/* True if any error is set */
const int ERROR = 0x01;

/* A framing error occurred for this character */
const int FRAMING_ERROR = 0x02;

/* Character had the wrong parity */
const int PARITY_ERROR = 0x04;

/* The carrier signal went down */

const int CARRIER_LOST = 0x08;

/* Power was lost on the communication device */

const int CHANNEL_DOWN = 0x10;

This method of defining bits is somewhat confusing. Can you tell (without looking at

the table) which bit number is represented by the constant 0x10? Table 11-11

shows how we can use the left-shift operator (<<) to define bits.

 TEAM FLY PRESENTS

 200

Table 11-11. Left-Shift Operator and Bit Definition

C Representation Base 2 Equivalent Result (Base 2) Bit Number

1<<0 00000001 << 0 00000001 Bit 0

1<<1 00000001 << 1 00000010 Bit 1

1<<2 00000001 << 2 00000100 Bit 2

1<<3 00000001 << 3 00001000 Bit 3

1<<4 00000001 << 4 00010000 Bit 4

1<<5 00000001 << 5 00100000 Bit 5

1<<6 00000001 << 6 01000000 Bit 6

1<<7 00000001 << 7 10000000 Bit 7

Although you cannot easily tell what bit is represented by 0x10 , you can easily tell

what bit is meant by 1<<4.

So our flags can be defined as:

/* True if any error is set */

const int ERROR = (1<<0);

/* A framing error occurred for this character */
const int FRAMING_ERROR = (1<<1);

/* Character had the wrong parity */

const int PARITY_ERROR = (1<<2);

/* The carrier signal went down */

const int CARRIER_LOST = (1<<3);

/* Power was lost on the communication device */

const int CHANNEL_DOWN = (1<<4);

Now that we have defined the bits, we can manipulate them. To set a bit, use the |

operator. For example:

char flags = 0; /* start all flags at 0 */

 flags |= CHANNEL_DOWN; /* Channel just died */

To test a bit, we use the & operator to mask out the bits:

 TEAM FLY PRESENTS

 201

if ((flags & ERROR) != 0)
 printf("Error flag is set\n");

else
 printf("No error detected\n");

Clearing a bit is a harder task. Suppose we want to clear the bit PARITY_ERROR. In

binary this bit is 00000100. We want to create a mask that has all bits set except for

the bit we want to clear (11111011). This step is done with the not operator (~).

The mask is then anded with the number to clear the bit.

PARITY_ERROR 00000100

~PARITY_ERROR 11111011
flags 00000101

flags & ~PARITY_ERROR 00000001

In C, you should use:

flags &= ~PARITY_ERROR; /* Who cares about parity */

Question 11-1: In Example 11-2, the HIGH_SPEED flag works , but the

DIRECT_CONNECT flag does not. Why? (Click here for the answer Section 11.9)

Example 11-2. high/high.c

#include <stdio.h>

const int HIGH_SPEED = (1<<7); /* modem is running fast */

/* we are using a hardwired connection */

const int DIRECT_CONNECT = (1<<8);

char flags = 0; /* start with nothing */

int main()

{
 flags |= HIGH_SPEED; /* we are running fast */

 flags |= DIRECT_CONNECT;/* because we are wired together */

 if ((flags & HIGH_SPEED) != 0)

 printf("High speed set\n");

 if ((flags & DIRECT_CONNECT) != 0)
 printf("Direct connect set\n");

 TEAM FLY PRESENTS

 202

 return (0);
}

11.8 Bitmapped Graphics

More and more computers now have graphics. For the PC, there are graphics

devices like EGA and VGA cards. UNIX offers the X windowing system.

In bitmapped graphics, each pixel on the screen is represented by a single bit in

memory. For example, Figure 11-2 shows a 14-by-14 bitmap as it appears on the

screen, and enlarged so that you can see the bits.

Figure 11-2. Bitmap, actual size and enlarged

Suppose we have a small graphic device—a 16-by-16-pixel black-and-white display.

We want to set the bit at 4,7. The bitmap for this device is shown as an array of bits

in Figure 11-3.

 TEAM FLY PRESENTS

 203

Figure 11-3. Array of bits

But we have a problem. No data type exists for an array of bits in C. The closest we

can come is an array of bytes. Our 16-by-16 array of bits now becomes a 2-by-16

array of bytes, as shown in Figure 11-4.

Figure 11-4. Array of bytes

Let's see what we need to do to transform our x , y index to a byte_x, byte_y,

bit_index, and bit.

 TEAM FLY PRESENTS

 204

The byte_y index is the same as the y index. That transformation is simple:

byte_y = y;

A byte contains 8 bits. So, in the X direction, our byte index is eight times our bit

index. This transformation leaves us with the code:

byte_x = x / 8;

Now we need the bit index. The index starts out at 0, goes to 7, and then goes back

to 0. This change gives us the code:

bit_index = x % 8;

Now to specify the bit itself. A bit index of zero indicates the left-most bit or the bit
represented by 1000 00002 or 0x80. A bit index of 1 indicates the

next-to-the-left-most bit 0100 0000 2 or 0x80 >> 1. So the bit we want is given by

the expression:

bit = 0x80 >> bit_index;

The full algorithm looks like:

byte_y = y;

byte_x = x / 8;
bit_index = x % 8;

bit = 0x80 >> bit_index;
graphics[byte_x][byte_y] |= bit;

This algorithm can be condensed into a single macro:

#define set_bit(x, y) graphics[(x)/8][y] |= (0x80 >> ((x)%8))

For example, to set the pixel at bit number 4,7, we need to set the fourth bit of byte

0,7. Our macro would generate the statement:

bit_array[0][7] |= (0x80 >> (4));

Example 11-3 draws a diagonal line across the graphics array and then prints the

array on the terminal.

Example 11-3. graph/graph.c

#include <stdio.h>

 TEAM FLY PRESENTS

 205

#define X_SIZE 40 /* size of array in X direction */
#define Y_SIZE 60 /* size of array in Y direction */

/*
 * We use X_SIZE/8 because we pack 8 bits per byte
 */

char graphics[X_SIZE / 8][Y_SIZE]; /* the graphics data */

#define SET_BIT(x,y) graphics[(x)/8][y] |= (0x80 >>((x)%8))

int main()

{
 int loc; /* current location we are setting */

 void print_graphics(void); /* print the data */

 for (loc = 0; loc < X_SIZE; ++loc)

 SET_BIT(loc, loc);

 print_graphics();
 return (0);

}

/**
 * print_graphics -- Prints the graphics bit array *

 * as a set of X and .'s. *
 **/
void print_graphics(void)

{

 int x; /* current x BYTE */
 int y; /* current y location */
 unsigned int bit; /* bit we are testing in the current byte */

 for (y = 0; y < Y_SIZE; ++y) {
 /* Loop for each byte in the array */

 for (x = 0; x < X_SIZE / 8; ++x) {
 /* Handle each bit */
 for (bit = 0x80; bit > 0; bit = (bit >> 1)) {

 if ((graphics[x][y] & bit) != 0)

 printf("X");
 else
 printf(".");

 }

 }
 printf("\n");

 }
}

 TEAM FLY PRESENTS

 206

The program defines a bitmapped graphic array:

char graphics[X_SIZE / 8][Y_SIZE]; /* the graphics data */

The constant X_SIZE/8 is used because we have X_SIZE bits across, which

translates to X_SIZE/8 bytes.

The main for loop:

for (loc = 0; loc < X_SIZE; ++loc)
 set_bit(loc, loc);

draws a diagonal line across the graphics array.

Because we do not have a bitmapped graphics device, we will simulate it with the

subroutine print_graphics.

The loop:

for (y = 0; y < Y_SIZE; ++y) {

prints each row. The loop:

for (x = 0; x < X_SIZE / 8; ++x) {
 ...

goes through every byte in the row. There are eight bits in each byte handled by the

loop:

for (bit = 0x80; bit > 0; bit = (bit >> 1))

which uses an unusual loop counter. This loop causes the variable bit to start with

bit 7 (the left-most bit). For each iteration of the loop, the bit is moved to the right
one bit by bit = (bit >> 1) . When we run out of bits, the loop exits.

The loop counter cycles through:

Binary Hex

0000 0000 1000 0000 0x80

0000 0000 0100 0000 0x40

0000 0000 0010 0000 0x20

0000 0000 0001 0000 0x10

0000 0000 0000 1000 0x08

 TEAM FLY PRESENTS

 207

0000 0000 0000 0100 0x04

0000 0000 0000 0010 0x02

0000 0000 0000 0001 0x01

Finally, at the heart of the loops is the code:

if ((graphics[x][y] & bit) != 0)
 printf("X");

else
 printf(".");

This code tests an individual bit and writes an "X" if it is set or a "." if it is not.

Question 11-2: In Example 11-4 the first loop works, but the second one fails. Why?

(Click here for the answer Section 11.9)

Example 11-4. loop/loop.c

#include <stdio.h>
int main()

{
 short int i; /* Loop counter */

 signed char ch; /* Loop counter of another kind */

 /* Works */

 for (i = 0x80; i != 0; i = (i >> 1)) {
 printf("i is %x (%d)\n", i, i);

 }

 /* Fails */

 for (ch = 0x80; ch != 0; ch = (ch >> 1)) {
 printf("ch is %x (%d)\n", ch, ch);

 }
 return (0);

}

11.9 Answers

Answer 11-1: DIRECT_CONNECT is defined to be bit number 8 by the expression

(1<<8); however, the eight bits in a character variable are numbered 76543210.

Bit number 8 does not exist. A solution to this problem is to make flags a short

integer with 16 bits.

 TEAM FLY PRESENTS

 208

Answer 11-2: The problem is that ch is a character (8 bits). The value 0x80

represented in 8 bits is 1000 0000 2. The first bit, the sign bit, is set. When a right

shift is done on this variable, the sign bit is used for fill. So, 1000 00002>>1 is 1100
00002.

The variable i works even though it is signed because it is 16 bits long. So 0x80 in

16 bits is 0000 0000 1000 00002. Notice that the set bit is not near the sign bit.

The solution to our problem is to declare ch as an unsigned variable.

11.10 Programming Exercises

Exercise 11-1: Write a set of parameterized macros, clear_bit and test_bit, to

go with the set_bit operation defined in Example 11-3. Write a main program to

test these macros.

Exercise 11-2: Write a program to draw a 10-by-10 bitmapped square. You can

borrow the code from Example 11-3 to print the results.

Exercise 11-3: Change Example 11-3 so that it draws a white line across a black

background.

Exercise 11-4: Write a program that counts the number of bits set in an integer.

For example, the number 5 (decimal), which is 0000000000000101 (binary), has

two bits set.

Exercise 11-5: Write a program that takes a 32 -bit integer (long int) and splits it

into eight 4-bit values. (Be careful of the sign bit.)

Exercise 11-6: Write a program that will take the bits in a number and shift them

to the left end. For example, 01010110 (binary) would become 11110000 (binary).

 TEAM FLY PRESENTS

 209

Chapter 12. Advanced Types

Total grandeur of a total edifice, Chosen by an inquisitor of structures.

—Wallace Stevens

C provides the programmer with a rich set of data types. Through the use of

structures, unions, and enumerated types, the programmer can extend the

language with new types.

12.1 Structures

Suppose we are writing an inventory program for a warehouse. The warehouse is

filled with bins that contain various parts. All the parts in a bin are identical, so we

don't have to worry about mixed bins.

For each bin, we need to know:

• The name of the part it holds (string 30 characters long)

• The quantity on hand (integer)

• The price (integer cents)

In previous chapters, we have used arrays for storing a group of similar data types.

However, in this example, we have a mixed bag: two integers and a string.

Instead of an array, we will use a new data type called a structure. In an array, all

the elements are of the same type and are numbered. In a structure, each element

or field is named and has its own data type.

The general form of a structure definition is :

struct structure-name {

 field-type field-name; /* comment */

 field-type field-name; /* comment */

} variable-name;

For example, we want to define a bin to hold printer cables. The structure definition

is:

struct bin {
 char name[30]; /* name of the part */
 int quantity; /* how many are in the bin */

 int cost; /* The cost of a single part (in cents) */

 TEAM FLY PRESENTS

 210

} printer_cable_bin; /* where we put the print cables */

This definition actually tells C two things. The first is what a struct bin looks like.

This statement defines a new data type that can be used in declaring other variables.

The variable printer_cable_bin is also declared by this statement. Because the

structure of a bin has been defined, we can use it to declare additional variables:

struct bin terminal_cable_box; /* Place to put terminal cables */

The structure-name part of the definition may be omitted:

struct {

 char name[30]; /* name of the part */
 int quantity; /* how many are in the bin */

 int cost; /* The cost of a single part (in cents) */
} printer_cable_bin; /* where we put the print cables */

The variable printer_cable_bin has been defined, but no data type has been

created. In other words, printer_cable_bin is the only variable of this structure

you want in the program. The data type for this variable is an anonymous structure.

The variable -name may also be omitted. The following example would define a

structure type, but no variables:

struct bin {

 char name[30]; /* name of the part */

 int quantity; /* how many are in the bin */
 int cost; /* The cost of a single part (in cents) */
};

You can now use the new data type (struct bin) to define variables such as

printer_cable_bin.

In an extreme case, both the variable-name and the structure -name may be

omitted. This syntax creates a section of correct, but totally useless code.

We have defined the variable printer_cable_bin containing three named fields:

name, quantity, and cost. To access them, we use the syntax:

variable.field

For example, if we just found out that the price of the cables went up to $12.95, we

would do the following:

printer_cable_bin.cost = 1295; /* $12.95 is the new price */

 TEAM FLY PRESENTS

 211

To compute the value of everything in the bin, we can use the following:

total_cost = printer_cable_bin.cost * printer_cable_bin.quantity;

Structures may be initialized at declaration time by putting the list of elements in

curly braces ({ }):

/*

 * Printer cables
 */

struct bin {
 char name[30]; /* name of the part */
 int quantity; /* how many are in the bin */

 int cost; /* The cost of a single part (in cents) */

} printer_cable_bin = {
 "Printer Cables", /* Name of the item in the bin */
 0, /* Start with empty box */

 1295 /* cost -- $12.95 */

};

12.2 Unions

A structure is used to define a data type with several fields. Each field takes up a

separate storage location. For exa mple, the structure:

struct rectangle {
 int width;

 int height;

};

appears in memory. A union is similar to a structure; however, it defines a single

location that can be given many different field names:

union value {
 long int i_value; /* integer version of value */
 float f_value; /* floating version of value */

};

The fields i_value and f_value share the same space.

You might think of a structure as a large box divided up into several different

compartments, each with its own name. A union is a box, not divided at all, with

several different labels placed on the single compartment inside.

 TEAM FLY PRESENTS

 212

Figure 12-1 illustrates a structure with two fields. Each field is assigned a different

section of the structure. A union contains only one compartment, which is assigned

different names.

Figure 12-1. Layout of structure and union

In a structure, the fields do not interact. Changing one field does not change any

others. In a union, all fields occupy the same space, so only one may be active at a

time. In other words, if you put something in i_value, assigning something to

f_value wipes out the old value of i_value.

Example 12-1 shows how a union can be used.

Example 12-1. Using a Union

/*
 * Define a variable to hold an integer or
 * a real number (but not both)

 */
union value {

 long int i_value; /* The real number */

 float f_value; /* The floating-point number */
} data;
int i; /* Random integer */

float f; /* Random floating-point number */

main()
{
 data.f_value = 5.0;

 data.i_value = 3; /* data.f_value overwritten */
 i = data.i_value; /* legal */

 f = data.f_value; /* not legal, will generate unexpected results */

 TEAM FLY PRESENTS

 213

 data.f_value = 5.5; /* put something in f_value/clobber i_value */
 i = data.i_value; /* not legal, will generate unexpected results */

 return(0);
}

Unions are frequently used in the area of communications. For example, suppose we

have a remote tape and we want to send it four messages: open, close, read, and

write. The data contained in these four messages is vastly different depending on

the message.

The open message needs to contain the name of the tape; the write message needs

to contain the data to write; the read message needs to contain the maximum

number of characters to read; and the close message needs no additional

information.

#define DATA_MAX 1024 /* Maximum amount of data for a read and write */

struct open_msg {

 char name[30]; /* Name of the tape */
};

struct read_msg {
 int length; /* Max data to tranfer in the read */

};

struct write_msg {
 int length; /* Number of bytes to write */

 char data[DATA_MAX]; /* Data to write */

};

struct close_msg {
};

const int OPEN_CODE=0; /* Code indicating an open message */

const int READ_CODE=1; /* Code indicating a read message */
const int WRITE_CODE=2; /* Code indicating a write message */
const int CLOSE_CODE=3; /* Code indicating a close message */

struct msg {
 int msg; /* Message type */

 union {
 struct open_msg open_data;
 struct read_msg read_data;

 struct write_msg write_data;

 struct close_msg close_data

 TEAM FLY PRESENTS

 214

 } msg_data;
};

12.3 typedef

C allows the programmer to define her own variable types through the typedef

statement. This statement provides a way for the program to extend C's basic types.

The general form of the typedef statement is:

typedef type-declaration;

where type-declaration is the same as a variable declaration except that a type

name is used instead of a variable -name. For example:

typedef int count;

defines a new type count that is the same as an integer.

So the declaration:

count flag;

is the same as:

int flag;

At first glance, this statement is not much different from:

#define count int
count flag;

However, typedefs can be used to define more complex objects that are beyond
the scope of a simple #define statement. For example:

typedef int group[10];

A new type named group now exists, denoting an array of ten integers:

main()

{
 typedef int group[10]; /* Create a new type "group" */
 group totals; /* Use the new type for a variable */

 for (i = 0; i < 10; i++)

 totals[i] = 0;
 return (0);

 TEAM FLY PRESENTS

 215

}

One frequent use of typedef's is in the definition of a new structure. For example:

struct complex_struct {
 double real;

 double imag;
};
typedef struct complex_struct complex;

complex voltag1 = {3.5, 1.2};

12.4 enum Type

The enumerated data type is designed for variables that contain only a limited set of
values. These values are referenced by name (tag). The compiler assigns each tag

an integer value internally. Consider an application, for example, in which we want

a variable to hold the days of the week. We could use the const declaration to
create values for the week_days, as follows:

typedef int week_day; /* define the type for week_days */

const int SUNDAY = 0;
const int MONDAY = 1;

const int TUESDAY = 2;

const int WEDNESDAY = 3;

const int THURSDAY = 4;
const int FRIDAY = 5;
const int SATURDAY = 6;

/* now to use it */
week_day today = TUESDAY;

This method is cumbersome. A better method is to use the enum type:

enum week_day {SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY,

 FRIDAY, SATURDAY};

/* now use it */
enum week_day today = TUESDAY;

The general form of an enum statement is:

enum enum-name { tag-1, tag-2, . . .} variable-name

Like structures, the enum-name or the variable-name may be omitted. The tags

may be any valid C identifier; however, they are usually all uppercase.

 TEAM FLY PRESENTS

 216

C implements the enum type as compatible with integer. So in C, it is perfectly legal

to say:

today = 5; /* 5 is not a week_day */

although some compilers will issue a warning when they see this line. In C++,

enum is a separate type and is not compatible with integer.

12.5 Casting

Sometimes you must convert one type of variable to another type. This is
accomplished through the cast or typecast operation . The general form of a cast is:

(type) expression

This operation tells C to compute the value of the expression , and then convert it to

the specified type. This operation is particularly useful when you work with integers

and floating-point numbers:

int won, lost; /* # games won/lost so far */
float ratio; /* win/lose ratio */

won = 5;
lost = 3;
ratio = won / lost; /* ratio will get 1.0 (a wrong value) */

/* The following will compute the correct ratio */

ratio = ((float) won) / ((float) lost);

Another common use of this operation is for converting pointers from one type to

another.

12.6 Bit Fields or Packed Structures

Packed structures allow us to declare structures in a way that takes up a minimum
amount of storage. For example, the following structure takes up six bytes (on a

16-bit machine).

struct item {
 unsigned int list; /* true if item is in the list */

 unsigned int seen; /* true if this item has been seen */
 unsigned int number; /* item number */
};

The storage layout for this structure can be seen in Figure 12-2. Each structure uses

six bytes of storage (two bytes for each integer).

 TEAM FLY PRESENTS

 217

Figure 12-2. Unpacked structure

However, the fields list and seen can only have two values, and 1, so only one bit

is needed to represent them. We never plan on having more than 16383 items

(0x3fff or 14 bits). We can redefine this structure using bit fields, so that it takes

only two bytes, by following each field with a colon and the number of bits to be used

for that field:

struct item {

 unsigned int list:1; /* true if item is in the list */

 unsigned int seen:1; /* true if this item has been seen */

 unsigned int number:14; /* item number */
};

In this example, we tell the compiler to use one bit for list, one bit for seen, and

14 bits for number . Using this method, we can pack our data into only two bytes, as

seen in Figure 12-3.

Figure 12-3. Packed structure

Packed structures should be used with care. The code to extract data from bit fields

is relatively large and slow. Unless storage is a problem, packed structures should

not be used.

In Chapter 10, we needed to store character data and five status flags for 8,000

characters. In this case, using a different byte for each flag would eat up a lot of

storage (five bytes for each incoming character). We used bitwise operations to

pack the five flags into a single byte. Alternatively, a packed structure could have

accomplished the same thing:

struct char_and_status {

 TEAM FLY PRESENTS

 218

 char character; /* Character from device */
 int error:1; /* True if any error is set */

 int framing_error:1;/* Framing error occurred */
 int parity_error:1; /* Character had the wrong parity */
 int carrier_lost:1; /* The carrier signal went down */

 int channel_down:1; /* Power was lost on the channel */

};

Using packed structures for flags is clearer and less error prone than using bitwise

operators. However, bitwise operators give the programmer additional flexibility.

You should use the one that is clearest and easiest for you to use.

12.7 Arrays of Structures

Structures and arrays can be combined. For example, suppose we want to record

the time a runner completes each lap of a four-lap race. We define a structure to

store the time:

struct time {
 int hour; /* hour (24 hour clock) */

 int minute; /* 0-59 */

 int second; /* 0-59 */
};

const int MAX_LAPS = 4; /* we will have only 4 laps */
/* the time of day for each lap*/
struct time lap[MAX_LAPS];

We can use this structure as follows:

/*

 * Runner just passed the timing point

 */
lap[count].hour = hour;
lap[count].minute = minute;

lap[count].second = second;

++count;

This array can also be initialized at run time.

Initialization of an array of structures is similar to the initialization of

multi-dimensional arrays:

struct time start_stop[2] = {

 {10, 0, 0},

 TEAM FLY PRESENTS

 219

 {12, 0, 0}
};

Suppose we want to write a program to handle a mailing list. Mailing labels are 5
lines high and 60 characters wide. We need a structure to store names and

addresses. The mailing list will be sorted by name for most printouts, and sorted in

zip code order for actual mailings. Our mailing list structu re looks like this:

struct mailing {

 char name[60]; /* Last name, first name */

 char address1[60];/* Two lines of street address */

 char address2[60];
 char city[40];

 char state[2]; /* Two character abbreviation */

 long int zip; /* Numeric zip code */
};

We can now declare an array to hold our mailing list:

/* Our mailing list */
struct mailing list[MAX_ENTRIES];

The state field is two elements because it is designed to hold two characters. The

field is not a string because we have not allocated enough space for the end of string

character ('\0').

12.8 Summary

Structures and unions are some of the more powerful features of the C language. No
longer are you limited to C's built-in data types—you can create your own. As we will

see in later chapters, structures can be combined with pointers to create very

complex and powerful data structures.

12.9 Programming Exercises

Exercise 12-1: Design a structure to hold the data for a mailing list. Write a
function to print out the data.

Exercise 12-2: Design a structure to store time and date. Write a function to find

the difference between two times in minutes.

Exercise 12-3: Design an airline reservation data structure that contains the

following data:

 TEAM FLY PRESENTS

 220

• Flight number

• Originating airport code (three characters)

• Destination airport code (three characters)

• Starting time

• Arrival time

Exercise 12-4: Write a program that lists all the planes that leave from two

airports specified by the user.

 TEAM FLY PRESENTS

 221

Chapter 13. Simple Pointers

The choice of a point of view is the initial act of culture.

—José Ortega y Gasset

There are things and pointers to things. Knowing the difference between the two is

very important. This concept is illustrated in Figure 13-1.

Figure 13-1. A thing and a pointer to a thing

In this book, we use a box to represent a thing. The name of the variable is written

on the bottom of the box. In this case, our variable is named thing. The value of the

variable is 6.

The address of thing is 0x1000 . Addresses are automatically assigned by the C

compiler to every variable. Normally, you don't have to worry about the addresses

of variables, but you should understand that they're there.

Our pointer (thing_ptr) points to the variable thing. Pointers are also called

address variables because they contain the addresses of other variables. In this

case, our pointer contains the address 0x1000. Because this is the address of thing,
we say that thing_ptr points to thing.

Variables and pointers are much like street addresses and houses. For example,

your address might be "214 Green Hill Lane." Houses come in many different shapes

and sizes. Addresses are approximately the same size (street, city, state, and zip).

So, while "1600 Pennsylvania Ave." might point to a very big white house and "8347

Undersea Street" might be a one-room shack, both addresses are the same size.

The same is true in C. While things may be big and small, pointers come in one size

(relatively small).[1]

[1] This statement is not strictly t rue for MS-DOS/Windows compilers. Because of the strange architecture of the

8086, these compilers are forced to use both near pointers (16 bits) and far pointers (32 bits). See your C

compiler manual for details.

 TEAM FLY PRESENTS

 222

Many novice programmers get pointers and their contents confused. In order to
limit this problem, all pointer variables in this book end with the extension _ptr. You

might want to follow this convention in your own programs. Although this notation

is not as common as it should be, it is extremely useful.

Many different address variables can point to the same thing. This concept is true for

street addresses as well. Table 13-1 lists the location of important services in a

small town.

Table 13-1. Directory of Ed's Town USA

Service (variable name) Address (address value) Building (thing)

Fire Department 1 Main Street City Hall

Police Station 1 Main Street City Hall

Planning office 1 Main Street City Hall

Gas Station 2 Main Street Ed's Gas Station

In this case, we have a government building that serves many functions. Although

it has one address, three different pointers point to it.

As we will see in this chapter, pointers can be used as a quick and simple way to

access arrays. In later chapters, we will discover how pointers can be used to create

new variables and complex data structures such as linked lists and trees. As you go

through the rest of the book, you will be able to understand these data structures as

we ll as create your own.

A pointer is declared by putting an asterisk (*) in front of the variable name in the

declaration statement:

int thing; /* define a thing */

int *thing_ptr; /* define a pointer to a thing */

Table 13-2 lists the operators used in conjunction with pointers.

Table 13-2. Pointer Operators

Operator Meaning

* Dereference (given a pointer, get the thing referenced)

& Address of (given a thing, point to it)

 TEAM FLY PRESENTS

 223

The operator ampersand (&) returns the address of a thing which is a pointer. The

operator asterisk (*) returns the object to which a pointer points. These operators

can easily cause confusion. Table 13-3 shows the syntax for the various pointer

operators.

Table 13-3. Pointer Operator Syntax

C Code Description

thing Simple thing (variable)

&thing Pointer to variable thing

thing_ptr Pointer to an integer (may or may not be specific integer thing)

*thing_ptr Integer

Let's look at some typical uses of the various pointer operators:

int thing; /* Declare an integer (a thing) */
thing = 4;

The variable thing is a thing. The declaration int thing does not contain an *, so

thing is not a pointer:

int *thing_ptr; /* Declare a pointer to a thing */

The variable thing_ptr is a pointer. The * in the declaration indicates this is a
pointer. Also, we have put the extension _ptr onto the name:

thing_ptr = &thing; /* Point to the thing */

The expression &thing is a pointer to a thing. The variable thing is an object. The

& (address of operator) gets the address of an object (a pointer), so &thing is a

pointer. We then assign this to thing_ptr, also of type pointer:

thing_ptr = 5; / Set "thing" to 5 */

 /* We may or may not be pointing */

 /* to the specific integer "thing" */

The expression *thing_ptr indicates a thing. The variable thing_ptr is a pointer.

The * (dereference operator) tells C to look at the data pointed to, not the pointer

itself. Note that this points to any integer. It may or may not point to the specific
variable thing.

These pointer operations are summarized in Figure 13-2.

 TEAM FLY PRESENTS

 224

Figure 13-2. Pointer operations

The following examples show how to misuse the pointer operations:

*thing

is illegal. It asks C to get the object pointed to by the variable thing.

Because thing is not a pointer, this operation is invalid.

&thing_ptr

is legal, but strange. thing_ptr is a pointer. The & (address of operator)
gets a pointer to the object (in this case thing_ptr). The result is a pointer

to a pointer.

Example 13-1 illustrates a simple use of pointers. It declares one object, one thing,
and a pointer, thing_ptr. thing is set explicitly by the line:

thing = 2;

The line:

thing_ptr = &thing;

 TEAM FLY PRESENTS

 225

causes C to set thing_ptr to the address of thing. From this point on, thing and

*thing_ptr are the same.

Example 13-1. thing/thing.c

#include <stdio.h>

int main()
{

 int thing_var; /* define a variable for thing */
 int *thing_ptr; /* define a pointer to thing */

 thing_var = 2; /* assigning a value to thing */

 printf("Thing %d\n", thing_var);

 thing_ptr = &thing_var; /* make the pointer point to thing */

 thing_ptr = 3; / thing_ptr points to thing_var so */

 /* thing_var changes to 3 */
 printf("Thing %d\n", thing_var);

 /* another way of doing the printf */

 printf("Thing %d\n", *thing_ptr);
 return (0);

}

Several pointers can point to the same thing:

1: int something;

2:
3: int *first_ptr; /* one pointer */

4: int *second_ptr; /* another pointer */

5:
6: something = 1; /* give the thing a value */

7:
8: first_ptr = &something;

9: second_ptr = first_ptr;

In line 8, we use the & operator to change something, a thing, into a pointer that can

be assigned to first_ptr. Because first_ptr and second_ptr are both pointers,

we can do a direct assignment in line 9.

After executing this program fragment, we have the situation shown in Figure 13-3.

 TEAM FLY PRESENTS

 226

Figure 13-3. Two pointers and a thing

You should note that while we have three variables, there is only one integer
(something). The following are all equivalent:

something = 1;

*first_ptr = 1;
*second_ptr = 1;

13.1 Pointers as Function Arguments

C passes parameters using "call by value." That is, the parameters go only one way

into the function. The only result of a function is a single return value. This concept

is illustrated in Figure 13-4.

Figure 13-4. Function call

 TEAM FLY PRESENTS

 227

However, pointers can be used to get around this restriction.

Imagine that there are two people, Sam and Joe, and whenever they meet, Sam can

only talk and Joe can only listen. How is Sam ever going to get any information from

Joe? Simple: all Sam has to do is tell Joe, "I want you to leave the answer in the

mailbox at 335 West 5 th Street."

C uses a similar trick to pass information from a function to its caller. In Example
13-2, main wants the function inc_count to increment the variable count.

Passing it directly would not work, so a pointer is passed instead ("Here's the

address of the variable I want you to increment"). Note that the prototype for
inc_count contains an int * . This format indicates that the single parameter given

to this function is a pointer to an integer, not the integer itself.

Example 13-2. call/call.c

#include <stdio.h>

void inc_count(int *count_ptr)
{

 (*count_ptr)++;

}

int main()

{
 int count = 0; /* number of times through */

 while (count < 10)

 inc_count(&count);

 return (0);

}

This code is represented graphically in Figure 13-5. Note that the parameter is not

changed, but what it points to is changed.

 TEAM FLY PRESENTS

 228

Figure 13-5. Call of inc_count

Finally, there is a special pointer called NULL. It points to nothing. (The actual

numeric value is 0.) The standard include file, locale.h, defines the constant NULL.

(This file is usually not directly included, but is usually brought in by the include files
stdio.h or stdlib.h .) The NULL pointer is represented graphically in Figure 13-6.

Figure 13-6. NULL

13.2 const Pointers

Declaring constant pointers is a little tricky. For example, the declaration:

const int result = 5;

 TEAM FLY PRESENTS

 229

tells C that result is a constant so that:

result = 10; /* Illegal */

is illegal. The declaration:

const char *answer_ptr = "Forty-Two";

does not tell C that the variable answer_ptr is a constant. Instead, it tells C that the

data pointed to by answer_ptr is a constant. The data cannot be changed, but the

pointer can. Again we need to make sure we know the difference between "things"

and "pointers to things."

What's answer_ptr? A pointer. Can it be changed? Yes, it's just a pointer. What

does it point to? A const char array. Can the data pointed to by answer_ptr be

changed? No, it's constant.

In C this is:

answer_ptr = "Fifty-One"; /* Legal (answer_ptr is a variable) */

answer_ptr = 'X'; / Illegal (*answer_ptr is a constant) */

If we put the const after the * we tell C that the pointer is constant.

For example:

char *const name_ptr = "Test";

What's name_ptr? It is a constant pointer. Can it be changed? No. What does it point

to? A character. Can the data we pointed to by name_ptr be changed? Yes.

name_ptr = "New"; /* Illegal (name_ptr is constant) */

name_ptr = 'B'; / Legal (*name_ptr is a char) */

Finally, we can put const in both places, creating a pointer that cannot be changed

to a data item that cannot be changed:

const char *const title_ptr = "Title";

13.3 Pointers and Arrays

C allows pointer arithmetic (addition and subtraction). Suppose we have:

char array[5];
char *array_ptr = &array[0];

 TEAM FLY PRESENTS

 230

In this example, *array_ptr is the same as array[0], *(array_ptr+1) is the same

as array[1], *(array_ptr+2) is the same as array[2], and so on. Note the use of

parentheses. Pointer arithmetic is represented graphically in Figure 13-7.

Figure 13-7. Pointers into an array

However, (*array_ptr)+1 is not the same as array[1]. The +1 is outside the
parentheses, so it is added after the dereference. So (*array_ptr)+1 is the same

as array[0]+1.

At first glance, this method may seem like a complex way of representing simple

array indices. We are starting with simple pointer arithmetic. In later chapters we

will use more complex pointers to handle more difficult functions efficiently.

The elements of an array are assigned to consecutive addresses. For example,

array[0] may be placed at address 0xff000024. Then array[1] would be placed at

address 0xff000025, and so on. This structure means that a pointer can be used to

find each element of the array. Example 13-3 prints out the elements and addresses

of a simple character array.

Example 13-3. array-p/array-p.c

#include <stdio.h>

#define ARRAY_SIZE 10

char array[ARRAY_SIZE + 1] = "0123456789";

int main()

 {

 int index ;
 printf("&array[index] (array+index) array[index]\n");

 TEAM FLY PRESENTS

 231

 for(index=0;index < ARRAY_SIZE;++index)
 printf("0x%-10p 0x%-10p 0x%x\n",,

 &array[index],(array+index),array[index]);

 return 0;

 }

When printing pointers, the special conversion %p

should be used.

When run, this program prints:

&array[index] (array+index) array[index]

0x20a50 0x20a50 0x30
0x20a51 0x20a51 0x31

0x20a52 0x20a52 0x32
0x20a53 0x20a53 0x33

0x20a54 0x20a54 0x34
0x20a55 0x20a55 0x35

0x20a56 0x20a56 0x36

0x20a57 0x20a57 0x37
0x20a58 0x20a58 0x38

0x20a59 0x20a59 0x39

Characters use one byte, so the elements in a character array will be assigned
consecutive addresses. A short int font uses two bytes, so in an array of short int,

the addresses increase by two. Does this mean that array+1 will not work for

anything other than characters? No. C auto matically scales pointer arithmetic so
that it works correctly. In this case, array+1 will point to element number 1.

C provides a shorthand for dealing with arrays. Rather than writing:

array_ptr = &array[0];

we can write:

array_ptr = array;

C blurs the d istinction between pointers and arrays by treating them in the same

manner in many cases. Here we use the variable array as a pointer, and C

automatically does the necessary conversion.

 TEAM FLY PRESENTS

 232

Example 13-4 counts the number of elements that are nonzero and stops when a

zero is found. No limit check is provided, so there must be at least one zero in the

array.

Example 13-4. ptr2/ptr2.c

#include <stdio.h>

int array[] = {4, 5, 8, 9, 8, 1, 0, 1, 9, 3};
int index;

int main()

{

 index = 0;
 while (array[index] != 0)

 ++index;

 printf("Number of elements before zero %d\n",

 index);
 return (0);

}

Example 13-5 is a version of Example 13-4 that uses pointers.

Example 13-5. ptr3/ptr3.c

#include <stdio.h>

int array[] = {4, 5, 8, 9, 8, 1, 0, 1, 9, 3};
int *array_ptr;

int main()

{

 array_ptr = array;

 while ((*array_ptr) != 0)

 ++array_ptr;

 printf("Number of elements before zero %d\n",
 array_ptr - array);

 return (0);
}

 TEAM FLY PRESENTS

 233

Notice that when we wish to examine the data in the array, we use the dereference
operator (*). This operator is used in the statement:

while ((*array_ptr) != 0)

When we wish to change the pointer itself, no other operator is used. For example,

the line:

++array_ptr;

increments the pointer, not the data.

Example 13-4 uses the expression (array[index] != 0). This expression requires

the compiler to generate an index operation, which takes longer than a simple

pointer dereference, ((*array_ptr) != 0).

The expression at the end of this program, array_ptr - array, computes how far

array_ptr is into the array.

When passing an array to a procedure, C will automatically change the array into a

pointer. In fact, if you put & before the array, C will issue a warning. Example 13-6

illustrates the various ways in which an array can be passed to a subroutine.

Example 13-6. init-a/init-a.c

#define MAX 10 /* Size of the array */

/**
 * init_array_1 -- Zeroes out an array. *

 * *
 * Parameters *
 * data -- The array to zero out. *

 **/

void init_array_1(int data[])

{
 int index;

 for (index = 0; index < MAX; ++index)
 data[index] = 0;

}

/**

 * init_array_2 -- Zeroes out an array. *

 * *

 * Parameters *

 TEAM FLY PRESENTS

 234

 * data_ptr -- Pointer to array to zero. *
 **/

void init_array_2(int *data_ptr)
{
 int index;

 for (index = 0; index < MAX; ++index)
 *(data_ptr + index) = 0;
}

int main()

{
 int array[MAX];

 void init_array_1();
 void init_array_2();

 /* one way of initializing the array */
 init_array_1(array);

 /* another way of initializing the array */

 init_array_1(&array[0]);

 /* works, but the compiler generates a warning */
 init_array_1(&array);

 /* Similar to the first method but */

 /* function is different */
 init_array_2(array);

 return (0);

}

13.4 How Not to Use Pointers

The major goal of this book is to teach you how to create clear, readable,

maintainable code. Unfortunately, not everyone has read this book and some

people still believe that you should make your code as compact as possible. This

belief can result in programmers using the ++ and — operators inside other

statements.

Example 13-7 shows several examples in which pointers and the increment

operator are used together.

 TEAM FLY PRESENTS

 235

Example 13-7. Bad Pointer Usage

/* This program shows programming practices that should **NOT** be used
*/

/* Unfortunately, too many programmers use them */
int array[10]; /* An array for our data */

int main()
{

 int *data_ptr; /* Pointer to the data */

 int value; /* A data value */

 data_ptr = &array[0];/* Point to the first element */

 value = *data_ptr++; /* Get element #0, data_ptr points to element
#1 */

 value = *++data_ptr; /* Get element #2, data_ptr points to element
#2 */

 value = ++*data_ptr; /* Increment element #2, return its value */
 /* Leave data_ptr alone */

To understand each of these statements, you must carefully dissect each expression
to discover its hidden meaning. When I do maintenance programming, I don't want

to have to worry about hidden meanings, so please don't code like this, and shoot

anyone who does.

These statements are dissected in Figure 13-8.

 TEAM FLY PRESENTS

 236

Figure 13-8. Pointer operations dissected

This example is a little extreme, but it illustrates how side effects can easily become
confusing.

Example 13-8 is a n example of the code you're more likely to run into. The program
copies a string from the source (q) to the destination (p).

Example 13-8. Cryptic Use of Pointers

void copy_string(char *p, char *q)

{
 while (*p++ = *q++);

}

Given time, a good programme r will decode this. However, understanding the

program is much easier when we are a bit more verbose, as in Example 13-9.

Example 13-9. Readable Use of Pointers

/**
 * copy_string -- Copies one string to another. *

 * *
 * Parameters *
 * dest -- Where to put the string *

 TEAM FLY PRESENTS

 237

 * source -- Where to get it *
 **/

void copy_string(char *dest, char *source)
{
 while (1) {

 *dest = *source;

 /* Exit if we copied the end of string */
 if (*dest == '\0')

 return;

 ++dest;

 ++source;
 }
}

13.5 Using Pointers to Split a String

Suppose we are given a string of the form "Last/First." We want to split this into two

strings, one containing the first name and one containing the last name.

We need a function to find the slash in the name. The standard function strchr

performs this job for us. In this program, we have chosen to duplicate this function

to show you how it works.

This function takes a pointer to a string (string_ptr) and a character to find (find)

as its arguments. It starts with a while loop that will continue until we find the

character we are looking for (or we are stopped by some other code below).

while (*string_ptr != find) {

Next we test to see if we've run out of string. In this case, our pointer (string_ptr)

points to the end -of-string character. If we have reached the end of string before
finding the character, we return NULL:

if (*string_ptr == '\0')
 return (NULL);

If we get this far, we have not found what we are looking for, and are not at the end

of the string. So we move the pointer to the next character, and return to the top of
the loop to try again:

++string_ptr;

}

 TEAM FLY PRESENTS

 238

Our main program reads in a single line, stripping the newline character from it. The
function my_strchr is called to find the location of the slash (/).

At this point, last_ptr points to the first character of the last name and first_ptr

points to slash. We then split the string by replacing the slash (/) with an end of

string (NUL or \0). Now last_ptr points to just the last name and first_ptr points

to a null string. Moving first_ptr to the next character makes it point to the

beginning of the first name.

The sequence of steps in splitting the string is illustrated in Figure 13-9.

Figure 13-9. Splitting a string

Example 13-10 contains the full program, which demonstrates how pointers and
character arrays can be used for simple string processing.

Example 13-10. split/split.c

#include <stdio.h>
#include <string.h>

#include <stdlib.h>

/**

 * my_strchr -- Finds a character in a string. *
 * Duplicate of a standard library function, *

 * put here for illustrative purposes *

 * *

 * Parameters *
 * string_ptr -- String to look through. *

 TEAM FLY PRESENTS

 239

 * find -- Character to find. *
 * *

 * Returns *
 * pointer to 1st occurrence of character *
 * in string or NULL for error. *

 **/

char *my_strchr(char * string_ptr, char find)
{
 while (*string_ptr != find) {

 /* Check for end */

 if (*string_ptr == '\0')
 return (NULL); /* not found */

 ++string_ptr;

 }
 return (string_ptr); /* Found */
}

int main()
{

 char line[80]; /* The input line */
 char *first_ptr; /* pointer to the first name */
 char *last_ptr; /* pointer to the last name */

 fgets(line, sizeof(line), stdin);

 /* Get rid of trailing newline */

 line[strlen(line)-1] = '\0';

 last_ptr = line; /* last name is at beginning of line */

 first_ptr = my_strchr(line, '/'); /* Find slash */

 /* Check for an error */

 if (first_ptr == NULL) {
 fprintf(stderr,
 "Error: Unable to find slash in %s\n", line);

 exit (8);

 }

 first_ptr = '\0'; / Zero out the slash */

 TEAM FLY PRESENTS

 240

 ++first_ptr; /* Move to first character of name */

 printf("First:%s Last:%s\n", first_ptr, last_ptr);
 return (0);
}

Question 13-1: Example 13-11 is supposed to print out (Click here for the answer

Section 13.9):

Name: tmp1

but instead, we get:

Name: !_@$#ds80

(Your results may vary.) Why?

Example 13-11. tmp-name/tmp-name.c

#include <stdio.h>

#include <string.h>

/**
 * tmp_name -- Return a temporary filename. *

 * *

 * Each time this function is called, a new name will *
 * be returned. *

 * *

 * Returns *
 * Pointer to the new filename. *

 **/
char *tmp_name(void)

{
 char name[30]; /* The name we are generating */

 static int sequence = 0; /* Sequence number for last digit */

 ++sequence; /* Move to the next filename */

 strcpy(name, "tmp");

 /* But in the sequence digit */
 name[3] = sequence + '0';

 /* End the string */

 TEAM FLY PRESENTS

 241

 name[4] = '\0';

 return(name);
}

int main()

{
 char *tmp_name(void); /* Get name of temporary file */

 printf("Name: %s\n", tmp_name());

 return(0);
}

13.6 Pointers and Structures

In Chapter 12, we defined a structure for a mailing list:

struct mailing {
 char name[60]; /* last name, first name */

 char address1[60];/* two lines of street address */

 char address2[60];
 char city[40];

 char state[2]; /* two-character abbreviation */
 long int zip; /* numeric zip code */

} list[MAX_ENTRIES];

Mailing lists must frequently be sorted by name and zip code. We could sort the

entries themselves, but each entry is 226 bytes long. That's a lot of data to move
around. One way around this problem is to declare an array of pointers, and then

sort the pointers:

/* Pointer to the data */
struct mailing *list_ptrs[MAX_ENTRIES];

int current; /* current mailing list entry */

 for (current = 0; current = number_of_entries; ++current)
 list_ptrs[current] = &list[current];
 /* Sort list_ptrs by zip code */

Now, instead of having to move a 226-byte structure around, we are moving 4 -byte

pointers. Our sorting is much faster. Imagine that you had a warehouse full of big

heavy boxes and yo u needed to locate any box quickly. You could put them in

alphabetical order, but that would require a lot of moving. Instead, you assign each

 TEAM FLY PRESENTS

 242

location a number, write down the name and number on index cards, and sort the

cards by name.

13.7 Command-Line Arguments

The procedure main actually takes two arguments. They are called argc and

argv[2] :

[2] Actually, they can be named anything. However, in 99.9% of programs, they are named argc and argv.

When most programmers encounter the other 0.1%, they curse loudly, and then change the names to argc and

argv.

main(int argc, char *argv[])

{

(If you realize that the arguments are in alphabetical order, you can easily

remember which one comes first.)

The parameter argc is the number of arguments on the command line (including the

program name). The array argv contains the actual arguments. For example, if the

program args were run with the command line:

args this is a test

then:

argc = 5
argv[0] = "args"

argv[1] = "this"

argv[2] = "is"
argv[3] = "a"
argv[4] = "test"

argv[5] = NULL

The UNIX shell expands wildcard characters like *, ?,
and [] before sending the command line to the

program. See your sh or csh manual for details.

Turbo C++ and Borland C++ expand wildcard
characters if the file WILDARG.OBJ is linked with your
program. See the manual for details.

 TEAM FLY PRESENTS

 243

Almost all UNIX commands use a standard command-line format. This standard has

carried over into other environments. A standard UNIX command has the form:

command options file1 file1 file3 ...

Options are preceded by a dash (-) and are usually a single letter. For example, the

option -v might turn on verbose mode for a particular command. If the option takes

a parameter, it follows the letter. For example, the option -m1024 sets the maximum

number of symbols to 1024 and -ooutfile sets the output filename to outfile.

Let's look at writing a program that can read the command-line arguments and act

accordingly. This program formats and prints files. Part of the documentation for the

program is given here:

print_file [-v] [-llength] [-oname] [file1] [file2] ...

where:

-v

specifies verbose options; turns on a lot of progress information messages

-llength

sets the page size to length lines (default = 66)

-oname

sets the output file to name (default = print.out)

file1, file2, ...

is a list of files to print. If no files are specified, the file print.in is printed.

We can use a while loop to cycle through the command-line options. The actual

loop is:

while ((argc > 1) && (argv[1][0] == '-')) {

One argument always exists: the program name. The expression (argc > 1) checks

for additional arguments. The first one is numbered 1. The first character of the first
argument is argv[1][0] . If this is a dash, we have an option.

At the end of the loop is the code:

--argc;

 TEAM FLY PRESENTS

 244

 ++argv;
}

This consumes an argument. The number of arguments is decremented to indicate
one less option, and the pointer to the first option is incremented, shifting the list to

the left one place. (Note: after the first increment, argv[0] no longer points to the

program name.)

The switch statement is used to decode the options. Character of the argument is

the dash (-). Character 1 is the option character, so we use the expression:

switch (argv[1][1]) {

to decode the option.

The option -v has no arguments; it just causes a flag to be set.

The option -o takes a filename. Rather than copy the whole string, we set the

character pointer out_file to point to the name part of the string. By this time we

know the following:

argv[1][0] ='-'

argv[1][1] ='o'
argv[1][2] = first character of the filename

We set out_file to point to the string with the statement:

out_file = &argv[1][2];

The address of operator (&) is used to get the address of the first character in the

output filename. This process is appropriate because we are assigning the address
to a character pointer named out_file.

The -l option takes an integer argument. The library function atoi is used to

convert the string into an integer. From the previous example, we know that

argv[1][2] is the first character of the string containing the number. This string is
passed to atoi.

Finally, all the options are parsed and we fall through to the processing loop. This
merely executes the function do_file for each file argument. Example 13-12

contains the print program.

This is one way of parsing the argument list. The use of the while loop and switch

statement is simple and easy to understand. This method does have a limitation.
The argument must immediately follow the options. For example, -odata.out will

 TEAM FLY PRESENTS

 245

work, but "-o data.out" will not. An improved parser would make the program

more friendly, but the techniques described here work for simple programs.

Example 13-12. print/print.c

[File: print/print.c]

/**
 * Program: Print *

 * *
 * Purpose: *

 * Formats files for printing. *
 * *

 * Usage: *

 * print [options] file(s) *
 * *

 * Options: *

 * -v Produces verbose messages. *
 * -o<file> Sends output to a file *

 * (default=print.out). *
 * -l<lines> Sets the number of lines/page *

 * (default=66). *
 **/

#include <stdio.h>

#include <stdlib.h>

int verbose = 0; /* verbose mode (default = false) */

char *out_file = "print.out"; /* output filename */
char *program_name; /* name of the program (for errors) */

int line_max = 66; /* number of lines per page */

/**
 * do_file -- Dummy routine to handle a file. *

 * *

 * Parameter *
 * name -- Name of the file to print. *

 **/

void do_file(char *name)
{

 printf("Verbose %d Lines %d Input %s Output %s\n",
 verbose, line_max, name, out_file);

}
/***

 * usage -- Tells the user how to use this program and *

 * exit. *

 TEAM FLY PRESENTS

 246

 **/
void usage(void)

{
 fprintf(stderr,"Usage is %s [options] [file-list]\n",
 program_name);

 fprintf(stderr,"Options\n");

 fprintf(stderr," -v verbose\n");
 fprintf(stderr," -l<number> Number of lines\n");
 fprintf(stderr," -o<name> Set output filename\n");

 exit (8);

}
int main(int argc, char *argv[])

{
 /* save the program name for future use */
 program_name = argv[0];

 /*
 * loop for each option
 * Stop if we run out of arguments

 * or we get an argument without a dash

 */
 while ((argc > 1) && (argv[1][0] == '-')) {

 /*
 * argv[1][1] is the actual option character
 */

 switch (argv[1][1]) {

 /*
 * -v verbose
 */

 case 'v':

 verbose = 1;
 break;

 /*
 * -o<name> output file
 * [0] is the dash

 * [1] is the "o"

 * [2] starts the name
 */
 case 'o':

 out_file = &argv[1][2];

 break;
 /*

 * -l<number> set max number of lines
 */

 TEAM FLY PRESENTS

 247

 case 'l':
 line_max = atoi(&argv[1][2]);

 break;
 default:
 fprintf(stderr,"Bad option %s\n", argv[1]);

 usage();

 }
 /*
 * move the argument list up one

 * move the count down one

 */
 ++argv;

 --argc;
 }

 /*

 * At this point, all the options have been processed.
 * Check to see if we have no files in the list.
 * If no files exist, we need to process just standard input stream.

 */

 if (argc == 1) {
 do_file("print.in");

 } else {
 while (argc > 1) {
 do_file(argv[1]);

 ++argv;

 --argc;
 }
 }

 return (0);

}

13.8 Programming Exercises

Exercise 13-1: Write a program that uses pointers to set each element of an array

to zero.

Exercise 13-2: Write a function that takes a single string as its argument and
returns a pointer to the first nonwhite character in the string.

 TEAM FLY PRESENTS

 248

13.9 Answers

Answer 13-1: The problem is that the variable name is a temporary variable. The

compiler allocates space for the name when the function is entered and reclaims the

space when the function exits. The function assigns name the correct value and

returns a pointer to it. However, the function is over, so name disappears and we

have a pointer with an illegal value.

The solution is to declare name static. In this manner, name is a permanent variable

and will not disappear at the end of the function.

Question 13-2: After fixing the function, we try using it for two filenames. Example

13-13 should print out:

Name: tmp1
Name: tmp2

but it doesn't. What does it print and why? (Look below for the answer)

Example 13-13. tmp2/tmp2.c

#include <stdio.h>
#include <string.h>

/**
 * tmp_name -- Returns a temporary filename. *

 * *

 * Each time this function is called, a new name will *
 * be returned. *

 * *
 * Warning: There should be a warning here, but if we *

 * put it in, we would answer the question. *
 * *

 * Returns *

 * Pointer to the new filename. *
 **/

char *tmp_name(void)

{
 static char name[30]; /* The name we are generating */

 static int sequence = 0; /* Sequence number for last digit */

 ++sequence; /* Move to the next filename */

 TEAM FLY PRESENTS

 249

 strcpy(name, "tmp");

 /* But in the squence digit */
 name[3] = sequence + '0';

 /* End the string */

 name[4] = '\0';

 return(name);

}

int main()

{
 char *tmp_name(void); /* get name of temporary file */
 char *name1; /* name of a temporary file */

 char *name2; /* name of a temporary file */

 name1 = tmp_name();
 name2 = tmp_name();

 printf("Name1: %s\n", name1);
 printf("Name2: %s\n", name2);

 return(0);
}

Answer 13-2: The first call to tmp_name returns a pointer to name. There is only one

name. The second call to tmp_name changes name and returns a pointer to it. So we

have two pointers, and they point to the same thing, name.

Several library functions return pointers to static strings. A second call to one of

these routines will overwrite the first value. A solution to this problem is to copy the

values as shown below:

char name1[100];

char name2[100];
strcpy(name1, tmp_name());
strcpy(name2, tmp_name());

This problem is a good illustration of the basic meaning of a pointer; it doesn't

create any new space for data, but just refers to data that is created elsewhere.

This problem is also a good example of a poorly designed function. The problem is

that the function is tricky to use. A better design would make the code less risky to

use. For example, the function could take an additional parameter: the string in

which the filename is to be constructed:

 TEAM FLY PRESENTS

 250

void tmp_name(char *name_to_return);

 TEAM FLY PRESENTS

 251

Chapter 14. File Input/Output

I the heir of all the ages, in the foremost files of time.

—Alfred, Lord Tennyson

A file is a collection of related data. C treats a file as a series of bytes. Many files

reside on disk; however, devices like terminals, printers, and magnetic tapes are

also considered files.

The C library contains a large number of routines for manipulating files. The

declarations for the structures and functions used by the file functions are stored in

the standard include file <stdio.h>. Before doing anything with files, you must put

the line:

#include <stdio.h>

at the beginning of your program.

The declaration for a file variable is:

FILE *file-variable; /* comment */

For example:

#include <stdio.h>

FILE *in_file; /* file containing the input data */

Before a file can be used, it must be opened using the function fopen. fopen returns

a pointer to the file structure for the file. The format for fopen is:

file-variable = fopen(name, mode);

where:

file-variable

is a file variable. A value of NULL is returned on error.

name

is the actual name of the file (data.txt, temp.dat, etc.).

mode

 TEAM FLY PRESENTS

 252

indicates if the file is to be read or written. mode is "w" for writing and "r" for

reading. The flag "b" can be added to indicate a binary file. Omitting the

binary flag indicates an ASCII (text) file. (See Section 14.2 for a description

of ASCII and binary files.)

Flags can be combined. So "wb" is used to write a binary file.

The function returns a file handle that will be used in subsequent I/O operations. If

there is an I/O error, then the value NULL is returned:

FILE *in_file; /* File to read */

in_file = fopen("input.txt", "r"); /* Open the input file */

if (in_file == NULL) { /* Test for error */

 fprintf(stderr, "Error: Unable to input file 'input.txt'\n");
 exit (8);
}

The function fclose will close the file. The format of fclose is:

status = fclose(file-variable);

or:

fclose(file-variable);

The variable status is zero if the fclose was successful or nonzero for an error. If

you don't care about the status, the second form closes the file and discards the

return value.

C provides three pre -opened files. These are listed in Table 14 -1.

Table 14-1. Standard Files

File Description

stdin Standard input (open for reading)

stdout Standard output (open for writing)

stderr Standard error (open for writing)

The function fgetc reads a single character from a file. If no more data exists in the

file, the function will return the constant EOF (EOF is defined in stdio.h). Note that

fgetc returns an integer, not a character. This return is necessary because the EOF

flag must be a noncharacter value.

 TEAM FLY PRESENTS

 253

Example 14-1 counts the number of characters in the file input.txt .

Example 14-1. copy/copy.c

[File: copy/copy.c]

#include <stdio.h>

const char FILE_NAME[] = "input.txt";
#include <stdlib.h>

int main()

{
 int count = 0; /* number of characters seen */

 FILE *in_file; /* input file */

 /* character or EOF flag from input */

 int ch;

 in_file = fopen(FILE_NAME, "r");

 if (in_file == NULL) {
 printf("Cannot open %s\n", FILE_NAME);

 exit(8);
 }

 while (1) {
 ch = fgetc(in_file);

 if (ch == EOF)

 break;
 ++count;

 }
 printf("Number of characters in %s is %d\n",

 FILE_NAME, count);

 fclose(in_file);

 return (0);
}

A similar function, fputc , exists for writing a single character. Its format is:

fputc(character, file);

The functions fgets and fputs work on one line at a time. The format of the fgets

call is:

string_ptr = fgets(string, size, file);

 TEAM FLY PRESENTS

 254

where:

string_ptr

is equal to string if the read was successful, or NULL if end -of-file or an error

is detected.

string

is a character array in which the function places the string.

size

is the size of the character array. fgets reads until it gets a line (complete

with ending \n) or it reads size -1 characters. It then ends the string with a

null (\0).

Problems can occur if the size specified is too big. C provides a convenient way of
making sure that the size parameter is just right through the use of the sizeof

operator.

The sizeof operator returns the size of its argument in bytes. For example:

long int array[10]; /* (Each element contains 4 bytes) */

char string[30];

Then sizeof(string) is 30. This size is not the same as the length. The length of

string can be anywhere from to 29 characters. The sizeof function returns the

number of bytes in string (used or not). A long int takes up 4 bytes so

sizeof(array) is 40.

The sizeof operator is particularly useful when you use the fgets routine. By using

sizeof, you don't have to worry about how big a string is or, worse, what happens

if someone changes the dimension of the string.

For example:

char string[100];

. . .
fgets(string, sizeof(string), in_file);

fputs is similar to fgets except that it writes a string instead of reading it. The

format of the fputs function is:

string_ptr = fputs(string, file);

 TEAM FLY PRESENTS

 255

The parameters to fputs are similar to the ones for fgets. fputs needs no size

because it gets the size of the line to write from the length of the string. (It keeps

writing until it hits a null, '\0'.)

14.1 Conversion Routines

So far we have just discussed writing characters and strings. In this section, we will
discuss some of the more sophisticated I/O operations and conversions.

In order to write a number to a printer or terminal, you must convert it to characters.

The printer understands only characters, not numbers. For example, the number

567 must be converted to the three characters 5, 6, and 7 in order to be printed.

The function fprintf converts data and writes it to a file. The general form of the

fprintf function is:

count = fprintf(file, format, parameter-1, parameter-2, ...);

where:

count

is the number of characters sent or -1 if an error occurred.

format

describes how the arguments are to be printed.

parameter-1, parameter-2, ...

are parameters to be converted and sent.

fprintf has two sister functions: printf and sprintf. printf() has been seen

often in this book, and is equivalent to fprintf with a first argument of stdout.

sprintf is similar to fprintf, except that the first argument is a string. For

example:

char string[40]; /* the filename */
int file_number = 0; /* current file number for this segment */

sprintf(string, "file.%d", file_number);

++file_number;

out_file = fopen(string, "w");

scanf has similar sister functions: fscanf and sscanf. The format for fscanf is:

 TEAM FLY PRESENTS

 256

number = fscanf(file, format, ¶meter-1, ...);

where:

number

is the number of parameters successfully converted. If there was input but
nothing could be converted, a zero is returned. If no data is present, EOF is

returned.

file

is a file opened for reading.

format

describes the data to be read.

parameter-1

is the first parameter to be read.

sscanf is similar to fscanf, except that a string is scanned instead of a file.

scanf is very fussy about where the end -of-line characters occur in the input.

Frequently, the user has to type extra returns to get scanf unstuck.

We have avoided this problem by using fgets to read a line from the file and then

using sscanf to parse it. fgets almost always gets a single line without trouble.

Example 14-2 shows a program that attempts to read two parameters from the

standard input (the keyboard). It then prints a message based on the number of

inputs actually found.

Example 14-2. Using the sscanf Return Value

char line[100]; /* Line from the keyboard */

int count, total; /* Number of entries & total value */

int scan_count; /* Number of parameters scanned */

fgets(line, sizeof(line), stdin);

scan_count = sscanf(line,"%d %d", &count, &total);

switch (scan_count) {

 case EOF:

 TEAM FLY PRESENTS

 257

 case O:
 printf("Didn't find any number\n");

 break;
 case 1:
 printf("Found 'count'(%d), but not 'total'\n", count);

 break;

 case 2:
 printf("Found both 'count'(%d) and 'total'(%d)\n", count, total);
 break;

 default:

 printf("This should not be possible\n");
 break;

}

Question 14-1: No matter what filename we give Example 14-3, our program can't

find it. Why? (Click here for the answer Section 14.8)

Example 14-3. fun-file/fun-file.c

#include <stdio.h>

#include <stdlib.h>

int main()
{
 char name[100]; /* name of the file to use */

 FILE *in_file; /* file for input */

 printf("Name? ");
 fgets(name, sizeof(name), stdin);

 in_file = fopen(name, "r");
 if (in_file == NULL) {

 fprintf(stderr, "Could not open file\n");
 exit(8);
 }

 printf("File found\n");

 fclose(in_file);

 return (0);
}

 TEAM FLY PRESENTS

 258

14.2 Binary and ASCII Files

We have been working with ASCII files. ASCII stands for American Standard Code
for Information Interchange. It is a set of 95 printable characters and 33 control

codes. ASCII files are readab le text. When you write a program, the prog.c file is in

ASCII.

Terminals, keyboards, and printers deal with character data. When you want to

write a number like 1234 to the screen, it must be converted to four characters ('1',

'2', '3', and '4') and written. Similarly, when you read a number from the

keyboard, the data must be converted from characters to integers. This is done by
the sscanf routine.

The ASCII character '0' has the value of 48, '1' has the value of 49, and so on.

When you want to convert a single digit from ASCII to integer, you must subtract

this number. For example:

int integer;
char ch;

ch = '5';

integer = ch - 48;
printf("Integer %d\n", integer);

Rather than remember that '0' is 48, you can just subtract '0':

integer = ch - '0';

Computers work on binary data. When reading numbers from an ASCII file, the
program must process the character data through a conversion routine like sscanf .

This is expensive. Binary files require no conversion. They also generally take up

less space than ASCII files. The drawback is that they cannot be directly printed on

a terminal or printer. (If you've ever seen a long printout coming out of the printer

displaying pages with a few characters at the top that look like

"!E#(@$%@^Aa^AA^^JHC%^X," then you know what happens when you try to

print a binary file.)

ASCII files are portable (for the most part). They can be moved from machine to

machine with very little trouble. Binary files are almost certainly nonportable.

Unless you are an expert programmer, you will find it almost impossible to make a

portable binary file.

Which file type should you use? In most cases, ASCII. If you have small-to- medium

amounts of data, the conversion time will not seriously affect the performance of

 TEAM FLY PRESENTS

 259

your program. (Who cares if it takes 0.5 seconds to start up instead of 0.3?) ASCII

files allow you to easily check the data for correctness.

Only when you are using large amounts of data will the space and performance

problems force you to use the binary format.

14.3 The End-of-Line Puzzle

Back in the dark ages BC (Before Computers), a magical device called a Teletype

Model 33 existed. This amazing machine contained a shift register made out of a

motor, with a rotor, and a keyboard ROM consisting solely of levers and springs. It

contained a keyboard, a printer, and a paper tape reader/punch. It could transmit

messages over the phones using a modem at the rate of 10 characters a second.

The Teletype had a problem. It took two-tenths of a second to move the printhead

from the right side to the left. Two-tenths of a second is two character times. If a

second character came while the printhead was in the middle of a return, that

character was lost.

The Teletype people solved this problem by making end-of-line two characters:

<RETURN> to position the printhead at the left margin and <LINE FEED> to move

the paper up one line.

When the early computers came out, some designers realized that using two

characters for end-of-line wasted storage (at this time, storage was very expensive).

Some picked <LINE FEED> for their end-of-line, some <RETURN>. Some of the

diehards stayed with the two -character sequence.

UNIX uses <LINE FEED> for end-of-line. The newline character, \n , is code 0x0A

(LF or <LINE FEED>). MS-DOS/Windows uses the two characters: <LINE

FEED><RETURN>. Apple uses <RETURN>.

MS-DOS/Windows compiler designers had a problem. What do we do about the old

C programs that thought that newline was just <LINE FEED>? The solution was to

add code to the I/O library that stripped out the <RETURN> characters from ASCII

input files and changed <LINE FEED> to <LINE FEED> <RETURN> on output.

In MS-DOS/Windows, it makes a difference whether or not a file is opened as ASCII

or binary. The flag b is used to indicate a binary file:

/* open ASCII file for reading */
ascii_file = fopen("name", "r");

/* open binary file for reading */

 TEAM FLY PRESENTS

 260

binary_file = fopen("name", "rb");

If you open a file that contains text as a binary file under MS-DOS/Windows, you

have to handle the carriage returns in your program. If you open it as ASCII, the

carriage returns are automatically removed by the read routines.

Question 14-2: The routine fputc can be used to write out a single byte of a binary

file. Example 14-4 writes out numbers to 127 to a file called test.out. It works just

fine on UNIX, creating a 128-byte-long file; however, on MS-DOS/Windows, the file

contains 129 bytes. Why?

Example 14-4. wbin/wbin.c

[File: wbin/wbin.c]

#include <stdio.h>
#include <stdlib.h>

#ifndef __MSDOS__

#include <unistd.h>
#endif __MSDOS__

int main()
{

 int cur_char; /* current character to write */
 FILE *out_file; /* output file */

 out_file = fopen("test.out", "w");

 if (out_file == NULL) {

 fprintf(stderr,"Cannot open output file\n");
 exit (8);

 }

 for (cur_char = 0; cur_char < 128; ++cur_char) {

 fputc(cur_char, out_file);
 }

 fclose(out_file);
 return (0);

}

Hint: Here is a hex dump of the MS-DOS/Windows file:

000:0001 0203 0405 0607 0809 0d0a 0b0c 0d0e
010:0f10 1112 1314 1516 1718 191a 1b1c 1d1e
020:1f20 2122 2324 2526 2728 292a 2b2c 2d2e

030:2f30 3132 3334 3536 3738 393a 3b3c 3d3e

 TEAM FLY PRESENTS

 261

040:3f40 4142 4344 4546 4748 494a 4b4c 4d4e
050:4f50 5152 5354 5556 5758 595a 5b5c 5d5e

060:5f60 6162 6364 6566 6768 696a 6b6c 6d6e
070:6f70 7172 7374 7576 7778 797a 7b7c 7d7e
080:7f

(Click here for the answer Section 14.8 .)

UNIX programmers don't have to worry about the C library automatically fixing their

ASCII files. In UNIX, a file is a file and ASCII is no different from binary. In fact, you

can write a half-ASCII, half-binary file if you want to.

14.4 Binary I/O

Binary I/O is accomplished through two routines: fread and fwrite. The syntax for
fread is:

read_size = fread(data_ptr, 1, size, file);

where:

read_size

is the size of the data that was read. If this value is less than size, then an

end-of-file or error was encountered.

data_ptr

is the pointer to the data to be read. This pointer must be cast to a character

point (char *) if the data is any type other than a character.

size

is the number of bytes to be read.

file

is the input file.

For example:

struct {

 int width;

 int height;
} rectangle;

 TEAM FLY PRESENTS

 262

int read_size;

read_size = fread((char *)&rectangle, 1, sizeof(rectangle), in_file);
if (read_size != sizeof(rectangle)) {
 fprintf(stderr,"Unable to read rectangle\n");

 exit (8);

}

In this example, we are reading in the structure rectangle. The & operator makes it

into a pointer. The sizeof operator is used to determine how many bytes to read in,

as well as to check that the read was successful.

fwrite has a calling sequence similar to fread:

write_size = fwrite(data_ptr, 1, size, file);

In order to make programming simpler and easier,

we always use one as the second parameter to fread

and fwrite. Actually, fread and fwrite are designed

to read an array of objects. The second parameter is
the size of the object and the third parameter is the
number of objects. For a full description of these
functions, see your C reference manual.

14.5 Buffering Problems

Buffered I/O does not write immediately to the file. Instead, the data is kept in a

buffer until there is enough for a big write, or until it is flushed. The following

program is designed to print out a progress message as each section is finished:

printf("Starting");

do_step_1();

printf("Step 1 complete");

do_step_2();
printf("Step 2 complete");

do_step_3();
printf("Step 3 complete\n");

 TEAM FLY PRESENTS

 263

Instead of writing the messages as each step is completed, the printf function puts

them in a buffe r. Only when the program is finished does the buffer get flushed and

all the messages come spilling out at once.

The routine fflush will force the flushing of the buffers. Properly written, our

example should be:

printf("Starting");
fflush(stdout);

do_step_1();

printf("Step 1 complete");
fflush(stdout);

do_step_2();
printf("Step 2 complete");

fflush(stdout);

do_step_3();

printf("Step 3 complete\n");

fflush(stdout);

14.6 Unbuffered I/O

In buffered I/O, data is buffered and then sent to the file. In unbuffered I/O, the
data is immediately sent to the file.

If you drop a number of paper clips on the floor, you can pick them up in buffered or

unbuffered mode. In buffered mode, you use your right hand to pick up a paper clip

and transfer it to your left hand. The process is repeated until your left hand is full,

and then you dump a handful of paper clips into the box on your desk.

In unbuffered mode, you pick up a paper clip and dump it immediately into the box.

There is no left-hand buffer.

In most cases, buffered I/O should be used instead of unbuffered. In unbuffered I/O,
each read or write requires a system call. Any call to the operating system is

expensive. Buffered I/O minimizes these calls.

Unbuffered I/O should be used only when reading or w riting large amounts of binary
data or when direct control of a device or file is required.

 TEAM FLY PRESENTS

 264

Back to our paper clip example—if we were picking up small items like paperclips,

we would probably use a left-hand buffer. But if we were picking up cannonballs

(which are much larger), no buffer would be used.

The open system call is used for opening an unbuffered file. The macro definitions

used by this call differ from system to system. We are using both UNIX and

MS-DOS/Windows, so we have used conditional compilation (#ifdef/#endif) to

bring in the correct files:

#ifndef __MSDOS__ /* if we are not MS-DOS */

#define __UNIX__ /* then we are UNIX */

#endif __MSDOS__

#ifdef __UNIX__

#include <sys/types.h> /* file defines for UNIX filesystem */
#include <sys/stat.h>

#include <fcntl.h>
#endif __UNIX__

#ifdef __MSDOS__

#include <stdlib.h>

#include <fcntl.h> /* file defines for DOS filesystem */
#include <sys\stat.h>

#include <io.h>

#endif __MSDOS__

int file_descriptor;
file_descriptor = open(name, flags); /* existing file */
file_descriptor = open(name, flags, mode); /*new file */

where:

file_descriptor

is an integer that is used to identify the file for the read, write, and close calls.

If file descriptor is less than zero, an error occurred.

name

is the name of the file.

flags

are defined in the fcntl.h header file. Flags are described in Table 14-2.

 TEAM FLY PRESENTS

 265

mode

is the protection mode for the file. Normally, this is 0644 for most files.

Table 14-2. Open Flags

Flag Meaning

O_RDONLY Open for reading only

O_WRONLY Open for writing only

O_RDWR Open for reading and writing

O_APPEND Append new data at the end of the file

O_CREAT Create file (mode is required when this flag is present)

O_TRUNC If the file exists, truncate it to zero length

O_EXCL Fail if file exists

O_BINARY Open in binary mode (MS -DOS/Windows only)

O_TEXT Open in text mode (MS -DOS/Windows only)

For example, to open the existing file data.txt in text mode for reading, we use the
following:

data_fd = open("data.txt", O_RDONLY);

The next example shows how to create a file called output.dat for writing only:

out_fd = open("output.dat", O_CREAT|O_WRONLY, 0644);

Notice that we co mbined flags using the or operator (|). This is a quick and easy way

of merging multiple flags.

When any program is initially run, three files are already opened. These are

described in Table 14-3.

Table 14-3. Standard Unbuffered Files

File number Symbolic name Description

0 STDIN_FILENO Standard in

1 STDOUT_FILENO Standard out

2 STDERR_FILENO Standard err

 TEAM FLY PRESENTS

 266

The symbolic names are defined in the header file unistd.h. These are a relatively

new part of the language and are very rarely used. (You really should use the

symbolic names, but most people don't.)

The format of the read call is:

read_size = read(file_descriptor, buffer, size);

where:

read_size

is the number of bytes read. Zero indicates end-of-file, and a negative

number indicates an error.

file_descriptor

is the file descriptor of an open file.

buffer

is the pointer to the place to read the data.

size

is the size of the data to be read.

The format of a write call is:

write_size = write(file_descriptor, buffer, size);

where:

write_size

is the number of bytes written. A negative number indicates an error.

file_descriptor

is the file descriptor of an open file.

buffer

is the pointer to the data to be written.

size

 TEAM FLY PRESENTS

 267

is the size of the data to be written.

Finally, the close call closes the file:

flag = close(file_descriptor)

where:

flag

is zero for success, negative for error.

file_descriptor

is the file descriptor of an open file.

Chapter 14 copies a file. Unbuffered I/O is used because of the large buffer size.

Using buffered I/O to read 1K of data into a buffer and then transfer it into a 16K

buffer makes no sense.

Example 14-5. copy2/copy2.c

[File: copy2/copy2.c]

/**
 * copy -- Copies one file to another. *

 * *

 * Usage *
 * copy <from> <to> *

 * *
 * <from> -- The file to copy from. *

 * <to> -- The file to copy into. *
 **/

#include <stdio.h>

#ifndef __MSDOS__ /* if we are not MS-DOS */
#define __UNIX__ /* then we are UNIX */

#endif /* __MSDOS__ */

#include <stdlib.h>

#ifdef __UNIX__

#include <sys/types.h> /* file defines for UNIX filesystem */
#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

 TEAM FLY PRESENTS

 268

#endif /* __UNIX__ */

#ifdef __MSDOS__
#include <fcntl.h> /* file defines for DOS filesystem */
#include <sys\stat.h>

#include <io.h>

#endif __MSDOS__

#ifndef O_BINARY

#define O_BINARY 0 /* Define the flag if not defined yet */

#endif /* O_BINARY */

#define BUFFER_SIZE (16 * 1024) /* use 16K buffers */

int main(int argc, char *argv[])

{

 char buffer[BUFFER_SIZE]; /* buffer for data */
 int in_file; /* input file descriptor */
 int out_file; /* output file descriptor */

 int read_size; /* number of bytes on last read */

 if (argc != 3) {

 fprintf(stderr, "Error:Wrong number of arguments\n");
 fprintf(stderr, "Usage is: copy <from> <to>\n");
 exit(8);

 }

 in_file = open(argv[1], O_RDONLY|O_BINARY);
 if (in_file < 0) {
 fprintf("Error:Unable to open %s\n", argv[1]);

 exit(8);

 }
 out_file = open(argv[2], O_WRONLY|O_TRUNC|O_CREAT|O_BINARY, 0666);

 if (out_file < 0) {
 fprintf("Error:Unable to open %s\n", argv[2]);
 exit(8);

 }

 while (1) {
 read_size = read(in_file, buffer, sizeof(buffer));

 if (read_size == 0)

 break; /* end of file */

 if (read_size < 0) {
 fprintf(stderr, "Error:Read error\n");

 TEAM FLY PRESENTS

 269

 exit(8);
 }

 write(out_file, buffer, (unsigned int) read_size);
 }
 close(in_file);

 close(out_file);

 return (0);
}

Question 14-3: Why does Example 14-5 dump core instead of printing an error

message, if it can't open the input file? (Click here for Section 14.8)

Several things should be noted about this program. First of all, the buffer size is

defined as a constant, so it is easily modified. Rather than have to remember that

16K is 16384, the programmer used the expression (16 * 1024). This form of the

constant is obviously 16K.

If the user improperly uses the program, an error message results. To help get it

right, the message tells how to use the program.

We may not read a full buffer for the last read. Consequently, read_size is used to

determine the number of bytes to write.

14.7 Designing File Formats

Suppose you are designing a program to produce a graph. The height, width, limits,

and scales are to be defined in a graph configuration file. You are also assigned to

write a user-friendly program that asks the operator questions and then writes a

configuration file so that he does not have to learn the text editor. How should you

design a configuration file?

One way would be as follows:

height (in inches)

width (in inches)

x lower limit

x upper limit
y lower limit

y upper limit

x scale
y scale

A typical plotter config uration file might look like:

 TEAM FLY PRESENTS

 270

10.0
7.0

0
100
30

300

0.5
2.0

This file does contain all the data, but in looking at it, you have difficulty telling what,

for example, is the value of the y lower limit. A solution is to comment the file. That

is, to have the configuration program write out not only the data, but a string

describing the data.

10.0 height (in inches)
7.0 width (in inches)

0 x lower limit
100 x upper limit
30 y lower limit

300 y upper limit

0.5 x scale

2.0 y scale

Now the file is user readable. But suppose that one of the users runs the plot

program and types in the wrong filename, and the program gets the lunch menu for

today instead of a plot configuration file. The program is probably going to get very

upset when it tries to construct a plot whose dimensions are "BLT on white" versus

"Meatloaf and gravy."

The result is that you wind up with egg on your face. There should be some way of

identifying this file as a plot configuration file. One method of doing so is to put the

words "Plot Configuration File" on the first line of the file. Then, when someone tries

to give your program the wrong file, the program will print an error message.

This solution takes care of the wrong-file problem, but what happens when you are

asked to enhance the programs and add optional logarithmic plotting? You could

simply add another line to the configuration file, but what about all those old files?

You cannot reasonably ask everyone to throw them away. The best thing to do

(from a user's point of view) is to accept old format files. You can make this task

easier by putting a version number in the file.

A typical file now looks like:

Plot Configuration File V1.0
log Logarithmic or Normal plot

 TEAM FLY PRESENTS

 271

10.0 height (in inches)
7.0 width (in inches)

0 x lower limit
100 x upper limit
30 y lower limit

300 y upper limit

0.5 x scale
2.0 y scale

In binary files, you usually put an identification number in the first four bytes of the

file. This number is called the magic number. The magic number should be different

for each type of file.

One method for choosing a magic number is to start with the first four letters of the

program name (i.e., list) and then convert them to hexadecimal: 0x6c607374. Then,

add 0x80808080 to the number, producing a magic number of 0xECE0F3F4 .

This algorithm generates a magic number that is probably unique. The high bit is set

on each byte to make the byte non-ASCII and avoid confusion between ASCII and

binary files.

When read ing and writing a binary file containing many different types of structures,

a programmer can easily get lost. For example, you might read a name structure

when you expected a size structure. This error is usually not detected until later in

the program. In order to locate this problem early, the programmer can put magic

numbers at the beginning of each structure.

Now, if the program reads the name structure and the magic number is not correct,

it knows something is wrong.

Magic numbers for structures do not need to have the high bit set on each byte.

Making the magic number just four ASCII characters allows you to easily pick out

the beginning of structures in a file dump.

14.8 Answers

Answer 14-1: The problem is that fgets gets the entire line including the newline
character (\n). If you have a file named sam , the program will read sam \n and try

to look for a file by that name. Because there is no such file, the program reports an

error.

The fix is to strip the newline character from the name:

name[strlen(name)-1] = '\0'; /* get rid of last character */

 TEAM FLY PRESENTS

 272

The error message in this case is poorly designed. True, we did not open the file, but

the programmer could supply the user with more information. Are we trying to open

the file for input or output? What is the name of the file we are trying to open? We

don't even know if the message we are getting is an error, a warning, or just part of

the normal operation. A better error message is:

fprintf(stderr,"Error:Unable to open %s for input\n", name);

Notice that this message would also help us detect the programming error. When

we typed in sam, the error would be:

Error:Unable to open sam
for input

This message clearly shows us that we are trying to open a file with a newline in its

name.

Answer 14-2: The problem is that we are writing an ASCII file, but we wanted a

binary file. On UNIX, ASCII is the same as binary, so the program runs fine. On

MS-DOS/Windows, the end-of-line problem causes us problems. When we write a

newline character (0x0a) to the file, a ca rriage return (0x0D) is added to it.

(Remember that end-of-line on MS-DOS/Windows is <RETURN> <LINE FEED>, or

0x0d, 0x0a.) Because of this editing, we get an extra carriage return (0x0d) in the

output file.

In order to write binary data (without output editing), we need to open the file with

the binary option:

out_file = fopen("test.out", "wb");

Answer 14-3: The problem is with the fprintf call. The first parameter of an

fprintf should be a file; instead, it is the format string. Trying to use a format

string when the program is expecting a file causes a core dump.

14.9 Programming Exercises

Exercise 14-1: Write a program that reads a file and then counts the number of
lines in it.

Exercise 14-2: Write a program to copy a file, expanding all tabs to multiple

spaces.

Exercise 14-3: Write a program that reads a file containing a list of numbers, and

then writes two files, one with all numbers divisible by three and another containing

all the other numbers.

 TEAM FLY PRESENTS

 273

Exercise 14-4: Write a program that reads an ASCII file containing a list of

numbers and writes a binary file containing the same list. Write a program that goes

the other way so that you can check your work.

Exercise 14-5: Write a program that copies a file and removes all characters with

the high bit set (((ch & 0x80) != 0)).

Exercise 14-6: Design a file format to store a person's name, address, and other

information. Write a program to read this file and produce a set of mailing labels.

 TEAM FLY PRESENTS

 274

Chapter 15. Debugging and Optimization

Bloody instructions which, being learned, return to plague the inventor.

—Shakespeare, on debugging [Macbeth, Act 1, Scene 7].

15.1 Debugging

The hardest part of creating a program is not its design and writing, but its

debugging phase. In this phase, you find out how your program really works

(instead of how you think it works).

In order to eradicate a bug, you need two things: a way of reproducing it and

information from the program that lets you locate and correct the problem.

In some cases, finding the bug is easy. You discover the bug yourself, the test

department produces a clear and easy test plan that displays the bug, or else the

output always comes out bad.

In some cases, especially with interactive programs, reproducing the bug may be

90% of the problem. This statement is especially true when you deal with bug

reports sent in by users in the field. A typical call from a user might be:

User:

That database program you gave me is broken.

Programmer:

What's wrong?

User:

Sometimes, when I'm doing a sort, it gets things in the wrong order.

Programmer:

What command were you using?

User:

The sort command.

Programmer (patiently):

 TEAM FLY PRESENTS

 275

Tell me exactly what you typed, keystroke by keystroke, to get it to fail.

User:

I don't remember it exactly. I was doing a lot of sorts.

Programmer:

If I come over can you show me the bug?

User:

Of course.

Two minutes later, the programmer is in the user's office and utters the fatal words,

"Show me." The user types away and the program stubbornly works, no matter

what the user does to it.

The programmer gives up and goes back to her office only to find a message from

the user: "It failed five minutes after you left."

Example 15-1 is a short database lookup program. It asks the user for input and

checks the input against a hardcoded list of names. Although very simple, the

program's structure is typical of much larger and more complex interactive

programs.

Example 15-1. base/base.c

/**

 * Database -- A very simple database program to *

 * look up names in a hardcoded list. *
 * *

 * Usage: *
 * database *

 * Program will ask you for a name. *
 * Enter the name; it will tell you if *

 * the name is in the list. *

 * *
 * A blank name terminates the program. *

 **/

#define STRING_LENGTH 80 /* Length of typical string */
#include <stdio.h>

#include <string.h>

 TEAM FLY PRESENTS

 276

int main()
{

 char name[STRING_LENGTH]; /* a name to lookup */

 int lookup(char const *const name); /* lookup a name */

 while (1) {
 printf("Enter name: ");
 fgets(name, sizeof(name), stdin);

 /* Check for blank name */
 /* (remember 1 character for newline) */

 if (strlen(name) <= 1)
 break;

 /* Get rid of newline */

 name[strlen(name)-1] = '\0';

 if (lookup(name))

 printf("%s is in the list\n", name);

 else
 printf("%s is not in the list\n", name);

 }
 return (0);
}

/**

 * lookup -- Looks up a name in a list. *
 * *
 * Parameters *

 * name -- Name to look up. *

 * *
 * Returns *

 * 1 -- Name in the list. *
 * 0 -- Name not in the list. *
 **/

int lookup(char const *const name)

{
 /* List of people in the database */
 /* Note: Last name is a NULL for end of list */

 static char *list[] = {

 "John",
 "Jim",

 "Jane",
 "Clyde",

 TEAM FLY PRESENTS

 277

 NULL
 };

 int index; /* index into list */

 for (index = 0; list[index] != NULL; ++index) {

 if (strcmp(list[index], name) == 0)
 return (1);
 }

 return (0);

}

A typical execution of this program is:

Enter name: Sam
Sam is not in the list

Enter name: John
John is in the list
Enter name:

When we release this program, of course, the users immediately start complaining

about mysterious problems that go away whenever the programmer is around.

Wouldn't it be nice to have a little gremlin that sits on the shoulder, copying down

everything the user types? Unfortunately, gremlins are not available; however, we

can change this program so that it produces a save file that contains every

keystroke that the user typed in.

Our program uses the statement:

fgets(name, sizeof(name), stdin);

to read the user's data.

Let's write a new routine, extended_fgets, and use it instead of fgets. It not only

gets a line, but also saves the user's response in a save file. Example 15-2 is a

revision of Example 15-1 that includes extended_fgets.

Example 15-2. xgets/xgets.c

#include <stdio.h>
/*

 * The main program opens this file if -S is on

 * the command line.

 */

 TEAM FLY PRESENTS

 278

FILE *save_file = NULL;
/***

 * extended_fgets -- Gets a line from the input file *
 * and records it in a save file if needed. *
 * *

 * Parameters *

 * line -- The line to read. *
 * size -- sizeof(line) -- maximum number of *
 * characters to read. *

 * file -- File to read data from *

 * (normally stdin). *
 * *

 * Returns *
 * NULL -- error or end-of-file in read *
 * otherwise line (just like fgets). *

 ***/

char *extended_fgets(char *line, int size, FILE *file)
{

 char *result; /* result of fgets */

 result = fgets(line, size, file);

 /* Did someone ask for a save file?? */
 if (save_file != NULL)

 fputs(line, save_file); /* Save line in file */

 return (result);
}

We also change our main program to handle a new option, -Sfile, to specify a save

file. (Typically, uppercase letters are used for debugging and other less used

options.) Our new main program is shown in Example 15-3.

Example 15-3. base2/base2.c

[File: base2/base2.c]

/***
 * Database -- A very simple database program to *

 * look up names in a hardcoded list. *

 * *
 * Usage: *

 * database [-S<file>] *
 * *

 TEAM FLY PRESENTS

 279

 * -S<file> Specifies save file for *
 * debugging purposes *

 * *
 * Program will ask you for a name. *
 * Enter the name; program will tell you if *

 * it is in the list. *

 * *
 * A blank name terminates the program. *
 ***/

#include <stdio.h>

#include <stdlib.h>

FILE *save_file = NULL; /* Save file if any */
char *extended_fgets(char *, int, FILE *);

int main(int argc, char *argv[])

{
 char name[80]; /* a name to lookup */
 char *save_file_name; /* Name of the save file */

 int lookup(char const *const name); /* lookup a name */

 while ((argc > 1) && (argv[1][0] == '-')) {
 switch (argv[1][1]) {
 /* -S<file> Specify a save file */

 case 'S':

 save_file_name = &argv[1][2];
 save_file = fopen(save_file_name, "w");
 if (save_file == NULL)

 fprintf(stderr,

 "Warning:Unable to open save file %s\n",
 save_file_name);

 break;
 default:
 fprintf(stderr,"Bad option: %s\n", argv[1]);

 exit (8);

 }
 --argc;
 ++argv;

 }

 while (1) {
 printf("Enter name: ");

 TEAM FLY PRESENTS

 280

 extended_fgets(name, sizeof(name), stdin);

 /* ... Rest of program ... */
 }
}

Now we have a complete record of what the user typed. Looking at the input, we see

that the user typed:

Sam

 John

The second name begins with a space and although "John" is in the list,

"<space>John" is not. In this case, we found the error by inspecting the input;

however, more complex programs have much more complex input. We could type
all that in when debugging, or we could add another feature to extended_fgets that

would add playback file to it. When enabled, input will not be taken from the

keyboard, but instead will be taken from the file. Example 15-4 contains the revised

extended_fgets.

Example 15-4. xgets2/xgets2.c

#include <stdio.h>

FILE *save_file = NULL; /* Save input in this file */

FILE *playback_file = NULL; /* Playback data from this file */
/***

 * extended_fgets -- Gets a line from the input file *
 * and records it in a save file if needed. *

 * *
 * Parameters *

 * line -- The line to read. *

 * size -- sizeof(line) -- maximum number of *
 * characters to read. *

 * file -- File to read data from *

 * (normally stdin). *
 * *

 * Returns *
 * NULL -- error or end-of-file in read *

 * otherwise line (just like fgets). *
 ***/

char *extended_fgets(char *line, int size, FILE *file)

{
 extern FILE *save_file; /* file to save strings in */

 extern FILE *playback_file; /* file for alternate input */

 TEAM FLY PRESENTS

 281

 char *result; /* result of fgets */

 if (playback_file != NULL) {
 result = fgets(line, size, playback_file);

 /* echo the input to the standard out so the user sees it */

 fputs(line, stdout);
 } else
 /* Get the line normally */

 result = fgets(line, size, file);

 /* Did someone ask for a save file? */

 if (save_file != NULL)
 fputs(line, save_file); /* Save the line in a file */

 return (result);

}

We also add a playback option to the command line -Pfile. This option allows us to

automatically type the commands that caused the error. Our main program, revised

to support the -P option, is Example 15-5.

Example 15-5. base3/base3.c

/***

 * Database -- A very simple database program to *

 * look up names in a hardcoded list. *

 * *
 * Usage: *

 * database [-S<file>] [-P<file>] *

 * *
 * -S<file> Specifies save file for *

 * debugging purposes. *
 * *
 * -P<file> Specifies playback file for *

 * debugging or demonstration. *

 * *

 * *
 * Program will ask you for a name. *

 * Enter the name; the program will tell *

 * you if it is in the list. *
 * *

 * A blank name terminates the program. *
 ***/

 TEAM FLY PRESENTS

 282

#include <stdio.h>
#include <stdlib.h>

FILE *save_file = NULL; /* Save file if any */
FILE *playback_file = NULL; /* Playback file if any */

char *extended_fgets(char *, int, FILE *);

int main(int argc, char *argv[])
{

 char name[80]; /* a Name to look up */

 char *save_file_name; /* Name of the save file */
 char *playback_file_name; /* Name of the playback file */

 int lookup(char const *const name); /* lookup a name */

 while ((argc > 1) && (argv[1][0] == '-')) {

 switch (argv[1][1]) {
 /* -S<file> Specify save file */
 case 'S':

 save_file_name = &argv[1][2];

 save_file = fopen(save_file_name, "w");
 if (save_file == NULL)

 fprintf(stderr,
 "Warning:Unable to open save file %s\n",
 save_file_name);

 break;

 /* -P<file> Specify playback file */
 case 'P':
 playback_file_name = &argv[1][2];

 playback_file = fopen(playback_file_name, "r");

 if (playback_file == NULL) {
 fprintf(stderr,

 "Error:Unable to open playback file %s\n",
 playback_file_name);
 exit (8);

 }

 break;
 default:
 fprintf(stderr,"Bad option: %s\n", argv[1]);

 exit (8);

 }
 --argc;

 ++argv;
 }

 TEAM FLY PRESENTS

 283

 /* ... rest of program ... */

 return (0);
}

Now, when a user calls up with an error report, we can tell him, "Try it again with the

save-file feature enabled, and then send me a copy of your files." The user then runs

the program and saves the input into the file save.txt:

% database -Ssave.txt

Enter name: Sam

Sam is not in the list
Enter name: John

John is in the list

Enter name:

He sends us the file save.txt , and we run the program with the playback option

enabled:

% database -Psave.txt
Enter name: Sam

Sam is not in the list

Enter name: John
John is in the list

Enter name:

We now have a reliable way of reproducing the problem. In many cases, that's half

the battle. After we can reproduce the problem, we can proceed to find and fix the

bugs.

A Copy Flip-Flop

Once a programmer asked a user to send him a copy of his
floppy. A next-day air package arrived at the programmer's
desk containing a photocopy of the floppy. The user was not
completely computer illiterate. He knew it was a two-sided
floppy, so he had photocopied both sides.

Before you start debugging, save the old, "working" copy of your program in a safe

place. (If you are using a source control system like SCCS or RCS, your last working

version should be checked in.) Many times while you are searching for a problem,

you may find it necessary to try out different solutions or to add temporary
debugging code. Sometimes you find you've been barking up the wrong tree and

need to start over. That's when the last working copy becomes invaluable.

 TEAM FLY PRESENTS

 284

After you have reproduced the problem, you must determine what caused it to

happen. There are several methods for doing this, as described in the following

sections.

15.1.1 Divide and Conquer

The divide-and-conquer method has already been briefly discussed in Chapter 6.
This method consists of putting in printf statements where you know the data is

good (to make sure it is really good), where the data is bad, and at several points in

between. In this manner you can start zeroing in on the section of code that

contains the error. More printf statements can further reduce the scope of the

error until the bug is finally located.

15.1.2 Debug-Only Code

The divide-and -conquer method uses temporary printf statements. They are put

in as needed and taken out after they are used. The preprocessor conditional

compilation directives can be used to put in and take out debugging code. For

example:

#ifdef DEBUG
 printf("Width %f Height %f\n", width, height);

#endif /* DEBUG */

The program can be compiled with DEBUG undefined for normal use; you can define

it when debugging is needed.

15.1.3 Debug Command-Line Switch

Rather than using a compile-time switch to create a special version of the program,

you can permanently include the debugging code and add a special program switch

that will turn on the debugging output. For example:

if (debug)
 printf("Width %f Height %f\n", width, height);

In the debug example, debug is a variable that is set if -D is present on the

command line.

This method has the advantage that only a single version of the program exists. Also,

the customer can turn on this switch in the field, save the output, and send it to you

for analysis. The method has a disadvantage, though: a larger executable file. The

 TEAM FLY PRESENTS

 285

runtime switch should always be used instead of conditional compilation unless

there is some reason that you do not want the customer to be able to get at the

debugging information.

Some programs use the concept of a debug level. Level outputs only minimal

debugging information, level 1 more information, and so on up to level 9, which

outputs everything.

The ghostscript[1] program by Aladdin Enterprises implements the idea of

debugging letters. The command option -Zxxx sets the debugging flags for each

type of diagnostic output wanted. For example, f is the code for the fi ll algorithm,

while p is the code for the path tracer. If I wanted to trace both these sections, I
would specify -Zfp.

[1] ghostscript is a PostScript-like interpreter available from the Free Software Foundation for a minimal

copying charge. They can be reached at: Free Software Foundation, Inc., 675 Massachusetts Avenue,

Cambridge, MA 02139 (617) 876-3296. Their ftp site is prep.ai.mit.edu:/pub/gnu.

The option is implemented by the following code:

/*

 * Even though we only used one zero, C will fill in the

 * rest of the arrays with zeros.
 */

char debug[128] = {0}; /* the debugging flags */
main(int argc, char *argv[])
{

 while ((argc > 1) && (argv[1][0] == '-')) {

 switch (argv[1][1]) {

 /* normal switch */
 /* Debug switch */

 case 'Z':

 debug_ptr = argv[1][2];
 /* loop for each letter */

 while (*debug_ptr != '\0') {
 debug[*debug_ptr] = 1;
 debug_ptr++;

 }

 break;

 }
 argc--;

 argv++;

 }
 /* rest of program */

}

 TEAM FLY PRESENTS

 286

This is used inside the program by:

if (debug['p'])

 printf("Starting new path\n");

ghostscript is a large program (some 25,000 lines) and rather difficult to debug.

This form of debugging allows the user to get a great deal of information easily.

15.1.4 Going Through the Output

Enabling the debug printout is a nice way of getting information, but at many times,

there is so much data that the information you want can easily get lost.

C allows you to redirect to a file what would normally go to the screen. For example:

buggy -D9 >tmp.out

runs the program buggy with a high level of debugging and sends the output to the

file tmp.out.

The text editor on your system makes a good file browser. You can use its search

capabilities to look for the information you want to find.

15.2 Interactive Debuggers

Most compiler manufacturers provide you with an interactive debugger. These
debuggers give you the ability to stop the program at any point, examine and

change variables, and "single step" through the program. Because each debugger is

different, a detailed discussion is not possible.

However, we are going to discuss one debugger, dbx. This program is available on

many UNIX machines running the BSD versions of UNIX. On LINUX in particular and
other UNIX systems, the Free Software Foundations gdb debugger is popular.

SYSTEM-V UNIX uses the debugger sdb, while on HP -UX, the utility cdb is used.

Each MS-DOS/Windows compiler has its own debugger. Some compilers actually

come with multiple debuggers. For example, Borland C++ comes with a integrated

debugger that runs under Windows, a stand-alone debugger that runs under
MS-DOS, and a remote debugger that runs on another machine.

Although the exact syntax used by your debugger may be different, the principles

shown here will work for all debuggers.

The basic list of dbx commands are:

 TEAM FLY PRESENTS

 287

run

Start execution of a program.

stop at line-number

Insert a breakpoint at the given line number. When a running program

reaches a breakpoint, execution stops and control returns to the debugger.

stop in function-name

Insert a breakpoint at the first line of the named function. Commonly, the

command stop in main is used to stop at the beginning of the program.

cont

Continue execution after a breakpoint.

print expression

Display the value of an expression.

step

Execute a single line in the program. If the current statement calls a function,

the function is single-stepped.

next

Execute a single line in the program, but treat function calls as a single line.
This command is used to skip over function calls.

list

List the source program.

where

Print the list of currently active functions.

We have a program that should count the number of threes and sevens in a series

of numbers. Unfortunately, it keeps getting the wrong answer for the number of

sevens. Our program is shown in Example 15-6. Your results may vary.

 TEAM FLY PRESENTS

 288

Example 15-6. seven/seven.c

1 #include <stdio.h>
 2 char line[100]; /* line of input */

 3 int seven_count; /* number of sevens in the data */
 4 int data[5]; /* the data to count 3 and 7 in */

 5 int three_count; /* the number of threes in the data */
 6 int index; /* index into the data */

 7

 8 int main() {
 9

10 seven_count = 0;

11 three_count = 0;
12 get_data(data);

13
14 for (index = 1; index <= 5; ++index) {

15
16 if (data[index] == 3)

17 ++three_count;

18
19 if (data[index] == 7)

20 ++seven_count;

21 }
22

23 printf("Threes %d Sevens %d\n",
24 three_count, seven_count);

25 return (0);
26 }

27

28 void get_data(int data)
29 {

30

31 printf("Enter 5 numbers\n");
32 fgets(line, sizeof(line), stdin);

33 sscanf(line, "%d %d %d %d %d",
34 &data[1], &data[2], &data[3],

35 &data[4], &data[5]);
36 }

When we run this program with the data 7 3 7 0 2, the results are:

Threes 1 Sevens 4

 TEAM FLY PRESENTS

 289

We start by invoking the debugger (dbx) with the name of the program we are going

to debug (seven). The debugger initializes itself, outputs the prompt (dbx), and

waits for a command:

% dbx seven
Reading symbolic information...

Read 72 symbols
(dbx)

We don't know where the variable is getting changed, so we'll start at the beginning

and work our way through until we get an error. At every step, we'll display the

variable seven_count just to make sure it's OK.

We need to stop the program at the beginning so that we can single-step through it.

The command stop in main tells dbx to set a breakpoint at the first instruction of

the function main. The command run tells dbx to start the program and run until it

hits the first breakpoint:

(dbx) stop in main
(2) stop in main

The number (2) is used by dbx to identify the breakpoint. Now we need to start the

program:

(dbx) run

Running: seven

stopped in main at line 10 in file "/usr/sdo/seven/seven.c"
 10 seven_count = 0;

The message "stopped in main..." indicates that the program encountered a
breakpoint and the debugger now has control.

We have reached the point where seven_count is initialized. The command next

will execute a single statement, treating function calls as one statement. (The

names of the command for your debugger may be different.) We go past the

initialization and check to see if it worked:

(dbx) next
stopped in main at line 11 in file "/usr/sdo/seven/seven.c"

 11 three_count = 0;

(dbx) print seven_count
seven_count = 0

It did. We try the next few lines, checking all the time:

(dbx) next

 TEAM FLY PRESENTS

 290

stopped in main at line 12 in file "/usr/sdo/seven/seven.c"
 12 get_data(data);

(dbx) print seven_count
seven_count = 0
(dbx) next

Enter 5 numbers

3 7 3 0 2
stopped in main at line 14 in file "/usr/sdo/seven/seven.c"
 14 for (index = 1; index <= 5; index++) {

(dbx) print seven_count

seven_count = 2

seven_count somehow changed value to 2. The last statement we executed was

get_data(data), so something is going on in that function. We add a breakpoint at

the beginning of get_data and start the program over with the run command:

(dbx) stop in get_data
(4) stop in get_data
(dbx) run

Running: seven

stopped in main at line 10 in file "/usr/sdo/seven/seven.c"

 10 seven_count = 0;

We are at the beginning of main. We want to go onto the next breakpoint, so we

issue the cont command to continue execution:

(dbx) cont

Running: seven

stopped in get_data at line 31 in file "/usr/sdo/seven/seven.c"
 31 printf("Enter 5 numbers\n");

We now start single stepping again until we find the error:

(dbx) print seven_count
seven_count = 0

(dbx) next

Enter 5 numbers
stopped in get_data at line 32 in file "/usr/sdo/seven/seven.c"

 32 fgets(line, sizeof(line), stdin);
(dbx) print seven_count
seven_count = 0

(dbx) next

1 2 3 4 5
stopped in get_data at line 33 in file "/usr/sdo/seven/seven.c"
 35 &data[4], &data[5]);

 TEAM FLY PRESENTS

 291

(dbx) print seven_count
seven_count = 0

(dbx) next
stopped in get_data at line 36 in file "/usr/sdo/seven/seven.c"
 36 }

(dbx) print seven_count

seven_count = 5
(dbx) list 30,40
 30

 31 printf("Enter 5 numbers\n");

 32 fgets(line, sizeof(line), stdin);
 33 sscanf(line, "%d %d %d %d %d",

 34 &data[1], &data[2], &data[3],
 35 &data[4], &data[5]);
 36 }

(dbx) quit

At line 32, the data was good, but when we reached line 36, the data was bad, so the
error is located at line 33 of the program, the sscanf. We've narrowed the problem

down to one statement. By inspection we can see that we are using data[5], an

illegal member of the array data.

The computer happened to store seven_count after the data array, so that is why

(confusingly enough) the problem turned up there. It would be nice if we could get

a clear error message whenever we step outside the declared array, but bounds

checking is time consuming and difficult in C. There are some specialized debugging

tools such as Bounds-Checker by Nu-Mega (MS-DOS/ Windows) and Purify by Pure

Software (UNIX).

15.3 Debugging a Binary Search

The binary search algorithm is fairly simple. You want to see if a given number is in

an ordered list. Check your number against the one in the middle o f the list. If it is

the number, you were lucky -- stop. If your number was bigger, then you might find

it in the top half of the list; try the middle of the top half. If it was smaller, try the

bottom half. Keep trying and dividing the list in half until you find the number or the

list gets down to a single number.

Example 15-7 uses a binary search to see if a number can be found in the file

numbers.dat .

 TEAM FLY PRESENTS

 292

Example 15-7. search/search1.c

[File: search/search1.c]
/**

 * search -- Searches a set of numbers. *
 * *

 * Usage: *
 * search *

 * You will be asked numbers to look up. *

 * *
 * Files: *

 * numbers.dat -- Numbers 1 per line to search *

 * (numbers must be ordered). *
 **/

#include <stdio.h>
#define MAX_NUMBERS 1000 /* Max numbers in file */

const char DATA_FILE[] = "numbers.dat"; /* File with numbers */

int data[MAX_NUMBERS]; /* Array of numbers to search */

int max_count; /* Number of valid elements in data */
int main()

{

 FILE *in_file; /* Input file */
 int middle; /* Middle of our search range */

 int low, high; /* Upper/lower bound */
 int search; /* Number to search for */

 char line[80]; /* Input line */

 in_file = fopen(DATA_FILE, "r");

 if (in_file == NULL) {
 fprintf(stderr,"Error:Unable to open %s\n", DATA_FILE);

 exit (8);

 }

 /*
 * Read in data

 */

 max_count = 0;

 while (1) {
 if (fgets(line, sizeof(line), in_file) == NULL)

 break;

 TEAM FLY PRESENTS

 293

 /* convert number */
 sscanf(line, "%d", data[max_count]);

 ++max_count;
 }

 while (1) {

 printf("Enter number to search for or -1 to quit:");
 fgets(line, sizeof(line), stdin);
 sscanf(line, "%d", &search);

 if (search == -1)
 break;

 low = 0;
 high = max_count;

 while (1) {
 middle = (low + high) / 2;

 if (data[middle] == search) {

 printf("Found at index %d\n", middle);
 }

 if (low == high) {
 printf("Not found\n");

 break;

 }

 if (data[middle] < search)

 low = middle;

 else
 high = middle;

 }
 }
 return (0);

}

Our data file, numbers.dat , contains:

4

 6

14
16

17

 TEAM FLY PRESENTS

 294

When we run this program, the results are:

% search

Segmentation fault (core dumped)

These results are not good. They mean that something went wrong in our program

and it tried to read memory that wasn't there. A file called core was created when

the error occurred. It contains a snapshot of our executing program. The debugger
dbx can read this file and help us determine what happened:

% dbx search
Reading symbolic information...
Read 79 symbols

warning: core file read error: address not in data space

warning: core file read error: address not in data space
warning: core file read error: address not in data space
program terminated by signal SEGV (no mapping at the fault address)

(dbx)

The message "warning: core file..." is the debugger's way of telling you that the

temporary variable space (the stack) has been trashed and contains bad data. The

where command tells you which function is calling which function (also known as a

stack trace). The current function is printed first, then the function that called it, and

so on until we reach the outer function main:

(dbx) where
number() at 0xdd7d87a

_doscan() at 0xdd7d329

sscanf(0xdfffadc, 0x200e3, 0x0) at 0xdd7ce7f

main(0x1, 0xdfffb58, 0xdfffb60), line 41 in "search.c"
(dbx)

The above example tells us that main called sscanf. The call was made from line 41

of main. sscanf called _doscan. Because sscanf is a standard library routine, we

cannot get line-number information. The instruction number is 0xdd7ce7f ; however,

this information is not very useful to us. The procedure _doscan called number.

number was what tried to perform the illegal memory access.

This information does not mean that there is a bug in number. The problem could be

caused by the parameters passed to number by _doscan, which could have gotten

parameters from sscanf , which got parameters from main . Any one of the functions

along this chain could contain an error that caused a bad pointer to be passed to

another function.

 TEAM FLY PRESENTS

 295

Usually the standard library has been debugged, so we should probably look for the

error in our code. Looking at the stack trace, we see that the last line of our program

to be executed was line 41 of main.

Using the list command, we can examine that line:

(dbx) list 41
 41 sscanf(line, "%d", data[max_count]);
(dbx)

This line caused the problem.

Another way of finding the problem is to single-step the program until the error

occurs. First, we list a section of the program to find a convenient place to put the

breakpoint, then start the execution and the single -step process:

(dbx) list 26,31

 22 int low, high; /* Upper/lower bound */

 23 int search; /* Number to search for */

 24 char line[80]; /* Input line */
 25

 26 in_file = fopen(DATA_FILE, "r");

 27 if (in_file == NULL) {
 28 fprintf(stderr,"Error:Unable to open %s\n",

 DATA_FILE);
 29 exit (8);
 30 }

 31

(dbx) stop at 26

(1) stop at "search.c":26
(dbx) run

Running: search

stopped in main at line 26 in file "search.c"
 26 in_file = fopen(DATA_FILE, "r");

(dbx) step
stopped in main at line 27 in file "search.c"
 27 if (in_file == NULL) {

(dbx) step

stopped in main at line 35 in file "search.c"

 35 max_count = 0;
(dbx) step

stopped in main at line 37 in file "search.c"

 37 if (fgets(line, sizeof(line), in_file) == NULL)
(dbx) step

stopped in main at line 41 in file "search.c"

 TEAM FLY PRESENTS

 296

 41 sscanf(line, "%d", data[max_count]);
(dbx) step

signal SEGV (no mapping at the fault address) in number at 0xdd7d87a
number+0x520: movl a6@(0x1c),a0
(dbx) quit

This method also points at line 41 as the culprit. On inspect ion, we notice that we
forgot to put an ampersand (&) in front of the variable for sscanf. So we change line

41 from:

sscanf(line, "%d", data[max_count]);

to:

sscanf(line, "%d", &data[max_count]);

and try again. The first number in our list is 4, so we try it. This time our output looks

like:

Enter number to search for or -1 to quit:4
Found at index 0

Found at index 0

Not found
Enter number to search for or -1 to quit:^C

The program should find the number, let us know it's at index 0, and then ask for

another number. Instead, we get two "found" messages and one "not found"

message. We know that everything is running smoothly up until we get the first

"found" message. After that point, things go downhill. So we have at least one more

bug in our program.

Getting back into the debugger, we use the list command to locate the found

message and put a breakpoint there:

% dbx search
Reading symbolic information...

Read 79 symbols
(dbx) list 58,60
 58

 59 if (data[middle] == search) {

 60 printf("Found at index %d\n", middle);
 61 }
 62

 63 if (low == high) {

 64 printf("Not found\n");

 TEAM FLY PRESENTS

 297

 65 break;
 66 }

 67
(dbx) stop at 60
(3) stop at "search.c":60

(dbx) run

stopped in main at line 60 in file "search.c"
 60 printf("Found at index %d\n", middle);
(dbx)

Now we start single -stepping to see what happens:

60 printf("Found at index %d\n", middle);

(dbx) step

Found at index 0
stopped in main at line 63 in file "search.c"

 63 if (low == high) {
(dbx) step
stopped in main at line 68 in file "search.c"

 68 if (data[middle] < search)

(dbx) step

stopped in main at line 71 in file "search.c"
 71 high = middle;

(dbx) step

stopped in main at line 57 in file "search.c"
 57 middle = (low + high) / 2;

(dbx) quit

The program doesn't exit the loop. Instead, it continues with the search. Because

the number has already been found, in strange behavior results. We are missing a

break after the printf.

We need to change:

if (data[middle] == search) {
 printf("Found at index %d\n", middle);
}

to:

if (data[middle] == search) {
 printf("Found at index %d\n", middle);

 break;
}

 TEAM FLY PRESENTS

 298

Making this fix, we try our program again:

% search

Enter number to search for or -1 to quit:4

Found at index 0
Enter number to search for or -1 to quit:6

Found at index 1
Enter number to search for or -1 to quit:3
Not found

Enter number to search for or -1 to quit:5

...program continues forever or until we abort it. ..

We have a runaway program. This time, instead of setting a breakpoint, we just

start running the program. After a few seconds pass and we believe that we are

stuck in the infinite loop, we stop the program with a CTRL-C to return to the shell
prompt. Because we are running with the debugger, control returns to dbx :

% dbx search

Reading symbolic information...
Read 80 symbols

(dbx) run
Running: search
Enter number to search for or -1 to quit:5

^C

interrupt in main at line 70 in file "search.c"
 70 low = middle;

Now we can use the single -step command to step through our infinite loop, looking

at key values along the way:

70 low = middle;

(dbx) step

stopped in main at line 57 in file "search.c"
 57 middle = (low + high) / 2;

(dbx) step
stopped in main at line 59 in file "search.c"
 59 if (data[middle] == search) {

(dbx) print middle

middle = 0

(dbx) print data[middle]
data[middle] = 4

(dbx) print search

search = 5
(dbx) step

stopped in main at line 64 in file "search.c"

 TEAM FLY PRESENTS

 299

 64 if (low == high) {
(dbx) step

stopped in main at line 69 in file "search.c"
 69 if (data[middle] < search)
(dbx) step

stopped in main at line 70 in file "search.c"

 70 low = middle;
(dbx) step
stopped in main at line 57 in file "search.c"

 57 middle = (low + high) / 2;

(dbx) step
stopped in main at line 59 in file "search.c"

 59 if (data[middle] == search) {
(dbx) step
stopped in main at line 64 in file "search.c"

 64 if (low == high) {

(dbx) step
stopped in main at line 69 in file "search.c"
 69 if (data[middle] < search)

(dbx) step

stopped in main at line 70 in file "search.c"
 70 low = middle;

(dbx) step
stopped in main at line 57 in file "search.c"
 57 middle = (low + high) / 2;

(dbx) step

stopped in main at line 59 in file "search.c"
 59 if (data[middle] == search) {
(dbx) step

stopped in main at line 64 in file "search.c"

 64 if (low == high) {
(dbx) step

stopped in main at line 69 in file "search.c"
 69 if (data[middle] < search)
(dbx) print low,middle,high

low = 0

middle = 0
high = 1
(dbx) print search

search = 5

(dbx) print data[0], data[1]
data[0] = 4

data[1] = 6
(dbx) quit

 TEAM FLY PRESENTS

 300

The problem is that we have reached a point where:

low= 0

middle= 0

high= 1

The item we are seeking (value 5) falls between element (value 4) and element 1

(value 6). Our algorithm has an off-by-one error. This type of error occurs when one

variable in a program is just one off the value it should have. In this case, the

variable is our index middle.

We have narrowed our search to the interval to 1. We then take the middle of this

interval. But our algorithm is flawed. Because the interval is so small, the "middle"

works out to be element 1. So we "narrow" our search from to 1 to the new interval

to 1, and start over. Because this interval is what we started out with, we have an

infinite loop.

To solve this problem, we look at the code. If the middle element matches, we print

out a "found" message and exit. That fact means that we don't need to search the

middle element again. So, we adjust our code from:

if (data[middle] < search)

 low = middle;
else

 high = middle;

to:

if (data[middle] < search)

 low = middle +1;

else
 high = middle -1;

The full version of our corrected program is shown in Example 15-8.

Example 15-8. search/search4.c

[File: search/search4.c]

/**
 * search -- Searches a set of numbers. *

 * *
 * Usage: *

 * search *

 * You will be asked numbers to look up. *

 TEAM FLY PRESENTS

 301

 * *
 * Files: *

 * numbers.dat -- Numbers 1 per line to search *
 * (Numbers must be ordered). *
 **/

#include <stdio.h>

#define MAX_NUMBERS 1000 /* Max numbers in file */
const char DATA_FILE[] = "numbers.dat"; /* File with numbers */

int data[MAX_NUMBERS]; /* Array of numbers to search */

int max_count; /* Number of valid elements in data */
int main()

{
 FILE *in_file; /* Input file */
 int middle; /* Middle of our search range */

 int low, high; /* Upper/lower bound */

 int search; /* number to search for */
 char line[80]; /* Input line */

 in_file = fopen(DATA_FILE, "r");

 if (in_file == NULL) {
 fprintf(stderr,"Error:Unable to open %s\n", DATA_FILE);

 exit (8);
 }

 /*

 * Read in data
 */

 max_count = 0;

 while (1) {
 if (fgets(line, sizeof(line), in_file) == NULL)

 break;

 /* convert number */

 sscanf(line, "%d", &data[max_count]);

 ++max_count;
 }

 while (1) {

 printf("Enter number to search for or -1 to quit:");
 fgets(line, sizeof(line), stdin);

 sscanf(line, "%d", &search);

 TEAM FLY PRESENTS

 302

 if (search == -1)
 break;

 low = 0;
 high = max_count;

 while (1) {
 if (low >= high) {
 printf("Not found\n");

 break;

 }

 middle = (low + high) / 2;

 if (data[middle] == search) {

 printf("Found at index %d\n", middle);

 break;
 }

 if (data[middle] < search)

 low = middle +1;
 else

 high = middle -1;
 }
 }

 return (0);

}

Interactive debuggers work well for most programs. Sometimes they need a little
help. Consider Example 15-9. We try to debug it and find it fails when point_number

is 735. We want to put a breakpoint before the calculation is made. When the

debugger inserts a breakpoint into a program, the program will execute normally

until it hits the breakpoint, then control will return to the debugger. This allows the

user to examine and change variables as well as perform other debugging

commands. When a continue command is typed, the program will continue

execution as if nothing had happened. The problem is that there are 734 points

before the one we want, and we don't want to stop for each of them.

Example 15-9. cstop/cstop.c

extern float lookup(int index);

float point_color(int point_number)
{

 TEAM FLY PRESENTS

 303

 float correction; /* color correction factor */
 extern float red,green,blue;/* current colors */

 correction = lookup(point_number);
 return (red*correction * 100.0 +

 blue*correction * 10.0 +

 green*correction);
}

How do we force the debugger to stop only when part_number == 735? We can do

this by adding the following temporary code:

48 if (point_number == 735) /* ### Temp code ### */

49 point_number = point_number; /* ### Line to stop on ### */

Line 49 does nothing useful except serve a line that the debugger can stop on. We
can put a breakpoint on that line with the command stop at 49. The program will

process the first 734 points, then execute line 49, hitting the breakpoint. (Some

debuggers have a conditional breakpoint. The advanced dbx command stop at 49
if point_number == 735 would also work; however, your debugger may not have

such advanced features.)

15.4 Runtime Errors

Runtime errors are usually the easiest to fix. Some types of runtime errors are:

• Segmentation Violation. This error indicates that the program tried to

dereference a pointer containing a bad value.

• Stack Overflow. The program tried to use too many temporary variables.

Sometimes, stack overflow happens because the program is too big or is

using too many big temporary arrays, but most of the time this is due to

infinite recursion problems. Almost all UNIX systems automatically check for

this error. Turbo C++ and Borland C++ check for stack overflow only if the
compile -time option -N is used.

• Divide by 0 . Divide by is an obvious error. UNIX masks the problem by

reporting an integer divide by zero with the error message "Floating

exception (core dumped)."

All these errors stop program execution. On UNIX, an image of the running program,

called a core file, is written out.

One problem with runtime errors is that when they occur, the program execution

stops immediately. The buffers for buffered files are not flushed. This can lead to

some unexpected surprises. Consider Example 15-10.

 TEAM FLY PRESENTS

 304

Example 15-10. flush/flush.c

#include <stdio.h>
int main()

{
 int i,j; /* two random integers */

 i = 1;

 j = 0;

 printf("Starting\n");
 printf("Before divide...");

 i = i / j; /* divide by zero error */

 printf("After\n");
 return(0);

}

When run, this program outputs the following:

Starting

Floating exception (core dumped)

This program might lead you to think the divide had never started, when in fact it

had. What happened to the message "Before divide..."? The printf statement

executed and put the message in a buffer, and then the program died. The buffer

never got a chance to be emptied.

By putting explicit flush buffer commands inside the code, we get a truer picture of

what is happening. See Example 15-11.

Example 15-11. flush2/flush2.c

[File: flush2/flush2.c]
#include <stdio.h>
int main()

{
 int i,j; /* two random integers */

 i = 1;
 j = 0;

 printf("Starting\n");

 fflush(stdout);

 TEAM FLY PRESENTS

 305

 printf("Before divide...");
 fflush(stdout);

 i = i / j; /* divide by zero error */

 printf("After\n");

 fflush(stdout);
 return(0);
}

The flush statement makes the I/O less efficient, but more current.

15.5 The Confessional Method of Debugging

The confessional method of debugging is one in which the programmer explains the

program to someone: an interested party, an uninterested party, a wall—the actual

recipient is not important, as long the programmer talks about the program.

A typical confessional session goes like this: "Hey Bill, could you take a look at this.

My program has a bug in it. The output should be 8.0 and I'm getting -8.0. The

output is computed using this formula and I've checked out the payment value and

rate, and the date must be correct unless there is something wrong with the leap

year code, which—Thank you, Bill, you've found my problem." Bill never says a

word.

This type of debugging is also called a "walkthrough." Getting other people involved

brings a fresh point of view to the process, and frequently, other people can spot

problems that you have overlooked.

15.6 Optimization

Optimization is the art of going through a program and making the code more
efficient so that it runs faster. Most compilers have a command-line switch that

causes them to generate optimized code. This efficiency comes at the cost of

compile time; the compiler takes a lot longer to generate code when optimization is

turned on.

The other type of optimization occurs when a programmer modifies a program to

use a more efficient algorithm. This section discusses this second type of

optimization.

 TEAM FLY PRESENTS

 306

And now a word on optimization: don't. Most programs do not need to be optimized.

They run fast enough. Who cares if an interactive program takes 0.5 seconds to

start up instead of 0.2?

The simplest way to get your program to run faster is to get a faster computer. Many

times buying a more powerful machine is cheaper than optimizing a program, and

possibly introducing new errors into your code. Don't expect miracles from

optimization. Usually most programs can be sped up by only 10% to 20%.

Still, to give you an idea what you can accomplish, I'll optimize a sample function.

Example 15-12 initializes a matrix (two-dimensional array).

Example 15-12. matrix/matrix1.c

[File: matrix/matrix1.c]
#define X_SIZE 60

#define Y_SIZE 30

/* A random matrix */

int matrix[X_SIZE][Y_SIZE];

/**

 * init_matrix -- Sets every element of matrix to -1. *
 **/

void init_matrix(void)
{

 int x,y; /* current element to zero */

 for (x = 0; x < X_SIZE; ++x) {

 for (y = 0; y < Y_SIZE; ++y) {

 matrix[x][y] = -1;
 }

 }
}

How can this function be optimized? First, we notice that we are using two local

variables. By using the qualifier register on these variables, we tell the compiler

that they are frequently used and should be placed in fast registers instead of

relatively slow main memory. The number of registers varies from computer to

computer. Slow machines like the PC have two registers, most UNIX systems have

about 11, and supercomputers can have as many as 128. You can declare more

register variables than you have registers. C will put the extra variables in main
memory.

 TEAM FLY PRESENTS

 307

Our program now looks like Example 15-13.

Example 15-13. matrix/matrix2.c

[File: matrix/matrix2.c]

#define X_SIZE 60

#define Y_SIZE 30

int matrix[X_SIZE][Y_SIZE];

/**
 * init_matrix -- Sets every element of matrix to -1. *

 **/

void init_matrix(void)
{

 register int x,y; /* current element to zero */

 for (x = 0; x < X_SIZE; ++x) {

 for (y = 0; y < Y_SIZE; ++y) {
 matrix[x][y] = -1;

 }
 }

}

The outer loop is executed 60 times. This means that the overhead associated with

starting the inner loop is executed 60 times. If we reverse the order of the loops, we

will have to deal with the inner loop only 30 times.

In general, loops should be ordered so that the innermost loop is the most complex

and the outermost loop is the simplest, as in Example 15-14.

Example 15-14. matrix/matrix3.c

[File: matrix/matrix3.c]
#define X_SIZE 60
#define Y_SIZE 30

int matrix[X_SIZE][Y_SIZE];

/**

 * init_matrix -- Sets every element of matrix to -1. *
 **/

void init_matrix(void)

 TEAM FLY PRESENTS

 308

{
 register int x,y; /* current element to zero */

 for (y = 0; y < Y_SIZE; ++y) {
 for (x = 0; x < X_SIZE; ++x) {

 matrix[x][y] = -1;

 }
 }
}

15.6.1 The Power of Powers of 2

Indexing an array requires a multiply. Look at the following line from the previous

example:

matrix[x][y] = -1;

To get the location where the -1 will be stored, the program must perform the
following steps:

1. Get the address of the matrix.

2. Compute x * Y_SIZE.
3. Compute y.

4. Add up all three parts to form the address.

In C, this code looks like:

*(matrix + (x * Y_SIZE) + y) = -1;

However, we typically don't write a matrix access this way because C handles the
details. But being aware of the details can help us generate more efficient code.

Almost all C compilers will convert multiples by a power of 2 (2, 4, 8, ...) into shifts,

thus taking an expensive operation (multiply) and changing it into an inexpensive

operation (shift).

For example:

i = 32 * j;

is compiled as:

i = j << 5; /* 2**5 == 32 */

 TEAM FLY PRESENTS

 309

Y_SIZE is 30, which is not a power of 2. By increasing it to 32, we waste some

memory, but get a faster program, as shown in Example 15-15.

Example 15-15. matrix/matrix4.c

[File: matrix/matrix4.c]

#define X_SIZE 60
#define Y_SIZE 32

int matrix[X_SIZE][Y_SIZE];

/**

 * init_matrix -- Sets every element of matrix to -1. *

 **/
void init_matrix(void)

{

 register int x,y; /* current element to zero */

 for (y = 0; y < Y_SIZE; ++y) {
 for (x = 0; x < X_SIZE; ++x) {

 matrix[x][y] = -1;
 }

 }

}

Because we are initializing consecutive memory locations, we can initialize the

matrix by starting at the first location and storing a -1 in the next X_SIZE * Y_SIZE

elements. (See Example 15-16.) Using this method, we cut the number of loops

down to one. The indexing of the matrix has changed from a standard index

(matrix[x][y]), requiring a shift and add to a pointer dereference (*matrix_ptr),

and an increment (matrix_ptr++).

Example 15-16. matrix/matrix5.c

[File: matrix/matrix5.c]

#define X_SIZE 60

#define Y_SIZE 30

int matrix[X_SIZE][Y_SIZE];

/**

 * init_matrix -- set every element of matrix to -1 *

 TEAM FLY PRESENTS

 310

 **/
void init_matrix(void)

{
 register int index; /* element counter */
 register int *matrix_ptr;

 matrix_ptr = &matrix[0][0];
 for (index = 0; index < X_SIZE * Y_SIZE; ++index) {
 *matrix_ptr = -1;

 ++matrix_ptr;

 }
}

But why have both a loop counter and a matrix_ptr? Couldn't we combine the two?

In fact, we can, as shown in Example 15-17.

Example 15-17. matrix/matrix6.c

[File: matrix/matrix6.c]

#define X_SIZE 60

#define Y_SIZE 30

int matrix[X_SIZE][Y_SIZE];

/**

 * init_matrix -- Sets every element of matrix to -1. *

 **/

void init_matrix(void)
{

 register int *matrix_ptr;

 for (matrix_ptr = &matrix[0][0];

 matrix_ptr <= &matrix[X_SIZE-1][Y_SIZE-1];
 ++matrix_ptr) {

 *matrix_ptr = -1;

 }

}

The function is now well optimized. The only way we could make it better is to

hand-code it into assembly language. This change might make the function faster;

however, assembly language is highly nonportable and very error-prone.

 TEAM FLY PRESENTS

 311

The library routine memset can be used to fill a matrix or an array with a single

character value. As shown in Example 15-18, we can use it to initialize the matrix in

this program. Frequently used library subroutines like memset are often coded into

assembly language and may make use of special processor-dependent tri cks to do

the job faster than could be done in C.

Example 15-18. matrix/matrix7.c

[File: matrix/matrix7.c]
#include <memory.h> /* Gets definition of memset */

#define X_SIZE 60
#define Y_SIZE 30

int matrix[X_SIZE][Y_SIZE];
/**

 * init_matrix -- Sets every element of matrix to -1. *

 **/
void init_matrix(void)

{
 memset(matrix, -1, sizeof(matrix));

}

Now our function consists of only a single function call. Having to call a function just

to call another function seems a shame. We have to pay for the overhead of two
function calls. Instead we should call memset from the main function. Why don't we

tell the user to rewrite his code using memset instead of init_matrix? Because he

has several hundred init_matrix calls and doesn't want to do all that editing.

If we redefine our function as a macro, we have an init_matrix that looks like a

function call. But, because it is a macro, it is expanded inline, avoiding all the extra

overhead associated with a function call. Look at Example 15-19.

Example 15-19. matrix/matrix8.c

#define X_SIZE 60
#define Y_SIZE 30

int matrix[X_SIZE][Y_SIZE];

/**

 * init_matrix -- Sets every element of matrix to -1. *
 **/

#define init_matrix() \

 TEAM FLY PRESENTS

 312

 memset(matrix, -1, sizeof(matrix));

Question 15-1: Why does memset successfully initialize the matrix to -1, but when

we try to use it to set every element to 1 in Example 15-20, we fail? (Click here for

the answer Section 15.7)

Example 15-20. matrix/matrix9.c

#define X_SIZE 60

#define Y_SIZE 30

int matrix[X_SIZE][Y_SIZE];

#define init_matrix() \
 memset(matrix, 1, sizeof(matrix));

15.6.2 How to Optimize

Our matrix initialization function illustrates several optimizing strategies. These are:

Loop ordering

Nested loops should be ordered with the simplest loop outermost and the

most complex loops innermost.

Reduction in strength

This phrase is a fancy way of saying you should use cheap operations instead

of expensive ones. Table 15-1 lists the relative cost of common operations.

Table 15-1. Relative Cost of Operations

Operation Relative cost

printf and scanf 1000

mallocand free 800

trigonometric functions (sin, cos...) 500

floating point (any operation) 100

integer divide 30

integer multiple 20

function call 10

 TEAM FLY PRESENTS

 313

simple array index 6

shifts 5

add/subtract 5

pointer dereference 2

bitwise and, or, not 1

logical and, or, not 1

Formatting functions like printf, scanf, and sscanf

are extremely costly because they have to go through
the format string one character at a time, looking for

a format conversion character (%). Then they have to

do a costly conversion between a character string and
a number. These functions should be avoided in
time-critical sections of code.

Powers of 2

Use a power of 2 when doing integer multiply or divide. Most compilers
substitute a shift for the operation.

Pointers

Using pointers is faster than indexing an array. Pointers are, however, more

tricky to use.

Macros

Using a macro eliminates the overhead associated with a function call. It also

makes the code bigger and a little more difficult to debug.

Case Study: Macros Versus Functions

I once worked on writing a word processing program for a large

computer manufacturer. We had a function, next_char, that

was used to get the next character from the current file. It was
used in thousands of places throughout the program. When we

first tested the program with next_char written as a function,

the program was unacceptably slow. Analyzing our program,

 TEAM FLY PRESENTS

 314

we found that 90% of our time was spent in next_char. So we

changed the function to a macro. The speed doubled, but, our
code size went up 40% and required a memory expansion card
to work. So the speed was all right, but the size was still
unacceptable. We finally had to write the routine as a function
in hand-optimized assembly language to get both the size and
the speed to acceptable levels.

Case Study: Optimizing a Color

Rendering Algorithm

I was once asked to optimize a program that did color
rendering for a large picture. The problem was that the
program took eight hours to process a single picture. This
sluggishness limited us to doing one run a day.

The first thing I did was to run the program on a machine with
a floating-point accelerator. This brought the time down to
about six hours. Next, I got permission to use a high-speed
RISC computer that belonged to another project, but was now
sitting idle. That reduced the time to two hours.

I saved six hours solely by using faster machines. No code had
changed yet.

Two fairly simple functions were being called only once from
the innermost loop. Rewriting these functions as macros saved
me about 15 minutes.

Next, I changed all applicable floating-point operations to
integer operations. The savings amounted to 30 minutes out of
an hour and 45 minutes of runtime.

I noticed the program was spending about five minutes
reading an ASCII file containing a long list of floating-point

numbers used in the conversion process. Knowing that scanf

is an extremely expensive function, I cut the initialization
process down to almost nothing by making the file binary.
Total runtime was now down to one hour and ten minutes.

By carefully inspecting the code and using every trick I knew, I

 TEAM FLY PRESENTS

 315

saved another five minutes, leaving me five minutes short of
my goal of an hour per run.

At this point, my project was refocused and the program put in
mothballs for use at some future date.

15.7 Answers

Answer 15-1: The problem is that memset is a character fill routine. An integer

consists of 2 or 4 bytes (characters). Each byte is assigned the value 1. So a 2 -byte

integer will receive the value:

integer = 0x0101;

The 1 -byte hex value for -1 is 0xFF. The two-byte hex value of -1 is 0xFFFF. So we

can take two single byte -1 values, put them together, and come out with -1. This

method also works for 0. Any other number will produce the wrong answer. For

example, 1 is 0x01. Two bytes of this is 0x0101, or 257.

15.8 Programming Exercises

Exercise 15-1: Take one of your previous programs and run it using the interactive

debugger to examine several intermediate values.

Exercise 15-2: Write a matrix multiply function. Create a test program that not

only tests the function, but times it as well. Optimize it using pointers and determine

the time savings.

Exercise 15-3: Write a program to sum the elements in an array. Optimize it.

Exercise 15-4: Write a program that counts the number of bits in a character array.

Optimize it through the use of register integer variables. Time it on several different

arrays of different sizes. How much time do you save?

Exercise 15-5: Write your own version of the library function memcpy. Optimize it.

Most implementations of memcpy are written in assembly language and take

advantage of a ll the quirks and tricks of the processor. How does your memcpy

compare with others?

 TEAM FLY PRESENTS

 316

Chapter 16. Floating Point

1 is equal to 2 for sufficiently large values of 1.

—Anonymous

Computers handle integers very well. The arithmetic is simple, exact, and fast.

Floating-point arithmetic is the opposite. Computers do floating-point arithmetic

only with great difficulty.

This chapter discusses some of the problems that can occur with floating-point. In

order to understand the principles involved in floating-point arithmetic, we have

defined a simple decimal floating-point format. We suggest you put aside your

computer and work through these problems using pencil and paper so that you can

see firsthand the problems and pitfalls that occur.

The format used by compute rs is very similar to the one defined in this chapter,

except that instead of using base 10, computers use base 2, 8, or 16. However, all

the problems demonstrated here on paper can occur in a computer.

16.1 Floating-Point Format

Floating-point numbers consist of three parts: a sign, a fraction, and an exponent.

Our fraction is expressed as a 4 -digit decimal. The exponent is a single-decimal digit.

So, our format is:

where:

±

is the sign (plus or minus).

f.fff

is the 4 digit fraction.

±e

is the single -digit exponent with sign.

Zero is +0.000 x 10 +0. We represent these numbers in "E" format: ±0.000 E ±e.

 TEAM FLY PRESENTS

 317

This format is similar to the floating-point format used in many computers. The IEEE

has defined a floating-point standard (#754), but not all machines use it.

Table 16-1 shows some typical floating -point numbers.

Table 16-1. Floating-Point Examples

Notation Number

+1.000E+0 1.0

+3.300E+4 33000.0

-8.223E-3 -0.008223

+0.000E+0 0.0

The floating-point operations defined in this chapter follow a rigid set of rules. In

order to minimize errors, we make use of a guard digit. That is an extra digit added

to the end of our fraction during computation. Many computers use a guard digit in
their floating-point units.

16.2 Floating Addition/Subtraction

To add two numbers like 2.0 and 0.3, you must perform the following steps.

1. Start with the numbers:
2. +2.000E+0 The number is 2.0.

+3.000E-1 The number is 0.3.

3. Add guard digits to both numbers:
4. +2.0000E+0 The number is 2.0.

+3.0000E-1 The number is 0.3.

5. Shift the number with the smallest exponent to the right one digit, and then

increment its exponent. Continue until the exponents of the two numbers

match:

6. +2.0000E+0 The number is 2.0.
+0.3000E-0 The number is 0.3.

7. Add the two fractions. The result has the same exponent as the two
numbers:

8. +2.0000E+0 The number is 2.0.

9. +0.3000E-0 The number is 0.3.

10. __________________________________

 TEAM FLY PRESENTS

 318

+2.3000E+0 The result is 2.3.

11. Normalize the number by shifting it left or right until there is just one

non-zero digit to the left of the decimal point. Adjust the exponent

accordingly. A number like +0.1234E+0 would be normalized to +1.2340E-1.

Because the number +2.3000E+0 is already normalized, we do nothing.

12. Finally, if the guard digit is greater than or equal to 5, round the next digit up;

otherwise, truncate the number:
13. +2.3000E+0 Round the last digit.

14. _____________________________________

+2.300E+0 The result is 2.3.

For floating-point subtraction, change the sign of the second operand and add.

16.3 Multiplication

When we want to multiply two numbers such as 0.12 x 11.0, the following rules

apply.

1. Add the guard digit:

2. +1.2000E-1 The number is 0.12.

+1.1000E+1 The number is 11.0.

3. Multiply the two fractions and add the exponents, (1.2 x 1.1 = 1.32) (-1 + 1

= 0):

4. +1.2000E-1 The number is 0.12.
5. +1.1000E+1 The number is 11.0.

6. ___________________________________
+1.3200E+0 The result is 1.32.

7. Normalize the result.

If the guard digit is greater than or equal to 5, round the next digit up.

Otherwise, truncate the number:

+1.3200E+0 The number is 1.32.

Notice that in multiplying, you didn't have to go through all that shifting. The rules

for multiplication are a lot shorter than those for addition. Integer multiplication is a

lot slower than integer addition. In floating-point arithmetic, multiplication speed is

a lot closer to that of addition.

 TEAM FLY PRESENTS

 319

16.4 Division

To divide numbers like 100.0 by 30.0, we must perform the following steps.

1. Add the guard digit:

2. +1.0000E+2 The number is 100.0.
+3.0000E+1 The number is 30.0.

3. Divide the fractions and subtract the exponents:

4. +1.0000E+2 The number is 100.0.
5. +3.0000E+1 The number is 30.0.
6. ____________________________________

+0.3333E+1 The result is 3.333.

7. Normalize the result:

+3.3330E+0 The result is 3.333.

8. If the guard digit is greater than or equal to 5, round the next digit up.
Otherwise, truncate the number:

+3.333E+0 The result is 3.333.

16.5 Overflow and Underflow

There are limits to the size of the number that a computer can handle. What are the
results of the following calculation?

9.000E+9 x 9.000E+9

Multiplying it out, we get:

8.1 x 10 +19

However, we are limited to a single-digit exponent, too small to hold 19. This

example illustrates overflow (sometimes called exponent overflow). Some

computers generate a trap when this overflow occurs, thus interrupting the

program and causing an error message to be printed. Other computers are not so

nice and generate a wrong answer (like 8.100E+9). Computers that follow the IEEE

floating-point standard generate a special value called +Infinity.

Underflow occurs when the numbers become too small for the computer to handle.

For example:

 TEAM FLY PRESENTS

 320

1.000E-9 x 1.000E-9

The result is:

1.0 x 10 -18

Because -18 is too small to fit into one digit, we have underflow.

16.6 Roundoff Error

Floating-point arithmetic is not exact. Everyone knows that 1+1 is 2 , but did you

know that 1/3 + 1/3 does not equal 2/3?

This result can be shown by the following floating-point calculations:

2/3 as floating -point is 6.667E-1.

1/3 as floating -point is 3.333-1.

+3.333E-1
+3.333E-1
+6.666E-1 or 0.6666

which is not:

+6.667E-1

Every computer has a similar problem with its floating point. For example, the

number 0.2 has no exact representation in binary floating-point.

Floating-point arithmetic should never be used for money. Because we are used to

dealing with dollars and cents, you might be tempted to define the amount of $1.98

as:

float amount = 1.98;

However, the more calculations you do with floating-point arithmetic, the bigger the

roundoff error. Banks, credit card companies, and the IRS tend to be very fussy

about money. Giving the IRS a check that's almost right is not going to make them

happy. Money should be stored as an integer number of pennies.

 TEAM FLY PRESENTS

 321

16.7 Accuracy

How many digits of the fraction are accurate? At first glance you might be tempted
to say all four digits. Those of you who have read the previous section on roundoff

error might be tempted to change your answer to three.

The answer is: the accuracy depends on the calculation. Certain operations, like

subtracting two numbers that are close to each other, generate inexact results. For

example, consider the following equation:

1 - 1/3 - 1/3 - 1/3
1.000E+0

- 3.333E-1

- 3.333E-1
- 3.333E-1

or:

1.000E+0
- 0.333E+0

- 0.333E+0

- 0.333E+0

0.0010E+0 or 1.000E-3

The correct answer is 0.000E+0 and we got 1.000E-3. The very first digit of the

fraction is wrong. This error is an example of the problem called "roundoff error"

that can occur during floating-point operations.

16.8 Minimizing Roundoff Error

There are many techniques for minimizing roundoff error. Guard digits have already
been discussed. Another trick is to use double instead of float. This solution gives

you approximately twice the accuracy as well as an enormously greater range. It

also pushes away the minimization problem twice as far. But roundoff errors still can

creep in.

Advanced techniques for limiting the problems caused by floating point can be found

in books on numerical analysis. They are beyond the scope of this text. The purpose

of this chapter is to give you some idea of the sort of problems that can be

encountered.

 TEAM FLY PRESENTS

 322

Floating-point by its very nature is not exact. People tend to think of computers as

very accurate machines. They can be, but they also can give wildly wrong results.

You should be aware of the places where errors can slip into your program.

16.9 Determining Accuracy

There is a simple way of determining how accurate your floating point is (for simple
calculations). The method used in the following program is to add 1.0+0.1,

1.0+0.01, 1.0+0.001, and so on until the second number gets so small that it

makes no difference in the result.

The C language specifies that all floating-point numbers are to be done in double .

This method means that the expression:

float number1, number2;

. . .

while (number1 + number2 != number1)

is equivalent to:

while (double(number1) + double(number2) != double(number1))

When using the 1+0.001 trick, the automatic conversion of float to double may

give a distorted picture of the accuracy of your machine. (In one case, 84 bits of

accuracy were reported for a 32-bit format.) Example 16-1 computes both the

accuracy of floating-point numbers as used in equations and floating-point numbers

as stored in memory. Note the trick used to determine the accuracy of the

floating-point numbers in storage.

Example 16-1. float/float.c

#include <stdio.h>

int main()

{
 /* two numbers to work with */

 float number1, number2;
 float result; /* result of calculation */
 int counter; /* loop counter and accuracy check */

 number1 = 1.0;

 number2 = 1.0;

 TEAM FLY PRESENTS

 323

 counter = 0;

 while (number1 + number2 != number1) {
 ++counter;
 number2 = number2 / 10.0;

 }

 printf("%2d digits accuracy in calculations\n", counter);

 number2 = 1.0;

 counter = 0;

 while (1) {

 result = number1 + number2;
 if (result == number1)
 break;

 ++counter;

 number2 = number2 / 10.0;
 }
 printf("%2d digits accuracy in storage\n", counter);

 return (0);

}

Running this on a Sun-3/50 with a MC68881 floating -point chip, we get:

20 digits accuracy in calculations
 8 digits accuracy in storage

This program gives only an approximation of the floating -point precision arithmetic.

A more precise definition can be found in the standard include file float.h.

16.10 Precision and Speed

A variable of type double has about twice the precision of a normal float variable.

Most people assume that double-precision arithmetic takes longer than single-

precision arithmetic. This statement is not always true. Remember that C requires

that all the arithmetic must be done in double.

For the equation:

float answer, number1, number2;

answer = number1 + number2;

C must perform the following steps:

 TEAM FLY PRESENTS

 324

1. Convert number1 from single to double precision.

2. Convert number2 from single to double precision.

3. Double-precision add.
4. Convert result into single-precision arithmetic and store in answer.

If the variables were of type double , C would only have to perform these steps:

1. Carry out a double -precision add.
2. Store result in answer .

As you can see, the second form is a lot simpler, requiring three fewer conversions.

In some cases, converting a program from single-precision arithmetic to double-

precision arithmetic makes it run faster.

Many computers, including the PC and Sun series machines, have a floating-point

processor that does all the floating-point arithmetic. Actual tests using the Motorola

68881 floating-point chip (which is used in the Sun/3) as well as the floating-point

on the PC show that single -precision and double -precision run at the same speed.

16.11 Power Series

Many trigonometry functions are computed using a power series. For example, the

series for sine is:

The question is: how many terms do we need to get 4-digit accuracy? Table 16 -2

contains the terms for the sin(/2).

Table 16-2. Terms for the sin(/2)

 Term Value Total

1 x 1.571E+0

2

6.462E -1 9.248E -1

3

7.974E -2 1.005E+0

 TEAM FLY PRESENTS

 325

4

4.686E -3 9.998E -1

5

1.606E-4 1.000E+0

6

3.604E -6 1.000E+0

From this, we conclude that five terms are needed. However, if we try to compute

the sin(), we get the values in Table 16-3.

Table 16-3. Terms for the sin()

 Term Value Total

1 x 3.142E+0

2

5.170E+0 -2.028E+0

3

2.552E -0 5.241E -1

4

5.998E -1 -7.570E-2

5

8.224E -2 6.542E -3

6

7.381E -3 -8.388E-4

7

4.671E -4 -3.717E-4

8

2.196E -5 -3.937E-4

9

7.970E -7 -3.929E-4

10

2.300E -8 -3.929E-4

 TEAM FLY PRESENTS

 326

needs nine terms. So different angles require a different number of terms. (A

program for computing the sine to four-digit accuracy showing intermediate terms

is included in Appendix D.)

Compiler designers face a dilemma when it comes to designing a sine function. If

they know ahead of time the number of terms to use, they can optimize their

algorithms for that number of terms. However, they lose accuracy for some angles.

So a compromise must be struck between speed and accu racy.

Don't assume that because the number came from the computer, it is accurate. The

library functions can generate bad answers —especially when you work with

excessively large or small values. Most of the time, you will not have any problems

with these functions, but you should be aware of their limitations.

Finally there is the question of what is sin(1000000)? Our floating-point format is

good for only four digits. The sine function is cyclical. That is, sin(0) = sin(2) =

sin(4). ... So sin(1000000) is the same as sin(1000000 mod 2).

Note that our floating-point format is good to only four digits, so sin(1000000) is

actually sin(1000000 + 1000). Because 1000 is bigger than 2, the error renders

meaningless the result of the sine.

How Hot Is It?

I attended a physics class at Caltech that was taught by two
professors. One was giving a lecture on the sun when he said,
"... and the mean temperature of the inside of the sun is
13,000,000 to 25,000,000 degrees." At this point, the other
instructor broke in and asked "Is that Celsius or Kelvin
(absolute zero or Celsius-273)?"

The lecturer turned to the board for a minute, then said,
"What's the difference?" The moral of the story is that when
your calculations have a possible error of 12,000,000, a
difference of 273 doesn't mean very much.

16.12 Programming Exercises

Exercise 16-1: Write a program that uses strings to represent floating -point

numbers in the format used in this chapter. A typical string might look like

"+1.333E+2". The program should have functions to read, write, add, subtract,

multiply, and divide floating-point numbers.

 TEAM FLY PRESENTS

 327

Exercise 16-2: Create a set of functions to handle fixed-point numbers. A fixed-

point number has a constant (fixed) number of digits to the right of the decimal

point.

 TEAM FLY PRESENTS

 328

 Part III: Advanced Programming

Concepts

In this part we explore the advanced features of C as well as advanced programming

tasks such as modular programming and program porting. Finally we explore

little-used features such as the ancient K&R C syntax and some of C's darker

corners.

Chapter 17 describes advanced uses of pointers for constructing dynamic structures

such as linked lists and trees.

Chapter 18 shows how to split a program into several files and use modular

programming techniques. The make utility is explained in more detail.

Chapter 19 describes the old, pre-ANSI C language. Although such compilers are

rare today, a lot of code was written for them and there are still a large number of

programs out there that use the old syntax.

Chapter 20 describes the problems that can occur when you port a program (move

it from one machine to another).

Chapter 21 describes the do/while statement, the comma operator, and the ? and :

operators.

Chapter 22 details the steps necessary to take a complex program from conception

to completion. Information-hiding and modular programming techniques are

emphasized.

Chapter 23 lists some programming adages that will help you construct good C

programs.

 TEAM FLY PRESENTS

 329

Chapter 17. Advanced Pointers

A race that binds

Its body in chains and calls them Liberty,

And calls each fresh link progress.

—Robert Buchanan

One of the more useful and complex features of C is its use of pointers. With pointers,

you can create complex data structures like linked lists and trees. Figure 17-1

illustrates some of these data structures.

Figure 17-1. How pointers may be used

Up to now, all of our data structures have been allocated by the compiler as either
permanent or temporary variables. With pointers, we can create and allocate

dynamic data structures that can grow or shrink as needed. In this chapter, you will

learn how to use some of the more common dynamic data structures.

 TEAM FLY PRESENTS

 330

17.1 Pointers and Structures

Structures can contain pointers, even a pointer to another instance of the same
structure. In the following example:

struct node {
 struct node *next_ptr; /* Pointer to the next node */
 int value; /* Data for this node */

}

the structure node is illustrated in Figure 17-2. This structure contains two fields,
one named value, shown here as the section containing the number 2. The other is

a pointer to another structure. The field next_ptr is shown as an arrow.

Figure 17-2. Node

The question is: how do we create nodes? We could declare them explicitly:

struct node *node_1;

struct node *node_2;

and so on. The problem with this structure is that we can declare only a limited

number of nodes. What we need is a procedure to which we can say, "I want a new

node," and then have the procedure create the node for us.

The procedure malloc does the job. It allocates storage for a variable and then

returns a pointer. It is used to create new things out of thin air (actually out of an

area of memory called the heap). Up to now, we've used pointers solely to point to

named variables. So if we used a statement like:

int data;

int *number_ptr;

number_ptr = &data;

 TEAM FLY PRESENTS

 331

the thing that we are pointing to has a name (data). The function malloc creates a

new, unnamed variable and returns a pointer to it. The "things" created by malloc

can be referenced only through pointers, never by name.

The definition of malloc is:

void *malloc(unsigned int);

The function malloc takes a single argument: the number of bytes to allocate. If

malloc runs out of memory, it returns a null pointer.

In the declaration, void * is used to indicate that malloc returns a generic pointer

(a pointer that can point to any type of thing). So C uses void for two purposes:

• When used as a type in a function declaration, void indicates that the

function returns no value.

• When used in a pointer declaration, void defines a generic pointer.

We will start using malloc by allocating space for simple structures. As we go on, we

will see how to create bigger structures and link them together to form very complex

data structures. Example 17-1 allocates storage for a character string 80 bytes long

('\0' included). The variable string_ptr points to this storage.

Example 17-1. Allocating Memory for a String

[#include <stdlib.h>]

main()
{

 /* Pointer to a string that will be allocated from the heap */

 char *string_ptr;

 string_ptr = malloc(80);

Suppose we are working on a complex database that contains (among other things)
a mailing list. The structure person is used to hold the data for each person:

struct person {
 char name[30]; /* name of the person */

 char address[30]; /* where he lives */
 char city_state_zip[30]; /* Part 2 of address */

 int age; /* his age */
 float height; /* his height in inches */

}

 TEAM FLY PRESENTS

 332

We could use an array to hold our mailing list, but an array is an inefficient use of

memory. Every entry takes up space, whether or not it is used. What we need is a

way to allocate space for only those entries that are used. We can use malloc to

allocate space on an as-needed basis.

To create a new person, we use the code:

/* Pointer to a person structure to be allocated from the heap */
struct person *new_item_ptr;

new_item_ptr = malloc(sizeof(struct person));

We determine the number of bytes to allocate by using the expression
sizeof(struct person). Without the sizeof operator, we would have to count the

number of bytes in our structure, a difficult and error-prone operation.

The size of the heap, although large, is finite. When malloc runs out of room, it will

return a NULL pointer. Good programming practice tells you to check the return

value of each malloc call to ensure that you really got the memory.

new_item_ptr = malloc(sizeof(struct person));

if (new_item_ptr == NULL) {

 fprintf(stderr, "Out of memory\n");
 exit (8);

}

Although checking the re turn value of malloc is good programming practice, far too

often the check is omitted and the programmer assumes that he got the memory

whether on not he really did. The result is that far too many programs crash when

they run out of memory.

The problem has gotten so bad that when C++ was designed, it contained a special

error handling mechanism for out-of-memory conditions.

17.2 free Function

The function malloc gets memory from the heap. To free that memory after you are
done with it, use the function free. The general form of the free function is:

free(pointer);
pointer = NULL;

where pointer is a pointer previously allocated by malloc. (We don't have to set

pointer to NULL ; however, doing so prevents us from trying to used freed memory.)

 TEAM FLY PRESENTS

 333

The following is an example that uses malloc to get storage and free to dispose of

it:

const int DATA_SIZE = (16 * 1024); /* Number of bytes in the buffer */

void copy(void)
{

 char *data_ptr; /* Pointer to large data buffer */
 data_ptr = malloc(DATA_SIZE); /* Get the buffer */
 /*

 * Use the data buffer to copy a file

 */
 free(data_ptr);
 data_ptr = NULL;

}

But what happens if we forget to free our pointer? The buffer becomes dead. That is,

the memory management system thinks that the buffer is being used, but no one is
using it. If the free statement was removed from the function copy, then each

successive call would eat up another 16K of memory. Do this often enough and your

program will run out of memory.

The other problem that can occur is using memory that has been freed. When free

is called, the memory is returned to the memory pool and can be reused. Using a

pointer after a free call is similar to an out-o f-bounds error for an index to an array.

You are using memory that belongs to someone else. This error can cause

unexpected results or program crashes.

17.3 Linked List

Suppose you are writing a program that displays a series of flash cards as a teaching

drill. The problem is that you don't know ahead of time how many cards the user will

supply. One solution is to use a linked-list data structure. In that way, the list can

grow as more cards are added. Also, as we will see later, linked lists may be

combined with other data structures to handle extremely complex data.

A linked list is a chain of items in which each item points to the next one in the chain.

Think about the treasure hunt games you played when you were a kid. You were

given a note that said, "Look in the mailbox." Racing to the mailbox you found your

next clue, "Look in the big tree in the back yard," and so on until you found your

treasure (or you got lost). In a treasure hunt, each clue points to the next one.[1]

[1] A woman was having a treasure hunt at her house for her daughter's Girl Scout troop when the doorbell rang.

It was the mailman. "Lady," he said, "I've looked behind the big tree, and I've looked in the birdhouse, and I've

even looked under the mat, but I still can't find your letter."

 TEAM FLY PRESENTS

 334

A linked list is shown in Figure 17-3.

Figure 17-3. Linked list

The structure declarations for a linked list are:

struct linked_list {

 char data[30]; /* data in this element */
 struct linked_list *next_ptr; /* pointer to next element */

};

struct linked_list *first_ptr = NULL;

The variable first_ptr points to the first element of the list. In the beginning,

before we insert any elements into the list (the list is empty), this variable is

initialized to NULL.

In Figure 17-4, a new element is created and then inserted at the beginning of an

existing list. To insert a new element into a linked list in C, we execute the following

steps:

1. Create a structure for the item.

new_item_ptr = malloc(sizeof(struct linked_list));

2. Store the item in the new element.

(*new_item_ptr).data = item;

3. Make the first element of the list point to the new element.

(*new_item_ptr).next_ptr = first_ptr;

4. The new element is now the first element.

first_ptr = new_item_ptr;

 TEAM FLY PRESENTS

 335

Figure 17-4. Adding new element to beginning of list

The code for the actual program is:

void add_list(char *item)

{
 /* pointer to the next item in the list */
 struct linked_list *new_item_ptr;

 new_item_ptr = malloc(sizeof(struct linked_list));

 strcpy((*new_item_ptr).data, item);
 (*new_item_ptr).next_ptr = first_ptr;

 first_ptr = new_item_ptr;

}

 TEAM FLY PRESENTS

 336

To see if the name is in the list, we must search each element of the list until we
either find the name or run out of data. Example 17-2 contains the find program,

which searches through the items in the list.

Example 17-2. find/find.c

[File: find/find.c]
#include <stdio.h>

#include <string.h>

struct linked_list {
 struct linked_list *next_ptr; /* Next item in the list */

 char *data; /* Data for the list */

};

struct linked_list *first_ptr;

/**
 * find -- Looks for a data item in the list. *

 * *
 * Parameters *

 * name -- Name to look for in the list. *
 * *

 * Returns *

 * 1 if name is found. *
 * 0 if name is not found. *

 **/

int find(char *name)
{

 /* current structure we are looking at */
 struct linked_list *current_ptr;

 current_ptr = first_ptr;

 while ((strcmp(current_ptr->data, name) != 0) &&
 (current_ptr != NULL))

 current_ptr = (*current_ptr)->next_ptr;

 /*

 * If current_ptr is null, we fell off the end of the list and
 * didn't find the name

 */
 return (current_ptr != NULL);

}

 TEAM FLY PRESENTS

 337

Question 17-1: Why does running this program sometimes result in a bus error?

Other times, it will return "1" for an item that is not in the list. (Click here for the

answer Section 17.11)

17.4 Structure Pointer Operator

In our find program, we had to use the cumbersome notation
(*current_ptr).data to access the data field of the structure. C provides a

shorthand for this construct using the structure pointer (->) operator. The dot (.)

operator indicates the field of a structure. The -> indicates the field of a structure

pointer.

The following two expressions are equivalent:

(*current_ptr).data = value;
current_ptr->data = value;

17.5 Ordered Linked Lists

So far, we have added new elements only to the head of a linked list. Suppose we

want to add elements in order. Figure 17 -5 is an example of an ordered linked list.

Figure 17-5. Ordered list

The subroutine in Example 17-3 implements this function. The first step is to locate
the insert point. head_ptr points to the first element of the list. The program moves

the variable before_ptr along the list until it finds the proper place for the insert.

The variable after_ptr is set to point to the element that follows the insertion. The

new element will be inserted between these elements.

 TEAM FLY PRESENTS

 338

Example 17-3. list/list.p1

void enter(struct item *first_ptr, const int value)
{

 struct item *before_ptr; /* Item before this one */
 struct item *after_ptr; /* Item after this one */

 struct item *new_item_ptr; /* Item to add */

 /* Create new item to add to the list */

 before_ptr = first_ptr; /* Start at the beginning */

 after_ptr = before_ptr->next_ptr;

 while (1) {

 if (after_ptr == NULL)
 break;

 if (after_ptr->value >= value)

 break;

 /* Advance the pointers */

 after_ptr = after_ptr->next_ptr;

 before_ptr = before_ptr->next_ptr;
 }

In Figure 17-6, we have positioned before_ptr so that it points to the element

before the insert point. The variable after_ptr points to the element after the

insert. In other words, we are going to put our new element in between before_ptr

and after_ptr.

Now that we have located the proper insert point, all we have to do is create the new

element and link it in:

[File: list/list.p2]

 new_item_ptr = malloc(sizeof(struct item));
 new_item_ptr->value = value; /* Set value of item */

 before_ptr->next_ptr = new_item_ptr;
 new_item_ptr->next_ptr = after_ptr;

}

Our new element must now be linked in. The first link we make is between the
element pointed to by before_ptr (number 45) and our new element,

new_item_ptr (number 53). This is done with the statement:

 TEAM FLY PRESENTS

 339

before_ptr->next_ptr = new_item_ptr;

Figure 17-6. Ordered list insert

Next, we must link the new element, new_item_ptr (number 53), to the element

pointed to by after_ptr (number 89). This is accomplished with the code:

new_item_ptr->next_ptr = after_ptr;

17.6 Double-Linked Lists

A double-linked list contains two links. One link points forward to the next element;

the other points backward to the previous element.

 TEAM FLY PRESENTS

 340

The structure for a double -linked list is:

struct double_list {

 int data; /* data item */

 struct double_list *next_ptr; /* forward link */
 struct double_list *previous_ptr;/* backward link */

};

A double-linked list is illustrated in Figure 17-7. This is very similar to the

single -linked list, except that there are two links: one forward and one backward.

The four steps required to insert a new element into the list are illustrated later in

Figure 17-8, Figure 17-9, Figure 17-10, and Figure 17-11.

Figure 17-7. Double-linked list

The code to insert a new element in this list is:

void double_enter(struct double_list *head_ptr, int item)
{

 struct list *insert_ptr; /* insert before this element */
 /*
 * Warning: This routine does not take

 * care of the case in which the element is

 * inserted at the head of the list

 * or the end of the list
 */

 insert_ptr = head_ptr;

 while (1) {
 insert_ptr = insert_ptr->next;

 /* have we reached the end */
 if (insert_ptr == NULL)
 break;

 /* have we reached the right place */

 TEAM FLY PRESENTS

 341

 if (item >= insert_ptr->data)
 break;

 }

Let's examine this in detail. First we set up the forward link of our new element with

the code:

new_item_ptr->next_ptr = insert_ptr;

This is illustrated in Figure 17-8.

Figure 17-8. Double-linked list insert, part 1

Now we need to take care the backward pointer (new_item_ptr->previous_ptr).

This is accomplished with the statement:

new_item_ptr->previous_ptr = insert_ptr->previous_ptr;

Note that unlike the single -linked list, we have no before_ptr to point to the

element in front of the insert point. Instead, we use the value of

insert_ptr->previous_ptr to point to this element. Our linked list now looks like

Figure 17-9.

 TEAM FLY PRESENTS

 342

Figure 17-9. Double-linked list insert, part 2

We've set up the proper links in our new element; however, the links of the old

elements (numbers 11 and 36) still need to be adjusted. We first adjust the field

next_ptr in element 11. Getting to this element requires a little work. We start at

insert_ptr (element 36) and follow the link previous_ptr to element 11. We want
to change the field next_ptr in this element. The code for this is:

insert_ptr->previous_ptr->next_ptr = new_ptr;

Our new link is illustrated in Figure 17-10.

 TEAM FLY PRESENTS

 343

Figure 17-10. Double-linked list insert, part 3

We have three out of four links done. The final link is previous_ptr of element 36.

This is set with code:

insert_ptr->previous_ptr = new_item_ptr;

The final version of our double link is illustrated in Figure 17-11.

 TEAM FLY PRESENTS

 344

Figure 17-11. Double-linked list insert, part 4

17.7 Trees

Suppose we want to create an alphabetized list of the words that appear in a file. We
could use a linked list; however, searching a linked list is slow because we must

check each element until we find the correct insertion point. By using a data type

called a tree, we can cut the number of compares down tremendously. A binary tree

structure is shown in Figure 17-12.

 TEAM FLY PRESENTS

 345

Figure 17-12. Tree

Each box is called a node of the tree. The box at the top is the root , and the boxes

at the bottom are the leaves. Each node contains two pointers, a left pointer and a

right pointer, that point to the left and right subtrees.

The structure for a tree is:

struct node {
 char *data; /* word for this tree */

 struct node *left; /* tree to the left */
 struct node *right; /* tree to the right */

};

Trees are often used for storing a symbol table, a list of variables used in a program.

In this chapter, we will use a tree to store a list of words and then print the list

alphabetically. The advantage of a tree over a linked list is that searching a tree

takes considerably less time.

In this example, each node stores a single word. The left subtree stores all words

less than the current word, and the right subtree stores all the words greater than

the current word.

For example, Figure 17-13 shows how we descend the tree to look for the word

"orange." We would start at the root "lemon." Because "orange" > "lemon," we

would descend to the right link and go to "pear." Because "orange" < "pear," we

descend to the left link and we have "orange."

 TEAM FLY PRESENTS

 346

Figure 17-13. Tree search

Recursion is extremely useful with trees. Our rules for recursion are:

1. The function must make things simpler. Th is rule is satisfied by trees,

because as you descend the hierarchy there is less to search.

2. There must be some endpoint. A tree offers two endpoints, either you find a

match, or you reach a null node.

The algorithm for inserting a word in a tree is:

1. If this is a null tree (or subtree), create a one-node tree with this word in it.

2. If the current node contains the word, do nothing.

3. Otherwise, perform a recursive call to "insert word" to insert the word in the

left or right subtree, depending on the value of the word.

To see how this algortithm works, consider what happens when we insert the word

"fig" into the tree as shown in Figure 17-13. First, we check the word "fig" against

"lemon." "Fig" is smaller, so we go to "apple." Because "fig" is bigger, we go to

"grape." Because "fig" is smaller than "grape," we try the left link. It is NULL, so we

create a new node. The function to enter a value into a tree is:

void enter(struct node **node, char *word)

{

 int result; /* result of strcmp */
 char *save_string(); /* save a string on the heap */

 void memory_error(); /* tell user no more room */

 /*
 * If the current node is null, then we have reached the bottom

 TEAM FLY PRESENTS

 347

 * of the tree and must create a new node
 */

 if ((*node) == NULL) {

 /* Allocate memory for a new node */

 (*node) = malloc(sizeof(struct node));

 if ((*node) == NULL)
 memory_error();

 /* Initialize the new node */

 (*node)->left = NULL;
 (*node)->right = NULL;

 (*node)->word = save_string(word);
 return;
 }

 /* Check to see where our word goes */
 result = strcmp((*node)->word, word);

 /* The current node

 * already contains the word,
 * no entry necessary */

 if (result == 0)
 return;

 /* The word must be entered in the left or right subtree */

 if (result < 0)
 enter(&(*node)->right, word);
 else

 enter(&(*node)->left, word);

}

This function is passed a pointer to the root of the tree. If the root is NULL , it creates

the node. Because we are changing the value of a pointer, we must pass a pointer

to the pointer. (We pass one level of pointer because that's the variable type outside

the function; we pass the second level because we have to change it.)

17.8 Printing a Tree

Despite the complex nature of a tree structure, it is easy to print. Again, we use

recursion. The printing algorithm is:

1. For the null tree, print nothing.

 TEAM FLY PRESENTS

 348

2. Print the data that comes before this node (left tree), then print this node

and print the data that comes after this node (right tree).

The code for print_tree is:

void print_tree(struct node *top)

{
 if (top == NULL)
 return; /* short tree */

 print_tree(top->left);

 printf("%s\n", top->word);

 print_tree(top->right);
}

17.9 Rest of Program

Now that we have defined the data structure, all we need to complete the p rogram

is a few more functions.

The main function checks for the correct number of arguments and then calls the

scanner and the print_tree routine.

The scan function reads the file and breaks it into words. It uses the standard macro

isalpha. This macro, defined in the standard header file ctype.h, returns nonzero if

its argument is a letter and otherwise. The macro is defined in the standard include

file ctype.h. After a word is found, the function enter is called to put it in the tree.

save_string create s the space for a string on the heap, then returns the pointer to

it.

memory_error is called if a malloc fails. This program handles the out-o f-memory

problem by writing an error message and quitting.

Example 17-4 is a listing of words.c.

Example 17-4. words/words.c

[File: words/words.c]

/**

 * words -- Scan a file and print out a list of words *
 * in ASCII order. *
 * *

 * Usage: *

 * words <file> *

 TEAM FLY PRESENTS

 349

 **/
#include <stdio.h>

#include <ctype.h>
#include <string.h>
#include <stdlib.h>

struct node {
 struct node *left; /* tree to the left */
 struct node *right; /* tree to the right */

 char *word; /* word for this tree */

};

/* the top of the tree */
static struct node *root = NULL;

/**

 * memory_error -- Writes error and dies. *
 **/
void memory_error(void)

{

 fprintf(stderr, "Error:Out of memory\n");
 exit(8);

}

/**

 * save_string -- Saves a string on the heap. *

 * *
 * Parameters *
 * string -- String to save. *

 * *

 * Returns *
 * pointer to malloc-ed section of memory with *

 * the string copied into it. *
 **/
char *save_string(char *string)

{

 char *new_string; /* where we are going to put string */

 new_string = malloc((unsigned) (strlen(string) + 1));

 if (new_string == NULL)
 memory_error();

 strcpy(new_string, string);

 TEAM FLY PRESENTS

 350

 return (new_string);
}

/**
 * enter -- Enters a word into the tree. *
 * *

 * Parameters *

 * node -- Current node we are looking at. *
 * word -- Word to enter. *
 **/

void enter(struct node **node, char *word)

{
 int result; /* result of strcmp */

 char *save_string(char *); /* save a string on the heap */

 /*

 * If the current node is null, we have reached the bottom
 * of the tree and must create a new node.
 */

 if ((*node) == NULL) {

 /* Allocate memory for a new node */

 (*node) = malloc(sizeof(struct node));
 if ((*node) == NULL)
 memory_error();

 /* Initialize the new node */
 (*node)->left = NULL;
 (*node)->right = NULL;

 (*node)->word = save_string(word);

 return;
 }

 /* Check to see where the word goes */
 result = strcmp((*node)->word, word);

 /* The current node already contains the word, no entry necessary */

 if (result == 0)
 return;

 /* The word must be entered in the left or right subtree */

 if (result < 0)
 enter(&(*node)->right, word);

 else
 enter(&(*node)->left, word);

 TEAM FLY PRESENTS

 351

}
/**

 * scan -- Scans the file for words. *
 * *
 * Parameters *

 * name -- Name of the file to scan. *

 **/
void scan(char *name)
{

 char word[100]; /* word we are working on */

 int index; /* index into the word */
 int ch; /* current character */

 FILE *in_file; /* input file */

 in_file = fopen(name, "r");

 if (in_file == NULL) {

 fprintf(stderr, "Error:Unable to open %s\n", name);
 exit(8);
 }

 while (1) {

 /* scan past the whitespace */
 while (1) {

 ch = fgetc(in_file);

 if (isalpha(ch) || (ch == EOF))

 break;

 }

 if (ch == EOF)

 break;

 word[0] = ch;

 for (index = 1; index < sizeof(word); ++index) {
 ch = fgetc(in_file);
 if (!isalpha(ch))

 break;

 word[index] = ch;
 }
 /* put a null on the end */

 word[index] = '\0';

 enter(&root, word);

 }
 fclose(in_file);

 TEAM FLY PRESENTS

 352

}
/**

 * print_tree -- Prints out the words in a tree. *
 * *
 * Parameters *

 * top -- The root of the tree to print. *

 **/
void print_tree(struct node *top)
{

 if (top == NULL)

 return; /* short tree */

 print_tree(top->left);
 printf("%s\n", top->word);
 print_tree(top->right);

}

int main(int argc, char *argv[])
{

 if (argc != 2) {

 fprintf(stderr, "Error:Wrong number of parameters\n");
 fprintf(stderr, " on the command line\n");

 fprintf(stderr, "Usage is:\n");
 fprintf(stderr, " words 'file'\n");
 exit(8);

 }

 scan(argv[1]);
 print_tree(root);
 return (0);

}

Question 17-2: I once made a program that read the dictionary into memory using

a tree structure, and then used the structure in a program that searched for

misspelled words. Although trees are supposed to be fast, this program was so slow

that you would think I used a linked list. Why?

Hint: Graphically construct a tree using the words "able," "baker," "cook," "delta,"

and "easy," and look at the result. (Click here for the answer Section 17.11)

17.10 Data Structures for a Chess Program

One of the classic problems in artificial intelligence is the game of chess. As this

book goes to press, the Grandmaster who beat the world's best chess-playing

computer last year has lost to the computer this year (1997).

 TEAM FLY PRESENTS

 353

We are going to design a data structure for a chess-playing program. In chess, you

have several possible moves that you can make. Your opponent has many

responses to which you have many answers, and so on, back and forth, for several

levels of moves.

Our data structure is beginning to look like a tree. This structure is not a binary tree

because we have more than two branches for each node, as shown in Figure 17-14.

Figure 17-14. Chess tree

We are tempted to use the following data structure:

struct chess {
 struct board board; /* Current board position */

 struct next {
 struct move; /* Our next move */

 struct *chess_ptr; /* Pointer to the resulting position */
 } next[MAX_MOVES];

};

The problem is that the number of moves from any given position can vary

dramatically. For example, in the beginning you have lots of pieces running

around.[2] Things like rooks, queens, and bishops can move any number of squares

in a straight line. When you reach the end game (in an evenly matched game), each

side probably has only a few pawns and one major piece. The number of possible

moves has been greatly reduced.

[2] Trivia question: What are the 21 moves that you can make in chess from the starting position? You can move

each pawn up one (8 moves) or two (8 more), and the knights can move out to the left and right (4 more:

8+8+4=20). What's the 21st move?

 TEAM FLY PRESENTS

 354

We want to be as efficient in our storage as possible, because a chess program will

stress the limits of our machine. We can reduce our storage requirements by

changing the next-move array into a linked list. Our resulting structure is:

struct next {
 struct move this_mode; /* Our next move */

 struct *chess_ptr; /* Pointer to the resulting position */
};
struct chess {

 struct board board; /* Current board position */

 struct next *list_ptr; /* List of moves we can make from here */
 struct move this_move; /* The move we are making */
};

This is shown graphically in Figure 17-15.

Figure 17-15. Revised chess structure

The new version adds a little complexity, but saves a great deal of storage. In the

first version, we must allocate storage for pointers to all possible moves. If we have
only a few possible moves, we waste a lot of storage for pointers to unused moves.

Using a linked list, we allocate storage on an on-demand basis. So if there are 30

possible moves, o ur list is 30 long; but if there are only 3 possible moves, our list is

3 long. The list grows only as needed, resulting in a more efficient use of storage.

17.11 Answers

Answer 17-1: The problem is with the statement:

while ((strcmp(current_ptr->data, name) != 0) &&
 (current_ptr != NULL))

 TEAM FLY PRESENTS

 355

current_ptr->data is checked before we check to see if current_ptr is a valid

pointer (!= NULL). If the pointer is NULL, we can easily check a random memory

location that could contain anything. The solution is to check current_ptr before

checking what it is pointing to:

while (current_ptr != NULL) {

 if (strcmp(current_ptr->data, name) == 0)
 break;
}

Answer 17-2: The problem was that because the first word in the dictionary was

the smallest, every other word used the right-hand link. In fact, because the entire

list was ordered, only the right-hand link was used. Although this structure was

defined as a tree structure, the result was a linked list, as shown in Figure 17-16.

Some of the more advanced books on data structures, like Niklaus Wirth's book

Algorithms + Data Structures = Programs , discuss ways of preventing this error by

balancing a binary tree.

Figure 17-16. An imbalanced tree

Trivia Answer: You give up. That's right; the 21st move is to resign.

17.12 Programming Exercises

Exercise 17-1: Write a cross-reference program.

 TEAM FLY PRESENTS

 356

Exercise 17-2: Write a function to delete an element of a linked list.

Exercise 17-3: Write a function to delete an element of a double -linked list.

Exercise 17-4: Write a function to delete an element of a tree.

 TEAM FLY PRESENTS

 357

Chapter 18. Modular Programming

Many hands make light work.

—John Heywood

All along, we have been dealing with small programs. As programs grow larger and

larger, it is more desirable to split them into sections or modules. C allows programs

to be split into multiple files, compiled sepa rately, and then combined (linked) to

form a single program.

In this chapter, we will go through a programming example, discussing the C

techniques needed to create good modules. You will be shown how to use make to

put these modules together to form a pro gram.

18.1 Modules

A module is a collection of functions that perform related tasks. For example, a
module could exist to handle database functions such as lookup, enter, and sort.

Another module could handle complex numbers, and so on.

Also, as programming problems get bigger, more and more programmers are

needed to finish them. An efficient way of splitting up a large project is to assign

each programmer a different module. In this manner, each programmer only

worries about the internal details of a particular module.

In this chapter, we will discuss a module to handle infinite arrays . The functions in

this package allow the user to store data into an array without worrying about its

size. The infinite array grows as needed (limited only by the amount of memory in

the computer). The array will be used to store data for a histogram, but can be used

to store things like line numbers from a cross-reference program or other types of

data.

18.2 Public and Private

Modules are divided into two parts: public and private. The public part tells the user

how to call the functions in the module. It contains the definition of data structures

and functions that are to be used outside the module. These definitions are put in a

header file, and the file must be included in any program that depends on that

module. In our infinite array example, we have put the public declarations in the file

ia.h, which we will look at shortly. Figure 18-1 illustrates the relationship between

the various parts of the infinite array package.

 TEAM FLY PRESENTS

 358

Figure 18-1. Definition, implementation, and use of

the infinite array

Anything that is internal to the module is private. Everything that is not directly

usable by the outside world should be kept private.

One of the advantages of C++ over C is that you can explicitly declare what is public

and what is private, and prevent unauthorized modification of private data.

18.3 The extern Modifier

The extern modifier is used to indicate that a variable or function is defined outside

the current file. For example, look at the contents of two files, main.c and count.c.

File main.c

#include <stdio.h>
/* number of times through the loop */

extern int counter;

/* routine to increment the counter */

extern void inc_counter(void);

main()

{
 int index; /* loop index */

 for (index = 0; index < 10; index++)

 inc_counter();
 printf("Counter is %d\n", counter);

 TEAM FLY PRESENTS

 359

 return (0);
}

File count.c

/* number of times through the loop */

int counter = 0;

/* trivial example */

void inc_counter(void)

{

 ++counter;
}

In this example, the function main uses the variable counter. The extern

declaration is used by main.c to indicate that counter is declared outside the

function; in this case, counter is defined in the file counter.c. The modifier extern is

not used in counter.c because it contains the "real" declaration of the variable.

There are three modifiers that can be used to indicate where a variable is defined, as

shown in Table 18-1.

Table 18-1. Modifiers

Modifier Meanin g

extern Variable/function is defined in another file.

"none"
Variable/function is defined in this file (public) and can be used in other

files.

static Variable/function is local to this file (private).

Notice that the word static has two meanings. For data defined globally, static
means "private to this file." For data defined inside a function, it means "variable is

allocated from static memory (instead of the temporary stack)."

C is very liberal in its use of the rules for the static and extern modifiers. You can

declare a variable extern at the beginning of a program and later define it with no

modifier:

extern sam;
int sam = 1; /* this is legal */

 TEAM FLY PRESENTS

 360

This method is useful when you have all of your external variables defined in a

header file. The program includes the header file (and defines the variables as

extern), then defines the variable for real.

Another problem concerns declaring a variable in two different files:

File main.c

int flag = 0; /* flag is off */
main()

{
printf("Flag is %d\n", flag);
}

File sub.c

int flag = 1; /* flag is on */

What happens in this case?

1. flag will be initialized to because main.c is loaded first.

2. flag will be initialized to 1 because the entry in sub.c will overwrite the one

in main.c.

3. The compiler will very carefully analyze both programs, then pick out the

value that is most likely to be wrong.

There is only one global variable flag, and it will be initialized to either 1 or

depending on the whims of the compiler. Some of the more advanced compilers will

issue an error message when a global is declared twice, but most compilers will

silently ignore this error. It is entirely possible for the program main to print out:

flag is 1

even though we initialized flag to and did not change it before printing. To avoid the

problem of hidden initializations, use the keyword static to limit the scope of each

variable to the file in which it is declared.

If we had written:

File main.c

static int flag = 0; /* flag is off */

main()
{
 printf("Flag is %d\n", flag);

}

 TEAM FLY PRESENTS

 361

File sub.c

static int flag = 1; /* flag is on */

then flag in main.c is an entirely different variable from flag in sub.c. However,

you should still give the variables different names to avoid confusion.

18.4 Headers

Information that is shared between modules should be put in a header file. By

convention, all header filenames end with .h. In our infinite array example, we use

the file ia.h.

The header should contain all the public information, such as:

• A comment sectio n describing clearly what the module does and what is

available to the user

• Common constants

• Common structures

• Prototypes of all the public functions

• extern declarations for public variables

In our infinite array example, over half of the file ia.h is devo ted to comments. This

level of comment is not excessive; the real guts of the coding are hidden in the

program file ia.c. The ia.h file serves both as a program file and as documentation to

the outside world.

Notice there is no mention in the ia.h comments about how the infinite array is

implemented. At this level, we don't care about how something is done; we just

want to know what functions are available. Look through the file ia.h (see Example

18-1).

Example 18-1. File ia.h

/**

 * Definitions for the infinite array (ia) package. *
 * *

 * An infinite array is an array whose size can grow *
 * as needed. Adding more elements to the array *

 * will just cause it to grow. *
 --

 * struct infinite_array *

 * Used to hold the information for an infinite *

 TEAM FLY PRESENTS

 362

 * array. *
 --

 * Routines *
 * *
 * ia_init -- Initializes the array. *

 * ia_store -- Stores an element in the array. *

 * ia_get -- Gets an element from the array. *
 **/

/* number of elements to store in each cell of the infinite array */

#define BLOCK_SIZE 10

struct infinite_array {
 /* the data for this block */
 float data[BLOCK_SIZE];

 /* pointer to the next array */
 struct infinite_array *next;
};

/**
 * ia_init -- Initializes the infinite array. *

 * *
 * Parameters *
 * array_ptr -- The array to initialize. *

 **/

#define ia_init(array_ptr) {(array_ptr)->next = NULL;}

/**

 * ia_get -- Gets an element from an infinite array. *

 * *
 * Parameters *

 * array_ptr -- Pointer to the array to use. *
 * index -- Index into the array. *
 * *

 * Returns *

 * The value of the element. *
 * *
 * Note: You can get an element that *

 * has not previously been stored. The value *

 * of any uninitialized element is zero. *
 **/

extern int ia_get(struct infinite_array *array_ptr, int index);

 TEAM FLY PRESENTS

 363

/**
 * ia_store -- Store an element in an infinite array. *

 * *
 * Parameters *
 * array_ptr -- Pointer to the array to use. *

 * index -- index into the array. *

 * store_data -- Data to store. *
 **/
extern void ia_store(struct infinite_array * array_ptr,

 int index, int store_data);

A few things should be noted about this file. Three functions are documented:
ia_get, ia_store, and ia_init. ia_init isn't really a function, but is a macro. For

the most part, people using this module do not need to know if a function is really a

function or only a macro.

The macro is bracketed in curly braces ({}), so it will not cause syntax problems

when used in something like an if/else sequence. The code:

if (flag)

 ia_init(&array);
else
 ia_store(&array, 0, 1.23);

will work as expected.

Everything in the file is a constant definition, a data structure definition, or an

external definition. No code or storage is defined.

18.5 The Body of the Module

The body of the module contains all the functions and data for that module. Private

functions that will not be called from outside the module should be declared static.

Variables declared outside of a function that are not used outside the module are

declared static.

18.6 A Program to Use Infinite Arrays

The program uses a simple linked list to store the elements of the array, as shown

in Figure 18-2. A linked list can grow longer as needed (until we run out of room).

Each list element or bucket can store 10 numbers. To find element 38, the program

starts at the beginning, skips past the first three buckets, then extracts element 8

from the data in the current bucket.

 TEAM FLY PRESENTS

 364

Figure 18-2. Infinite array structure

The code for the module ia.c is shown as Example 18 -2.

Example 18-2. a/ia.c

/**
 * infinite-array -- routines to handle infinite arrays *

 * *

 * An infinite array is an array that grows as needed. *

 * There is no index too large for an infinite array *
 * (unless we run out of memory). *
 **/

#include "ia.h" /* get common definitions */
#include <memory.h>

#include <stdio.h>

#include <stdlib.h>

/**

 * ia_locate -- Gets the location of an infinite array *

 * element. *
 * *
 * Parameters *

 * array_ptr -- Pointer to the array to use. *
 * index -- Index into the array. *

 * current_index -- Pointer to the index into this *

 * bucket (returned). *
 * *

 * Returns *

 * pointer to the current bucket *

 TEAM FLY PRESENTS

 365

 **/
static struct infinite_array *ia_locate(

 struct infinite_array *array_ptr, int index,
 int *current_index_ptr)
{

 /* pointer to the current bucket */

 struct infinite_array *current_ptr;

 current_ptr = array_ptr;

 *current_index_ptr = index;

 while (*current_index_ptr >= BLOCK_SIZE) {

 if (current_ptr->next == NULL) {

 current_ptr->next = malloc(sizeof(struct infinite_array));

 if (current_ptr->next == NULL) {
 fprintf(stderr, "Error:Out of memory\n");
 exit(8);

 }

 memset(current_ptr->next, '\0', sizeof(struct

infinite_array));
 }
 current_ptr = current_ptr->next;

 *current_index_ptr -= BLOCK_SIZE;

 }
 return (current_ptr);
}

/**

 * ia_store -- Stores an element into an infinite array.*
 * *

 * Parameters *
 * array_ptr -- Pointer to the array to use. *
 * index -- Index into the array. *

 * store_data -- Data to store. *

 **/
void ia_store(struct infinite_array * array_ptr,
 int index, int store_data)

{

 /* pointer to the current bucket */
 struct infinite_array *current_ptr;

 int current_index; /* index into the current bucket */

 TEAM FLY PRESENTS

 366

 current_ptr = ia_locate(array_ptr, index, ¤t_index);
 current_ptr->data[current_index] = store_data;

}
/**
 * ia_get -- Gets an element from an infinite array. *

 * *

 * Parameters *
 * array_ptr -- Pointer to the array to use. *
 * index -- Index into the array. *

 * *

 * Returns *
 * the value of the element *

 * *
 * Note: You can get an element that *
 * has not previously been stored. The value *

 * of any uninitialized element is zero. *

 **/
int ia_get(struct infinite_array *array_ptr, int index)
{

 /* pointer to the current bucket */

 struct infinite_array *current_ptr;

 int current_index; /* index into the current bucket */

 current_ptr = ia_locate(array_ptr, index, ¤t_index);

 return (current_ptr->data[current_index]);

}

This program uses an internal routine, ia_locate. Because this routine is not used

outside the module, it is defined as static. The routine is also not put in the header

ia.h.

18.7 The Makefile for Multiple Files

The program make is designed to aid the programmer in compiling and linking

programs. Before make, the user had to explicitly type in compile commands for

every change in the program. For example:

% cc -g -ohello hello.c

As programs grow, the number of commands needed to create them grows. Typing

a series of 10 or 20 commands can be tiresome and error prone, so programmers

started writing shell scripts (or .BAT files on MS-DOS.) All the programmer had to

type was a script name such as do-it, and the computer would compile everything.

 TEAM FLY PRESENTS

 367

This method can be overkill, however, because all the files are recompiled whether

or not they need to be.

As the number of files in a project grows, so does the time required for a recompile.

Making changes in one small file, starting the compilation, and then having to wait

until the next day while the computer executes severa l hundred compile commands

can be frustrating, especially when only one compile was really needed.

The program make was created to make compilation dependent upon whether a file

has been updated since the last compilation. The program allows you to specify the

dependencies of the program file and the source file, and the command that

generates the program from its source.

The file Makefile (case sensitivity is important in UNIX) contains the rules used by

make to decide how to build the program.

The Makefile contains the following sections:

• Comments

• Macros

• Explicit rules

• Default rules

Any line beginning with a hash mark (#) is a comment.

A macro has the format:

name = data

where name is any valid identifier and data is the text that will be substituted

whenever make sees $(name).

For example:

Very simple Makefile

MACRO=Doing All

all:
 echo $(MACRO)

Explicit rules tell make what commands are needed to create the program. They can

take several forms. The most common of these is:

target: source [source2] [source3]

 command

 TEAM FLY PRESENTS

 368

 [command]
 [command] ...

where target is the name of a file to create. It is "made" or created out of the source
file source. If the target is created out of several files, they are all listed. This list

should include any header files included by the source file. The command that

generates the target is specified on the next line. Sometimes you need more than

one command to create the target. Commands are listed one per line. Each is

indented by a tab.

For example , the rule:

hello: hello.c

 cc -g -ohello hello.c

tells make to create the file hello from the file hello.c using the command:

cc -g -ohello hello.c

make will create hello only if necessary. The files used in the creation of hello,

arranged in chronological order (by modification times), are shown in Table 18 -2.

Table 18-2. Sequence for Building Executable File

UNIX MS-DOS/Windows

hello.c HELLO.C (oldest)

hello.o HELLO.OBJ (old)

hello HELLO.EXE (newest)

If the programmer changes the source file hello.c, its modification time will be out of

date with respect to the other files. make will recognize that and re-create the other

files.

Another form of the explicit rule is:

source:
 command
 [command]

In this case, the commands are unconditionally executed each time make is run. If

the commands are omitted from an explicit rule, make will use a set of built -in rules

to determine what command to e xecute. For example, the rule:

 TEAM FLY PRESENTS

 369

hist.o: ia.h hist.c

tells make to create hist.o from hist.c and ia.h , using the standard suffix rule for

making file.o from file.c. This rule is:

$(CC) $(CFLAGS) -c file.c

(make predefines the macros $(CC) and $(CFLAGS).)

We are going to create a main program hist.c that calls functions in the module ia.c.

Both files include the header ia.h , so they depend on it. The UNIX Makefile that

creates the program hist from hist.c and ia.c is:

CFLAGS = -g

OBJ=ia.o hist.o

all: hist

hist: $(OBJ)

 $(CC) $(CFLAGS) -o hist $(OBJ)

hist.o:ia.h hist.c

ia.o:ia.h ia.c

The macro OBJ is a list of all the object (.o) files. The lines:

hist: $(OBJ)
 $(CC) $(CFLAGS) -o hist $(OBJ)

tell make to create hist from the object files. If any of the object files are out of date,

make will re-create them.

The line:

hist.o:hist.c ia.h

tells make to create hist.o from ia.h and hist.c. Because no command is specified, the

default is used.

The Makefile for MS-DOS, using Turbo C++, is:

SRCS=hist.c ia.c
OBJS=hist.obj ia.obj

CFLAGS=-ml -g -w -A

 TEAM FLY PRESENTS

 370

CC=tcc

ia: $(OBJS)
 $(CC) $(CFLAGS) -ehist.exe $(OBJS)

hist.obj: hist.c ia.h

 $(CC) $(CFLAGS) -c hist.c

ia.obj: ia.c ia.h

 $(CC) $(CFLAGS) -c ia.c

This file is similar to the UNIX Makefile except that the Turbo C++ make does not

provide any default rules.

One big drawback exists with make. It checks to see only if the files have changed,

not the rules. If you have compiled all of your program with CFLAGS=-g for

debugging and need to produce the production version (CFLAGS=-O), make will not

recompile.

The command touch changes the modification date of a file. (It doesn't change the

file, it just makes the operating system think that it did.) If you touch a source file

such as hello.c and then run make, the program will be re -created. This feature is

useful if you have changed the compile-time flags and want to force a recompilation.

make provides you with a rich set of commands for creating programs. Only a few

have been discussed here.[1]

[1] If you are going to create programs that require more than 10 or 20 source files, read the Nutshell Handbook

Managing Projects with make, by Andy Oram and Steve Talbott.

18.8 Using the Infinite Array

The histogram program, hist , is designed to use the infinite array package. (A

histogram is a graphic representation of the frequency with which data items recur.)

It takes one file as its argument. The file contains a list of numbers from to 99. Any

number of entries can be used. The program prints a histogram showing how many

times each number appears.

A typical line of output from our program looks like:

5 (6): ***************************

The first number (5) is the line index. In our sample data, there are six entries with

the value 5. The line of asterisks graphically represents our six entries.

 TEAM FLY PRESENTS

 371

Some data fall out of range and are not represented in our histogram. S uch data are

counted and listed at the end of the printout. Here is a sample printout:

1 (9): ************************

 2 (15): **
 3 (9): ************************

 4 (19): ***
 5 (13): ***********************************
 6 (14): **************************************

 7 (14): **************************************

 8 (14): **************************************
 9 (20): **
10 (13): ***********************************

11 (14): **************************************

12 (9): ************************
13 (13): ***********************************

14 (12): ********************************
15 (14): **************************************
16 (16): ***

17 (9): ************************

18 (13): ***********************************
19 (15): **
20 (11): ******************************

21 (22):

**
22 (14): **************************************

23 (9): ************************
24 (10): ***************************
25 (15): **

26 (10): ***************************

27 (12): ********************************
28 (14): **************************************
29 (15): **

30 (9): ************************

104 items out of range

The program uses the library routine memset to initialize the counters array. This

routine is highly efficient for setting all values of an array to 0. The line:

memset(counters, '\0', sizeof(counters));

zeroes out the entire array counters.

The sizeof(counters) makes sure that all of the array is zeroed. Example 18-3

contains the full listing of hist.c.

 TEAM FLY PRESENTS

 372

Example 18-3. ia/hist.c

/**
 * hist -- Generates a histogram of an array of numbers.*

 * *
 * Usage *

 * hist <file> *
 * *

 * Where *

 * file is the name of the file to work on. *
 **/

#include "ia.h"

#include <stdio.h>
#include <stdlib.h>

#include <memory.h>
/*

 * Define the number of lines in the histogram
 */

#define NUMBER_OF_LINES 30 /* Number of lines in the histogram */

const int DATA_MIN = 1; /* Number of the smallest item */
const int DATA_MAX = 30; /* Number of the largest item */

/*

 * WARNING: The number of items from DATA_MIN to DATA_MAX (inclusive)
 * must match the number of lines.

 */

/* number of characters wide to make the histogram */
const int WIDTH = 60;

static struct infinite_array data_array;
static int data_items;

int main(int argc, char *argv[])
{

 /* Function to read data */
 void read_data(const char name[]);

 /* Function to print the histogram */

 void print_histogram(void);

 if (argc != 2) {

 fprintf(stderr, "Error:Wrong number of arguments\n");

 fprintf(stderr, "Usage is:\n");

 TEAM FLY PRESENTS

 373

 fprintf(stderr, " hist <data-file>\n");
 exit(8);

 }
 ia_init(&data_array);
 data_items = 0;

 read_data(argv[1]);
 print_histogram();
 return (0);

}

/**
 * read_data -- Reads data from the input file into *

 * the data_array. *
 * *
 * Parameters *

 * name -- The name of the file to read. *

 **/
void read_data(const char name[])
{

 char line[100]; /* line from input file */

 FILE *in_file; /* input file */
 int data; /* data from input */

 in_file = fopen(name, "r");
 if (in_file == NULL) {

 fprintf(stderr, "Error:Unable to open %s\n", name);

 exit(8);
 }
 while (1) {

 if (fgets(line, sizeof(line), in_file) == NULL)

 break;

 if (sscanf(line, "%d", &data) != 1) {
 fprintf(stderr,
 "Error: Input data not integer number\n");

 fprintf(stderr, "Line:%s", line);

 }
 ia_store(&data_array, data_items, data);
 ++data_items;

 }

 fclose(in_file);
}

/**
 * print_histogram -- Prints the histogram output. *

 TEAM FLY PRESENTS

 374

 **/
void print_histogram(void)

{
 /* upper bound for printout */
 int counters[NUMBER_OF_LINES];

 int out_of_range = 0;/* number of items out of bounds */
 int max_count = 0;/* biggest counter */
 float scale; /* scale for outputting dots */

 int index; /* index into the data */

 memset(counters, '\0', sizeof(counters));

 for (index = 0; index < data_items; ++index) {
 int data;/* data for this point */

 data = ia_get(&data_array, index);

 if ((data < DATA_MIN) || (data > DATA_MAX))

 ++out_of_range;

 else {
 ++counters[data - DATA_MIN];

 if (counters[data - DATA_MIN] > max_count)
 max_count = counters[data - DATA_MIN];
 }

 }

 scale = ((float) max_count) / ((float) WIDTH);

 for (index = 0; index < NUMBER_OF_LINES; ++index) {

 /* index for outputting the dots */
 int char_index;

 int number_of_dots; /* number of * to output */

 printf("%2d (%4d): ", index + DATA_MIN, counters[index]);

 number_of_dots = (int) (((float) counters[index]) / scale);
 for (char_index = 0;
 char_index < number_of_dots;

 ++char_index) {

 printf("*");
 }

 printf("\n");
 }

 TEAM FLY PRESENTS

 375

 printf("%d items out of range\n", out_of_range);
}

18.8.1 Makefile for UNIX Generic C

#---#

Makefile for UNIX systems #
using a GNU C compiler. #

#---#
CC=cc

CFLAGS=-g

Compiler flags:

-g -- Enable debugging

ia: ia.c

 $(CC) $(CFLAGS) -o ia ia.c

clean:
 rm -f ia

18.8.2 Makefile for Free Software Foundation's gcc

[File: ia/makefile.gcc]
#---#
Makefile for UNIX systems #

using a GNU C compiler. #
#---#

CC=gcc

CFLAGS=-g -Wall -D__USE_FIXED_PROTOTYPES__ -ansi

all: hist

hist: hist.o ia.o
 $(CC) $(CFLAGS) -o hist hist.o ia.o

hist.o: hist.c ia.h

ia.o: ia.c ia.h

clean:

 rm -f hist hist.o ia.o

 TEAM FLY PRESENTS

 376

18.8.3 Makefile for Turbo C++

[File: ia/makefile.tcc]
#---#

Makefile for DOS systems #
using a Turbo C++ compiler. #

#---#
CC=tcc

CFLAGS=-v -w -ml

all: hist.exe

hist.exe: hist.obj ia.obj ia.h
 $(CC) $(CFLAGS) -ehist hist.obj ia.obj

hist.obj: hist.c ia.h

 $(CC) $(CFLAGS) -c hist.c

ia.obj: ia.c ia.h

 $(CC) $(CFLAGS) -c ia.c

clean:

 del hist.exe hist.obj ia.obj

18.8.4 Makefile for Borland C++

[File: ia/makefile.bcc]
#---#

Makefile for DOS systems #

using a Borland C++ compiler. #
#---#
CC=bcc

CFLAGS=-v -w -ml

all: hist.exe

hist.exe: hist.obj ia.obj ia.h
 $(CC) $(CFLAGS) -ehist hist.obj ia.obj

hist.obj: hist.c ia.h
 $(CC) $(CFLAGS) -c hist.c

ia.obj: ia.c ia.h

 TEAM FLY PRESENTS

 377

 $(CC) $(CFLAGS) -c ia.c

clean:
 del hist.exe
 del hist.obj

 del ia.obj

18.8.5 Makefile for Microsoft Visual C++

[File: ia/makefile.msc]

#---#
Makefile for DOS systems #

Microsoft Visual C++ Compiler. #

#---#

CC=cl

Flags

AL -- Compile for large model
Zi -- Enable debugging

W1 -- Turn on warnings

CFLAGS=/AL /Zi /W1

SRC=hist.c ia.cpp
OBJ=hist.obj ia.obj

all: hist.exe

hist.exe: $(OBJ)
 $(CC) $(CFLAGS) $(OBJ)

hist.obj: ia.h hist.c

 $(CC) $(CFLAGS) -c hist.c

ia.obj: ia.h ia.c

 $(CC) $(CFLAGS) -c ia.c

clean:

 erase hist.exe io.obj hist.obj

 TEAM FLY PRESENTS

 378

18.9 Dividing a Task into Modules

Unfortunately, computer programming is more of an art than a science. There are
no hard and fast rules that tell you how to divide a task into modules. Knowing what

makes a good module and what doesn't comes with experience and practice.

This section describes some general rules for module division and how they can be

applied to real-world programs. The techniques described here have worked well for

me. You should use whatever works for you.

Information is a key part of any program. The key to any program is deciding what

information is being used and what processing you want to perform on it.

Information flow should be analyzed before the design begins.

Modules should be designed to minimize the amount of information that has to pass

between them. If you look at the organization of an army, you'll see that it is divided

up into modules. There is the infantry, artillery, tank corps, and so on. The amount

of information that passes between these modules is minimized. For example, an

infantry sergeant who wants the artillery to bombard an enemy position calls u p the

artillery command and says, "There's a pillbox at location Y-94. Get rid of it."

The artillery commander handles all the details of deciding which battery is to be

used, how much fire power to allocate based on the requirements of other fire

missions, keeping the guns supplied, and many more details.[2]

[2] This is a very general diagram of the chain of command for an ideal army. The system used by the United

States Army is more complex and so highly classified that even the army commanders don't know how it works.

Programs should be organized in the same way. Information hiding is key to good

programming. A module should make public only the minimum number of functions

and data needed to do the job. The smaller the interface, the simpler the interface.

The simpler the interface, the easier it is to use. Also, a simple interface is less risky

and less error prone than a complex one.

Small, simple interfaces are also easier to design, test, and maintain. Data hiding

and good interface design are key to making good modules.

18.10 Module Division Example: Text Editor

You are already familiar with using a text editor. It is a program that allows the user
to display and change text files. Most editors are display oriented and continually

display about 25 lines of the current file on the screen. The text editor must also

interpret commands that are typed in by the user. This information must be parsed

 TEAM FLY PRESENTS

 379

so that the computer can understand it and act accordingly. The individual

commands are small and perform similar functions ("delete line" is very much like

"delete character"). Imposing a standard structure on the command execution

modules improves readability and reliability.

The different modules that form a text editor are illustrated in Figure 18-3.

Figure 18-3. Text editor modules

Minimal communication exists between the modules. The display manager needs to

know only two things: where the cursor is and what the file currently looks like. All

the file handler needs to do is read the file, write the file, and keep track of changes.

Even the work involved in making changes can be minimized. All editing commands,

no matter how complex, can be broken down into a series of inserts and deletes.

The command module must take complex user commands and turn them into

simple inserts and deletes that the file handler can process.

The information passing between the modules is minimal. In fact, no information

passes between the command decoder and the display manager.

A word processor is just a fancy text editor. Where a simple editor only has to worry

about ASCII characters (one font, one size), a word processor must be able to

handle many different sizes and shapes.

 TEAM FLY PRESENTS

 380

18.11 Compiler

In a compiler, the information being processed is C code. The job of the compiler is
to transform that information from C source to machine-dependent object code.

Several stages comprise this process. First, the code is run through the

preprocessor to expand macros, take care of conditional compilation, and read

include files. Next, the processed file is passed to the first stage of the compiler, the

lexical analyzer.

The lexical analyzer takes as its input a stream of characters and returns a series of

tokens. A token is a word or operator. For example, let's look at the English

command:

Open the door.

There are 14 characters in this command. Lexical analysis would recognize three

words and a period. These tokens are then passed to the parser, where they are

assembled into sentences. At this stage, a symbol table is generated so that the

parser can have some idea of what variables are being used by the program.

Now the compiler knows what the program is supposed to do. The optimizer looks at

the instructions and tries to figure out how to make them more efficient. This step
is optional and is omitted unless the -O flag is specified on the command line.

The code generator turns the high-level statements into machine-specific assembly

code. In assembly language, each assembly language statement corresponds to

one machine instruction. The assembler turns assembly language into binary code

that can be executed by the machine.

The general information flow of a compiler is shown in Figure 18-4.

 TEAM FLY PRESENTS

 381

Figure 18-4. Compiler modules

One of the contributing factors to C popularity is the ease with which a C compiler

can be created for a new machine. The Free Software Foundation distributes the

source to a C compiler (gcc). Because the source is written in modular fashion, you

can port it to a new machine by changing the code generator and writing a new
assembler. Both of these are relatively simple tasks (see the quote at the beginning

of Chapter 7).

Lexical analysis and parsing are very common and used in a wide variety of
programs. The utility lex generates the lexical analyzer module for a program,

given a description of the tokens used by the program. Another utility, yacc , can be

used to generate the parser module.[3]

[3] For descriptions of these programs, see the Nutshell Handbook lex & yacc, by John Levine, Tony Mason, and

Doug Brown.

 TEAM FLY PRESENTS

 382

18.12 Spreadsheet

A simple spreadsheet takes a matrix of numbers and equations and displays the
results on the screen. This program manages equations and data.

The core of a spreadsheet is its set of equations. To change the equations into

numbers, we need to go through lexical analysis and parsing, just like a compiler.

But unlike a compiler, we don't generate machine code; instead, we interpret the

equations and compute the results.

These results are passed off to the display manager, which puts them on the screen.

Add to this an input module that allows the user to edit and change the equations

and you have a spreadsheet, as shown in Figure 18-5.

Figure 18-5. Spreadsheet modules

 TEAM FLY PRESENTS

 383

18.13 Module Design Guidelines

There are no hard and fast rules when it comes to laying out the modules for a
program. Some general guidelines are:

• The number of public functions in a module should be small.

• The information passed between modules should be limited.

• All the functions in a module should perform related jobs.

18.14 Programming Exercises

Exercise 18-1: Write a module that will handle page formatting. It should contain

the following functions:

open_file(char *name) Open print file.

define_header(char *heading) Define heading text.

print_line(char *line) Send line to file.

page(void) Start new page.

close_file(void) Close printer file.

Exercise 18-2: Write a module called search_open that is given an array of

filenames, searches until it finds one file that exists, and then opens the file.

Exercise 18-3: Write a symbol table program consisting of the following functions:

void enter(char *name) Enter name into symbol table.

int lookup(char *name)
Return 1 if name is in table;

return 0 otherwise.

void delete(char *name) Remove name from symbol table.

Exercise 18-4: Take the words program from Chapter 17, and combine it with the

infinite array module to create a cross-reference program. (As an added bonus,

teach it about C comments and strings to create a C cross-referencer.)

 TEAM FLY PRESENTS

 384

Chapter 19. Ancient Compilers

Almost in every kingdom the most ancient families have been at first princes'

bastards....

—Robert Burton

C has evolved over the years. In the beginning, it was something thrown together

by a couple of hackers (Brian Kernigham and Dennis Ritchie) so that they could use

a computer in the basement. Later the C compiler was refined and released as the

"Portable C Compiler." The major advantage of this comp iler was that you could port

it from machine to machine. All you had to do was write a device configuration. True,

writing one was extremely difficult, but the task was a lot easier than writing a

compiler from scratch.

The Portable C Compiler was widely distributed and soon became the most widely

used C compiler around. Because there were no official standards around at the

time, whatever the Portable C Compiler could compile became the "official"

standard.

This chapter describes that "standard." The Porta ble C Compiler didn't have many of

the features that were later defined in the ANSI standard. Many of these new

features were added to make C programs safer and more reliable. Programming in

ANSI C is difficult enough. Programing in the old Portable C is like walking a

tightrope with no net—blindfolded.

19.1 K&R-Style Functions

K&R-style C compilers use an older style of declaring functions. For example, the

ANSI C function declaration:

int process(int size, float data[], char *how)

in K&R C would be:

int process(size, data, how)

int size;
float data[];

char *how;
{
 /* Rest of the function */

 TEAM FLY PRESENTS

 385

Strictly speaking, we don't need the declaration "int size" because all parameter

types default to int automatically. However, we put it there because declaring

everything and not letting things default is a good idea.

19.1.1 Function Prototypes

Functions prototypes are not required in K&R-style C and can be omitted. For
example, suppose you use the function draw without declaring a prototype:

draw(1, 8, 2, 20);

C w ill automatically define this function as a function that returns an int and has an

unknown number of parameters of an unknown type. Obviously, the type checking

of parameters cannot be done. So it is entirely possible to write a program like

Example 19-1.

Example 19-1. area/area.c

#include <stdio.h>

float area(width, height)
int width;

float height;

{
 return (width * height);
}

int main()
{
 float size = area(3.0, 2);

 printf("Area is %f\n", size);

 return (0);

}

Question 19-1: What will the program in Example 19-1 output when it is run? Why?

(Click here for the answer Section 19.6)

K&R-style C does allow for function prototypes, but only the return type can be

declared. The parameter list must be (). For example:

extern float atof();

 TEAM FLY PRESENTS

 386

Again, the () indicates that this function takes an unknown number of parameters of

an unknown type.

Question 19-2: What does Example 19-2 print and why? (Click here for the answer

Section 19.6)

Example 19-2. ret/ret.c

#include <stdio.h>

int main()
{

 /* Get the square of a number */
 int i = square(5);

 printf("i is %d\n", i);

 return (0);

}

float square(s)

int s;
{

 return (s * s);
}

Question 19-3: What does Example 19-3 print and why? (Click here for the answer

Section 19.6)

Example 19-3. sum/sum.c

#include <stdio.h>

int sum(i1, i2, i3)

{
 int i1;
 int i2;

 int i3;

 return (i1 + i2 + i3);
}

int main()

{

 TEAM FLY PRESENTS

 387

 printf("Sum is %d\n", sum(1, 2, 3));
 return (0);

}

Question 19-4: Example 19-4 prints John'=(3 instead of John Doe. Why? (Your

results may vary.) (Click here for the answer Section 19.6)

Example 19-4. scat/scat.c

#include <stdio.h>

#include <string.h>

char first[100]; /* First name of person */
char last[100]; /* Last name of person */

/* First and last name combined */

char full[100];

int main() {

 strcpy(first, "John");

 strcpy(last, "Doe");

 strcpy(full, first);
 strcat(full, ' ');
 strcat(full, last);

 printf("The name is %s\n", full);

 return (0);
}

Prototypes are an extremely valuable diagnostic tool for the C compiler. Without

them, all sorts of errors can happen without the programmer knowing it. For this

reason, prototypes were borrowed from C++ and put in C.

19.2 Library Changes

Like the language, the library has evolved as well. The "standard" C library used to

be whateve r came with the UNIX operating system. Then, the UNIX operating

system split into two families: BSD-UNIX and System V UNIX. The standard library

split as well.

When ANSI standardized C, it standardized the library as well. However, you will still

find code out there with the old library calls. The main differences are:

 TEAM FLY PRESENTS

 388

• The old K&R C had no stdlib.h or unistd.h headers.

• A number of the older functions have been renamed or replaced. Table 19-1

lists the functions that have been updated.

Table 19-1. K&R Versus ANSI Functions

K&R function
ANSI

equivalent
Notes

bcopy memcpy Copies an array or structure.

bzero memset Sets memory to zero.

bcmp memcmp Compares two sections of memory.

index strchr Finds character in a string.

rindex strrchr Finds character starting at end of a string.

char
*sprintf

int sprintf
The K&R function returns pointer to string. The ANSI

standard one returns number of items converted.

19.3 Missing Features

As we've said before, the C language has been evolving for some time. Some of the
earlier compilers may not have the latest features. Some of these features include:

• void type

• const qualifier

• volatile qualifier (See Chapter 21)

• The stdlib.h header file or unistd.h header file

• enum types

19.4 Free/Malloc Changes

In ANSI C, the malloc function is defined as:

void *malloc(unsigned long int size);

Because void * indicates "universal pointer," the return value of malloc matches

any pointer type:

struct person *person_ptr; /* Define a pointer to a person */

/* This is legal in ANSI C */

 TEAM FLY PRESENTS

 389

person_ptr = malloc(sizeof(struct person))

Because some K&R C compilers don't have a void type, malloc is defined as:

char *malloc(unsigned long int size)

In order to get the compiler to stop complaining about the different pointer types,

the output of malloc must be cast to make it the proper type:

struct person *person_ptr; /* Define a pointer to a person */

/* This will generate a warning or error in K&R C */

person_ptr = malloc(sizeof(struct person));

/* This will fix that problem */
person_ptr = (struct person *)malloc(sizeof(struct person));

The same problem occurs with free . While ANSI C defines free as:

int free(void *);

K&R defines it as:

int free(char *);

So you need to cast the parameter to a character pointer to avoid warnings.

19.5 lint

The old C compilers lacked much of the error checking we take for granted now. This

deficiency made programming very difficult. To solve this problem, a program called

lint[1] was written. This program checks for common errors such as calling functions

with the wrong parameters, inconsistent function declarations, attempts to use a

variable before it is initialized, and so on.

[1] For more information, see the Nutshell handbook Checking C Programs with lint, by Jan F. Darwin.

To run lint on your program, execute the command:

% lint -hpx prog.c

Option -h turns on some heuristic checking, option -p checks for possible portability

problems, and option -x checks for variables declared extern but never used. Note:

On System V UNIX systems, the function of the -h option is reversed, so you should

omit it on these systems.

 TEAM FLY PRESENTS

 390

19.6 Answers

Answer 19-1: The problem is that our area function takes as its arguments an
integer and a floating-point number:

float area(width, height)
int width;
float height;

But we call it with a floating-point number and an integer:

float size = area(3.0, 2);

We have our types reversed: function(float, int)—call(int, float). But C has no way

of identifying this reversal because we are using K&R-style C. The result is that
when the program passes the parameters from main to area, they get mangled and

our output is garbled.

Question 19-5: Example 19-5 contains our "fixed" program. We now use two

floating-point parameters, "3.0" and "2.0", but we still get the wrong answer? Why?

Example 19-5. param2/param2.c

#include <stdio.h>

float area(width, height)
float width;

float height;

{
 return (width * height);

}

int main()

{
 float size = area(3.0 * 2.0);

 printf("Area is %f\n", size);

 return (0);

}

Answer 19-2: The result is garbled. A typical output might look like:

i is 1103626240

 TEAM FLY PRESENTS

 391

which is a little large for 52. The problem is that we have no prototype, even a
K&R-style prototype, for square . The result is that C assumes the default definition:

a function returning an integer that takes any number of parameters.

But the function returns a floating -point number. Because we return a float at a

point at which C thinks we are receiving an int, we get garbage. The problem can be

fixed by putting a K&R-style prototype at the beginning of the program:

float square();

An even better solution is to turn this program into ANSI C by adding a real

prototype and fixing up the function header.

Answer 19-3: This program prints out a random number based on the sum of three

uninitialized variables.

The problem is with the function header:

int sum(i1, i2, i3)
{
 int i1;

 int i2;

 int i3;

Parameter type declaration occurs just before the first curly brace ({) of the function.
In this case, we have no braces, so the types i1, i2, and i3 default to integer.

But then we have the declaration of i1, i2, and i3 at the beginning of the function.

These declarations define local variables that have nothing to do with the

paramete rs i1, i2, and i3. But, because these variables have the same names as

the parameters, they cause the parameters to become hidden variables. These

three uninitialized variables are summed and this random result is returned to the

caller.

ANSI has outlawed this type of silliness, but many compilers still accept this code.

Answer 19-4: The function strcat takes two strings as its arguments. In the

statement strcat(full, ' '), the first argument, full , is a string; the second, '

', is a character. Using a character instead of a string is illegal. Old -style C compilers

do not type-check parameters, so this error gets by the compiler. The character ' '

should be replaced by the string " ".

Answer 19-5: The problem is that we wrote:

float size = area(3.0 * 2.0);

 TEAM FLY PRESENTS

 392

when we should have written:

float size = area(3.0, 2.0);

The first version passes the expression "3.0 * 2.0" or "6.0" as the first parameter.

No second parameter exists. C doesn't check the number of parameters so it made

up a random value for the second parameter.

 TEAM FLY PRESENTS

 393

Chapter 20. Portability Problems

Wherein I spake of most disastrous changes,

Of moving accidents by flood and field,

Of hair-breath 'scapes i' the imminent deadly breath...

—Shakespeare, on program porting [Othello, Act 1, Scene III]

You've just completed work on your great masterpiece, a ray-tracing program that

renders complex three -dimensional shaded graphics on a Cray supercomputer

using 300MB of memory and 50GB of disk space. What do you do when someone

comes in and asks you to port this program to an IBM PC with 640K of memory and

100MB of disk space? Killing him is out; not only is it illegal, but it is considered

unprofessional. Your only choice is to whimper and start the port. During this

process, you will find that your nice, working program exhibits all sorts of strange

and mysterious problems.

C programs are supposed to be portable; however, C contains many

machine-dependent features. Also, because of the vast difference between UNIX

and MS-DOS/Windows, system deficiencies can frequently cause portability

problems with many programs.

This chapter discusses some of the problems associated with writing truly portable

programs as well as some of the traps you might encounter.

20.1 Modularity

One of the tricks to writing portable programs is to put all the nonportable code into

a separate module. For example, screen handling differs greatly on

MS-DOS/Windows and UNIX. To design a portable program, you'd have to write

machine-specific modules that update the screen.

For example, the HP-98752A terminal has a set of function keys labeled F1 to F8.

The PC terminal also has a set of function keys. The problem is that they don't send

out the same set of codes. The HP terminal sends "<esc>p<return>" for F1 and the

PC sends "<NULL>;". In this case, you would want to write a get_code routine that

gets a character (or function-key string) from the keyboard and translates function

keys. Because the translation is different for both machines, a machine-dependent

module would be needed for each one. For the HP machine, you would put together

the program with main.c and hp-tty.c, while for the PC you would use main.c and

pc-tty.c.

 TEAM FLY PRESENTS

 394

20.2 Word Size

A long int is 32 bits, a short int is 16 bits, and a normal int can be 16 or 32 bits,
depending on the machine. This disparity can lead to some unexpected problems.

For example, the following code works on a 32-bit UNIX system, but fails when

ported to MS-DOS/Windows:

int zip;

zip = 92126;

printf("Zip code %d\n", zip);

The problem is that on MS-DOS/Windows, zip is only 16 bits—too small for 92126.

To fix the problem, we declare zip as a 32-bit integer:

long int zip;
zip = 92126;

printf("Zip code %d\n", zip);

Now zip is 32 bits and can hold 92126.

Question 20-1: Why do we still have a problem? zip does not print correctly on a

PC. (Click here for the answer Section 20.9)

20.3 Byte Order Problem

A short int consists of 2 bytes. Consider the number 0x1234. The 2 bytes have the

values 0x12 and 0x34. Which value is stored in the first byte? The answer is

machine dependent.

This uncertainty can cause considerable trouble when you are trying to write

portable binary files. The Motorola 68000-series machines use one type of byte

order (ABCD), while Intel and Digital Equipment Corporation machines use another

(BADC).

One solution to the problem of portable binary files is to avoid them. Put an option

in your program to read and write ASCII files. ASCII offers the dual advantages of

being far more portable and human readable.

The disadvantage is that text files are larger. Some files may be too big for ASCII.

In that case, the magic number at the beginning of a file may be useful. Suppose the

magic number is 0x11223344 (a bad magic number, but a goo d example). When

the program reads the magic number, it can check against the correct number as

 TEAM FLY PRESENTS

 395

well as the byte -swapped version (0x22114433). The program can automatically fix

the file problem:

const long int MAGIC = 0x11223344L /* file identification number*/

const long int SWAP_MAGIC = 0x22114433L /* magic-number byte swapped */

FILE *in_file; /* file containing binary data */
long int magic; /* magic number from file */

in_file = fopen("data", "rb");

fread((char *)&magic, sizeof(magic), 1, in_file);
switch (magic) {
 case MAGIC:

 /* No problem */

 break;
 case SWAP_MAGIC:

 printf("Converting file, please wait\n");
 convert_file(in_file);
 break;

 default:

 fprintf(stderr,"Error:Bad magic number %lx\n", magic);
 exit (8);
}

20.4 Alignment Problem

Some computers limit the address that can be used for integers and other types of
data. For example, the 68000 series require that all integers start o n a 2-byte

boundary. If you attempt to access an integer using an odd address, you will

generate an error. Some processors have no alignment rules, while some are even

more restrictive—requiring integers to be aligned on a 4-byte boundary.

Alignment restrictions are not limited to integers. Floating-point numbers and

pointers must also be aligned correctly.

C hides the alignment restrictions from you. For example, if you declare the

following structure on a 68000 series:

struct funny {

 char flag; /* type of data following */
 long int value; /* value of the parameter*/

};

 TEAM FLY PRESENTS

 396

C will allocate storage for this structure as shown on the left in Figure 20-1.

Figure 20-1. Structure on 68000 and 8086

architectures

On an 8086-class machine with no alignment restrictions, this storage will be

allocated as shown on the right in Figure 20-1. The problem is that the size of the

structure changes from machine to machine. On a 68000, the structure size is 6

bytes, and on the 8086 it is 5 bytes. So if you write a binary file containing 100

records on a 68000, it will be 600 bytes long, while on an 8086, it will be only 500

bytes long. Obviously, the file is not written the same way on both machines.

One way around this problem is to use ASCII files. As we have said before, there are
many problems with binary files. Another solution is to explicitly declare a pad byte:

struct new_funny {

 char flag; /* type of data following */
 char pad; /* not used */

 long int value; /* value of the parameter*/

};

The pad character makes the field value align correctly on a 68000 machine while

making the structure the correct size on an 8086-class machine.

Using pad characters is difficult and error prone. For example, although new_funny

is portable between machines with 1 - and 2 -byte alignment for 32-bit integers, it is

not portable to any machine with a 4-byte integer alignment such as a Sun SPARC

system.

 TEAM FLY PRESENTS

 397

20.5 NULL Pointer Problem

Many programs and utilities were written using UNIX on VAX computers. On this
computer, the first byte of any program is 0. Many programs written on this

computer contain a bug—they use the null pointer as a string.

For example:

#ifndef NULL

#define NULL ((char *)0)
#endif NULL

char *string;

string = NULL;
printf("String is '%s'\n", string);

This code is actually an illegal use of string. Null pointers should never be

dereferenced. On the VAX, this error causes no problems. Because byte of the
program is 0, string points to a null string. This result is due to luck, not design.

On a VAX, the following result is produced:

String is ''

On a Celerity computer, the first byte of the program is a 'Q'. When this program is

run on a C1200, it produces:

String is 'Q'

On other computers, this type of code can generate unexpected results. Many of the
utilities ported from a VAX to a Celerity exhibited the 'Q' bug.

Many of the newer compilers will now check for NULL and print:

String is (null)

This message does not mean that printing NULL is not an error. It means that the

error is so common that the compiler makers decided to give the programmer a

safety net. The idea is that when the error occurs, the program prints something

reasonable instead of crashing.

 TEAM FLY PRESENTS

 398

20.6 Filename Problems

UNIX specifies files as /root/sub/file, while MS-DOS/Windows specifies files as
\root \sub\file. When porting from UNIX to MS -DOS/Windows, filenames must be

changed. For example:

#ifndef __MSDOS__
#include <sys/stat.h> /* UNIX version of the file */

#else __MSDOS__

#include <sys\stat.h> /* DOS version of the file */

#endif __MSDOS__

Question 20-2: The following program works on UNIX, but when we run it on

MS-DOS/Windows, we get the following message (Click here for the answer Section

20.9):

oot

ew able: file not found.

FILE *in_file;

#ifndef __MSDOS__

const char NAME[] = "/root/new/table";
#else __MSDOS__
const char NAME[] = "\root\new\table";

#endif __MSDOS__

in_file = fopen(NAME, "r");
if (in_file == NULL) {

 fprintf(stderr,"%s: file not found\n", NAME);

 exit(8);
}

20.7 File Types

In UNIX there is only one file type. In MS -DOS/Windows there are two: text and
binary. The flags O_BINARY and O_TEXT are used in MS -DOS/Windows to indicate file

type. These flags are not defined for UNIX.

When you port from MS-DOS/Windows to UNIX, you will need to do something

about the flags. One solution is to use the preprocessor to define them if they have

not already been defined:

 TEAM FLY PRESENTS

 399

#ifndef O_BINARY /* If we don't have a flag already */
#define O_BINARY 0 /* Define it to be a harmless value */

#define O_TEXT 0 /* Define it to be a harmless value */
#endif /* O_BINARY */

This method allows you to use the same opens for both UNIX and MS-DOS/Windows.

However, going the other way may present some problems. In UNIX a file is a file.

No additional flags are needed. Frequently none are supplied. However, when you

get to MS-DOS/Windows, you need the extra flags and will have to put them in.

20.8 Summary

You can write portable programs in C. However, because C runs on many different

types of machines that use different operating systems; making programs portable

is not easy. Still, if you keep portability in mind when creating the code, you can

minimize the problems.

20.9 Answers

Answer 20-1: The variable zip is a long int. The printf specification %d is for a

normal int, not a long int. The correct specification is %ld to indicate a long:

printf("Zip code %ld\n", zip);

Answer 20-2: The problem is that C uses the backslash (\) as an escape character.
The character \r is a carriage return, \n is newline, and \t is a tab. What we really

have for a name is:

<return>oot<newline>ew<tab>able

The name should be specified as:

const char NAME[] = "\\root\\new\\table";

The #include uses a filename, not a C string. While
you must use double backslashes (\\) in a C string, in
an #include file, you use single backslashes (\). The
following two lines are both correct: const char
NAME[] = "\\root\\new\\table"; #include
"\root\new\defs.h"

 TEAM FLY PRESENTS

 400

Chapter 21. C's Dustier Corners

There be of them that have left a name behind them.

—Ecclesiasticus 44:8

This chapter describes the few remaining features of C that have not been described

in any of the previous chapters. It is titled C's Dustier Corners because these

statements are hardly ever used in real programming.

21.1 do/while

The do/while statement has the following syntax:

do {
 statement

 statement

} while (expression);

The program will loop, test the expression, and stop if the expression is false (0).

This construct will always execute at least once.

do/while is not frequently used in C. Most programmers prefer to use a

while/break combination.

21.2 goto

Every sample program in this book was coded without using a single goto . In actual
practice, I find a goto statement useful about once every other year.

For those rare times that a goto is necessary, the correct syntax is:

goto label;

where label is a statement label. Statement labels follow the same naming

convention as variable names. Labeling a statement is done as follows:

 TEAM FLY PRESENTS

 401

label: statement

For example:

for (x = 0; x < X_LIMIT; x++) {
 for (y = 0; y < Y_LIMIT; y++) {

 if (data[x][y] == 0)
 goto found;
 }

 }

 printf("Not found\n");

 exit(8);

found:

printf("Found at (%d,%d)\n", x, y);

Question 21-1: Why does Example 21-1 not print an error message when an

incorrect command is entered?

Hint: We put this in the goto section. (Click here for the answer Section 21.6)

Example 21-1. def/def.c

#include <stdio.h>
#include <stdlib.h>

int main()

{

 char line[10];

 while (1) {

 printf("Enter add(a), delete(d), quit(q): ");
 fgets(line, sizeof(line), stdin);

 switch (line[0]) {

 case 'a':
 printf("Add\n");

 break;

 case 'd':
 printf("Delete\n");

 break;

 case 'q':
 printf("Quit\n");

 TEAM FLY PRESENTS

 402

 exit(0);
 defualt:

 printf("Error:Bad command %c\n", line[0]);
 break;
 }

 }

}

21.3 The ?: Construct

The question mark (?) and colon (:) operators work in a manner similar to that of
if/then/else . Unlike if/then/else , the ?: construct can be used inside of an

expression. The general form of ?: is:

(expression) ? value1 : value2

For example, the following construct assigns to amount_owed the value of the

balance or zero, depending on the amount of the balance:

amount_owed = (balance < 0) ? 0 : balance;

The following macro returns the minimum of its two arguments:

#define min(x,y) ((x) < (y) ? (x) : (y))

21.4 The , Operator

The comma (,) operator can be used to group statements. For example:

if (total < 0) {
 printf("You owe nothing\n");
 total = 0;

}

can be written as:

if (total < 0)

 printf("You owe nothing\n"),total = 0;

In most cases, curly braces ({}) should be used instead of a comma. About the only

place the comma operator is useful is in a for statement. The following for loop

increments two counters, two and three, by 2 and 3:

for (two = 0, three = 0;

 TEAM FLY PRESENTS

 403

 two < 10;
 two += 2, three += 3)

 printf("%d %d\n", two, three);

21.5 volatile Qualifier

The volatile keyword is used to indicate a variable whose value might change at
any moment. The keyword is used for variables such as memory -mapped I/O

devices or in real-time control applications where variables can be changed by an

interrupt routine.

Things like memory -mapped device drivers, interrupt routines, and real-time

control are extremely advanced subjects. You will be programming at a level far

beyond the scope of this book before you will need to use the volatile keyword.

21.6 Answer

Answer 21-1: The compiler didn't see our default line because we misspelled
"default" as "defualt." This mistake was not flagged as an error because "defualt:" is

a valid goto label.

 TEAM FLY PRESENTS

 404

Chapter 22. Putting It All Together

For there isn't a job on the top of the earth the beggar don't know, nor do.

—Rudyard Kipling

In this chapter, we create a complete program. Every step of the process is covered

from setting forth the requirements to testing the result.

22.1 Requirements

Before we start, we need to decid e what we are going to do. This step is very

important and is left out of far too many programming cycles.

This chapter's program must fulfill several requirements. First, it must be long

enough to demonstrate modular programming, but at the same time be s hort

enough to fit inside a single chapter. It must be complex enough to demonstrate a

wide range of C features, but be simple enough for a novice C programmer to

understand.

Finally, the program must be useful. Usefulness is not simple to define. What's

useful to one person might not be useful to another. We decided to refine this

requirement and restate it as "The program must be useful to C programmers."

The program we have selected reads C source files and generates simple statistics

on the nesting of parentheses, and in the ratio of comments to code lines.

22.2 Specification

The specification for our statistics program is shown in the following sidebar:

Preliminary Specification for a C

Statistics Gathering Program

Steve Oualline

February 10, 1996

The program stat gathers statistics about C source files and prints

 TEAM FLY PRESENTS

 405

them. The command line is:

stat <files..>

Where <files..> is a list of source files. The following shows the
output of the program on a short test file.

[File: stat/stat.out]
 1 (0 {0 /*-*/
 2 (0 {0
/**
 3 (0 {0 * Name: Calculator (Version 2).
*
 4 (0 {0 *
*
 5 (0 {0 * Purpose:
*
 6 (0 {0 * Act like a simple four-function
calculator. *
 7 (0 {0 *
*
 8 (0 {0 * Usage:
*
 9 (0 {0 * Run the program.
*
 10 (0 {0 * Type in an operator (+ - * /) and a number.
*
 11 (0 {0 * The operation will be performed on the
current *
 12 (0 {0 * result, and a new result will be displayed.
*
 13 (0 {0 *
*
 14 (0 {0 * Type 'Q' to quit.
*
 15 (0 {0 *
*
 16 (0 {0 * Notes: Like version 1 but written with a switch
*
 17 (0 {0 * statement.
*
 18 (0 {0
**/
 19 (0 {0 /*+*/

 TEAM FLY PRESENTS

 406

 20 (0 {0 #include <stdio.h>
 21 (0 {0 char line[100]; /* line of text from input */
 22 (0 {0
 23 (0 {0 int result; /* the result of the
calculations */
 24 (0 {0 char operator; /* operator the user specified
*/
 25 (0 {0 int value; /* value specified after the
operator */
 26 (0 {0 int main()
 27 (0 {1 {
 28 (0 {1 result = 0; /* initialize the result */
 29 (0 {1
 30 (0 {1 /* loop forever (or until break reached) */
 31 (0 {2 while (1) {
 32 (0 {2 printf("Result: %d\n", result);
 33 (0 {2 printf("Enter operator and number: ");
 34 (0 {2
 35 (0 {2 fgets(line, sizeof(line), stdin);
 36 (0 {2 sscanf(line, "%c %d", &operator, &value);
 37 (0 {2
 38 (0 {2 if ((operator == 'q') || (operator == 'Q'))
 39 (0 {2 break;
 40 (0 {3 switch (operator) {
 41 (0 {3 case '+':
 42 (0 {3 result += value;
 43 (0 {3 break;
 44 (0 {3 case '-':
 45 (0 {3 result -= value;
 46 (0 {3 break;
 47 (0 {3 case '*':
 48 (0 {3 result *= value;
 49 (0 {3 break;
 50 (0 {3 case '/':
 51 (0 {4 if (value == 0) {
 52 (0 {4 printf("Error:Divide by zero\n");
 53 (0 {4 printf(" operation ignored\n");
 54 (0 {3 } else
 55 (0 {3 result /= value;
 56 (0 {3 break;
 57 (0 {3 default:
 58 (0 {3 printf("Unknown operator %c\n",
operator);
 59 (0 {3 break;

 TEAM FLY PRESENTS

 407

 60 (0 {2 }
 61 (0 {1 }
 62 (0 {1 return (0);
 63 (0 {0 }
Total number of lines: 63
Maximum nesting of () : 2
Maximum nesting of {} : 4
Number of blank lines4
Number of comment only lines20
Number of code only lines34
Number of lines with code and comments 5
Comment to code ratio 64.1%

22.3 Code Design

Several schools of code design exist. In structured programming, you divide the
code into modules, then divide the modules into submodules, then divide the

sub-modules into subsubmodules, and so on. Other approaches exist, such as state

tables and transition diagrams.

All have the same basic principle at heart: "Arrange the program's information in

the clearest and simplest way possible, and then try to turn it into C code."

Our program breaks down into several logical modules. First, we have a token

scanner, which reads raw C code and turns it into tokens. This subdivides into three

smaller modules. The first reads the input file, the second determines what type of

character we have, and finally, the third assembles this information into a token. A

token is a group of characters that form a single word, number, or symbol.

The main module consumes tokens and output statistics. Again, this module breaks

down into smaller submodules: a do_file procedure to manage each file and a

submodule for each statistic.

22.3.1 Token Module

Our program scans C source code and uses the tokens to generate statistics. For

example, the line:

answer = (123 + 456) / 89; /* Compute some sort of result */

consists of the tokens:

T_ID The word "answer"

 TEAM FLY PRESENTS

 408

T_OPERATOR The character "="
T_L_PAREN Left parenthesis

T_NUMBER The number 123
T_OPERATOR The character "+"
T_NUMBER The number 456

T_R_PAREN The right parenthesis

T_OPERATOR The divide operator
T_NUMBER The number 89
T_OPERATOR The semicolon

T_COMMENT The comment

T_NEW_LINE The end-of-line character

So how do we identify a token? Most of the time, we simply have to look at the first

character. For example, the * character signals an operator token, while the A

character starts an identifier. But some characters are ambiguous. For example, the

/ character could be the divide operator, or it could be the start of a /* comment. In

order to identify this character, we need to look ahead one character. So one of the

requirements for our input module is that it allow us to peek ahead one character.

The token module builds tokens from groups of characters. For example, an

identifier is defined as a letter or underscore, followed by any number of letters or

digits. So our tokenizer needs to contain the pseudo code:

if the current character is a letter, then

 scan until we get a character that's not a letter or digit.

As you can see from the pseudo code, our tokenizer depends a great deal on

character types, so we need a module to help us with the type information.

22.3.2 Input Module

The input module needs to do two things: first, it needs to provide the current and

next characters to the token module, and second, it needs to buffer the entire line

for display at a later time.

22.3.2.1 How not to design an input module

Sometimes a software design will undergo several revisions before it is finally coded,

as was the case with the input module. I carefully designed the module, reviewed

my design, and decided to throw it away.

However, nothing written is completely wasted, so I am including the first design as
a example of how things go wrong and what can be done to improve them.

 TEAM FLY PRESENTS

 409

The first design consisted of a public structure:

struct input_file {

 FILE *file; /* File we are reading */

 char line[LINE_MAX];/* Current line */
 char *char_ptr; /* Current character on the line */

 int cur_char; /* Current character (can be EOF) */
 int next_char; /* Next character (can be EOF) */

};

and functions that operated on the structure:

extern void in_open(struct input_file *in_file, const char name[]);

extern void in_read_char(struct input_file *in_file);
extern void in_flush(struct input_file *in_file);

To use this package, the caller needs to call in_open to open the file and then check

in_file.file to see if the file is opened. In C, these operations are done as follows:

struct input_file in_file; /* File for input */

/* ... */

in_open(&in_file, name);
if (in_file.file == NULL) {

 fprintf(stderr,"Error: Could not open input file: %s\n", name);

The token module needs to look at the current and next character. For example,

when it sees a slash (/) and a star (*), it knows that it's looking at a comment. The

current character is stored in in_file.cur_char and the next character is in

in_file.next_char. The C code to check for a comment might look like:

if ((in_file.cur_char == '/') && (in_file.next_char == '*')) {

 /* Handle a comment */

To move up a character, the user calls in_read_char to advance the input by one

character.

Finally, when the file is finished, the user closes the file with the statement:

fclose(in_file.file);

In a good module design:

• The amount of information needed by the people who use the module should

be minimized.

 TEAM FLY PRESENTS

 410

• The number rules that the users of the module must follow in order to use

the module properly should be small.

• The module should be easily expandable.

The design of the input module requires that the user know an awful lot about how

the module is designed. In order to open a file, the user must know to call the

in_open function, then check the file field of the in_file structure for errors.

Consequently, the user must be aware of the in_file structure and, what's worse,

the internal workings of the in_file structure.

There are other cases for which the user needs to know about the internals of

struct in_file, such as when accessing the current character (cur_char) or next
character (next_char). Also, the user must manually close the file using yet

another member of our data structure.

So this design requires that the user know a great deal about the internal workings

of our module and access things properly. A better design would demand much less

from the user.

22.3.2.2 A better input module

Our new module design eliminates the in_file structure (as far as the user is

concerned) and provides the following functions:

extern int in_open(const char name[]);

extern void in_close(void);
extern void in_read_char(void);

extern int in_cur_char(void);

extern int in_next_char(void);
extern void in_flush(void);

These functions hide all the bookkeeping necessary to handle the input file. Also, the

opening of a file is simpler. We can open the file and check for errors in one function

call.

The big win in this design is that the caller does not need to know about the

structure of the input file. In fact, the structure has been removed from the header

entirely. This design tremendously s implifies the information that the caller needs in

order to use the module.

This design has a couple of drawbacks. The module has a lot more functions than

our previous design. Also, the module allows us to have only one file open at a time.

This restriction exists because the structure we removed from the head is being

placed in the module itself. The one-file restriction limits our flexibility. However, we

 TEAM FLY PRESENTS

 411

don't need to open multiple files, so we don't need this feature at this time. In this

case, we decided that the gain of simplifying the interface was well worth the

decrease in flexibility.

22.3.3 Character Type Module

The purpose of the character type module is to read characters and decode their
types. Some types overlap. For example, the C_ALPHA_NUMERIC includes the

C_NUMERIC character set.

This module stores most of the type information in an array, and requires only a
little logic to handle the special types like C_ALPHA_NUMERIC.

The functions in this module are:

extern int is_char_type(int ch, enum CHAR_TYPE kind);

extern enum CHAR_TYPE get_char_type(int ch);

One question comes up: how do we initialize the character array? We could require

the user to initialize it before he calls any of the functions, such as:

main() {

 /* */
 init_char_type();

 /* */
 type_info = ch_to_type(ch);

Another solution is to put a check at the beginning of each function to initialize the

array if needed:

int is_char_type(int ch, enum CHAR_TYPE kind)

 if (!ch_setup) {

 init_char_type();
 ch_setup = 0;

 }

The second method requires a little more code. But it has several advantages. First,

it makes life simpler for the user. He doesn't have to remember to initialize the

character type module. Also, mistakes are harder to make. If the user doesn't have

to do the initialization, he can't forget to do it. Finally, this method hides an internal

bookkeeping matter inside the character type module so that the user doesn't have

to worry about it.

 TEAM FLY PRESENTS

 412

22.3.4 Statistics Submodules

Each of our statistics submodules looks at the token stream and produces statistics

about it. For example, the parentheses counter counts the nesting of parentheses.

Some statistics are reported on a line-by-line basis, such as the current parentheses

nesting. Others are reported at the end-of-file, such as the maximum nesting of

parentheses.

We collect four statistics, a count of the number of lines, the parentheses () nesting,

the curly-brace {} nesting, and a count of the lines with comments versus the lines

without comments. Because each of our static submodules performs similar

functions, we give the procedures in each of them similar names: (xx is the

sub-module identifier listed below).

xx_init

Initializes the statistic. This function is called at the beginning of each file.

xx_take_token

Receives a token and updates the statistic based on it.

xx_line_start

Writes out the value of the statistic that's output at the beginning of each line.

In some cases, this may be nothing.

xx_eof

Writes out the statistical information that goes at the end of the file.

The xx part of the identifier is the submodule identifier. It is:

lc

Line counter submodule

pc

Parentheses counter submodule

bc

Brace counter submodule

 TEAM FLY PRESENTS

 413

cc

Comment / not-comment line counter submodule

22.4 Coding

The coding process was fairly simple. The only problem that came up was getting

the end -of-line right.

22.5 Functional Description

This section describes all modules and major functions in our program. For a more

complete and detailed description, take a look at the listings at the end of this

chapter.

22.5.1 ch_type Module

The ch_type module computes the type of a character. For the most part, this

computation is done through a table named type_info. Some types like

C_ALPHA_NUMERIC, for example, include two different types of characters, C_ALPHA

and C_DIGIT. So, in addition to our table, we need a little code for the special cases.

22.5.2 in_file Module

This modules reads data from the input file one character at a time. It buffers up a

line and on demand writes it to the output.

22.5.3 token Module

We want an input stream of tokens. But what we have to start with is an input
stream consisting of characters. The main function of this class, next_token, turns

characters into tokens. Actually, our tokenizer is rather simple, because we don't

have to deal with most of the details that a full C tokenizer must handle.

The coding for this function is fairly straightforward, except for the fact that it breaks
up multiline comments into a series of T_COMMENT and T_NEW_LINE tokens.

 TEAM FLY PRESENTS

 414

22.5.4 Line Counter Submodule (lc)

The simplest statistic we collect is a count of the number of lines processed so far.

This concept is done through the line_counter submodule. The only token it cares

about is T_NEW_LINE. At the beginning of each line, it outputs the line number (the

current count of the T_NEW_LINE tokens). At the end-of-file, this submodule outputs

nothing. We define a lc_eof function for consistency's sake, but the function does

absolutely nothing.

22.5.5 Brace Counter Submodule (bc)

This submodule keeps track of the nesting level of the curly braces {}. We feed the

submodule a stream of tokens through the bc_take_token function. This function

keeps track of the left and right curly braces and ignores everything else:

void bc_take_token(enum TOKEN_TYPE token) {

 switch (token) {
 case T_L_CURLY:

 ++bc_cur_level;

 if (bc_cur_level > bc_max_level)
 bc_max_level = bc_cur_level;

 break;

 case T_R_CURLY:

 --bc_cur_level;
 break;
 default:

 /* Ignore */
 break;

 }

}

The results of this statistic are printed in two places. The first is at the beginning of

each line. The second is at the end-of-file. We define two functions to print these

statistics:

static void bc_line_start(void) {

 printf("{%-2d ", bc_cur_level);

}

static void bc_eof(void) {

 printf("Maximum nesting of {} : %d\n", bc_max_level);
}

 TEAM FLY PRESENTS

 415

22.5.6 Parentheses Counter Submodule (pc)

This submodule is very similar to the brace counter submodule. As a matter of fact,

it was created by copying the brace counter submodule and performing a few simple

edits.

We probably should combine the Parentheses Counter submodule and the Brace

Counter submodule into one submodule that uses a parameter to tell it what to

count. Oh well, something for the next version.

22.5.7 Comment Counter Submodule (cc)

In these functions, we keep track of lines with comments in them, lines with code in

them, lines with both, a nd lines with none. The results are printed at the end-of-file.

22.5.8 do_file Procedure

The do_file procedure reads each file one token at a time, and sends each token to

the take_token routine for every statistic class:

while (1) {
cur_token = next_token();

 lc_take_token(cur_token);
 pc_take_token(cur_token);
 bc_take_token(cur_token);

 cc_take_token(cur_token);

22.6 Expandability

One thing to keep in mind when designing any software is expandability. In other

words, what must someone do to add to our program? Suppose someone wants to

add a new statistic to our program. What must they do?

Suppose they are adding a Word Count submodule (wc). They need to define four

procedures: wc_init, wc_take_token, wc_line_start, and wc_eof.

We need to call these procedures at the proper point. But how do they know where

to put the procedure calls? The answer is that they can use the editor to look for

every place that a Comment Counter submodule procedure is used and clone the

Comment Counter calls. This method is not exactly the best way of doing things,

 TEAM FLY PRESENTS

 416

especially if the calls are spread across several files. But, the method is the best that

we can come up with given the limitations of C.

C++ has no such limitations. In the book Practical C++ Programming, we design a

similar program using C++ classes. The result is that instead of having multiple lists

of procedure classes, we have one class list. The single list makes expandability and

maintainability much easier.

22.7 Testing

To test this program, we came up with a small C program that contains every
different type of possible token. The results are shown in Example 22-1.

Example 22-1. stat/test.out

 1 (0 {0 /* This is a single line comment */
 2 (0 {0 /*

 3 (0 {0 * This is a multiline
 4 (0 {0 * comment.

 5 (0 {0 */

 6 (0 {0 int main()
 7 (0 {1 {

 8 (0 {1 /* A procedure */

 9 (0 {1 int i; /* Comment / code line */
 10 (0 {1 char foo[10];

 11 (0 {1
 12 (0 {1 strcpy(foo, "abc"); /* String */

 13 (0 {1 strcpy(foo, "a\"bc"); /* String with special character
*/

 14 (0 {1

 15 (0 {1 foo[0] = 'a'; /* Character */
 16 (0 {1 foo[1] = '\''; /* Character with escape */

 17 (0 {1

 18 (0 {1 i = 3 / 2; /* Slash that's not a commment */
 19 (0 {1 i = 3; /* Normal number */

 20 (0 {1 i = 0x123ABC; /* Hex number */
 21 (0 {1

 22 (1 {1 i = ((1 + 2) * /* Nested () */
 23 (0 {1 (3 + 4));

 24 (0 {1

 25 (0 {2 {
 26 (0 {2 int j; /* Nested {} */

 27 (0 {1 }

 TEAM FLY PRESENTS

 417

 28 (0 {1 return (0);
 29 (0 {0 }

 30 (0 {0
Total number of lines: 30
Maximum nesting of () : 2

Maximum nesting of {} : 2

Number of blank lines6
Number of comment only lines6
Number of code only lines8

Number of lines with code and comments 10

Comment to code ratio 88.9%

22.8 Revisions

Currently, the program collects a very limited set of statistics. You could add things

like average identifier size and tracking statistics for each procedure. One thing we

kept in mind when we designed our program was the need for expandability.

We stopped our statistics collection at four types of statistics because we had

fulfilled our mission to demonstrate a reasonably advanced set of C constructs. We

didn't add more because the program would be too complex to fit in the chapter. On

the whole, the program does its job well.

22.9 A Final Warning

Just because you can generate a statistic doesn't mean that it's useful.

22.10 Program Files

22.10.1 The in_file.h File

/**

 * input_file -- Data from the input file. *

 * *
 * The current two characters are stored in *
 * cur_char and next_char. *

 * Lines are buffered so that they can be output to *
 * the screen after a line is assembled. *

 * *

 * Functions: *
 * in_open -- Opens the input file. *

 TEAM FLY PRESENTS

 418

 * in_close -- Closes the input file. *
 * read_char -- Reads the next character. *

 * in_char_char -- Returns the current character. *
 * in_next_char -- Returns the next character. *
 * in_flush -- Sends line to the screen. *

 **/

/**
 * in_open -- Opens the input file. *

 * *

 * Parameters *
 * name -- Name of disk file to use for input. *

 * *
 * Returns *
 * 0 -- Open succeeded. *

 * nonzero -- Open failed. *

 **/
extern int in_open(const char name[]);

/**

 * in_close -- Closes the input file. *
 **/

extern void in_close(void);

/**

 * in_read_char -- Read the next character from the *

 * input file. *
 **/
extern void in_read_char(void);

/**
 * in_cur_char -- Gets the current input character. *

 * *
 * Returns *
 * current character. *

 **/

extern int in_cur_char(void);

/**

 * in_next_char -- Peeks ahead one character. *

 * *
 * Returns *

 * next character. *
 **/

 TEAM FLY PRESENTS

 419

extern int in_next_char(void);

/**
 * in_flush -- Flushes the buffered input line to the *
 * screen. *

 **/

extern void in_flush(void);

22.10.2 The in_file.c File

/**
 * infile module *

 * Handles opening, reading, and display of *

 * data from the input file. *
 * *

 * Functions: *

 * in_open -- Opens the input file. *
 * in_close -- Closes the input file. *

 * read_char -- Reads the next character. *
 * in_char_char -- Returns the current character. *

 * in_next_char -- Returns the next character. *
 * in_flush -- Sends line to the screen. *

 **/

#include <stdio.h>
#include <errno.h>

#include "in_file.h"

#define LINE_MAX 500 /* Longest possible line */

struct input_file {
 FILE *file; /* File we are reading */

 char line[LINE_MAX];/* Current line */

 char *char_ptr; /* Current character on the line */

 int cur_char; /* Current character (can be EOF)*/

 int next_char; /* Next character (can be EOF) */
};

/* Input file that we are reading */

static struct input_file in_file = {
 NULL, /* file */

 "", /* line */

 NULL, /* char_ptr */

 TEAM FLY PRESENTS

 420

 '\0', /* cur_char */
 '\0' /* next_char */

};

/**

 * in_open -- Opens the input file. *
 * *
 * Parameters *

 * name -- Name of disk file to use for input. *

 * *
 * Returns *

 * 0 -- Open succeeded. *
 * nonzero -- Open failed. *
 **/

int in_open(const char name[])

{
 in_file.file = fopen(name, "r");
 if (in_file.file == NULL)

 return (errno);

 /*

 * Initialize the input file and read the first two
 * characters.
 */

 in_file.cur_char = fgetc(in_file.file);

 in_file.next_char = fgetc(in_file.file);
 in_file.char_ptr = in_file.line;
 return (0);

}

/**

 * in_close -- Closes the input file. *
 **/
void in_close(void)

{

 if (in_file.file != NULL) {
 fclose(in_file.file);
 in_file.file = NULL;

 }

}

/**
 * in_cur_char -- Gets the current input character. *

 TEAM FLY PRESENTS

 421

 * *
 * Returns *

 * current character. *
 **/
int in_cur_char(void)

{

 return (in_file.cur_char);
}

/**

 * in_next_char -- Peeks ahead one character. *
 * *

 * Returns *
 * next character. *
 **/

int in_next_char(void)

{
 return (in_file.next_char);
}

/**
 * in_flush -- Flushes the buffered input line to the *

 * screen. *
 **/
void in_flush(void)

{

 in_file.char_ptr = '\0'; / End the line */
 fputs(in_file.line, stdout); /* Send the line */
 in_file.char_ptr = in_file.line; /* Reset the line */

}

/**

 * in_read_char -- Reads the next character from the *
 * input file. *
 **/

void in_read_char(void)

{
 *in_file.char_ptr = in_file.cur_char;
 ++in_file.char_ptr;

 in_file.cur_char = in_file.next_char;
 in_file.next_char = fgetc(in_file.file);

};

 TEAM FLY PRESENTS

 422

22.10.3 The ch_type.h File

/**
 * char_type -- Character type module. *

 **/
enum CHAR_TYPE {

 C_EOF, /* End of file character */
 C_WHITE, /* Whitespace or control character */

 C_NEWLINE, /* A newline character */

 C_ALPHA, /* A Letter (includes _) */
 C_DIGIT, /* A Number */

 C_OPERATOR, /* Random operator */

 C_SLASH, /* The character '/' */
 C_L_PAREN, /* The character '(' */

 C_R_PAREN, /* The character ')' */
 C_L_CURLY, /* The character '{' */

 C_R_CURLY, /* The character '}' */
 C_SINGLE, /* The character '\'' */

 C_DOUBLE, /* The character '"' */

 /* End of simple types, more complex, derrived types follow */
 C_HEX_DIGIT,/* Hexidecimal digit */

 C_ALPHA_NUMERIC/* Alpha numeric */

};

/**
 * is_char_type -- Determines if a character belongs to *

 * a given character type. *
 * *

 * Parameters *

 * ch -- Character to check. *
 * kind -- Type to check it for. *

 * *

 * Returns: *
 * 0 -- Character is not of the specified kind. *

 * 1 -- Character is of the specified kind. *
 **/

extern int is_char_type(int ch, enum CHAR_TYPE kind);

/**

 * get_char_type -- Given a character, returns its type.*
 * *

 * Note: We return the simple types. Composite types *

 * such as C_HEX_DIGIT and C_ALPHA_NUMERIC are not *

 TEAM FLY PRESENTS

 423

 * returned. *
 * *

 * Parameters: *
 * ch -- Character having the type we want. *
 * *

 * Returns *

 * character type. *
 **/
extern enum CHAR_TYPE get_char_type(int ch);

22.10.4 The ch_type.c File

/**

 * ch_type package *
 * *

 * This module is used to determine the type of *

 * various characters. *
 * *

 * Public functions: *
 * init_char_type -- Initializes the table. *

 * is_char_type -- Is a character of a given type? *
 * get_char_type -- Given char, returns type. *

 **/

#include <stdio.h>

#include "ch_type.h"

/* Define the type information array */

static enum CHAR_TYPE type_info[256];
static int ch_setup = 0; /* True if character type info setup */

/**
 * fill_range -- Fills in a range of types for the *

 * character type class. *

 * *
 * Parameters *

 * start, end -- Range of items to fill in. *

 * type -- Type to use for filling. *
 **/

static void fill_range(int start, int end, enum CHAR_TYPE type)
{

 int cur_ch; /* Character we are handling now */

 for (cur_ch = start; cur_ch <= end; ++cur_ch) {

 type_info[cur_ch] = type;

 TEAM FLY PRESENTS

 424

 }
}

/***
 * init_char_type -- Initializes the char type table. *

 ***/

static void init_char_type(void)
{
 fill_range(0, 255, C_WHITE);

 fill_range('A', 'Z', C_ALPHA);
 fill_range('a', 'z', C_ALPHA);

 type_info['_'] = C_ALPHA;

 fill_range('0', '9', C_DIGIT);

 type_info['!'] = C_OPERATOR;
 type_info['#'] = C_OPERATOR;
 type_info['$'] = C_OPERATOR;

 type_info['%'] = C_OPERATOR;

 type_info['^'] = C_OPERATOR;
 type_info['&'] = C_OPERATOR;

 type_info['*'] = C_OPERATOR;
 type_info['-'] = C_OPERATOR;
 type_info['+'] = C_OPERATOR;

 type_info['='] = C_OPERATOR;

 type_info['|'] = C_OPERATOR;
 type_info['~'] = C_OPERATOR;
 type_info[','] = C_OPERATOR;

 type_info[':'] = C_OPERATOR;

 type_info['?'] = C_OPERATOR;
 type_info['.'] = C_OPERATOR;

 type_info['<'] = C_OPERATOR;
 type_info['>'] = C_OPERATOR;

 type_info['/'] = C_SLASH;

 type_info['\n'] = C_NEWLINE;

 type_info['('] = C_L_PAREN;

 type_info[')'] = C_R_PAREN;

 type_info['{'] = C_L_CURLY;

 type_info['}'] = C_R_CURLY;

 TEAM FLY PRESENTS

 425

 type_info['"'] = C_DOUBLE;
 type_info['\''] = C_SINGLE;

}

/**

 * is_char_type -- Determines if a character belongs to *

 * a given character type. *
 * *
 * Parameters *

 * ch -- Character to check. *

 * kind -- Type to check it for. *
 * *

 * Returns: *
 * 0 -- Character is not of the specified kind. *
 * 1 -- Character is of the specified kind. *

 **/

int is_char_type(int ch, enum CHAR_TYPE kind)
{
 if (!ch_setup) {

 init_char_type();

 ch_setup = 1;
 }

 if (ch == EOF) return (kind == C_EOF);

 switch (kind) {

 case C_HEX_DIGIT:
 if (type_info[ch] == C_DIGIT)
 return (1);

 if ((ch >= 'A') && (ch <= 'F'))

 return (1);
 if ((ch >= 'a') && (ch <= 'f'))

 return (1);
 return (0);
 case C_ALPHA_NUMERIC:

 return ((type_info[ch] == C_ALPHA) ||

 (type_info[ch] == C_DIGIT));
 default:
 return (type_info[ch] == kind);

 }

};

/**
 * get_char_type -- Given a character, returns its type.*

 TEAM FLY PRESENTS

 426

 * *
 * Note: We return the simple types. Composite types *

 * such as C_HEX_DIGIT and C_ALPHA_NUMERIC are not *
 * returned. *
 * *

 * Parameters: *

 * ch -- Character having the type we want. *
 * *
 * Returns *

 * character type. *

 **/
enum CHAR_TYPE get_char_type(int ch) {

 if (!ch_setup) {
 init_char_type();
 ch_setup = 1;

 }

 if (ch == EOF) return (C_EOF);

 return (type_info[ch]);

}

22.10.5 The token.h File

/**

 * token -- Token handling module. *

 * *
 * Functions: *

 * next_token -- Gets the next token from the input.*
 **/

/*

 * Define the enumerated list of tokens.

 */
enum TOKEN_TYPE {

 T_NUMBER, /* Simple number (floating point or integer */

 T_STRING, /* String or character constant */
 T_COMMENT, /* Comment */

 T_NEWLINE, /* Newline character */
 T_OPERATOR, /* Arithmetic operator */

 T_L_PAREN, /* Character "(" */
 T_R_PAREN, /* Character ")" */

 T_L_CURLY, /* Character "{" */

 T_R_CURLY, /* Character "}" */

 TEAM FLY PRESENTS

 427

 T_ID, /* Identifier */
 T_EOF /* End of File */

};

/*

 * We use #define here instead of "const int" because so many old

 * software packages use #define. We must have picked
 * up a header file that uses #define for TRUE/FALSE. Consequently,
 * we protect against double defines as well as against using #define

 * ourselves.

 */
#ifndef TRUE

#define TRUE 1 /* Define a simple TRUE/FALSE values */
#define FALSE 0
#endif /* TRUE */

/***
 * next_token -- Reads the next token in an input stream.*
 * *

 * Parameters *

 * in_file -- File to read. *
 * *

 * Returns *
 * next token. *
 ***/

extern enum TOKEN_TYPE next_token(void);

22.10.6 The token.c File

/***

 * token -- Token handling module. *
 * *

 * Functions: *

 * next_token -- Gets the next token from the input.*
 ***/

#include <stdio.h>

#include <stdlib.h>

#include "ch_type.h"
#include "in_file.h"

#include "token.h"

static int in_comment = FALSE; /* True if we're in a comment */

 TEAM FLY PRESENTS

 428

/***
 * read_comment -- Reads in a comment. *

 * *
 * Returns *
 * Token read. Can be a T_COMMENT or T_NEW_LINE, *

 * depending on what we read. *

 * *
 * Multiline comments are split into multiple *
 * tokens. *

 ***/

static enum TOKEN_TYPE read_comment(void)
{

 if (in_cur_char() == '\n') {
 in_read_char();
 return (T_NEWLINE);

 }

 while (1) {
 in_comment = TRUE;
 if (in_cur_char() == EOF) {

 fprintf(stderr, "Error: EOF inside comment\n");

 return (T_EOF);
 }

 if (in_cur_char() == '\n')
 return (T_COMMENT);
 if ((in_cur_char() == '*') &&

 (in_next_char() == '/')) {

 in_comment = FALSE;
 /* Skip past the ending */
 in_read_char();

 in_read_char();

 return (T_COMMENT);
 }

 in_read_char();
 }
}

/***

 * next_token -- Reads the next token in an input stream.*
 * *
 * Returns *

 * next token. *

 ***/
enum TOKEN_TYPE next_token(void)

{
 if (in_comment)

 TEAM FLY PRESENTS

 429

 return (read_comment());

 while (is_char_type(in_cur_char(), C_WHITE)) {
 in_read_char();
 }

 if (in_cur_char() == EOF)

 return (T_EOF);

 switch (get_char_type(in_cur_char())) {

 case C_NEWLINE:

 in_read_char();
 return (T_NEWLINE);

 case C_ALPHA:
 while (is_char_type(in_cur_char(), C_ALPHA_NUMERIC))
 in_read_char();

 return (T_ID);

 case C_DIGIT:
 in_read_char();
 if ((in_cur_char() == 'X') || (in_cur_char() == 'x')) {

 in_read_char();

 while (is_char_type(in_cur_char(), C_HEX_DIGIT))
 in_read_char();

 return (T_NUMBER);
 }
 while (is_char_type(in_cur_char(), C_DIGIT))

 in_read_char();

 return (T_NUMBER);
 case C_SLASH:
 /* Check for '/', '*' characters */

 if (in_next_char() == '*') {

 return (read_comment());
 }

 /* Fall through */
 case C_OPERATOR:
 in_read_char();

 return (T_OPERATOR);

 case C_L_PAREN:
 in_read_char();
 return (T_L_PAREN);

 case C_R_PAREN:

 in_read_char();
 return (T_R_PAREN);

 case C_L_CURLY:
 in_read_char();

 TEAM FLY PRESENTS

 430

 return (T_L_CURLY);
 case C_R_CURLY:

 in_read_char();
 return (T_R_CURLY);
 case C_DOUBLE:

 while (1) {

 in_read_char();
 /* Check for end of string */
 if (in_cur_char() == '"')

 break;

 /* Escape character, then skip the next character */

 if (in_cur_char() == '\\')
 in_read_char();
 }

 in_read_char();

 return (T_STRING);
 case C_SINGLE:
 while (1) {

 in_read_char();

 /* Check for end of character */
 if (in_cur_char() == '\'')

 break;

 /* Escape character, then skip the next character */

 if (in_cur_char() == '\\')

 in_read_char();
 }
 in_read_char();

 return (T_STRING);

 default:
 fprintf(stderr, "Internal error: Very strange character\n");

 abort();
 }
 fprintf(stderr, "Internal error: We should never get here\n");

 abort();

 return (T_EOF); /* Should never get here either */
 /* But we put in the return to avoid a compiler */
 /* warning. */

}

22.10.7 The stat.c File

/**

 TEAM FLY PRESENTS

 431

 * stat *
 * Produces statistics about a program. *

 * *
 * Usage: *
 * stat [options] <file-list> *

 * *

 **/
#include <stdio.h>
#include <stdlib.h>

#include <memory.h>

#include "ch_type.h"

#include "in_file.h"
#include "token.h"

/**

 **
 **
 * line_counter -- Handles line number / line count *

 * stat. *

 * *
 * Counts the number of T_NEW_LINE tokens seen and *

 * outputs the current line number at the beginning *
 * of the line. *
 * *

 * At EOF, it will output the total number of lines. *

 **/
static int cur_line; /* Current line number */

/**

 * lc_init -- Initializes the line counter variables. *
 **/

static void lc_init(void)
{
 cur_line = 0;

};

/**
 * lc_take_token -- Consumes tokens and looks for *

 * end-of-line tokens. *

 * *
 * Parameters *

 * token -- The token coming in from the input *
 * stream. *

 TEAM FLY PRESENTS

 432

 **/
static void lc_take_token(enum TOKEN_TYPE token) {

 if (token == T_NEWLINE)
 ++cur_line;
}

/**
 * lc_line_start -- Outputs the per-line statistics, *
 * namely the current line number. *

 **/

static void lc_line_start(void) {
 printf("%4d ", cur_line);

}

/**

 * lc_eof -- Outputs the eof statistics. *

 * In this case, the number of lines. *
 **/
static void lc_eof(void) {

 printf("Total number of lines: %d\n", cur_line);

}

/**
 **
 **

 * paren_count -- Counts the nesting level of (). *

 * *
 * Counts the number of T_L_PAREN vs T_R_PAREN tokens *
 * and writes the current nesting level at the beginning*

 * of each line. *

 * *
 * Also keeps track of the maximum nesting level. *

 **/
static int pc_cur_level;
static int pc_max_level;

/**
 * pc_init -- Initializes the () counter variables. *
 **/

void pc_init(void) {

 pc_cur_level = 0;
 pc_max_level = 0;

};

 TEAM FLY PRESENTS

 433

/**
 * pc_take_token -- Consumes tokens and looks for *

 * () tokens. *
 * *
 * Parameters *

 * token -- The token coming in from the input *

 * stream. *
 **/
void pc_take_token(enum TOKEN_TYPE token) {

 switch (token) {

 case T_L_PAREN:
 ++pc_cur_level;

 if (pc_cur_level > pc_max_level)
 pc_max_level = pc_cur_level;
 break;

 case T_R_PAREN:

 --pc_cur_level;
 break;
 default:

 /* Ignore */

 break;
 }

}

/**

 * pc_line_start -- Outputs the per-line statistics, *

 * namely the current () nesting. *
 **/
static void pc_line_start(void) {

 printf("(%-2d ", pc_cur_level);

}

/**
 * pc_eof -- Outputs the eof statistics. *
 * In this case, the max nesting of (). *

 **/

void pc_eof(void) {
 printf("Maximum nesting of () : %d\n", pc_max_level);
}

/**
 **

 **
 * brace_counter -- Counts the nesting level of {}. *

 TEAM FLY PRESENTS

 434

 * *
 * Counts the number of T_L_CURLY vs T_R_CURLY tokens *

 * and writes the current nesting level at the beginning*
 * of each line. *
 * *

 * Also, keeps track of the maximum nesting level. *

 * *
 * Note: brace_counter and paren_counter should *
 * probably be combined. *

 **/

static int bc_cur_level; /* Current nesting level */
static int bc_max_level; /* Maximum nesting level */

/**
 * pc_init -- Initialize the {} counter variables. *

 **/

void bc_init(void) {
 bc_cur_level = 0;
 bc_max_level = 0;

};

/**

 * bc_take_token -- Consumes tokens and looks for *
 * {} tokens. *
 * *

 * Parameters *

 * token -- The token coming in from the input *
 * stream. *
 **/

void bc_take_token(enum TOKEN_TYPE token) {

 switch (token) {
 case T_L_CURLY:

 ++bc_cur_level;
 if (bc_cur_level > bc_max_level)
 bc_max_level = bc_cur_level;

 break;

 case T_R_CURLY:
 --bc_cur_level;
 break;

 default:

 /* Ignore */
 break;

 }
}

 TEAM FLY PRESENTS

 435

/**

 * bc_line_start -- Outputs the per-line statistics, *
 * namely the current {} nesting. *
 **/

static void bc_line_start(void) {

 printf("{%-2d ", bc_cur_level);
}

/**

 * bc_eof -- Outputs the eof statistics. *
 * In this case, the max nesting of {}. *

 **/
static void bc_eof(void) {
 printf("Maximum nesting of {} : %d\n", bc_max_level);

}

/**
 **

 **

 * comment_counter -- Counts the number of lines *
 * with and without comments. *

 * *
 * Outputs nothing at the beginning of each line, but *
 * will output a ratio at the end of file. *

 * *

 * Note: This class makes use of two bits: *
 * CF_COMMENT -- a comment was seen *
 * CF_CODE -- code was seen *

 * to collect statistics. *

 * *
 * These are combined to form an index into the counter *

 * array so the value of these two bits is very *
 * important. *
 **/

static const int CF_COMMENT = (1<<0); /* Line contains comment */

static const int CF_CODE = (1<<1); /* Line contains code */
/* These bits are combined to form the statistics */

/* 0 -- [0] Blank line */

/* CF_COMMENT -- [1] Comment-only line */
/* CF_CODE -- [2] Code-only line */

/* CF_COMMENT|CF_CODE -- [3] Comments and code on this line */

 TEAM FLY PRESENTS

 436

static int counters[4]; /* Count of various types of stats. */
static int flags; /* Flags for the current line */

/**
 * cc_init -- Initializes the comment counter variables.*

 **/

static void cc_init(void) {
 memset(counters, '\0', sizeof(counters));
 flags = 0;

};

/**

 * cc_take_token -- Consumes tokens and looks for *
 * comments tokens. *
 * *

 * Parameters *

 * token -- The token coming in from the input *
 * stream. *
 **/

void cc_take_token(enum TOKEN_TYPE token) {

 switch (token) {
 case T_COMMENT:

 flags |= CF_COMMENT;
 break;
 default:

 flags |= CF_CODE;

 break;
 case T_NEWLINE:
 ++counters[flags];

 flags = 0;

 break;
 }

}

/**

 * cc_line_start -- Outputs the per-line statistics. *

 **/
static void cc_line_start(void)
{

 /* Do nothing */

}

/**
 * cc_eof -- Outputs the eof statistics. *

 TEAM FLY PRESENTS

 437

 * In this case, the comment/code ratios. *
 **/

static void cc_eof(void) {
 printf("Number of blank lines%d\n",
 counters[0]);

 printf("Number of comment only lines%d\n",

 counters[1]);
 printf("Number of code only lines%d\n",
 counters[2]);

 printf("Number of lines with code and comments %d\n",

 counters[3]);
 printf("Comment to code ratio %3.1f%%\n",

 (float)(counters[1] + counters[3]) /
 (float)(counters[2] + counters[3]) * 100.0);
}

/**
 * do_file -- Processes a single file. *
 * *

 * Parameters *

 * name -- The name of the file to process. *
 **/

static void do_file(const char *const name)
{
 enum TOKEN_TYPE cur_token; /* Current token type */

 /*
 * Initialize the counters
 */

 lc_init();

 pc_init();
 bc_init();

 cc_init();

 if (in_open(name) != 0) {

 printf("Error: Could not open file %s for reading\n", name);

 return;
 }
 while (1) {

 cur_token = next_token();

 lc_take_token(cur_token);

 pc_take_token(cur_token);
 bc_take_token(cur_token);

 TEAM FLY PRESENTS

 438

 cc_take_token(cur_token);

 switch (cur_token) {
 case T_NEWLINE:
 lc_line_start();

 pc_line_start();

 bc_line_start();
 cc_line_start();
 in_flush();

 break;

 case T_EOF:
 lc_eof();

 pc_eof();
 bc_eof();
 cc_eof();

 in_close();

 return;
 default:
 /* Do nothing */

 break;

 }
 }

}

int main(int argc, char *argv[])

{

 char *prog_name = argv[0]; /* Name of the program */

 if (argc == 1) {

 printf("Usage is %s [options] <file-list>\n", prog_name);

 exit (8);
 }

 for (/* argc set */; argc > 1; --argc) {
 do_file(argv[1]);

 ++argv;

 }
 return (0);
}

22.10.8 UNIX Makefile for CC (Generic Unix)

File: stat/makefile.unx

 TEAM FLY PRESENTS

 439

Makefile for the UNIX standard cc compiler

CC=cc
CFLAGS=-g

OBJS= stat.o ch_type.o token.o in_file.o

all: stat.out stat test.out

test.out: test.c stat

 stat test.c >test.out

This generates a test output based on another example
in this book.
stat.out: stat

 stat ../calc3/calc3.c >stat.out

stat: $(OBJS)
 $(CC) $(CFLAGS) -o stat $(OBJS)

stat.o: stat.c token.h
 $(CC) $(CFLAGS) -c stat.c

ch_type.o: ch_type.c ch_type.h
 $(CC) $(CFLAGS) -c ch_type.c

token.o: token.c token.h ch_type.h in_file.h
 $(CC) $(CFLAGS) -c token.c

in_file.o: in_file.c in_file.h

 $(CC) $(CFLAGS) -c in_file.c

clean:
 rm -f stat stat.o ch_type.o token.o in_file.o

22.10.9 UNIX Makefile for gcc

File: stat/makefile.gcc

Makefile for the Free Software Foundations g++ compiler

CC=gcc

CFLAGS=-g -Wall -D__USE_FIXED_PROTOTYPES__

 TEAM FLY PRESENTS

 440

OBJS= stat.o ch_type.o token.o in_file.o

all: stat.out stat test.out

test.out: test.c stat

 stat test.c >test.out

This generates a test output based on another example
in this book.

stat.out: stat

 stat ../calc3/calc3.c >stat.out

stat: $(OBJS)
 $(CC) $(CFLAGS) -o stat $(OBJS)

stat.o: stat.c token.h

 $(CC) $(CFLAGS) -c stat.c

ch_type.o: ch_type.c ch_type.h

 $(CC) $(CFLAGS) -c ch_type.c

token.o: token.c token.h ch_type.h in_file.h

 $(CC) $(CFLAGS) -c token.c

in_file.o: in_file.c in_file.h

 $(CC) $(CFLAGS) -c in_file.c

clean:
 rm -f stat stat.o ch_type.o token.o in_file.o

22.10.10 Turbo C++ Makefile

File: stat/makefile.tcc

Makefile for Borland's Borland-C++ compiler

CC=tcc

Flags

-N -- Check for stack overflow.
-v -- Enable debugging.

-w -- Turn on all warnings.

-ml -- Large model.

 TEAM FLY PRESENTS

 441

CFLAGS=-N -v -w -ml

OBJS= stat.obj ch_type.obj token.obj in_file.obj

all: stat.out stat.exe test.out

test.out: test.c stat.exe
 stat test.c >test.out

This generates a test output based on another example

in this book.
stat.out: stat.exe

 stat ..\calc3\calc3.c >stat.out

stat.exe: $(OBJS)

 $(CC) $(CFLAGS) -estat $(OBJS)

stat.obj: stat.c token.h
 $(CC) $(CFLAGS) -c stat.c

in_file.obj: in_file.c in_file.h
 $(CC) $(CFLAGS) -c in_file.c

ch_type.obj: ch_type.c ch_type.h
' $(CC) $(CFLAGS) -c ch_type.c

token.obj: token.c token.h ch_type.h
 $(CC) $(CFLAGS) -c token.c

clean:
 erase stat.exe

 erase stat.obj
 erase ch_type.obj
 erase in_file.obj

 erase token.obj

22.10.11 Borland C++ Makefile

File: stat/makefile.bcc

Makefile for Borland's Borland C++ compiler

 TEAM FLY PRESENTS

 442

CC=bcc

Flags
-N -- Check for stack overflow.
-v -- Enable debugging.

-w -- Turn on all warnings.

-ml -- Large model.

CFLAGS=-N -v -w -ml

OBJS= stat.obj ch_type.obj token.obj in_file.obj

all: stat.out stat.exe test.out

test.out: test.c stat.exe
 stat test.c >test.out

This generates a test output based on another example
in this book.
stat.out: stat.exe

 stat ..\calc3\calc3.c >stat.out

stat.exe: $(OBJS)

 $(CC) $(CFLAGS) -estat $(OBJS)

stat.obj: stat.c token.h

 $(CC) $(CFLAGS) -c stat.c

in_file.obj: in_file.c in_file.h
 $(CC) $(CFLAGS) -c in_file.c

ch_type.obj: ch_type.c ch_type.h
 $(CC) $(CFLAGS) -c ch_type.c

token.obj: token.c token.h ch_type.h
 $(CC) $(CFLAGS) -c token.c

clean:
 erase stat.exe

 erase stat.obj

 erase ch_type.obj
 erase in_file.obj

 erase token.obj

 TEAM FLY PRESENTS

 443

22.10.12 Microsoft Visual C++ Makefile

File: stat/makefile.msc

Makefile for Microsoft Visual C++

CC=cl

Flags

AL -- Compile for large model.
Zi -- Enable debugging.

W1 -- Turn on warnings.

CFLAGS=/AL /Zi /W1

OBJS= stat.obj ch_type.obj token.obj in_file.obj

all: stat.out stat.exe test.out

test.out: test.c stat.exe

 stat test.c >test.out

This generates a test output based on another example

in this book.
stat.out: stat.exe

 stat ..\calc3\calc3.c >stat.out

stat.exe: $(OBJS)
 $(CC) $(CCFLAGS) $(OBJS)

stat.obj: stat.c token.h
 $(CC) $(CCFLAGS) -c stat.c

ch_type.obj: ch_type.c ch_type.h
 $(CC) $(CCFLAGS) -c ch_type.c

token.obj: token.c token.h ch_type.h

 $(CC) $(CCFLAGS) -c token.c

in_file.obj: in_file.c

 $(CC) $(CCFLAGS) -c in_file.c

clean:

 TEAM FLY PRESENTS

 444

 erase stat.exe
 erase stat.obj

 erase ch_type.obj
 erase token.obj
 erase in_file.obj

22.11 Programming Exercises

Exercise 22-1: Write a program that checks a text file for doubled words (for

example, "in the the file").

Exercise 22-2: Write a program that removes four-letter words from a file and

replaces them with more acceptable equivalents.

Exercise 22-3: Write a mailing list program. This program will read, write, sort,

and print mailing labels.

Exercise 22-4: Update the statistics program presented in this chapter, adding a

cross-reference capability.

Exercise 22-5: Write a program that takes a text file and splits long lines into two

smaller lines. The split point should be at the end of a sentence if possible, or at the

end of a word if a sentence is too long.

 TEAM FLY PRESENTS

 445

Chapter 23. Programming Adages

Second thoughts are ever wiser.

—Euripides

23.1 General

• Comment, comment, comment. Put a lot of comments in your program.

They tell other programmers what you did. They also tell you what you did.

• Use the "KISS" principle. (Keep It Simple, Stupid.) Clear and simple is better

than complex and wonderful.

• Avoid side effects. Use ++ and -- on lines by themselves.

• Use the prefix version of ++ and -- (++x, --x) instead of the postfix version

(x++, x--). This adage does nothing for you in C, but will serve you well when

you move to C++.

• Never put an assignment inside a conditional.

• Never put an assignment inside any other statement.
• Know the difference between = and ==. Using = for == is a very common

mistake and is difficult to find.

• Never do "nothing" silently.

• /* Don't program like this */

• for (index = 0; data[index] < key; ++index);
/* Did you see the semicolon at the end of the last line? */

Always put in a comment or statement.

for (index = 0; data[index] < key; ++index)
 continue;

23.2 Design

• When designing your program, keep in mind "The Law of Least

Astonishment," which states that your program should behave in a way that

least astonishes the user.

• Make the user interface as simple and consistent as possible.

• Give the user as much help as you can.

• Clearly identify all error messages with the word "error," and try to give the
user some idea of how to correct his problem.

 TEAM FLY PRESENTS

 446

23.3 Declarations

• Put one variable declaration per line, and comment them.
• Make variable-names long enough to be easily understood, but not so long

that they are difficult to type in. Two or three words is usually enough.

• Never use default declarations. If a function returns an integer, declare it as

type int.

• All parameters to a function should be declared and commented. Never use

default declarations.

• Always declare main as:

• int main(void) /* Correct declaration */
int main(int argc, char *argv[]) /* Also correct */

Never declare main as:

void main() /* never program like this */

void main(int ac, char *av[]) /* never use names like this */

23.4 switch Statement

• Always put a default case in a switch statement. Even if the case does
nothing, put it in.

• switch (expression) {

• /* ... */

• default:
• /* do nothing */

}

• Every case in a switch should end with a break or /* Fall through */

comment.

23.5 Preprocessor

• Always put parentheses around each constant expression defined by a

preprocessor #define directive.

#define BOX_SIZE (3*10) /* size of the box in pixels */

• Use const declarations instead of #define wherever possible.

• Put () around each argument of a parameterized macro.

#define SQUARE(x) ((x) * (x))

 TEAM FLY PRESENTS

 447

• Surround macros that contain complete statements with curly braces ({ }).
• /* A fatal error has occurred. Tell user and abort */

#define DIE(msg) {printf(msg);exit(8);}

• When using the #ifdef/#endif construct for c onditional compilation, put the

#define and #undef statements near the top of the program and comment

them.

23.6 Style

• A single block of code enclosed in {} should not span more than a couple of
pages. Anything much bigger than that should probably be split up into

several smaller, simpler procedures.

• When your code starts to run into the right margin, you should split the

procedure into several smaller, simpler procedures.

23.7 Compiling

• Always create a Makefile so that others will know how to compile your

program.

• Turn on all the warning flags, then make your program warning free.

23.8 Final Note

Just when you think you've discovered all of the things that C can do to you—think

again. There are still more surprises in store for you.

Question 23-1: Why does Example 23-1 think everything is two? (This inspired the

last adage.) (Click here for the answer Section 23.9

Example 23-1. not2/not2.c

#include <stdio.h>

int main()
{

 char line[80];
 int number;

 printf("Enter a number: ");

 fgets(line, sizeof(line), stdin);

 TEAM FLY PRESENTS

 448

 sscanf(line, "%d", &number);

 if (number =! 2)
 printf("Number is not two\n");
 else

 printf("Number is two\n");

 return (0);
}

23.9 Answer

Answer 23-1: The statement (number =! 2) is not a relational equation, but an

assignment statement. It is equivalent to:

number = (!2);

Because 2 is nonzero, !2 is zero.

The programmer accidentally reversed the not equals, != , so it became =!. The

statement should read:

if (number != 2)

 TEAM FLY PRESENTS

 449

Part IV: Other Language Features

The appendixes fill in some of the more arcane information that this book has

referred to, but that is more appropriate to include as reference material.

• Appendix A lists the octal, hexadecimal, and decimal representations of

the ASCII character set that is now in almost universal use.

• Appendix B lists the limits you can expect to come up against in

handling numbers with various sizes of memory allocation.

• Appendix C lists those impossible-to-remember rules, to help you when

you encounter code written by rude people who didn't use enough

parentheses.

• Appendix D illustrates the manipulation of floating -point (real)

numbers, which did not receive complete attention in the rest of the

book.

• The Glossary defines many of the technical terms used throughout the

book.

 TEAM FLY PRESENTS

 450

Appendix A. ASCII Table

Table A-1. ASCII Character Chart

Dec Oct Hex Char

0 000 00 NUL

1 001 01 SOH

2 002 02 STX

3 003 03 ETX

4 004 04 EOT

5 005 05 ENQ

6 006 06 ACK

7 007 07 BEL

8 010 08 BS

9 011 09 HT

10 012 0A NL

11 013 0B VT

12 014 0C NP

13 015 0D CR

14 016 0E SO

15 017 0F SI

16 020 10 DLE

17 021 11 DC1

18 022 12 DC2

19 023 13 DC3

20 024 14 DC4

21 025 15 NAK

22 026 16 SYN

23 027 17 ETB

24 030 18 CAN

25 031 19 EM

26 032 1A SUB

27 033 1B ESC

28 034 1C FS

29 035 1D GS

 TEAM FLY PRESENTS

 451

30 036 1E RS

31 037 1F US

32 040 20 SP

33 041 21 !

34 042 22 "

35 043 23 #

36 044 24 $

37 045 25 %

38 046 26 &

39 047 27 `

40 050 28 (

41 051 29)

42 052 2A *

43 053 2B +

44 054 2C ,

45 055 2D -

46 056 2E .

47 057 2F /

48 060 30 0

49 061 31 1

50 062 32 2

51 063 33 3

52 064 34 4

53 065 35 5

54 066 36 6

55 067 37 7

56 070 38 8

57 071 39 9

58 072 3A :

59 073 3B ;

60 074 3C <

61 075 3D =

62 076 3E >

63 077 3F ?

64 100 40 @

65 101 41 A

66 102 42 B

 TEAM FLY PRESENTS

 452

67 103 43 C

68 104 44 D

69 105 45 E

70 106 46 F

71 107 47 G

72 110 48 H

73 111 49 I

74 112 4A J

75 113 4B K

76 114 4C L

77 115 4D M

78 116 4E N

79 117 4F O

80 120 50 P

81 121 51 Q

82 122 52 R

83 123 53 S

84 124 54 T

85 125 55 U

86 126 56 V

87 127 57 W

88 130 58 X

89 131 59 Y

90 132 5A Z

91 133 5B [

92 134 5C \

93 135 5D]

94 136 5E ^

95 137 5F _

96 140 60 `

97 141 61 a

98 142 62 b

99 143 63 c

100 144 64 d

101 145 65 e

102 146 66 f

103 147 67 g

 TEAM FLY PRESENTS

 453

104 150 68 h

105 151 69 i

106 152 6A j

107 153 6B k

108 154 6C l

109 155 6D m

110 156 6E n

111 157 6F o

112 160 70 p

113 161 71 q

114 162 72 r

115 163 73 s

116 164 74 t

117 165 75 u

118 166 76 v

119 167 77 w

120 170 78 x

121 171 79 y

122 172 7A z

123 173 7B {

124 174 7C |

125 175 7D }

126 176 7E ~

127 177 7F DEL

 TEAM FLY PRESENTS

 454

B.1 Ranges

Table B -1 and Table B-2 list the ranges of various variable types.

Table B-1. 32-Bit UNIX Machine

Name Bits Low value High value Accuracy

int 32 -2147483648 2147483647

short int 16 -32768 32767

long int 32 -2147483648 2147483647

unsigned int 32 0 4294967295

unsigned short int 16 0 65535

unsigned long int 32 0 4294967295

char 8 System Dependent

unsigned char 8 0 255

float 32 -3.4E+38 3.4E+38 6 digits

double 64 -1.7E+308 1.7E+308 15 digits

long double 64 -1.7E+308 1.7E+308 15 digits

Table B-2. Turbo C++, Borland C++, and Most Other 16-bit Systems

Name Bits Low value High value Accuracy

int 16 -32768 32767
short int 16 -32768 32767

long int 32 -2147483648 2147483647

unsigned int 16 0 65535

unsigned short int 16 0 65535

unsigned long int 32 0 4294967295
char 8 -128 127

unsigned char 8 0 255

float 32 -3.4E+38 3.4E+38 6 digits

double 64 -1.7E+308 1.7E+308 15 digits

long double 80 -3.4E+4932 3.4E+4932 17 digits

 TEAM FLY PRESENTS

 455

B.2 Automatic Type Conversions to Use When

Passing Parameters

In order to eliminate some of the problems that may occur when passing

parameters to a function, C performs the following automatic conversions to

function arguments as shown in Table B-3.

Table B-3. Automatic Conversions

Type Converted to

char int

short int int

int int

long int long int

float double

double double

long double long double

array pointer

 TEAM FLY PRESENTS

 456

C.1 Standard Rules

Operators listed in Table C -1 near the top a re evaluated before those below.

Table C-1. C Precedence Rules

Precedence Operator

1. () [] -> .

2. ! ~ ++ — (type)

 - (unary) * (dereference)

 & (address of) sizeof

3. * (multiply) / %

4. + -

5. << >>

6. < <= > >=

7. == !=

8. & (bitwise and)

9. ^

10. |

11. &&

12. ||

13. ?:
14. = += -= etc.

15. ,

C.2 Practical Subset

Table C-2. Precedence Rules, Practical Subset

Precedence Operator

1. * (multiply) / %

2. + -

 TEAM FLY PRESENTS

 457

Put parentheses around everything else.

 TEAM FLY PRESENTS

 458

Appendix D. A Program to Compute a Sine

Using a Power Series

This program is designed to compute the sine function using a power series. A very

limited floating-point format is used to demonstrate some of the problems that can

occur when using floating-point.

The program is invoked by:

sine value

where value is an angle in radians.

The program computes each term in the power series and displays the result. It

continues computing terms until the last term is so small that it doesn't contribute

to the final result.

For comparison purposes, the result of the library function sin is displayed as well

as the computed sine.

D.1 The sine.c Program

Example D-1. sine/sine.c

[File: sine/sine.c]

/**
 * sine -- Computes sine using very simple floating *
 * arithmetic. *

 * *

 * Usage: *

 * sine <value> *
 * *

 * <value> is an angle in radians *

 * *
 * Format used in f.fffe+X *

 * *
 * f.fff is a 4-digit fraction *
 * + is a sign (+ or -) *

 * X is a single digit exponent *

 * *

 * sine(x) = x - x**3 + x**5 - x**7 *

 TEAM FLY PRESENTS

 459

 * ----- ---- ---- *
 * 3! 5! 7! *

 * *
 * Warning: This program is intended to show some of the *
 * problems with floating-point. It is not intended *

 * to be used to produce exact values for the *

 * sine function. *
 * *
 * Note: Even though we specify only one digit for the *

 * exponent, two are used for some calculations. *

 * We have to do this because printf has no *
 * format for a single digit exponent. *

 **/
#include <stdlib.h>
#include <math.h>

#include <stdio.h>

/**
 * float_2_ascii -- Turns a floating-point string *

 * into ascii. *

 * *
 * Parameters *

 * number -- Number to turn into ascii. *
 * *
 * Returns *

 * Pointer to the string containing the number. *

 * *
 * Warning: Uses static storage, so later calls *
 * overwrite earlier entries. *

 **/

static char *float_2_ascii(float number)
{

 static char result[10]; /*place to put the number */

 sprintf(result,"%8.3E", number);

 return (result);

}
/**
 * fix_float -- Turns high-precision numbers into *

 * low-precision numbers to simulate a *

 * very dumb floating-point structure. *
 * *

 * Parameters *
 * number -- Number to take care of. *

 TEAM FLY PRESENTS

 460

 * *
 * Returns *

 * Number accurate to five places only. *
 * *
 * Note: This works by changing a number into ascii and *

 * back. Very slow, but it works. *

 **/
float fix_float(float number)
{

 float result; /* result of the conversion */

 char ascii[10]; /* ascii version of number */

 sprintf(ascii,"%8.4e", number);
 sscanf(ascii, "%e", &result);
 return (result);

}

/**
 * factorial -- Computes the factorial of a number. *
 * *

 * Parameters *

 * number -- Number to use for factorial. *
 * *

 * Returns *
 * Factorial(number) or number! *
 * *

 * Note: Even though this is a floating-point routine, *

 * using numbers that are not whole numbers *
 * does not make sense. *
 **/

float factorial(float number)

{
 if (number <= 1.0)

 return (number);
 else
 return (number *factorial(number - 1.0));

}

int main(int argc, char *argv[])
{

 float total; /* total of series so far */

 float new_total;/* newer version of total */
 float term_top;/* top part of term */

 float term_bottom;/* bottom of current term */
 float term; /* current term */

 TEAM FLY PRESENTS

 461

 float exp; /* exponent of current term */
 float sign; /* +1 or -1 (changes on each term) */

 float value; /* value of the argument to sin */
 int index; /* index for counting terms */

 if (argc != 2) {

 fprintf(stderr,"Usage is:\n");
 fprintf(stderr," sine <value>\n");
 exit (8);

 }

 value = fix_float(atof(&argv[1][0]));

 total = 0.0;
 exp = 1.0;

 sign = 1.0;

 for (index = 0; /* take care of below */ ; ++index) {
 term_top = fix_float(pow(value, exp));

 term_bottom = fix_float(factorial(exp));

 term = fix_float(term_top / term_bottom);
 printf("x**%d %s\n", (int)exp,

 float_2_ascii(term_top));
 printf("%d! %s\n", (int)exp,
 float_2_ascii(term_bottom));

 printf("x**%d/%d! %s\n", (int)exp, (int)exp,

 float_2_ascii(term));
 printf("\n");
 new_total = fix_float(total + sign * term);

 if (new_total == total)

 break;
 total = new_total;

 sign = -sign;
 exp = exp + 2.0;
 printf(" total %s\n", float_2_ascii(total));

 printf("\n");

 }
 printf("%d term computed\n", index+1);
 printf("sin(%s)=\n", float_2_ascii(value));

 printf(" %s\n", float_2_ascii(total));

 printf("Actual sin(%G)=%G\n",
 atof(&argv[1][0]), sin(atof(&argv[1][0])));

 return (0);
}

 TEAM FLY PRESENTS

 462

Glossary

!

The logical NOT operator.

!=

Not-equal relational operator.

"

See Double quote.

%

The modulus operator.

&

1) The bitwise AND operator.

2) A symbol used to precede a variable name (as in &x). Means the address

of the named variable (address of x). Used to assign a value to a pointer

variable.

&&

The logical AND operator (used in comparison operations).

'

See Single quote.

 TEAM FLY PRESENTS

 463

*

1) The MULTIPLY operator.

2) A symbol used to p recede a pointer variable name that means "get the

value stored at the address pointed to by the pointer variable." (*x means

"get the value stored at x"). Sometimes known as the dereferencing

operator or indirect operator.

+

The ADD operator.

++

The incrementation operator.

,

The comma character is an obscure C operator that can be used to connect
two statements together as one.

-

The subtract operator.

--

The decrementation operator.

->

Used to obtain a member from a class or structure pointer.

 TEAM FLY PRESENTS

 464

/

The divide operator.

<

Less than relational operator.

<<

The left shift operator.

<=

Less than or equal relational operator.

==

Equal relational operator.

>

Greater than relational operator.

>=

Greater than or equal relational operator.

>>

The right shift operator.

 TEAM FLY PRESENTS

 465

? :

C operators to allow a conditional inside an expression. Rarely used.

^

The bitwise exclusive OR operator.

\

Character used in strings to signal a special character.

\b

Backspace character (moves the cursor back one on most output devices).

\f

Form feed character. (On most printers, this character will eject a page. On

many terminals, this character will clear the screen.)

\n

New-line character. Moves the cursor to the beginning of the next line.

{}

See curly braces.

|

The bitwise OR operator.

 TEAM FLY PRESENTS

 466

||

The logical OR operator.

~

Bitwise complement operator. Inverts all bits.

'\0'

End-of-string character (the NULL character).

#define

A C preprocessor directive that defines a substitute text for a name.

#endif

The closing bracket to a preprocessor macro section that began with an

#ifdef directive.

#ifdef

Preprocessor directive that checks to see if a macro name is defined. If

defined, the code following it is included in the source.

#ifndef

Preprocessor directive that checks to see if a macro name is undefined. If
undefined, the code following it is included in the macro expansion.

#include

 TEAM FLY PRESENTS

 467

A preprocessor directive that causes the named file to be inserted in place of

the #include.

#undef

A preprocessor directive that cancels a #define .

_ptr

A convention used in this book. All pointer variables end with the extension
_ptr.

Accuracy

A quantitative measurement of the error inherent in the representation of a

real number.

Address

A value that identifies a storage location in memory.

and

A Boolean operation that yields if either operand is 0, and 1 if both operands

are 1.

ANSI-C

Any version of C that conforms to the specifications of the American National

Standards Institute committee X3J.

ANSI-C++

 TEAM FLY PRESENTS

 468

Any version of C++ that conforms to the specification of the American

National Standards Institute. At the time of this writing, the standards exist

only in draft form and a lot of details must still be worked out.

API

Application Programming Interface. A set of function calls provided by a
system to programmers. Frequently used in context with MS-DOS/Windows

programming.

Archive

See library.

Array

A collection of data elements arranged to be indexed in one or more
dimensions. In C, arrays are stored in contiguous memory.

ASCII

American Standard Code for Information Interchange. A code to represent

characters.

Assignment statement

An operation that stores a value in a variable.

auto

A C keyword used to create temporary variables. Rarely used because, by

default, variables are considered automatic.

 TEAM FLY PRESENTS

 469

Automatic variable

See temporary variable.

Base

See radix.

Bit

Binary digit; either of the digits 0 or 1.

Bit field

A group of contiguous bits taken together as a unit. A C language feature

that allows the access of individual bits.

Bit flip

The inversion of all bits in an operand. See complement.

Bit-mapped graphics

Computer graphics where each pixel in the graphic output device is

controlled by a single bit or a group of bits.

Bit opera tors

See bitwise operator.

Bitwise operator

 TEAM FLY PRESENTS

 470

An operator that performs Boolean operations on two operands treating each

bit in an operand as individual bits, and performing the operation bit by bit

on corresponding bits.

Block

A section of code enclosed in curly braces.

Boolean

An operation or value that can return either a true or false result.

Borland C++

A version of the C++ language for personal computers developed by Borland.

This is the high -end version of Borland's Turbo C++ product. This pro duct

will handle both C and C++ code.

Boxing (a comment)

The technique of using a combination of asterisks, vertical and horizontal

rules, and other typographic characters to draw a box around a comment in

order to set it off from the code.

break

A statement that terminates the innermost execution of for, while, switch ,
and do/while statements.

Breakpoint

A location in a program where normal execution is suspended and control is

turned over to the debugger.

 TEAM FLY PRESENTS

 471

Buffered I/O

Input/Output where intermedia te storage (a buffer) is used between the

source and destination of an I/O stream.

Byte

A group of eight bits.

C

A general-purpose computer programming language developed in 1974 at

Bell Laboratories by Dennis Ritchie. C is considered to be a

medium-to-high-level language.

C++

A language based on C invented in 1980 by Bjarne Stroustrup. First called "C

with classes," it has evolved into its own language.

C code

Computer instructions written in the C language.

C compiler

Software that translates C source code into machine code.

C syntax.

See syntax.

Call by value

 TEAM FLY PRESENTS

 472

A procedure call in which the parameters are passed by passing the values of

the parameters.

case

Acts as a label for one of the alternatives in a switch statement.

Cast

To convert a variable from one type to another type by explicitly indicating
the type conversion.

CGA

Color graphics adaptor. A common color graphics card for the IBM PC.

char

A C keyword used to declare variables that represent characters or small

integers.

Class (of a variable)

See storage class.

Clear a bit

The operation of setting an individual bit to zero. This operation is not a

defined operation in C.

Code design

 TEAM FLY PRESENTS

 473

A document that describes in general terms how the program is to perform

its function.

Coding

The act of writing a program in a computer language.

Command-line options

Options to direct the course of a program such as a compiler, entered from
the computer console.

Comment

Text included in a computer program for the sole purpose of provid ing

information about the program. Comments are a programmer's notes to

himself and future programmers. The text is ignored by the compiler.

Comment block

A group of related comments that convey general information about a

program or a section of program.

Compilation

The translation of source code into machine code.

Compiler

A system program that does compilation.

Complement

 TEAM FLY PRESENTS

 474

An arithmetic or logical operation. A logical complement is the same as an

INVERT or NOT operation.

Computer language

See programming language.

Conditional compilation

The ability to selectively compile parts of a program based on the truth of
conditions tested in conditional directives that surround the code.

continue

A flow control statement that causes the next execution of a loop to begin.

Control statements

A statement that determines which statement is to be executed next based

on a conditional test.

Control variable

A variable that is systematically changed during the execution of the loop.

When the variable reach es a predetermined value, the loop is terminated.

Conversion specification

A C string used by the printf family of functions to specify how a variable is

to be printed.

Curly braces

 TEAM FLY PRESENTS

 475

One of the characters { or }. They are used in C to delimit groups of elements

to treat them as a unit.

Debugging

The process of finding and removing errors from a program.

Decision statement

A statement that tests a condition created by a program and changes the
flow of the program based on that decision.

Declaration

A specification of the type and name of a variable to be used in a program.

default

Serves as a case label if no case value match is found within the scope of a

switch.

Define statement

See #define .

Dereferencing operator

The operator that indicates access to the value pointed to by a pointer

variable or an addressing expression. See also * .

Directive

 TEAM FLY PRESENTS

 476

A command to the preprocessor (as opposed to a statement to produce

machine code).

double

A C language key word used to declare a variable that contains a real number.

The number usually requires twice as much storage as type float.

Double linked list

A linked list with both forward and backward pointers. See also linked list.

Double quote (")

ASCII character 34. Used in C to delimit character st rings.

EGA

Enhanced Graphics Adaptor. A common graphics card for the IBM PC.

else

A clause in an if statement specifying the action to take in the event that the
statement following the if conditional is false.

enum

A C keyword that defines an enumeration data type.

Enumerated data type

A data type consisting of a named set of values. The C compiler assigns an

integer to each member of the set.

 TEAM FLY PRESENTS

 477

EOF

End-of-file character defined in stdio.h.

Escape character

A special character used to change the meaning of the character(s) that

follow. This character is represented in C by the backslash character \.

Exclusive OR

A Boolean operation that yields if both operands are the same and 1 if they

are different.

Executable file

A file containing machine code that has been linked and is ready to be run on

a computer.

Exponent

The component of a floating-point number that represents the integer power

to which the number base is raised.

Exponent overflow

A condition resulting from a floating-point operation in which the result is an

exponent too large to fit within the bit field allotted to the exponent.

Exponent underflow

 TEAM FLY PRESENTS

 478

A condition resulting from a floating-point operation in which the result is an

exponent too large in negative value to fit within the bit field allotted to the

exponent.

extern

C keyword used to indicate that a variable or function is defined outside the
current file.

Fast prototyping

A top-down programming technique that consists of writing the smallest

portion of a specification that can be implemented and still do something.

fclose

A function that closes a file.

fflush

A routine that forces the flushing of a buffer.

fgetc

A function that reads a single character.

fgets

A stream input library function that reads a single line.

FILE

A macro definition in stdio.h that declares a file variable.

 TEAM FLY PRESENTS

 479

File

A group of related records treated as a unit.

float

A C keyword to declare a variable that can hold a real number.

Floating point

A numbering system represented by a fraction and an exponent. The system

handles very large and very small numbers.

Floating-point exception (core dumped)

An error caused by a divide by or other illegal arithmetic operation. The
exception is a somewhat misleading error because it is caused by integer as

well as floating-point errors.

Floating-point hardware

Circuitry that can perform floating-point operations directly without

resorting to software. In personal computers, the circuitry is found in the

math coprocessor. More advanced processors such as the 80486 have

floating-point units built in.

fopen

A function that opens a file for stream I/O.

fprintf

 TEAM FLY PRESENTS

 480

A function that converts binary data to character data and then writes the

data to a file.

fputc

A function that writes a single characte r.

fputs

A function that writes a single line.

fread

A binary I/O input function.

free

A C function that returns data to the memory pool.

Free Software Foundation

A group of programmers who create and distribute high -quality software for

free. Among their products are the editor emacs and the C compiler gcc:

Free Software Foundation, Inc., 675 Mass Ave., Cambridge, MA 02139 (617)

876-3296. Their ftp site is prep.ai.mit.edu:/pub/gnu. They can be found on

the World Wide Web at http://www.gnu.org .

fscanf

An input routine similar to scanf that reads from a file.

function

 TEAM FLY PRESENTS

 481

A procedure that returns a value.

fwrite

A binary I/O output function.

Generic pointer

A pointer that can point to any variable without restriction as to type of

variable. A pointer to storage without regard to content.

ghostscript

A PostScript(TM)-like interpreter that is freely available from the Free

Software Foundation.

Global variable

A variable known throughout an entire program.

Guard digit

An extra digit of precision used in floating-point calculations to ensure
against loss of accuracy.

Header file

See Include file.

Heap

A portion of memory used by malloc to allocate space to new structures and

arrays. Space is returned to this pool by using the free function.

 TEAM FLY PRESENTS

 482

Hexadecimal number

A base-16 number.

High-level language

A level of computer language that is between machine language and natural

(human) language.

I/O manipulators

Functions that when "output" or "input" cause no I/O, but set various

conversion flags or parameters.

IEEE floating-point standard

IEEE standard 754, which standardizes floating-point format, precision, and

certain non-numerical values.

if

A statement that allows selective execution of parts of a program based on

the truth of a condition.

Implementation dependence

The situation in which the result obtained from the operation of computer or

software is not standardized because of variability among computer systems.

A particular operation ma y yield different results when run on another

system.

include file

 TEAM FLY PRESENTS

 483

A file that is merged with source code by invocation of the preprocessor

directive #include. Also called a header file.

Inclusive OR

See OR.

Index

A value, variable, or expression that selects a particular element of an array.

Indirect operator

See dereferencing operator.

Information hiding

A code design system that tries to minimize the amount of information that

is passed between modules. The idea is to keep as much information as

possible hidden inside the modules and only make information public if

absolutely necessary.

Instruction

A group of bits or characters that defines an operation to be performed by

the computer.

int

C keyword for declaring an integer.

Integer

 TEAM FLY PRESENTS

 484

A whole number.

Interactive debugger

A program that aids in the debugging of programs.

Invert operator

A logical operator that performs a not.

Left shift

The operation of moving the bits in a bit field left by a specified amount and

filling the vacated positions with 0s.

Library

A collection of files usually containing object code for linking into programs.

Also called an archive.

Linked list

A collection of data nodes. Each node consists of a value and a pointer to the
next item in the list.

Local inc lude files

Files from a private library that can be inserted by the preprocessor at the

directive #include "filename" .

Local variable

A variable whose scope is limited to the block in which it is declared.

 TEAM FLY PRESENTS

 485

Logical AND

A Boolean operation that returns true if its two arguments are both true.

Logical operator

A C operator that performs a logical operation on its two operands and

returns a true or a false value.

Logical OR

A Boolean operation that returns true if any one of its two arguments are

true.

long

A qualifier to specify a data type with greater-than-normal range.

Machine code

Machine instructions in a binary format that can be recognized directly by the

machine without further translation.

Machine language

See machine code.

Macro

A short piece of text, or text template, that can be expanded into a longer

text.

 TEAM FLY PRESENTS

 486

Macro processor

A program that generates code by placing values into positions in a defined

template.

Magnitude of the number

The value of a number without regard to sign.

Maintenance (of a program)

Modification of a program because of changing conditions external to the

computer system.

make

A utility in both UNIX and MS-DOS/Windows that manages the compilation
of programs.

Makefile

The file that contains the commands fo r the utility make.

malloc

A C procedure that manages a memory heap.

Mask

A pattern of bits for controlling the retention or elimination of another group
of bits.

member

 TEAM FLY PRESENTS

 487

An element of structure. Also called a field.

Module

One logical part of a pro gram.

MS-DOS

An operating system for IBM personal computers developed by Microsoft.

Newline character

A character that causes an output device to go to the beginning of a new line.

(`\n').

Nonsignificant digits

Leading digits that do not affect the value of a number (0s for a positive

number, 1s for a negative number in complement form).

Normalization

The shifting of a floating-point fraction (and adjustment of the exponent) so
that there are no leading nonsignificant digits in the fraction.

NOT

A Boolean operation that yields the logical inverse of the operand. Not 1

yields a 0, not yields a 1.

Not a number

 TEAM FLY PRESENTS

 488

A special value defined in IEEE 754 to signal an invalid result from a

floating-point operation.

NULL

A constant of value 0 that points to nothing.

Null pointer

A pointer whose bit pattern is all zeroes. This pattern indicates that the
pointer does not point to valid data.

Object-Oriented Design

A design methodology by which the programmer bases a design on data

objects (classes) and the connections between them. Not used much for C

programs, but better suited to the C++ language.

Octal number

A base 8 number.

Ones complement

An operation that flips all the bits in a integer. Ones become zeroes and

zeroes become ones.

Operator

A symbol that represents an action to be performed.

OR

 TEAM FLY PRESENTS

 489

A Boolean operation that yields a 1 if either of the operands is a 1, or yields

a zero if both of the operands are 0.

Overflow error

An arithmetic error caused by the result of an arithmetic operation's being

greater than the space the computer provides to store the result.

Packed structure

A data structure technique whereby bit fields are only as large as needed,

regardless of word boundaries.

Pad byte

A byte added to a structure whose sole purpose is to ensure memory

alignment.

Parameter

A data item to which a value may be assigned. Often means the arguments

that are passed between a caller and a called procedure.

Parameterized macro

A macro consisting of a template with insertion points for the introduction of

parameters.

Parameters of a macro

The values to be inserted into the parameter positions in the definition of a

macro. The insertion occurs during the expansion of the macro.

 TEAM FLY PRESENTS

 490

Permanent variables

A variable that is created and initialized before the program starts, and that

retains its memory during the entire execution of the program.

Pixel

The smallest element of a display that can be individually assigned intensity

and color. From Picture Element.

Pointer

A data type that holds the address of a location in memory.

Pointer arithmetic

C allows three arithmetic operations on pointers. 1) A numeric value can be
added to a pointer. 2) A numeric value can be subtracted from a pointer. 3)

One pointer can be subtracted from another pointer.

Portable C compiler

A C compiler written by Stephen Johnson that is easily adapted to different

computer architectures.

Precision

A measure of the ability to distinguish between nearly equal values.

Preprocessor

A program that performs preliminary processing with the purpose of

expanding macro code templates to produce C code.

 TEAM FLY PRESENTS

 491

Preprocessor directive

A command to the preprocessor.

printf

A C library routine that produces formatted output.

Procedure

A program segment that can be invoked from d ifferent parts of a program or

programs. It does not return a value (function of type void).

Program

A group of instructions that cause a computer to perform a sequence of

operations.

Program header

The comment block at the beginning of the program.

Programmer

An individual who writes programs for a computer.

Programming (a computer)

The process of expressing the solution to a problem in a language that

represents instructions for a computer.

Programming language

A scheme of formal notation used to prepare computer programs.

 TEAM FLY PRESENTS

 492

Program specification

A written document that states what a program is to do.

Pseudo code

A coding technique by which precise descriptions of procedures are written in

easy-to-read language constructs without the bother of precise attention to

syntax rules of a computer language.

Qualifier

A word used to modify the meaning of a data declaration.

Radix

The positive integer by which the weight of the digit place is multiplied to

obtain the weight of the next higher digit in the base of the numbering

system.

Real number

A number that may be represented by a finite or infinite numeral in a
fixed-radix numbering system.

Recursion

Recursion occurs when a function calls itself directly or indirectly. (For a

recursive definition, see Recursion).

Redirect

 TEAM FLY PRESENTS

 493

The command-line option ">file" allows the user to direct the output of a

program into a file instead of the screen. A similar option, <file, exists for

input, taking input from the file instead of the keyboard.

Reduction in strength

The process of substituting cheap (fast) operations for expensive (slow)
ones.

Relational operator

An operator that compares two operands and reports either true or false

based on whether the relationship is true or false.

Release

The completion of a programming project to the point at which it is ready for
general use.

Replay file

A file that is used instead of the standard input for keyboard data.

Return statement

A statement that signals the completion of a function and causes control to

return to the caller.

Revision

The addition of significant changes to the program.

Right shift

 TEAM FLY PRESENTS

 494

The operation of moving the bits in a bit field right by a specified amount.

Round

To delete or omit one or more of the least significant digits in a p ositional

representation and adjust the part retained in accordance with some specific

rule, e.g., to minimize the error.

Rounding error

An error due to truncation in rounding.

Save file

A debugging tool with which all the keystrokes typed by the user are saved

in a file for future use. See also Replay file.

scanf

A library input function that reads numbers directly from the keyboard. Hard
to use. In most cases a fgets/sscanf combination is used.

Scope

The portion of a program in which the name of the variable is known.

Segmentation violation

An error caused by a program trying to access memory outside its address

space. Caused by dereferencing a bad pointer.

Set a bit

 TEAM FLY PRESENTS

 495

The operation of setting a specified bit to one. This operation is not a defined

operation in C.

Shift

The operation of moving the bits in a bit field either left or right.

short

An arithmetic data type that is the same size, or smaller, than an integer.

Side effect

An operation performed in addition to the main operation of a statement
such as incrementing a variable in an assignment statement: result =

begin++- end;.

Significand

The most significant digits of a floating-point number without regard to
placement of the radix point.

Significant digits

A digit that must be kept to preserve a given accuracy.

Single quote (')

ASCII character 39. Used in C to delimit a single character.

sizeof

Operator that returns the size, in bytes, of a data type of variable.

 TEAM FLY PRESENTS

 496

Source code

Symbolic coding in its original form before being translated by a computer.

Source file

A file containing source code.

Specification

A document that describes what the program does.

sprintf

Similar to fprintf except that it uses a string output.

sscanf

A library input routine.

Stack

An area of memory used to hold a list of data and instructions on a

temporary basis.

Stack variable

See Temporary variable.

Stack overflow

 TEAM FLY PRESENTS

 497

An error caused by a program using too much temporary space (stack space)

for its variables. Caused by a big program or by in finite recursion.

static

A storage class attribute. Inside a set of curly braces, it indicates a

permanent variable. Outside a set of curly braces, it indicates a file -local

variable.

stderr

Predefined standard error file.

stdin

Predefined input source.

stdio.h

The C standard I/O package.

stdout

Predefined standard output.

Storage class

An attribute of a variable definition that controls how the variable will be

stored in memory.

String

A sequence or array of characters.

 TEAM FLY PRESENTS

 498

struct

A C keyword that identifies a structure data type.

Structure

A hierarchical set of names that refers to an aggregate of data items that

may have different attributes.

Style sheet

A document that describes the style of programming used by a particular

company or institution.

Sunview

A graphics and windowing system available on SUN workstations.

switch

A multiway branch that transfers control to one of several case statements

based on the value of an index expression.

Syntax

Rules that govern the construction of statements.

Syntax error

An error in the proper construction of a C expression.

Temporary variable

 TEAM FLY PRESENTS

 499

A variable whose storage is allocated from the stack. It is initialized each

time the block in which it is defined is entered. It exists only during the

execution of that block.

Test a bit

The operation of determining if a particular bit is set. This operation is not
defined in C.

Test plan

A specification of the tests that a program must undergo.

Text editor

Software used to create or alter text fi les.

Translation

Creation of a new program in an alternate language logically equivalent to an
existing program in a source language.

Tree

A hierarchical data structure.

Truncation

An operation on a real number whereby any fractional part is discarded.

Turbo C++

 TEAM FLY PRESENTS

 500

A version of the C++ language for personal computers developed by

Borland.

Typecast

See Cast.

typedef

A operator used to create new types from existing types.

typing statement

A statement that establishes the characteristics of a varia ble.

Unbuffered I/O

Each read or write results in a system call.

union

A data type that allows different data names and data types to be assigned

to the same storage location.

UNIX

A popular multiuser operating system first developed by Ken Thompson and

Dennis Ritchie of the Bell Telephone Laboratories.

unsigned

A qualifier for specifying int and char variables that do not contain negative

numbers.

 TEAM FLY PRESENTS

 501

Upgrading

Modification of a program to provide improved performance or new features.

value

A quantity assigned to a constant.

Variable

A name that refers to a value. The data represented by the variable name

can, at different times during the execution of a program, assume different

values.

Variable name

The symbolic name given to a section of memory used to store a variable.

Version

A term used to identify a particular edition of software. A customary practice

is to include a version number. Whole numbers indicate major rewrites.

Fractions indicate minor rewrites or corrections of problems.

void

A data type in C. When used as a parameter in a function call, it indicates

that there is no return value. void * indicates that a generic pointer value is

returned.

volatile

 TEAM FLY PRESENTS

 502

A C keyword that indicates that the value of a variable or constant can be

changed at any time. This attribute is used for memory mapped I/O, shared

memory applications, and other advanced programming.

while

An iterative statement that repeats a statement as long as a given condition
is true.

Windows

Also knows as MS -Windows. An operating system developed for personal

computers by Microsoft Corporation. Also a new operating system with a

similar user interface and API such as Windows NT and Windows 95.

X Window System

A graphics and windowing system available from the X Consortium that is

currently running on many computing systems.

Zero-based counting

A system of counting by which the first object is given the count zero rather

than one.

 TEAM FLY PRESENTS

 503

Colophon

Our look is the result of reader comments, our own experimentation, and feedback

from distribution channels. Distinctive covers complement our distinctive approach

to technical topics, breathing personality and life into potentially dry subjects.

The animal featured on the cover of Practical C Programming is a Jersey cow. The

Jersey, one of the many breeds of modern cows, originated from a now extinct stock

of wild cattle that inhabited western Asia, North Africa, and continental Europe.

Cows were first introduced into the western hemisphere by Christopher Columbus

on his second voyage in 1493.

Jerseys, bred on the British isle of Jersey since 1789, were first introduced to

America in the 1850s. Smallest of the modern dairy cows, this fawn-colored beast

typically weighs between 1000 and 1500 pounds. As a milk producer, Jerseys are

the least prolific of any American dairy cow. However, their milk is creamier than

that of any other breed.

Edie Freedman designed the cover of this book, using a 19th-century engraving

from the Dover Pictorial Archive. The cover layout was produced with Quark XPress

3.32 using the ITC Garamond font.

The inside layout was designed by Nancy Priest and implemented in FrameMaker

5.0 by Mike Sierra. The text and heading fonts are ITC Garamond Light and

Garamond Book. The illustrations that appear in the book were created in

Macromedia Freehand 5.0 by Chris Reilley and updated by Robert Romano. This

colophon was written by Michael Kalantarian.

 TEAM FLY PRESENTS

	sample.pdf
	sterling.com
	Welcome to Sterling Software

