Practical Return-Oriented
Programming

Dino A. Dai Zovi
Funemployed Security Researcher
/ @dinodaizovi
/ http://blog.trailofbits.com




Why am | here?

® Show the practical applications of return-oriented programming to
exploitation of memory corruption vulnerabilities

"Preventing the introduction of malicious code is not enough to
prevent the execution of malicious computations”?

Demonstrate that while exploit mitigations make exploitation of
many vulnerabilities impossible or more difficult, they do not prevent
all exploitation

Modern computing needs more isolation and separation between
components (privilege reduction, sandboxing, virtualization)

The user-separation security model of modern OS is not ideally suited
to the single-user system

Why do all of my applications have access to read and write all of my
data?

1. “The Geometry of Innocent Flesh on the Bone: Return-Into-Libc without Function Calls (on the x86)”,
Hovav Shacham (ACM CCS 2007)




Agenda

Current State of Exploitation
Return-Oriented Exploitation
Bypassing Permanent DEP

Exploiting IE “"Aurora” Vulnerability on Windows 7
MS10-002 | CVE-2010-0249

Borrowed Instructions Synthetic Computer (BISC)

Conclusions




Current State of
Exploitation




A Brief History of Memory
Corruption

Morris Worm (November 1988)
Exploited a stack buffer overflow in BSD in.fingerd on VAX
Payload issued execve("/bin/sh”, o, 0) system call directly

Thomas Lopatic publishes remote stack buffer overflow exploit
against NCSA HTTPD for HP-PA (February 1995)

"Smashing the Stack for Fun and Profit” by Aleph One published
in Phrack 49 (August 1996)

Researchers find and exploit stack buffer overflows in a variety
of Unix software throughout the late g9o’s

Many security experts thought (incorrectly) that stack buffer
overflows were the only exploitable problem




A Brief History of Memory
Corruption

"JPEG COM Marker Processing Vulnerability in Netscape Browsers” by
Solar Designer (July 2000)

Demonstrates exploitation of heap buffer overflows by overwriting
heap free block next/previous linked list pointers

Apache/llS Chunked-Encoding Vulnerabilities demonstrate
exploitation of integer overflow vulnerabilities

Integer overflow => stack of heap memory corruption

In early 2000's, worm authors took published exploits and unleashed
worms that caused widespread damage

Exploited stack buffer overflow vulnerabilities in Microsoft operating
systems

Results in Bill Gates’ "Trustworthy Computing” memo

Microsoft’'s Secure Development Lifecycle (SDL) combines secure
coding, auditing, and exploit mitigation




Exploit Mitigation

® Patching every security vulnerability and writing 100% bug-free
code is impossible
Exploit mitigations acknowledge this and attempt to make
exploitation of remaining vulnerabilities impossible or at least
more difficult

® Windows XP SP2 was the first widespread operating system to
incorporate exploit mitigations

Protected stack metadata (Visual Studio compiler /GS flag)
Protected heap metadata (RtIHeap Safe Unlinking)

SafeSEH (compile-time exception handler registration)
Software, Hardware-enforced Data Execution Prevention (DEP)

e Windows Vista implements Address Space Layout
Randomization (ASLR)

Invented by and first implemented in PaX project for Linux




Mitigations Make Exploitation

>
G
]
=
=
re
9
Q.
X
L

Mitigations




Exploit techniques Rendered
Ineffective

Stack return address overwrite

SEH frame overwrite

Heap free block
metadata overwrite
Application-
specific data

227




Mitigations requires OS, Compiler, and
Application Participation and are additive

Heap protections,
OS run-time SEH Chain Validation

mitigations

Stack
cookies, Compiler- Application

SafeSEH based opt-in
mitigations mitigations

DEP,
ASLR




What mitigations are active in my
app?

It is difficult for even a knowledgeable user to determine which
mitigations are present in their applications

Is the application compiled with stack protection?
Is the application compiled with SafeSEH?

Do all executable modules opt-in to DEP (NXCOMPAT) and ASLR
(DYNAMICBASE)?

Is the process running with DEP and/or Permanent DEP?

Internet Explorer 8 on Windows 7 is 100% safe, right?
IE8 on Windows 7 uses the complete suite of exploit mitigations

... as long as you don't install any 3™-party plugins or ActiveX
controls

What about Adobe Reader?
You don’t want to know...




Return-Oriented
Exploitation




Return-to-libc

® Return-to-libc (ret2libc)

An attack against non- Arg 2
executable memory
segments (DEP, WAX, etc)

Instead of overwriting Arg1
return address to return
into shellcode, return into a
loaded library to simulate a
function call

Next
function

YIMOID 3815

Data from attacker’s

controlled buffer on stack Function
are used as the function’s

arguments

i.e. call system(cmd)

"Getting around non-executable stack (and fix)”, Solar Designer (BUGTRAQ, August 1997)

13




Return Chaining

® Stack unwinds upward

Argument 2
® Can be usedto call . nrgomentz

multiple functions in _ Argument1
succession S

' : Function 2
First function must return

into code to advance argument 2
stack pointer over  Argumentz
function arguments T —
l.e. pop-pop-ret T —
Assuming cdecl and 2
arguments




Return Chaining

0043a82f:

ret

ox780dasdc




Return Chaining

780daddc:
push ebp
mov ebp,

sub esp,

mov eax,

saved ebp




Return Chaining

780daddc:
push ebp
mov ebp, esp

sub esp, 0x100

mov eax, [ebp+8]

Arument 1




Return Chaining

780daddc:
push ebp
mov ebp,

sub esp,

mov eax,




Return Chaining

780daddc:
push ebp
mov ebp,

sub esp,

mov eax,




Return Chaining

6342e841f:
pop edi

pop ebp

ret
Arument 2

Arument 1




Return Chaining

©6842e84f:
pop edi

pop ebp

ret




Return-to-Libc

Return-to-Libc and return chaining are enough to disable
DEP on XP SP2 and Vista SPo

® NtSetInformationProcess (-1, 34, &2, 4)1
® WriteProcessMemory() Self-Patch Technique?

XP SP3, Vista SP1, and Windows 7 responded with
"Permanent DEP”

® SetProcessDEPPolicy(PROCESS_DEP_ENABLE)

® This requires attackers to “up their game”

1. “"Bypassing Windows Hardware-Enforced Data Execution Prevention”,
skape and Skywing (Uninformed Journal, October 2005)
2. “"Exploitation With WriteProcessMemory()”, Spencer Pratt (Full-Disclosure, 3/30/2010)




Return-oriented Programming

® |nstead of returning to mov eax, 0xc3084189
functions, return to —

instruction sequences
followed by a return
Instruction

Can return into middle of B8 89 41 08 C3

existing instructions to
simulate different instructions

e All we need are useable byte
sequences anywhere in
executable memory pages ret

mov [ecx+8], eax

“The Geometry of Innocent Flesh on the Bone: Return-Into-Libc without Function Calls (on the x86)”,
Hovav Shacham (ACM CCS 2007)

23




R Ei{lry2:0r E 11%ed
PLOGrdMag NG

SALTKEEINA NE0as

RONSl, BUI ISTEE D (i cuthmG
Wi [AEtEDS £70))) MEPAZINE S
LU ELE cURtG LN

S VCHONERF Aol 2 Xt

S = GMENtS




Return-Oriented Programming

® Various instruction
sequences can be combined
to form gadgets

® Gadgets perform higher-
level actions

Write specific 32-bit value
to specific memory
location

Add/sub/and/or/xor value
at memory location with
immediate value

Call function in shared
library

N

N
pop eax
mov

ret [eax] ,ecx
y ret

-

ret

a B
Gadgets




Example Gadget

| N T N T ¥

oy — STORE
pop eax * * [ecx] ,eax IMMEDIATE
ret ret VALUE




Return-Oriented Write4 Gadget

684al0fde:

pop e€eax
ret

634a2367:

pop ecX 0x684a0fde

ret

0c84al?23a:

mov [ecx], eax

ret




Return-Oriented Write4 Gadget

084al0fde:

pop eax

ret

pop ecx UX6384a01

ret

0c84al?23a:
mov [ecx], eax

ret




Return-Oriented Write4 Gadget

084al0fde:

m
“

pop eax

ret

0x684a2367
634a2367: ’

T ——
pop ecx 0x684a0f

ret
0c84al?23a:
mov [ecx], eax

ret




Return-Oriented Write4 Gadget

084al0fde:

N ——
pop eax

Oxfeedface

684a2367: e

T ——
pop ecx 0x684a0f!

ret
0c84al?23a:
mov [ecx], eax

ret




Return-Oriented Write4 Gadget

084al0fde:

pop eax 0x684al23a

ret

084a2367:
pPOp €cxXx
ret

0c84al?23a:

mov [ecx], eax

ret




Return-Oriented Write4 Gadget

084al0fde:

pop eax
ret

684a2367:
pop ecx
ret

0c84al?23a:

mov [ecx], eax

ret




Return-Oriented Write4 Gadget

084al0fde:

pop eax
ret

684a2367:
pop ecx
ret

0c84al?23a:

mov [ecx], eax

ret




Generating a Return-Oriented
Program

Scan executable memory regions of common shared
libraries for useful instruction sequences followed by
return instructions

Chain returns to identified sequences to form all of the
desired gadgets from a Turing-complete gadget catalog

The gadgets can be used as a backend to a C compiler

See Hovav Shacham'’s paper for details on their compiler and
demonstration of return-oriented quicksort

Preventing the introduction of malicious code is not
enough to prevent the execution of malicious
computations




Bypassing DEP




Data Execution Prevention

DEP uses the NX/XD bit of x86 processors to enforce the non-
execution of memory pages without PROT_EXEC permission

On non-PAE processors/kernels, READ => EXEC

PaX project cleverly simulated NX by desynchronizing instruction
and data TLBs

Requires every module in the process (EXE and DLLs) to be
compiled with INXCOMPAT flag

DEP can be turned off dynamically for the whole process by
calling (or returning into) NtSetIinformationProcess()*

XP SP3, Vista SP1, and Windows 7 support “Permanent DEP”
that once enabled, cannot be disabled at run-time

1. “"Bypassing Windows Hardware-Enforced Data Execution Prevention”,
skape and Skywing (Uninformed Journal, October 2005)




Return-Oriented Exploits

® First, attacker must cause stack pointer to point into attacker-
controlled data

This comes for free in a stack buffer overflow

Exploiting other vulnerabilities (i.e. heap overflows) requires using a
stack pivot sequence to point ESP into attacker data

® mov esp, eax
ret

xchg eax, esp
ret

add esp, <some amount>
ret

® Attacker-controlled data contains a return-oriented exploit payload

These payloads may be 100% return-oriented programming or simply
act as a temporary payload stage that enables subsequent execution
of a traditional machine-code payload




Return-Oriented Payload Stage

e HEAP_CREATE_ENABLE_EXECUTE method?
hHeap = HeapCreate (HEAP CREATE ENABLE EXECUTE, 0, 0);
pfnPayload = HeapAlloc (hHeap, 0, dwPayloadLength);
CopyMemory (pfnPayload, ESP+offset, dwPayloadLength);
(*pftnPayload) () ;

VirtualAlloc() method

VirtualAlloc (IpAddress, dwPayloadSize, MEM COMMIT,
PAGE_EXECUTE_READWRITE);

CopyMemory (1lpAddress, ESP+offset, dwPayloadSize);
(*1pAddress) () ;

VirtualProtect(ESP) method

VirtualProtect (ESP+offset & ~ (4096 - 1),
dwPayloadSize, PAGE_EXECUTE_READWRITE);

(*ESP+offset) () ;
1. "DEPLIB”, Pablo Sole (H2HC November 2008)




Do the Math

| N Py 9 T N T ¥

Return- Permanent
* Oriented * Traditional F— DEP
Payload Payload Bypass
Stage Exploit

Stack Pivot




DEP w/o ASLR is Weak Sauce™

® NoASLR:

Exploitation requires building a reusable return-oriented
payload stage from any common DLL

® One or more modules do not opt-in to ASLR:

Exploitation requires building entire return-oriented payload
stage from useful instructions found in non-ASLR module(s)

® All executable modules opt-in to ASLR:

Exploitation requires exploiting a memory disclosure
vulnerability to reveal the load address of one DLL and
dynamically building the return-oriented payload stage




Exploiting Aurora on Winy




The "Aurora” IE Vulnerability

e EVENTPARAMSs copied by createEventObject
(oldEvent) don't increment CTreeNode ref
count

EVENTPARAM




The "Aurora” IE Vulnerability

e EVENTPARAM member variable and
CElement member variable both point to
CTreeNode object

EVENTPARAM




The "Aurora” IE Vulnerability

® \When HTML element is removed from DOM,
CElement is freed and CTreeNode refcount
decremented

EVENTPARAM




The "Aurora” IE Vulnerability

® |f CTreeNode refcount == o, the object will be freed and
EVENTPARAM points free memory

EVENTPARAM




Exploiting The Aurora
Vulnerability

® Attacker can use controlled heap allocations to replace
freed heap block with crafted heap block

EVENTPARAM

Crafted CTreeNode

% 0c0c0c04




Exploiting The Aurora
Vulnerability

® The crafted heap block points to a crafted CElement
object in the heap spray, which points back to itself as a
crafted vtable

CElement vtable

Crafted CTreeNode CElement /"
0c0c0c04 =P 0c0c0c08




Exploiting The Aurora
Vulnerability

® Attacker triggers virtual function call through crafted
CElement vtable, which performs a stack pivot through a

return to an ‘xchg eax, esp; ret’ sequence and runs return-
oriented payload

CElement vtable




Exploit Demo




BISC

Borrowed Instructions Synthetic Computer




BISC

® BISCis aruby library for demonstrating how to
ouild borrowed-instruction® programs

Design principles:
Keep It Simple, Stupid (KISS)

Analogous to a traditional assembler

Minimize behind the scenes "magic”
Let user write simple *macros”

1. Sebastian Krahmer, “x86-64 buffer overflow exploits and the borrowed code chunks exploitation
technique”. http://www.suse.de/~krahmer/no-nx.pdf




ROP vs. BISC

Return-Oriented

Programming

Reuses single instructions
followed by a return

Composes reused
instruction sequences into
gadgets

Requires a Turing-complete
gadget catalog with
conditionals and flow

control

May be compiled from a
high-level language

BISC

Reuses single instructions
followed by a return

Programs are written using
the mnemonics of the
borrowed instructions

Opportunistic based on
instructions available

Rarely Turing-complete

Supports user-written
macros to abstract
common operations




Borrowed-Instruction Assembler

We don't need a full compiler, just an assembler
Writing x86 assembly is not scary
Only needs to support a minimal subset of x86

Our assembler will let us write borrowed-instruction
programs using familiar x86 assembly syntax

Source instructions are replaced with an address
corresponding to that borrowed instruction

Assembler will scan a given set of PE files for borrowable
Instructions

No support for conditionals or loops




MSF PeScan-Based Scanner

$ ./scanner.rb dirapi.dll OR EAX, ECX
ADD EAX, ECX OR EAX, [EAX]
ADD EAX, [EAX] OR [EAX], EAX
ADD ESI, ESI OR [EDX], ESI
ADD ESI, [EBX] POP EAX
ADD [EAX], EAX POP EBP
ADD [EBX], EAX POP EBX

]

]

ADD [EBX], EBP POP ECX
ADD [EBX], EDI POP EDI
ADD [ECX], EAX POP EDX

ADD [ESP], EAX POP ESI

AND EAX, EDX POP ESP

AND ESI, ESI SUB EAX, EBP
INT3 SUB ESI, ESI
MOV EAX, ECX SUB [EBX], EAX
MOV EAX, EDX SUB [EBX], EDI
MOV EAX, [ECX] XCHG EAX, EBP

MOV [EAX
MOV [EBX

1, EDX XCHG EAX, ECX

], EAX XCHG EAX, EDI
MOV [ECX], EAX XCHG EAX, EDX
MOV [ECX], EDX XCHG EAX, ESP
MOV ], EAX XOR EAX, EAX
MOV ], EAX XOR EAX, ECX
MOV 1, ECX XOR EDX, EDX
MOV ], ECX XOR [EBX], EAX




Programming Model

Stack unwinds We write borrowed-
“upward” Instruction programs
"downward”

RET
RET
RET
RET

YIMOID) 23S




Me Talk Pretty One Day

® Each unique return-oriented instruction is a word in your
vocabulary

® Alargervocabulary is obviously better, but not strictly
necessary in order to get your point across

® You will need to work with the vocabulary that you have
available

MOV EDX, [ECX]

MOV EAX, EDX

MOV ESI, 3 <:> ADD [BCX], 3
ADD EAX, ESI

MOV [ECX], EAX




BISC Programs

® Programs are nested arrays of strings representing
borrowed instructions and immediate values

Main = [ “POP EAX"”, Oxdeadbeef ]

® Arrays can be nested, which allows macros:

Main = |
[ “POP EAX”, Oxdeadbeef ],

“INT3"




BISC Macros

® Macros are ruby functions that return an array of borrowed-
instructions and values

def set(variable, value)

return |
“POP EAX", value,
“POP ECX", variable,

“MOV [ECX], EAX”




BISC Sample Program

#!/usr/bin/env ruby -I/opt/msf3/1ib -I../lib

require 'bisc'

bisc = BISC.new()
ARGV.each { |a|
bisc.add module(a)

}

def clear(var)
return [
“POP EDI”, Oxffffffff,
“POP EBX", var,
“OR [EBX], EDI”,
“POP EDI”, 1,
“ADD [EBX], EDI”
]

end

v = bisc.allocate(4)
Main = [ clear(v) ]
print bisc.assemble(Main)




Higher-Order BISC

® Consider macros “virtual methods” for common high-level
operations:

Set variable to immediate value
ADD/XOR/AND variable with immediate value
Call a stdcall/cdecl function through IAT

® Write programs in terms of macros, not borrowed
Instructions

® Macros can be re-implemented if they require unavailable
borrowed instructions




BISC (Non) Availability

® Covered and included in "Assured Exploitation” training
materials under an individual student personal use license

Training given with Alex Sotirov at CanSecWest 2010

® Not going to be made freely available (sorry)
| don’t want to contribute to the development of DEP-
evading malware exploits

Your favorite pen-testing framework will likely implement
something similar eventually




Wrapping Up




Other Applications of
Return-oriented Programming

iPhone’s code signing enforcement prevents modification of code or
introduction of new executable code

Exploit payloads must be 1200% pure return-oriented

Embedded processors often have separate instruction and data write-
back caches, which make injecting code problematic

Return-oriented exploitation techniques can be used to flush the
caches before executing the payload (Dai Zovi, 2003)

x86-64 ABI requires non-executable (NX) data memory
"Borrowed code chunks” exploitation technique (Krahmer 2005)

Some secure hardware designs keep code in ROM and refuse to
execute code from RAM

Checkoway et al (Usenix 2008) demonstrated the use of ROP on the
Z8o-based Sequoia AVC Advantage secure voting machine




Conclusions

Return-oriented techniques are increasingly required to exploit vulnerabilities
on systems with non-executable data memory protections

A return-oriented payload stage can be developed to bypass Permanent DEP

Bypassing DEP under ASLR requires at least one non-ASLR module

Bypassing DEP under full ASLR requires an executable memory address
disclosure vulnerability in addition to memory corruption corruption

iPhone’s code signing enforcement requires attackers to develop fully return-
oriented payloads

Attacker’s actions are still limited by the application sandbox

Preventing malicious actions is more important than preventing malicious
code




IELGENENE

® |T Security

Malware may eventually use these techniques to exploit DEP-
enabled processes

Malware analysts must learn how to analyze return-oriented
exploit payloads

® Software Vendors
Do not assume DEP/ASLR make vulnerabilities non-exploitable
Better to assume that all vulnerabilities yield full code execution

Restrict the actions that may be performed by application
components that parse and handle potentially untrusted data

® Privilege reduction (i.e. run under Low Integrity on Vista/7)
® Sandboxing (see Chromium’s sandboxed web renderers)
® \irtualization?




Soapbox

® Stop defending only against tactics and
start defending against larger attacker
strategies

Code injection through memory corruption is a
tactic

Malware persistence through various registry
modifications are all tactics

Causing application/host/human misbehavior is
the strategy




Otherwise...

® We run the risk of dealing with the volcanic ash cloud from
a "Cyber Pompeii” or "Cyber Eyjafjallajokull”




Questions?

Mail:
Twitter: @dinodaizovi
Web:
Blog: http://blog.trailofbits.com




