Interested in learning
more about security?

\ -

SANS Institute
InfoSec Reading Room

This paper is from the SANS Institute Reading Room site. Reposting is not permitted without express written permission.

Packer Analysis Report-Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

[language (in this paper we will use C) so that an analyst can better understand the workings and purpose of
the packer....

Copyright SANS Institute
Author Retains Full Rights

[] CounterTack

feirdinProatess Aliacks

AD

http://www.sans.org/info/36923
http://www.sans.org/info/36909
http://www.sans.org/info/36914
http://www.sans.org/reading-room/click/579

Packer Analysis Report — Debugging and
unpacking the NsPack 3.4 and 3.7 packer.

GIAC GREM Gold Certification

Author: Craig S Wright Name, craig.wright@information-defense.com

Advisor: Antonios Atlasis

Accepted: 17 Jun 2010

Abstract

The following report is an analysis of the NsPack 3.4 and 3.7 packer program (by North
Star/Liu Xing Ping). Unfortunately, many commercial antivirus vendors have not adequately
analyzed the NsPack binary and compression routine. This has led to the unfortunate
situation where major anti-malware vendors are misclassifying NsPack (and other PE
Packers) as a Trojan This paper provides instructions on how to determine if NsPack was
used and on how to unpack NsPack 3.4 and 3.7 using the OllyDbg debugger. The
OllyScripts used in this process as well as the custom plug-ins required to automate the
process are provided. The custom plug-ins that are required are provided with the source
code in the appendixes. This process includes instructions on how to fully restore the
import table so the file can be restored to its original state and executed. This also
incorporates an analysis of the packer as well as the means to create an unpacker manually
and to calculate the OEP.

As NsPack remains one of the most common PE Packers with high rates of reported use
and discovery (NsPack is in the top 10 list for PE Packers used on malware samples stored
in the AML database) and with the relatively low accuracy rates for detection, it is
important that security professionals gain a more comprehensive understanding of this and
related packers. For this reason, this paper has been written as a broad analysis of NsPack
that will help both the novice and experienced anti-malware professional.

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 2
NsPack 3.4 and 3.7 packer.

1. Introduction

This document provides instructions on how to unpack NsPack 3.4 and 3.7 using
the OllyDbg debugger. The OllyScripts used in this process are included in the
appendixes. The custom plug-ins that are used to automate the procedure are provided
with the source code. This paper also includes instructions on how to fully restore the
import table so the file can be restored to its original state and executed. This is continued
further with instructions on how to convert the machine code (assembly language) into a
higher level language (in this paper we will use C) so that an analyst can better

understand the workings and purpose of the packer.

Unfortunately, many commercial antivirus vendors have not adequately analyzed
the NsPack binary and compression routine. This has led to the unfortunate situation
where major anti-malware vendors are misclassifying NsPack (and other PE Packers) as
Trojans (figure 3.1). In section 6 we will show through both static analysis and dynamic

execution that NsPack is not a Trojan but a simple PE compression utility.

NsPack remains one of the most common PE Packers with high rates of reported
use and discovery. Oberheide, Bailey, & Jahanian (2009) used the Arbor Network’s Arbor
Malware Library (AML) to analyze the distribution of PE Packers. The results are
displayed in figure 3.2. In these tables we see that NsPack is in the top 10 list for PE

Packers used on malware samples stored in the AML database.

While this paper focuses on NsPack, the general principles are designed to enable
the reader to learn how to apply the process to other PE Packers. NsPack 3.x is a simple
compressor. It does not support Anti-Debug or Anti-Disassembly features. It used
configurable section names (defaulting to .nsp). In this document we will walk through

both the NsPack 3.4 and 3.7 versions.

Although we will touch on many topics, it is presumed that the reader has a good

knowledge of the following:

1. PE file format. Microsoft provides a couple of excellent sources of

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 3

NsPack 3.4 and 3.7 packer.

knowledge for the budding code analyst'.

a.

Kath, Randy (1997) "The Portable Executable File Format from
Top to Bottom" Microsoft Developer Network Technology Group.

(Available from: http://www.pelib.com/resources/kath.txt)

Pietrek, Matt (1998) "Windows System Programming Secrets",
John Wiley & Sons Inc, USA

Pietrek, Matt (1994) "Peering Inside the PE: A Tour of the Win32
Portable Executable File Format" Microsoft Developer Network
Technology Group. (Available from:
http://msdn.microsoft.com/en-us/library/ms809762.aspx)

2. An acquaintance with SEH (Structured Exception Handling) is required.

3. Basic knowledge of the Win32 API (or access to a good guide). In

particular, the following APIs are a large part of most packers:

a.

b.

h.

L.

CreateProcess,
GetCurrentProcessID,
GetModuleHandleA,
GetProcAddress,
OpenProcess,
ReadProcessMemory,
VirtualAlloc,
VirtualFree, &

WriteProcessMemory.

The reader should also have a good knowledge of ASM (assembly language). The

following sites provide an excellent introduction to this topic:

a. Computer Structures C335 Syllabus (Doyle, 2009),

! There are many good online ASM, PE and low level programming tutorials online. One Such example is "
Iczelion's tutorial Series" at http://win32assembly.online.fr/tutorials.html

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 4
NsPack 3.4 and 3.7 packer.

http://homepages.ius.edu/jfdoyle/C335/syllabusc335fall2009.htm

b. Iczelion's Win32 Assembly Homepage,
http://win32assembly.online.fr/tutorials.html

Each of these sites provides a step by step introduction to ASM that is designed to
teach the novice assembly coder the fundamentals. Section 9 (Appendix) provides a
disassembled code section for NsPack that can be used as an exercise in practicing

reversing this packer.

1.1. Tools required:
There are many good debuggers and dissassemblers (including HexRays IDA Pro
from the commercial stable). This paper has relied heavily on a use of the following

tools:

[¥] OllyDebug v1.10,

[¥] OllyDump plug-in,

[¥] Import ReConstructor 1.6, and

1.2. Why Study PE Packers?
As Guo, Ferrie & Chiueh (2008) note;

"Instead of directly obfuscating malware code, malware
authors today heavily rely on packers, which are programs
that transform an executable binary into another form so that
it is smaller and/or has a different appearance than the
original, to evade detection of signature-based anti-virus
(AV) scanners. In many cases, malware authors recursively
apply different combinations of multiple packers to the same
malware to quickly generate a large number of different-
looking binaries for distribution in the wild. The fact that
more and more malware binaries are packed seriously
degrades the effectiveness of signature-based AV scanners; it
also results in an exponential increase in AV signature size,
because when an AV vendor cannot effectively unpack a
packed threat, it has no choice but to create a separate
signature for the threat."

Over 80% of malware 1s packed (Guo, Ferrie & Chiueh, 2008). The growth of

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 5
NsPack 3.4 and 3.7 packer.

cybercrime will only lead to more malware and as these products are commercialized, the
authors are likely to make more effort (Debrosse, 2009) to create software that is more
difficult to detect. By creating packers, the cybercriminal can increase the costs of
detecting the software and hence increase their expected returns. For this reason it is
important that information security professional understand PE Packers whether they
work in the AV industry or for general commercial ventures. In the former instance, an
understanding of the packer problem is only likely to become more critical and in the
later, an understanding of packers will help the security professional to gain an

understanding of the problem in its true extent.

For the majority of security professionals, analyzing malware (and hence packers)
becomes most critical when an incident has occurred. Knowing how an attacker has
obscured their software can be the key in any successful incident handling exercise

involving malware, which is nearly all incidents these days and is only growing worse.

Guo, Ferrie & Chiueh (2008) report that the typical way an AV vendor such as

Symantec handles packers involves:

1. Recognize the packer,

2. Identify the packer,
3. Create a recognizer, and
4. Create an unpacker.

This paper will incorporate all of these steps for the NsPack packer.

1.3. Paper sections
This paper has been divided into several sections. The first section following the
introduction (section 2, What is a packer) details the functions and operation of a PE
packer. This section provides the basic functions of a PE packer as well as a synopsis of
the PE format. Section 3 (NsPack) provides a synopsis of the NsPack compression
function. This section includes an analysis of the execution and operation of the NsPack

compression utility and the creation of a packed executable.

Section 4 (Determining the packer), provides a walk-through procedure for

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 6
NsPack 3.4 and 3.7 packer.

determining the packer used on a PE Executable file with a detailed step-by-step guide to
using the tools. The next section (Unpacking in Olly) is a guide to manually unpacking an
NsPacked PE executable using the Olly Debugger. This is followed by a manual process
that can be used to correct the IAT and make the recovered file executable (for further

analysis) in section 6.

Section 7 (NsPack itself) is a detailed analysis of the NsPack compression
function and executable. This section goes into the structure and operation of the
compression program. In section 8§ we draw our conclusions, while, the final section
(Appendix) is optional and provides a detailed analysis of the NsPack routine and
processes. This section is designed for those wishing to create a functional reversing

routine for this packer.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 7
NsPack 3.4 and 3.7 packer.

2. What is a Packer?

A '"Packer’ is a compression routine that compresses an executable file. These
programs originated to minimize disk space and make downloads faster and derive from
valid uses such as that of WinZip's compressed executable function. They also obscure
the original file and make it more difficult to match the file signature of a compressed

file.

Packer programs have been introduced into the world of malicious software so
that the authors of the malicious code can extend the expected life of the software. Many
valid software authors have used packers to make it more difficult and costly to reverse
engineer their software. To this end, packers have become more complex over time and

many incorporate complex routines to encrypt the executable that they are protecting.

The packer takes the original program and compresses it. The compressed
executable is moved to the data section of the newly created file. As the data is
compressed, the PE header and the section header of the original file can no longer be
used to run the executable. As such, the packer will add a stub function. This is designed
to decrypt and decompress the packed file from the data section of the packed executable

into memory where the original file is reconstructed.

Basically, the 'executable' part of the program is a simple routine that is designed
to decompress the original file (or at least something that approximates it) into memory

and to resume execution at the OEP (Original Entry Point) of the uncompressed program.

Packers generally create a resultant executable that is smaller than the original
file. They also change the signature of the file and any hash that can be used to create a
simple matching engine (hence making anti-virus software more costly). This comes at a
cost. The packing process itself can create a signature that leaves the files being flagged
as suspicious (there are valid software products that are packed with unusual packers).
There is also a run-time cost as the file needs to be unpacked and/or decrypted before it is
run, a process that consumes more cycles than the original executable. This may or may

not be an issue to a malicious code author.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 8
NsPack 3.4 and 3.7 packer.

Some packers only reconstruct selected calls at a time and are more difficult to
dump from memory (an example of such a packer is Themida VM). Many packers also
have complex routines to stop memory debugging (or at least make this more difficult

and hence costly). NsPack is not one of these and this is outside the scope of this paper.

The weakness of any packer is simple; it needs to be unpacked into memory to be

useful. The best that a packer can do is to make the analysis more costly.

21. A Quick overview of a PE-COFF Executable File
All 32 and 64 bit executable files in the Microsoft Windows family of operating
systems use the Portable Executable (PE) structure. PE is the native file format of all
Win32 executable programs. It has a similar specification to the Unix/Linux COFF?. It is
essential to have an understanding of the PE specification when analysing malware on

Windows.

PE header

Section table
Section 1
Section 2
Section ...

Section n

Figure 2.1. The general layout of a PE file.
Portable Executable refers to the universal nature (on the Windows platform) of
the file format for executable Windows programs. This is universal as the PE format used

by the WIN32 platform is valid on all platforms (Intel, PowerPC etc).

All windows executable files other than VxDs and 16-bit Dlls are created using

the PE file format. This definitely includes all malware and packers on Windows.

2 Common Object File Format

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 9
NsPack 3.4 and 3.7 packer.

Figure 2.1 displays the standard PE file format. All PE files begin with a DOS MZ
header. When a file is packed, the original executable is compressed and saved as a
section in the new (packed) executable file. This is displayed in figure 2.2. Here the

compressed data section contains the original executable file.

The new program is really just a decompression routine designed to load the

original executable into memory.

DOSMZ header

DOSMZ header

New PE header PE header
New Section table Sectiontable
Section 1 Section 1
Section 2 Section 2
Section... Section ...
Data Section Sectionn

Figure 2.2. The layout of a packed PE file.

When the executable runs, the decompressed version of the original file is loaded

into the computer memory.

2.1.1. PE-COFF and the PE Header

The first section of any PE file is the MZ header. This is named after the
developer of this format, Mark Zbikowski. The MZ Header starts with the Hex value "4D
SA" and commonly contains a string such as "This program cannot be run under DOS" or

"This program must be run under Windows'".

The PE Header follows the DOS MZ header. This section contains the data

3 Microsoft has the full PE COFF Schematics available from
http://www.microsoft.com/whdc/system/platform/firmware/PECOFFdwn.mspx

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 10
NsPack 3.4 and 3.7 packer.

structures for the common execution settings of the file. The PE header is specified in the
file at offset 0x3C. This is a 4-byte signature that identifies the file as a PE format image
file to the Windows Operating System. This signature is “PE\0\0” which is "S0OH 45H
0OH 00H" in Hex and represents the letters “P”” and “E” followed by two null bytes.

The PE Header includes the following information:

[¥] Machine
[¥) Number Of Sections

[¥] Time Date Stamp

[(¥] Number Of Symbols
[¥] Size Of Optional Header
[¥] Characteristics

The PE header is a general term for the PE-related structure also termed the
IMAGE _NT HEADERS. The PE header used by the PE loader which determines the
starting offset of the PE header from the DOS MZ header. Windows can actually leave
out the DOS stub and start execution at the PE header (this is the true file header). The

MZ is used as this allows Windows to determine the type of file more easily.

2.1.2. Section Table

The section table is a reference to the various sections contained in the PE file.
The section table has the information displayed in Figure 2.3. This includes the name of

each section, the offsets and a set of characteristics describing the file section.

Section l Virtual Size l Virtual Offset I Raw Size l Raw Offset [Charactaristics |
.hsp0 0O0O4E000 00001000 00O4E000 00001000 F2000060
.hspl 00M31CE 0O04FO00 000131C6 00O4FO00 E00000E0
.hsp2 000DCEEBS 00063000 00OOCEBS 00063000 E0000DOB0

Figure 2.3. The sections from an NsPack packed file.

The section table maintains the section permissions for the file. These are used by

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 11
NsPack 3.4 and 3.7 packer.

Windows when memory pages are allocated. Gustavo Duarte (2009)* has an excellent
series of posts on how Windows load s the various page sections into memory for those

wanting to learn more about this process.

2.1.3. Sections

Each of the sections that are maintained in the section table contains information
related to how the program runs. Each executable section is a collection of data used by
the system. Generally, the compiler and linker that are used to turn source code into
machine code will group the sections into as few sections as possible. Each of these
sections is based on the characteristics of the file. In general, this will be based on the

data section permissions (such as a Read, Write and Executable page flag).

In order to preserve memory and make the program run more efficiently, most
compilers try to limit the number of sections and a standard PE file may contain the

following sections:

Many packers create more segments than are necessary for the program to run as
these are more concerned with making the process of reverse engineering the file as
complex (and hence economically expensive) as possible. In the example used in this
paper, this is not the case. NsPack is a comparatively simple compressor and the packed
file will usually be contained in three (3) sections. This is configurable in NsPack and the
file may have a number of additional sections so the discovery of more than three

sections does not preclude NsPack as the packing engine as we will detail later in this
paper.

The grouping of data into sections is based on the common attributes and not on a

* "How The Kernel Manages Your Memory", http://duartes.org/gustavo/blog/post/how-the-kernel-manages-
your-memory

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 12
NsPack 3.4 and 3.7 packer.

nn

logical basis. Each section can contain either "data", "code" or some other logical concept
as long as they have identical attributes. A block of data that is read-only should be in a
section that is marked as read-only. This can be both data and code, as long as it cannot

be changed.

The PE loader (or dynamic linker) begins by mapping the sections into the system
memory. The loader then examines the attributes of the sections in the executable. Each
memory block within a particular section is then set with the designated attribute. The

dynamic loads and links the shared libraries for the executable when executed.

21.4. Loading a PE File into Memory

The main stages used to load a PE file into memory (although grossly simplified)

arc:

1. The PE-COFF file is executed (by a user or process). The system starts by
examining the DOS MZ header and extracts the offset for the PE header if this
exists. On finding the offset, the system jumps to the PE header.

2. The PE loader next ensures that the PE header is valid. In the case where the
PE header is invalid, the systems will error. Otherwise, the system jumps to

the past of the PE header to the start of the section table.

3. The PE system next inputs the section table into memory mapping the sections
from the table into the systems memory. The attributes of the sections as listed

in the section table are mapped in memory.

4. Once the PE file has been mapped into the system's memory, the dynamic
linker (the PE loader) moves to the logical sections of the PE file. The next
jump is to the import table.

The dynamic linker maps each of the sections into memory assigning the

specified permissions to each of the sections.

2.1.5. The Import Address Table (IAT)

The dynamic linker moves to the IAT after the PE Header. The system uses the

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the =13
NsPack 3.4 and 3.7 packer.

IAT as a lookup table to find functions that are located in different modules used by the
application. The IAT exists as the system does not have the memory location for all of the

libraries it uses. Rather, an indirect jump is necessary whenever an API call is completed.

The dynamic linker loads the various modules into memory and connects them
together and then writes jump instructions into the IAT slots. The system is then
configured such that it is positioned at the memory locations of the consequent library
functions. This does have a negative impact on the performance of the system as

additional jumps are made outside the calling executable (in place of intra-module calls).

Dynamic libraries (usually in the form of a DLL in Windows) increase the
maintainability of the program by removing redundancy. This allows the same code to be
reused and updated easily unlike when all executables are separately maintained in
statically linked files (static linking builds the code into each executable. This results in
larger code as well as a greater requirement to maintain and patch individual programs).
OBC (Object Orientated Code) allows the creation and use of common libraries in place
of statically linked code. As such, a single DLL can be called from numerous programs.
This is extremely beneficial as the user can patch a single file in place of hundreds (or

more) statically linked files.

Some examples of calls made by the IAT include those files set from the code as
external calls. For instance, a C# program using the following statement could call the

"Sleep()",GetDisk(), FreeSpace or " GetCommandLine()" functions’:
using System;
For instance, the following call,
PUSH EBP
CALL DWORD PTR [004933FA]

Will return the value stored by the system at location, 004933FA. Looking at this
in a hex editor will return a NULL. That is, the Import Address Table will hold the value
"00 00 00 00" at address "004933FA". When running (we can see these values in a

3 See http://msdn.microsoft.com/en-us/library/ms684847%28VS.85%29.aspx for details on the Kernel32.dll
functions

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 14
NsPack 3.4 and 3.7 packer.

debugger such as Olly as will be detailed later in the paper) a memory location will be
returned. For instance if the value "004933FA" points to "AB 0C 59 7C" in memory, the
system is calling the GetProcAddress() function®.

2.1.6. Relocations

Windows executable files are not based on position-independent code but are
compiled to a chosen base address. In the event that a Windows executable cannot be
loaded to the chosen address, Windows will rebase the memory location (move to a new
base address). This can occur if the chosen address in memory is already used by another
program. If this occurs, Windows has to recalculate all absolute addresses. This involves
changing the values stored in the PE when the application is loaded into memory and

setting new values.

The loader compares the preferred and real load addresses. A delta value
representing the difference between the real and preferred start address is calculated. The
delta is added by each of the preferred address in the application. The result is the actual
memory location that is used by the application when it is executed. The base relocations
are then loaded as a list into the system. These are called by the application and loaded

into an existing memory location as required.

When loaded into the system memory, the resulting code that is created as a
combination of the application and the loaded modules is set as private to the process by

the system. When this occurs, the loadable module cannot be shared further.

Microsoft avoids rebasing setting pre-computed and non-overlapping memory
addresses to limit the resultant performance hit that this process causes. As most users do
not limit their applications to only those from Microsoft (and a number of vendors that
follow their set addresses), rebasing will still occur. Malware and other packed software
do not conform to the specifications recommended by Microsoft and hence this is one of
the many reasons why malware degrades system performance. Rebasing can create

extremely efficient code at the expense of additional memory use.

Linux ELF executables are completely position independent. Unlike PE files, ELF

¢ See http://www.astercity.net/~azakrze3/html/win32_api_functios.html for a list of Windows APIs.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the = 15
NsPack 3.4 and 3.7 packer.

executables use a Global Offset Table. This results in a substitution of execution time in
opposition to memory usage. Linux favors tight memory use, Windows PE files the

former.

2.2. Further reading and related work
The details of each of these sections are covered fully in the "Microsoft Portable

"7 This document is the

Executable and Common Object File Format Specification
ultimate reference guide for all aspects of the PE-COFF format. There are many papers
on malware that will provide detail into the various packers if the reader wishes to
follow-up this topic in more detail. The techniques presented in this paper can be applied

to other packers® equally well.

7 This file is provided free by Microsoft and is available online at
http://www.microsoft.com/whdc/system/platform/firmware/PECOFFdwn.mspx

8 Such as ASPack, FSG, UPX, Themida etc.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 16
NsPack 3.4 and 3.7 packer.

3. NsPack

NsPack is a formerly semi-commercial packer. It was written by Liu Xing Ping
and distributed by North Star Software in China. Although originally sold under a
commercial license, the product was never restricted and was freely distributed through

Warez sites and the RE (reverse-engineering) underground.

In section 6 we will analyze the NsPack binary executable itself. From this
analysis, we see that NsPack was most likely developed using Microsoft Visual C + + 6.0
and was itself packed using ASProtect, another PE Packer by Alexey Solodovnikov. The
likely reason for using a separate packer to pack NsPack itself is in order to make the
analysis and reversing of the packing algorithm used more difficult. In section 6, the
unpacking process for ASProtect 2.1 will be applied to NsPack 3.7 in order to dump an

unpacker version of the original packer.

Unfortunately, many commercial antivirus vendors have not adequately analyzed
the NsPack binary and compression routine. This has led to the unfortunate situation
where major anti-malware vendors are misclassifying NsPack (and other PE Packers) as
Trojans (figure 3.1). In section 6 we will show through both static analysis and dynamic

execution that NsPack is not a Trojan but a simple PE compression utility.

McAfee’

Home and Home Office Small Business

m NSPack

Figure 3.1. Classic Misdiagnosis

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 17
NsPack 3.4 and 3.7 packer.

NsPack remains one of the most common PE Packers with high rates of reported
use and discovery. Oberheide, Bailey, & Jahanian (2009) used the Arbor Network’s Arbor
Malware Library (AML) to analyze the distribution of PE Packers. The results are
displayed in figure 3.2. In these tables we see that NsPack is in the top 10 list for PE

Packers used on malware samples stored in the AML database.

This is likely the reason for the high rates of misclassification in the industry

noted above. There are some valid uses for PE Packers. These include:

Making Reverse Engineering of commercial software more difficult and

expensive,
1. Hiding internal functions and algorithms from users,
2. Penetration tests and the creation of test exploits,
3. Minimizing download sizes of files in order to maximize transfer rates.

As such, although packers are commonly associated with malware, the use of PE

compressors or Packers cannot be limited to malicious use cases.

SigBuster Identifier || Count PEiD Identifier || Count

Allaple 22050 UPX 11244
UPX 11324 Upack 6079
PECompact 5278 PECompact 4672
FSG 5080 Nullsoft 2295
Upack 3639 Themida 1688
Themida 1679 FSG 1633
NsPack 1645 tElock 1398
ASPack 1505 NsPack 1375
tElock 1332 ASpack 1283
Nullsoft 1058 WinUpack 1234

Table 1: The top ten packers classes in our AML dataset Table 2: The top ten packers classes in our AML dataset
as determined by SigBuster. as determined by PEiD.

Figure 3.2. Packer distributions, Jon Oberheide, Michael Bailey, Farnam Jahanian
(2009)

As will be demonstrated later, the Entrypoint of NsPack generally makes use of a
JMP instruction followed by a PUSHF and PUSHA command.

NsPack is an executable file compressor for Windows 32 and 64 bit PE based
executables. It also has the capability to work on .NET files. In marketing material and in

tests (figure 3.3), it is shown that NsPack is capable of compressing the size of a 32-bit or

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the = 18
NsPack 3.4 and 3.7 packer.

64-bit Windows executable by up to 60%. It is claimed (NsPack, 2009) that no noticeable
performance change will result from this compression. There are better compression
programs, but not all of these support 64-bit exe, dll, ocx and scr files. In addition, the far
lower deployment rate of NsPack when compared to more common packers (such as
UPX) means that less effort has been made to understand and automatically unpack the

algorithm used (figure 3.1).

Many anti-virus vendors’ simply report the existence of a packer. At the time of
writing, Sophos reports NsPacked files as "Mal/Packer" and PcTools as
"Packed/NSPack" for example'. As many files that are packed are not malicious, this
leads to a significant increase in the false positive or detection rate and in some industries
can pose a significant cost to the software user either through lost productivity or through

restricted access to alternative software products.

The greatest challenge posed by NsPack is the ability to recompress an already
compressed executable file. NsPack will recompress a PE file that has been compressed
using Upx, Aspack, Pecompact, and several other packers. This slows the execution of
the packed executable considerably, but make reverse engineering of the program
extremely complex. Malware authors use this technique to further obfuscate their
payloads. The techniques have not been widely deployed at present due to the inability of

many anti-virus vendors to effectively decompress a large number of packers in real time.

® An example of a common malware report for multiple vendors is provided by sources such as Virus total
(http://www.virustotal.com/) and Rabid Monkey. A sample analysis is provided at the link below:

http://rabidmonkey.org/malware/88d9f415b8e145dc61dc62417d5b3ea5ald810566dad 1634f6¢cf7e8202cd14da.htm
1

10 Also see http://www.threatexpert.com/threats/packed-nspack.html for further examples.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 19
NsPack 3.4 and 3.7 packer.

Windows EXE Packer Test

Last Upaate : U400 20006

Sl 133,909 434037 broken broken
\Ie‘tll%EM 2 116,721 391227 (broken (broken
_ NePack(23) <2> 36,792 <2> 430,203 <1> (broken
PECompact (v2.64) | 4iz2 | 22 0 OK((broken 7339840 <1
by Bitsum Tachr
Upack/ \'\rm;p:tc:k (v0.399) 105.664 <1> 333.444 <1> 432.060 <2> (broken

Figure 3.3. Packer Compression tests (Kpan, 2006)"!

This has resulted in the false positive issue noted above but also with the lower
use of packers due to the increased likelihood of being rejected whether deemed
malicious or not. The positive effect of this is that it is less cost effective (in terms of time
for a start) for malware authors to pack software and it can be prohibitive to pack
malicious code using multiple packers. Conversely, many users have become accustomed

to the false positive issue and may run programs that are otherwise likely to be blocked.

In general, a malware analyst will not be interested in NsPack itself, other than
removing its compression. NsPack makes the analysis of a packed sample more difficult

and time consuming, and hence costly.

3.1. Using NsPack
The executable to be packed is either dragged/dropped onto the main window or

the user can select:

' This table is provided by http://www.geocities.co.jp/Playtown-Yoyo/6130/exepacker.htm

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 20
NsPack 3.4 and 3.7 packer.

File -> Open

&L,Nspack By North Star

File(F) Options(0) Help(H) Ver3.7

Q@ Fie |® Directory |@ Settings |)7.Q About |

Drop a file into this window

0%

@Compress@] Jl Exitx) Open(0)

Figure 3.4. NsPack in action
Alternatively, the user can select the "Directory" tab and compress all executable

files in a directory at one time.

NsPack runs as a standard Windows application (figure 3.4). It is always
advisable to run untrusted software onside of a normal production environment. In this
case, NsPack was run from a Windows Vista system within a VMware session. Using the

program is extremely simple.

This session was configured within a RedHat Linix workstation running SNORT
and TCPdump. The reason for this is to capture any traffic to or from the host that could
be associated with NsPack. This methodology will allow for the detection of network

traffic and allow the determination of a network service if one exists.

As noted in section 3, many anti-virus vendors (see figure 3.1) classify NsPack as
a Trojan. If this was the case, the program would either bind to a network port or connect
to a remote I[P address. Neither occurred when running the program. In fact, running the

program for a period of 1 week resulted in no unexpected network traffic.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 21
NsPack 3.4 and 3.7 packer.

3.1.1. Options

NsPack is highly configurable (figure 3.5). Relocations, shared sections and

section names are all able to be configured.

,:i.:-__;:NsPack By North Star

File(E) Options(@] Help(H) Ver 3.7
(@ Fie | Diectoy &1 Settings | about |
Iv Compress resources IV Strip relocations

<l

[V Create backup copy Preserve extra data

<l

[V Force compression Save settings on exit

<l

[V Handle shared sections Integrate into context menu

<l

I™ Auto run after loading Renew the part of dos stub

<l

v UseWindows dll loader M ax.compression[winJx:unsupported)

I” Reserve the size of file I” compatibility compression
Section name:
® User defined(8 chars max): .nsp O Clear all
O Random numbers(0000000-3999339) language: English v

Al Exitx)

Figure 3.5. NsPack Options
NsPack allows the user to change the section headings. In place of the default
".nsp" naming convention, a user defined naming convention or a series of random

numbers may be used. Section names can also be cleared using the "Clear all" option.

NsPack has been available in one form or another since 2003 (see figure 3.6) but
as the domain is not longer maintained and no new version have appeared, it would

appear that the program is no longer being supported.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 22
NsPack 3.4 and 3.7 packer.

&;Nspa(k By North Star

Options() HelplH)

@ Fie |® Directory |@ Settings 8 sbou |
Win64/32 EXE,DLL,.net Compressor

Ver3.7

NSPACK FOR WINDOWS
Ver3.7
Copyright (¢) 2003-2006 NSData Corp

Contact Email: Service@nsdsn.com

HomePage: www.nsdsn.com

Jl Exitx)

Figure 3.6. About the Packer
Once the file has been loaded, compressing it is simple (figure 3.7). Select:

File -> Compress

é’;NsPack By North Star
File(F) Options(Q) Help(H) Ver 3.7
Open(Q) @ Settings | 2 About]
@ Compress(C) ;SPack 3.7\NsPack 3.7 (Unpacking)\CrackersKit v2.0.exe
T i
gl Esitix)
0%
@ Compress(C) -ﬂ Exitfx) Open(O)

Figure 3.7. Selecting the Packer compress function
The compression routine will run and the results are displayed in NsPack's main

window (figure 3.8).

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the = 23
NsPack 3.4 and 3.7 packer.

é}:NsPack By North Star

File(F) Options(Q) Help(H) Ver3.7

@ Fie |® Directory I@ Settings |@ About |

C:A\Data\HCLANSPack 3.7\NsPack 3.7 (Unpacking)\CrackersKit v2.0.exe
Verifying PE Format -> [PE32) A
Number Of PE i
Image Base Address
ize Of Image
-00001000(H)
:00000200(h)
>143117(B) Compression ratio:[39.3%]
File Compressed OK. —
4 »
@ Compress(C) Al Exitx) Open(Q)

Figure 3.8. Running the Packer

At this point, we have a compressed executable.

During this process, TCPView (from SysInternals) was run locally (figure 3.9) on
the system to monitor for local ports and listening services. Snort will not detect the

presence of a listening but not sending service. No ports were opened by NsPack.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 24

r

NsPack 3.4 and 3.7 packer.

% TCPView - Sysinternals: www.sysinternals.com [ol[&)=
File Options Process Wiew Help
& A =
Process 7/ Protocol Local Address Remote Address
E [System Process]:0 TCP craigwright-pc.information-defense.com:64124 proxy01.information-defense.com: 3128
“ ' AppleMobileDeviceService.exe: 1428 TCP Craigright-PC: 27015 localhost: 49214
¥ AppleMobileDeviceService. exe:1428 TCP Craigwright-PC: 27015 localhost: 56921
7 AppleMobileDeviceService. exe:1428 TCP Craigwright-PC: 27015 localhost: 52952
¥ AppleMobileDeviceService. exe:1428 TCP CraigWwright-PC: 27015 localhost: 59058
7 AppleMobileDeviceService. exe:1428 TCP CraigWright-PC: 27015 localhost:52801
7 AppleMobileDeviceService. exe:1428 TCP CraigWright-PC: 27015 localhost: 52302
firefox.exe: 7576 TCP CraigWright-PC:52936 localhost: 52937
firefox.exe: 7576 TCP CraigWright-PC:52937 localhost: 52936
firefox.exe: 7576 TCP CraigWright-PC:52938 localhost: 52933
firefox.exe: 7576 TCP CraigWright-PC:52933 localhost: 52938
firefox.exe: 7576 TCP craigwright-pe.information-defense.com:64143 proxy01.information-defense.com: 3128
&) iTunesHelper.exe: 1672 TCP Craigwright-PC: 49214 localhost: 27015
) iTunesHelper.exe: 1672 TCP CraigWright-PC:52302 localhost: 27015
iTunesHelper.exe: 1672 TCP Craigwright-PC:52801 localhost: 27015
&) iTunesHelper.exe: 1672 TCP CraigWright-PC:52952 localhost: 27015
iTunesHelper.exe: 1672 TCP Craigwright-PC:56921 localhost: 27015
&) iTunesHelper.exe: 1672 TCP CraigWright-PC:53058 localhost: 27015
i~ OUTLOOKEXE: 4176 TCP CraighW/right-PC:49229 localhost: 33333
i~ OUTLOOKEXE:4176 TCP CraigWright-PC:49259 localhost: 33333
i~ OUTLOOK.EXE:4176 TCP craigwright-pc.information-defense.com:63254 proxy01.information-defense.com: 3128
. OUTLOOK.EXE:4176 TCP craigwright-pc.information-defense. com: 63937 proxy01.information-defense.com: 3128
[2) PGPuay.exe:1424 TCP Craigright-PC: 33333 localhost: 52893
() PGPlray.exe:1424 TCP CraigWright-PC: 33333 localhost: 49223
[2) PGPlay.exe:1424 TCP Craigright-PC: 33333 localhost: 52888
() PGPlray.exe:1424 TCP CraigWright-PC: 33333 localhost: 49253
‘ PGPtray.exe:1424 TCP craigwright-pe.information-defense.com:64138 proxy01.information-defense.com: 3128
¥ spoolsv.exe:8032 TCP craigwright-pc.information-defense.com:64152 75-125-101-192. opticaljungle.com: 9100
IiE WINWORD.EXE:4632 TCP CraigWright-PC:52888 localhost: 33333
[WINWORD.EXE:4632 TCP Craigwright-PC:52893 localhost: 33333
< m »
Endpoints: 30 Established: 17 Listening: 0 Time Wait: 1 Close Wait: 6

Figure 3.9. Monitoring NsPack locally using TCPView

At the same time, NsPack was being monitored by other SysInternal tools. In
figure 3.10, Process Explorer is used to see if any other threads are created. Process
Monitor was used to log these events. No unusual activity was monitored during these

tests.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 25
NsPack 3.4 and 3.7 packer.

27 Process Explorer - Sysinternals: waww.sysinterals.com [INFO-DEFENSE\Craig.Wright] [ol[& ==
File Options View Process Find Users Help
I © 0 = B E s S
Process PID CPU Description Company Name Path Command Line -
'@ McSvHost.exe 5884 Mchfee Service Host Mcafee, Inc. C:\Program Files\... "C:\Program Files...
(= [n 1 McSACore.exe 5948 SiteAdvisor Mcéfee, Inc. C:\Program Filesh... "C:\Program Files...
J undll32.exe 4884 ‘Windows host process (Rundli32) Microsoft Corporation C:A\windows\Syst... "C:A\Windowshsyst...
[n | Searchindexer.exe 5176 Microsoft Windows Search Indexer Microsoft Corporation C:AWindowshSyst... C:\Windowshsyst...
[n 7 spoolsv.exe 8032 Spooler SubSystem App Microsoft Corporation C:AWindowshSyst... C:\Windows\Syst...
[m 7 lsass.exe 1036 Local Security Authority Process Microsoft Corporation C:AWindowshSyst... C:\Windowshsyst...
(w7 lsm.exe 1044 Local Session Manager Service Microsoft Corporation C:A\windows\Syst... C:\Windows\syst...
= n winlogon.exe 984 ‘Windows Logon Application Microsoft Corporation C:A\windows\Syst... winlogon.exe
=] | explorer.exe 9772 Windows Explorer Microsoft Corporation C:A\windows\expl... explorer.exe
VolPanlu.exe 3724 VolPanlu.exe Creative Technology Ltd C:\Program Filesk... "C:\Program Files...
issch.exe 3740 InstallShield Update Service Scheduler InstaliShield Software Corp... C:\Program Filesh... "C:\Program Files...
53 VProTray.exe 3768 Tray &pplication Symantec Corporation C:\Program Filesh... "C:\Program Files...
hpwuSchd2.exe 3828 Hewlett-Packard Product Assistant Hewlett-Packard Co. C:\Program Filesh... "C:\Program Files...
() vmware-tray.exe 3868 VMware Tray Process YMware, Inc. C:\Program Filesk... "C:\Program Files...
(= ¢ vcSplay.exe 3888 0.74 Virtual CD - Player H+H Software GmbH C:\Program Filesh... "C:\Program Files...
% veStray.exe 2960 Virtual CD - Quick Start Utility H+H Software GmbH C:\Program Filesk... "C:\Program Files...
» | OlpSynch.exe 3900 C:\Program Files\... "C:\Program Files...
@ ViMwareTray.exe 2664 VMware Tools tray application VMware, Inc. C:\Program Filesh... "C:\Program Files...
@ WiMwarellser.exe 2680 VMware Tools Service Viware, Inc. C:\Program Files\... "C:\Program Files...
=[] jusched.exe 2744 Java[TM) Platform SE binary Sun Microsystems, Inc. C:\Program Files\... "C:\Program Files...
Q jucheck.exe 3032 Java(TM) Update Checker Sun Microsystems, Inc. C:\Program Filesh... "C:\Program Files...
&) wmdSync.exe 2776 User session Windows Mobile device handler Microsoft Corporation C:Awindows\Wwin... "C:A\Windows\Wi...
MacDrive.exe 2768 MacDrive application Mediafour Corporation C:\Program Files' ‘C:\Program Files...
(3 iTunesHelper.exe 1672 iTunesHelper Apple Inc. C:\Program Filesi... “C:\Program Files...
[sidebar.exe 2436 5.20 Windows Sidebar Microsoft Corporation C:\Program Files\... "C:\Program Files...
. - AudibleDownloadHelper.exe 2952 Download Manager for Audible content Audible, Inc. C:\Program Filesh... "C:\Program Files...
@ hpqtral8.exe 1660 HP Digital Imaging Monitor Hewlett-Packard Co. C:\Program Files\... "C:\Program Files...
ﬂ PGPlray.exe 1424 PGP Tray PGP Corporation C:\Program Files\... "C:\Program Files...
= a0 MOM.exe 3468 Catalyst Control Center: Monitoring program Advanced Micro Devices |... C:\Program Files\... "C:\Program Files...
Kii CCCexe 5652 Catalyst Control Centre: Host application ATI Technologies Inc. C:\Program Files\... "C:\Program Files... =
(~ OUTLOOK.EXE 4176 Microsoft Office Outlook Microsoft Corporation C:\Program Files\... "C:\Program Files...
[iw WINWORD.EXE 4632 8.18 Microsoft Office Word Microsoft Corporation C:\Program Filesh... "C:\Program Files...
KeePass.exe 2876 KeePass Dominik Reichl C:\Program Filesh... "C:\Program Files...
firefox.exe 7576 4.46 Firefox Mozilla Corporation C:\Program Files\... "C:\Program Files...
158 taskmgr.exe 6540 0.74 Windows Task Manager Microsoft Corporation C:Awindows\Syst... "C:\Windows\syst...
& Tepview.exe 0.74 TCP/UDP endpoint viewer Sysinternals - www.sysinter... C:\Users\Craig.\W.
PriNspack37exe 10120 nSpack Microsoft 7272277 North Star

CPU Usage: 30.49% Commit Charge: 35.23% Processes: 85

Figure 3.10. NsPack monitored by Process Explorer
Although, and as noted, several Anti-Virus vendors classify NsPack as a Trojan;

we can see that NsPack exhibits no malicious behavior by itself.

The result of this is that we can be satisfied that NsPack is not a Trojan itself, but
simply a packer or compression function. We can also use this to create a number of
distinctly different packed executable by manipulating the options associated with

NsPack.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 26
NsPack 3.4 and 3.7 packer.

4. Determining the packer.

In this section, we will walk through the analysis, disassembly and rebuilding of
NsPack, annotating the differences between the 3.4 and 3.7 versions. We will start with
the process used to determine what packer (if any) has been used. Although the
distinctions are minor, the walkthrough for NsPack 3.4 have been noted in full below

where they differ from the processes used with NsPack 3.7.

The first step is to validate that the correct packer has been used on the samples.
Different packers require different processes to unpack them. Using the wrong process

will at best waste time and could at worst lead to compromising a host.

In the case of NsPack, two (2) tools (PEiD and RDG) are used to ensure that this
was correct prior to starting execution. Using the two tools allows us to minimize false
positives. PEiD is one of the most accurate packer detectors, but this still means errors
occur. By using PEiD and RDG conjointly, the error rate is maintained at an acceptably

low level. These tools are available from the following websites:

(¥} PEiD (http://www.peid.info/)
[¥] RDG Packer Detector v0.6.6 2k8 or later (http://www.rdgsoft.8k.com/)
4.1. PEiD
PEiD is designed to detect the majority of packers, cryptors and compilers used
on PE files. It has the ability to detect over 470 distinct packer signatures in PE files.

Using PelD is simple. Just run the program (administrator privileges may be required on

some systems)

To scan a file, simply:

1. Click the ' - | button on the top right of the main PEiD window to the
right of the "file" field.

2. Select the file to be analyzed.

3. PEiD will automatically scan the loaded file and return the results.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 27
NsPack 3.4 and 3.7 packer.

PEiD has a number of options (figure 4.1) that provide the ability to scan multiple
files or directories at one time. It is also possible to test the file more completely, but this

does increase the time required to report on each file.

PEiD Options (2]
{* Normal Scan I Register Shell Extensions
" Deep Scan [V Minimize to System Tray
" Hardcore Scan IV Load Plugins (Restart PED)

[” Recurse Subdirectories | Allow Multiple Instances
[V Use External Signatures (Restart PEID)

Save

Figure 4.1. The PEiD options

The ilbutton provides additional information about the file being analyzed
(figure 4.2) and provides statistical data as to the entropy of the file (which can also be

used in detecting encrypted or compressed segments).

Extra Information @

FileName: | C:\Users\Craig S Wright\AppData\Local\Temp\Rar $EX00.567\PEID.€
Detected: |Nothing found *
Scan Mode: | Normal
Entropy:

EP Check:

Fast Check:

[ILL]

Figure 4.2. PEiD options
Loading an NsPack compressed file will quickly return the existence of the
packer. In the case the version 3.7 samples, these are readily validated as NsPack 3.7

compressed executables (figure 4.3).

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the = 28
NsPack 3.4 and 3.7 packer.

LA PEID v0.95

File:

C:\Data\HCL | Tests\Pack 3\notepad.exe

Entrypoint: | 0002B0CY EP Section: | #7541 >]
File OFfset: |000032C9 First Bytes: [9C,60,E8,00 | > |

Linker Info: | 8.0 Subsystem: |Win32 GUI B

nSPack 3.7 -> MNorth Star/Liu Xing Ping

Multi Scan | IaskViewerl Options |

[V Stay on top

Figure 4.3. PEiD determination of NsPack 3.7
With NsPack version 3.4 compressed executables, the results can be less accurate

and a "Hardcore Scan" may be required.

PEiD will also return some basic information concerning the file such as:

[¥] Information returned - Entrypoint

[¥] File Offset

[¥] Linker Info

[¥] EP section

These are covered in more detail in section 2 and the manual calculation of the

File Offset is included in Section 6.3.2.

4.2. RDG Packer Detector
It is important to validate the settings when manually checking samples. Using
multiple detection tools in combination significantly increases the probability that we

have identified the packer used on the sample correctly.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 29
NsPack 3.4 and 3.7 packer.

dacker Gelector V.G,

Lo
(¥

w &9

C:\Data\HCL\TestshPack 3\notepad.exe
@ . @
Compilador
NSPack v3.7 Detectado
Posible %
Contacto : Al Frente []
v 4 ﬂﬂ 1P Detectar
o ©#a c ve DID00030

Figure 4.4. RDG determination of NsPack 3.7
In each case, the samples have been validated as correctly being packed using
NsPack version 3.7. This differs slightly to NsPack 3.4, where more errors have been

noted in determining the sample packing version.

Many of these tools behave poorly on Windows Vista. The use of either Windows

XP or Windows 7 is recommended and even the later can periodically fail.

To use RDG, load the file to be analyzed:

Select m

This will bring up the Explorer 'File' menu and you can then load the program to

be tested.

Next, select the button. This will run the analysis and return the
result (figure 4.4). This can be clicked to provide more details in some instances (figure
4.4), however, NsPack 3.7 gives little more information. Where multiple packers have
been used or the file has been manually altered (e.g. IAT manipulation) this can provide

information that may aid in the recreation of the file.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 30
NsPack 3.4 and 3.7 packer.

€scaneo Externo (Mediante DIl Actualizablé -) X)

Detectado: NSPack v3.7
Posible:
Contacto:

(lltima Actualizacién: 11 de Noviembre del 2008 9)

Figure 4.4. RDG has successfully detected NsPack version 3.7.
If the user has mixed the configuration options (figure 3.5) when creating the

packed file, NsPack version 3.4 will not always be detected correctly by many tools

(figure 4.5).

n N PRV
v acker Selector Vo668 -)x) _______
- .’
ma = -3 X
C:AData\HCLYNSPack 3.4\nspack34r-samplesic3-crl-s1 -seclusr\tm U'h Ddecqon J J
© Compiladoro «Multiples Protecciones»
ﬁ SP k 2 3 JOISISIGISIGISIGISISISISISISISISIGISISSISGISIGISISSISSISSISISSISSISISI
nSPack v2. .. o e
Detectado nSPack Deteccion Heuristica
@ nSPack Deteccion Heuristica POSib|e£ nSPack v1.4
Contacto : www.nsdsn.com Al Frente [] nSPack v2.3
v 4 ﬂ@ P Detectar
@ Archivo Escaneado en .19 Seq. O M-A & HB @ Your Detector |)}' RDGMax

Figure 4.6. RDG determination of NsPack 3.4
With Version 3.4, there are some discrepancies as to the version (see above). The

results do point to NsPack, but the version may not be correctly calculated.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 31
NsPack 3.4 and 3.7 packer.

5. Unpacking in Olly

This section details the process to unpack NsPack 3.x compressed executables
using Olly (by Oleh Yuschuk). Extreme care and caution should be taken when
unpacking possible malware samples in Olly. This should go to the use of isolated hosts
(such as VM's or specialized non-networked systems). A debugger runs the executable.
Although a good deal of control is maintained over the executable being analyzed in a
debugger, it is easy to err and allow the sample to infect the host. VM's are of use here as

the snapshot capability allows the reversal of steps that cause problems.

A dissassembler such as IDA (Appendix) does not run the executable. As such, it
will not lead to the sample infecting the analysis host. Olly is used for the manual
unpacking process. Olly is a powerful Windows debugger and is widely deployed (and
being free does not hurt). Olly has a number of enhancements and add-ons that increase

its effectiveness.

To load and extract the packed executable images using Olly, we shall start with

configuring Olly and the environment it is running within:

1. Get the OllyDbg program from http://home.t-online.de/home/Ollydbg/

2. Get the OllyDump plug-in from

http://www.pediy.com/tools/Debuggers/ollydbg/plugin/OllyDump/OllyDu

mp.zip

3. Extract the file, ollydump.dll file into OllyDbg's plug-in directory (e.g.
C:\Reversing\Olly\Plug-ins).

4. Run OllyDbg,
5. Click File->open,

6. Select the executable to unpack.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 32
NsPack 3.4 and 3.7 packer.

File View Debug Options Window Help
eadh [BI4: tamoyeehs > | 2] =3 0] 8]] B R

[c] cpu 2 OllyDump » Dump debugged process I

Find OEP by Section Hop (Trace into)
Find OEP by Section Hop (Trace over)

Options

About

Figure 5.1. Check the plug-ins are loaded

It is also good practice to ensure the Plug-in has been correctly loaded. To do this:
1. Click File->Plug-ins
2. Check that OllyDump has been loaded (figure 5.1).

Olly can be used to analyze malware samples in depth and to investigate the
processes started by an unknown application. In this section, we look at analyzing and
dumping packed samples. The section may be focused on NsPack, but the same

techniques can be used on other types of packers.

51. Manual Unpacking
With OllyDebug running and the OllyDump plug-in loaded (figure 5.1), click
“F3” to load the packed sample. An alert should appear noting that the sample is packed.
Click ok (figure 5.2).

Entry Point Alert L_&J

Module 'cmd’ has entry point outside the code (as specified in the PE
! header), Maybe this file is self-extracting or self-modifying. Please keep
it in mind when setting breakpoints!

.

Figure 5.2: Loading a packed sample into Olly
The packed sample will now be loaded into Olly. Note that a warning that the

sample is packed is again displayed (figure 5.3). Again, click ‘Yes’ to continue. As we are

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the = 33
NsPack 3.4 and 3.7 packer.

attempting to dump and manually unpack the sample, it is expected that we will receive
warnings. Most software is not packed and Olly's ability to analyze the software is

limited whilst it is packed.

OllyDbg - cmd.exe

File ‘iew Debug Plugins Options ‘Winde Help
Funing | BI4x| wln| w4 4] o] L{E[MT[W/H[c|/|K|B|R[.|S]
@CPU main thread, module cmd o |[E &R
9C PUSHFD
0 PUSHAD » |Begisters (FPU) — “H._M'f
ES 00000000 CALL cmd.4ADSEOOS sEEmEEaan
5] poP EBE kerne132. 769800E9 ngrpr
83ED 67 SUB EBP .
28030 SEFEFFFF LEA ECX, DUDRD PTR SS: [EBP—IRZ]
3833 @1 CHP BYTE PTR DS:[(ECX]
v BF24 42020000 JE cmd,4ADSB25A
cea1 a1 MOU BYTE PTR DS:[ECX1,
SBCS MOV EAX, EBP N
2BSS F2FDFFFF SUE EAX, DWORD PTR SS: (EEP=20E] EIP 4ADSAFFE cmd.<Modu leEntryPoint
8985 F2FOFFFF MU DWORD PTR SS: [EBP-20E], £ kerne|32.BaseThreadIn it Thunk %o EEFEEERE]
9185 22FEFFFF ADD DWORD PTR SS:[ESP-IDEI. kerne [32.BaseThreadIn it Thunk E T G2 o FFFFFFFF
30BS GEFEFFFF S1, D 2 EFEEFFFE)
g [Ee
55 Compressed code? 2 o Hm A60)
PFFDFobD: 49
= Po0G NULL
G EtErr ERROR_SUCCESS (00000000
6A 00 ; isti [; ioni Po246 (NO,NE, E, BE, NS, PE, GE, LE
ROt SRFEFFFF ‘ \ Qulck statistical test of module ‘cmd reports that its code section is .
either compressed, encrypted, or contains large amount of embedded
v BF34 £90930000 = . N .
398 EFFFF data. Results of code analysis can be very unreliable or simply wrong.
200 CALL cmd. i is?
e POF EBY Do you want to continue analysis?
B9 67030000 MOU ECX, 3¢
8309 ADD EBX, E
PUSH EAX
s3 PUSH EBX
ES BO020000 c
SE POP ESI Yes No
S0 POP EBP
SB36 MOU ESI, D
SEFD MOU EDI, El
9380 E2FDFFFF ADD EDI,
SBOF MOV EBX,EDI
833F 00 CHP OWORD PTR DS:[EDII, @
v JNZ SHORT cmd.4ADSEGSC
83C7 @84 ADD EDI, 4 -
AR bnannnnn tan Feua
»
Address |Hex dump ASCIT - ETURN to ker
; 90 00 00 0 Z a0 0 00 04 0
S 2 [RETURN to ntdll.?
aRt1? A

Figure 5.3: Again, Olly lets us know the sample is packed.
To run the program by steps and hence decompress the original, we need to enter

“F8” (select the F8 function key) to step through the packed sample (figure 5.4).

@ CPU - main thread, module cmd o |[[= =)
2C PUSHED » |Reagisters (FPU) <
€ | PUSHAD A 7 kerne [52.BaseThreadln Lt Thunk
ES 00000000 EALL cnd. 4ADSB00S
S EORJERs = ond. <Modu leEntryPoint
S0SD SLFEFFFF | LER Ek, DUDRDIPTRISSE [EBP-1R2]

3039 @1 CHF EVTE PTR DS:LECK],

9F24 42020000 | JE cnd.d4ADSE2SA

ceal a1 HOU BYTE PTR DS:[ECKXI1, 1

8BCS U EAX, I

2885 F2FDFFFF SUB ERX, DWORD PTR SS: [EBP-2BE] EIP 4QD<£!FFF cmd. 4ADSAFFF
8985 F2FOFFFF | MOU DUORD PTR S8: [EBP=20E], EAX kerne |32.BaseThreadIn it Thunk A CC GaYD D9mie ArCCCCCEEEY

Flgure 5.4: Stepping through the program.
At this point you should notice that the Registers have changed (figure 5.5). Olly
can display the values help in the systems memory and as the program executes and these

update, we can watch the changes that occur.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 34
NsPack 3.4 and 3.7 packer.

Registers (FPU) < L —
ER; 7 kernel32.BaseThreadlin Lt Thunt 007 kernel3z.BaseThreadlnitThunk
E 13 .
E cnd. <Modu leEntryPoint d.<ModuleEntryPoint
E
ES
EB
ES
EDI
EIP cmd. <Modu leEntruPoint cmd. 4ADSAFFF
Ca @(FFFFFFFF) Co B(FFFFFFFF)
B 1 ¢ FEFFEFEF) P 1 @(FFFFFFFF)
Ao a(FFFFFFFF) Ao @lFFFFFFFF)
z 1 @(FFFFFFFF) g 1 @(FFFFFFFF)
S @ >FEDFB06(4668) S o 7FFOFBB8G(4868)
TB &GS 1 I 4
0@ D&
0 8 LastErr ERROR SUCCESS (G8008098) 0 @ LastErr ERROR_SUCCESS (90006666)
EFL (NO, NB, E, BE, NS, PE, GE, LE) EFL 00000246 (MO, NB,E, BE, NS, FE, 6
STH STo 2.8
o 3 k
k
3.6
A i:'.
k
empty %]
ST? empty 8.8 B ~ ~
2210 espuozoll__ . 3218 ESPUOZD
c Cond B 8 @ 8 Err B 38088 8 FST 886846 Cond 8 4 % Err 8 8 888 8 8
Fou Frec MEAR.S3 HMask 1 1 1 1 1||FCW 827F Prec NEAR,53 Hask 11111

Figure 5.5: The registers will change as the program is stepped through.

From figure 5.5, we can see that the values in the registers have changed with the
original load on the left, with the alteration subsequent to hitting F8 on the right. The ESP
register is the CPUs 32-bit stack pointer and it stores the current position in the stack.
When a value is pushed to the stack, it is pushed below this address. The ESP register

points to the current top of stack.

A PUSH subtracts 4 from the SP and copies a 32-bit value onto the top of the
stack, POP copies a 32-bit value from the top of the stack and adds 4 to SP. SP is the 16-
bit stack pointer register. The SP is the low 16 bits of the 32-bit ESP register.

In order to trace the stack, Right Click the ESP register and select “follow in
dump” (figure 5.6). Following this value should take us to the OEP.

Olly is a user-mode debugger. User mode debuggers attach to a single process
unlike kernel mode debuggers (such as SoftICE or WinDbg) which attach to the entire
system and all processes. This limitation is not a problem with respect to unpacking code.
With a user mode debugger, it is necessary to know the exact process to be analyzed. In

order to unpack a sample this is a prerequisite and hence not a limitation.

Olly displays the registers for the system, and the inability to attach to all running

processes is unlikely to affect any unpacking exercise. When analyzing malware, unlike

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the = 35
NsPack 3.4 and 3.7 packer.

simply unpacking the sample, the process being analyzed may call other processes. When
this occurs, the newly spawned process may not be accessible from within Olly. As noted,
this limitation will not impact the unpacking and dumping process as the system will call

and unload itself in the same process.

Registers (FPU) <
ERX 76980807 kernel32.BaseThreadInitThunk
ECX 80000000

EDX 4ADSAFFE cmd.<{ModuleEntryPoint>

EBX PFFD2664

ESP 'B@12FF&~

EBP BB12FF9
EST HBABEOH Increment Plus
EDI 6008664 D t Mi
EIP 4ADSAFE ecremen inus
C 8 ES 962
e c
2 1 DS 062 Settol
S8 FS ga3 .
E g GS 606 Modify Enter
08 LastEr . :
sl Copy selection to clipboard Ctrl+C
ST@ empty @ Copy all registers to clipboard
ST1 empty @
empty 1
gg iy g Follow in Dump
empt o
STé empty @ Follow in Stack
ST? empty @
FST 6688 C | i
EolgoosoNC View MM registers
Wiew 3DNow! registers
View debug registers
Appearance »

Il
Figure 5.6: Tracing the stack.

The "follow in dump" function provides a dump of executable section that we are

going to follow in order to find the “OEP”.

This dump is displayed in the figure 5.7. Note the data contained in the Hex dump

field displayed in the window at the lower left of the screen.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 36
NsPack 3.4 and 3.7 packer.

OllyDbg - cmd.exe ="

File View Debug Plugins Options Window Help

ravet [@lex] wlu] w14 3100 = = wJE|mx]wln]c] x| Bl Rl 5|]

[€] CPU - main thread, module cmd

4ADSAFFE 5C PUSHFD
| SRDSHFFF | PUSHAD
CALL cnd. 4RDSEBES
POP EBP

>

SUB EEP, 7
LEA ECX, DIORDVPTRISSSCEBP=1A2]
CHP BYTE PTR DS:[ECK], 1

HOU ERAX, EBP 22
SUB EAX. DWORDIPTRSSH [EBP=20E] EIP 4ADSAFFF cr
HOU DUORD PTR SS:LEBP-20E, EAX kerne|32.Ba itThu

ADD DWORD PTR SS:CEBP-1DE1 EAX
LEA ESI DWORD PTR SS:([EBP-19A1
ADD DUORD PTR DS:(ESI], EAX
PUSH EBP

2
CALL DWORD PTR $5:[EBP-1661
TEST EAX, EAX kern:
JE cnd. 4ADSE3BE

HOU “DUORD” PTR_SSICEBP=1EG], EAX
CALL_cnd. 4ADSBOE

FOP EBX

HOU ECK, 267
ADD EBX ECK
PUSH EAX

PUSH EBX
CALL_cnd. 4ADSB31F
FOP ESI

POP EBP

MOV ESI,DWORD PTR DS:[ESI]
MOV EDI, EBP

ADD EDI DWORD PTR SS:[EBP-21E]
MOY EBX, EDI

CHMP DWORD PTR DS:[EDI], o

JHZ SHORT cmd.4ADSBBSC

50 004

E Al 09 80 FO
b 06 0O 0O 00 00 02 60 00 FE AF DS 4A
80 89 FD 7F 00 80 98 00

Figure 5.7: The dump of the executable.

The dump below contains the address of the ESP register. You can see that we
have highlighted the initial four (4) byte values (as displayed in the figure below with the
values highlighted in grey).

Address |Hex dump ASCII

aa12F 46 B2 B8 B8 E9 DB 98 76 00 88 FD 7F D4 FF 12 68| F8..053yv. G2 0E $.
ZFF92/BB 19 78 77 08 88 FD 7F E6 26 A2 75 00 00 68 66| 7+pw.C*0p&iu. ...
12FFAZ 08 68 90 60 08 S8 FD 7F 00 00 60 00 60 00 68 88|0%0........
1ZFFES B0 90 98 BB AB FF 12 00 00 90 88 00 FF FF FF FF|....3 $.....
12FFC2/FA 99 6C 77 8A 93 C1 B2 6060 00 68 88 EC FF 12 98 -0 lwed+8....9 #.
12FFD2/8E 19 78 77 FE AF DS 4R 66 88 FD 7F 600 00 00 08 Adpwe»'J.G20,,..
1ZFFES| 00 90 99 B0 00 00 99 00 00 00 98 B0 FE AF DS 4A| cueeeennsaa w2’y
AR1ZFFFS| B8 88 FD 7F 60 68 00 06 G208,....

Figure 5.8: The address of the ESP register.
Using these values we want to set a hardware breakpoint. We do this using the

following setting:
“Breakpoint -> Hardware, on access -> Dword”

You do this by selecting the highlighted values above and right clicking. This

process is displayed in the image on the following page.

Setting a hardware breakpoint allows us to follow the execution of the program to

this point and then to stop (or interrupt) the execution of the program.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 37
NsPack 3.4 and 3.7 packer.

Figure 5.9:

Setting a hardware breakpoint

. FEFOFFFF | SUB EAX, DORDVPTRISS:CEEP=20E]
. MOU DWORD PTR SS:[EBP-20E], EAX eThreadInitTl
. 0 ADD D SS: [EBP-1DE], EAX seThreadInitT
. 8D rEaoma $5: [EBP-19R])
.o Backup » TR DS:[ESII,ERX ThreadInitT
. 56
. €A Copy »
D Binary »
. FF .
' &g Breakpoint » Memory, on access e 132.BaseThreadInitT
.~ GF
. é? Search fOr » Memor};’ on write e |32.BaseThreadInitTl
$ cB
T B Goto 4
1 EE Hardware, on access Byte
56 . |
E;;i v Hex 4 Hardware, on write Word
22 Text » Hardware, on execution Dword
2B RU PR LSILESL
; Short »
PTR SS: [EBP-Z21E]
o I
v Float [:
Disassemble
Special »
Address |Hex dur Appearance » ASCIT
412 7F D4 FF 12 98| F8..050v.C30E $,
B 88 FD 7F E6& 26 A2 75 00 08 68 68| 1+pw.C*O0p&iu. ...
B8 88 FD 7F 00 00 00 00 00 B8 680 66|0%0,
A8 FF 12 0B 08 68 668 68 FF FF FF FF|....3 %$..
SA 93 C1 92 B0 BB 06 88 EC FF 12 88 -ilwes+e.
FE AF DS 4R 68 88 FD 7F 00 68 08 600 Adpwe::'J, 920....
08 98 00 00 00 B8 B0 B8 FE AF DS 4R s ennnaaamm'd
0a 68 68 oo .C20,...

With our breakpoint, we want to hit the “F9” function key to “run” the executable

until it hits the breakpoint that we have set. This takes us to a jump command. This is

displayed in the figure below:

@ CPU - main thread, module cmd

<

26FFFFFF

FF95 SEFEFFFF

ﬁk
CLJMP cmd. 4ADB9797
P ER DUWOR! : [EBP-216]

JE cnd 4ADSE31
MOY EDX EggRD PTR S58: [EBP-28E]

DWORD PTR DS:CESI, O
SHORT cmd.4RDSB29E
DWORD PTR DS:[ESI+41,0
SHORT cmd.4ADSB29E
DWORD PTR DS:[ESI+21,0
SHORT cmd.4RADSB29E
SHORT cmd.4RADSE318
EBX,DWORD PTR DS:[ESI+8]
ADD EBX.EDX LG
PUSH EBX ’
cMd.

cmd.

LEA EDI, DWORD PTR SS:CEEP-DA]
ADD EDI,DWORD PTR DS:[ESI+4]
ADD ESI,GC

PUSH EDI
CALL_DWORD PTR SS: [EBP-172]

Figure 5.10: Jumping to the command

T T Ll

{Modu leEntryPoint >

Modu leEntryPoint >

{Modu leEntryPoint >

We can follow this jump by entering “F7” to “step into” the command. This will

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 38
NsPack 3.4 and 3.7 packer.

allow us to run a single machine code command and hence to follow where the jump

command takes us.

After the jump, you will notice that some of the code looks strange (see the figure

CHAR "U"

CHAR "U*
CHAR "u’
CHAR "3"

CHAR ";'
CHAR "u’

CHRR "s’

CHAR "u’

CHAR "t*

CHAR "%
CHAR * 17

L) DE 9@
> pES BSFAFFFF CALL cmd.4ADB91A1

Figure 5.11: Obscured code
Enter “Ctrl-A” which will analyze the data and treat is as code. It was not treated
as code previously, because before this was all data. When the unpacker executed, the

code was written to these memory locations.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 39
NsPack 3.4 and 3.7 packer.

4R089747 | .~ E9 DCFCFFFF JHP omd. 4ADB942
C | > 83BD FSEFFFFF @1 CMP DWORD PTR SS [EBP-18881, |
v BF24 FSC50060 JE cmd.4AD1SD4E
.~ E9 42FDFFFF JHMP cmd. 4ADB94A6
> 66:A1 6448D24A | MOV AX,WORD PTR_DS: [4AD24864]
e E9 FEFDFFFF ﬂMP cmd. 4ADBISET
0P
98 NOP
98 NOP
98 NOP
98 NOP
§ 8BFF MOU EDI,EDI
r. S5 PUSH EBP
. 8BEC MOV EBP,ESP
Sé PUSH
8B7S 88 MOV ESI,CARG.11
. 33Ca XOR_ERX, EAX kernel32.BaseThreadInitThunk
> 3B7S Bc CHP ESI [ARG. 2]
-~ 7311 SHORT cmd. 4ADB97SF
. TEST ERX, EAX kernel32.BaseThreadInitThunk
.~ 75 8D JNZ SHORT cmd.4RDBI7SF
. 8BeE MOU ECX, DMDRD PTR DS:[ESI]
. 85C39 TEST ECX ECX
74 B2 JE SHORT cmd.4ADB973A
. FFD1 CALL ECX
> 83C6 B4 ADD ESI, 4
.~ EB ER JMP _SHORT cmd.4RDB9772
> SE POP ESI kernel32.7698D0E2
. SD FPOP EBP kernel32. 7698D0E2
L c3 RETH
29 NOP
28 NOP
98 NOP
28 NOP
98 NOP
> Eg ?gFRFFFF CRLL cmd 4ADB21A1
68 8898D04A PUSH cnd 4ADB2888
E8 6E99FFFF CALL cmd.4ADB3116
330B ®OR EBX,EBX
8950 FC MOV DWORD PTR SS:CEEBP-41,EBX
64:A1 180806068 |MOU EAX,DWORD PTR FS: (121
8B70 B4 MOU ESI,DWORD PTR DS:[ERAX+4]

Figure 5.12: The code is now readable
Once this process has completed, you will note that the code is far easier to

understand. This is displayed in the previous figure.
Next we want to dump the process.
To do this, we will use the OllyDump plug-in.
To do this, select:
Plug-ins -> OllyDump -> Dump Debugged Process

This process is displayed in the figure below:

@Flle Wiewy Debug - Optlons Window Help

Paused ’J_I_I 1 AnalyzeThis » I ﬂ Hﬂﬂlﬂﬂlﬂlgﬂgyﬂlﬁlﬂ—
OB 747 -)m 2 OllyDurnp » Dump debugged process i

v BF24 FSCELwwe

.~ E9 42FDFFFF
> E6:A1 6448024
.~ E9 FEFDFFFF

PR
0o a0
mmnm

T
-

-

JHMP cmd. 4ADB24A6
MOV AX,WORD PTR_DS:
JMP cmd. 4ADBISET

Find OEP by Section Hop (Trace into)
Find OEP by Section Hop (Trace over)

oP Options
MOV EDI,EDI

PUSH EBP

MOU EBP,ESP About
PUSH

MOV ESI, CARG.11
XOR _ERX,EAX

CMP ESI, [ARG.21
JHE SHORT cmd.4RDB978F

Figure 5.13: Dumping from Olly

Craig S Wright

kernel32.BaseThreadInitThunk

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 40
NsPack 3.4 and 3.7 packer.

When the plug-in is displayed, unselect the “Rebuild Import™ option.

(S

CllyDump - cmd.exe

Start Address; |RLELLER] Size: |7UUUU
Entry Point: | 4F20E > Modify: [3797 GetEIP as UEPl Cancel |

Base of Code: |1000 Base of Data: |4FUDU

[V Fix Raw Size & Offset of Dump Image
Section | Virtual Size I Virtual Offset I Raw Size I Raw Offset I Charactaristics |

.hsp0 0004E000 00001000 0004E000 00001000 F2000060
.hspl 000131C6 0004FO00 000131Ce 000D4FO00 E0000DOEO
.hsp2 000OCEBS 00063000 0DOOCEBS 00063000 E0000DOE0

Iv Rebuild Import
*+ Method] : Search JMP[API] | CALL[API] in memoary image
" Method2 : Search DLL & &Pl name string in dumped file

Figure 5.14: The section table
When we are working with a highly customized version 3.4 NsPacked executable,

(figure 5.15), we see that the sections are not as clearly marked as the NsPack 3.7 packed

executable with few obfuscation options (figure 5.14).

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the = 41
NsPack 3.4 and 3.7 packer.

-

OllyDump - calc.exe ==

Start Address: |1 000000 Size: |27353
Entry Paint; |2025E -> Modify: |204EU Get EIP as OEP | Cancel |

Base of Code: |1UUU Base of Data: |14UUU

IV Fix Raw Size & Dffset of Dump Image

Section I Virtual Size I Yirtual Offset I Raw Size l Raw Offset I Charactaristics I

v[Fe0 00015000 00001000 00015000 00001000 E0000040
w[He1 00003000 00016000 00003000 00016000 D0O000040
v[He2 00001000 0001FO0O0 00001000 000TFO0O0 E00000E0
v[Fe3 00007000 00020000 00007000 00020000 E00000E0
v[Hed 00O0O0BES 00027000 00O0O0BES 00027000 E00000E0

Iv Rebuild Import
* Method] : Search JMP[API] | CALL[API] in memory image
" Method2 : Search DLL & &Pl name string in dumped file

Figure 5.15: Obscured sections

At this point we will not use the Rebuild method from the OllyDump Plug-in.

I™ Rebuild Import
* Method] : Search JMP[API] | CALL[API] in memory image
" Method2 : Search DLL & &Pl name string in dumped file

Figure 5.16: Rebuilding
Select “Dump”.

Then select the file to save the dumped executable as.

& Save Dump to File 3 [

\/\/ 1. « Data » HCL » Tests » Pack2 « [4 [Searct o]
File name: unpacked_cmd.exe v

Save as type: [Executablefile(*.exe) v]

¥ Browse Folders

Figure 5.17: Saving the file
By loading this into PEiD we can see that the file is no longer packed:

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the

4 PEID v0.95

NsPack 3.4 and 3.7 packer.

File: | C:\Data\HCL\Tests\Pack 2\unpacked_cmd.exe |
Entrypoint: 00009797 EP Section: | .nsp0 i’
File Offset: 00009797 First Bytes: |E8,05,FAFF | > |
Linker Info: 8.0 Subsystem: |Win32 console | > |
Mothing found *

Multi Scan | Task Yiewer | Options | About I Exit |
[V Stay on top B | '>_|

Figure 5.18: PEiD show the file is now unpacked

By loading this into RDG Packer Detector we can also see that the file is no

longer packed:
nre 1 dACKEr Gelector VO.6.688 5%
C:\Users\Craig Wiight INFO-DEFENSE \Desktophcalc2.exe m
@ | =
Compilador
fada Detectado
Posible z
Contacto : Al Frente []
v iy G

Figure 5.19: The IAT needs to be fixed

However, we have not fixed the IAT and hence the executable will not run as yet.

Craig S Wright

42

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the = 43
NsPack 3.4 and 3.7 packer.

’ = =[x

unpacked_cmd.e;a - Applicaticn Error

| P The application failed to initialize properly (0xc0000005). Click OK to
Q terminate the application.

Figure 5.20: Without a fixed IAT, the file will not execute
As such, we need to fix the IAT. To do this at this stage, we will run ImpRec.

First, attach ImpRec to the running process (as displayed in the figure below).

& Import REConstructor v1.6 FINAL (C) 2001-2003 MackT/uCF (o[=) [

Attach to an Active Process
chdata\hclitestshpack 2\cmd.exe (00000&E4) LI Pick DLL

Show Invalid
Show Suspect

Clear Imports

Imported Functions Found

Log
Module loaded: c:\windows\system32\kernel32.dll -

Module loaded: c:\windows\system32\advapi32.dll
Clear Log

Module loédéd: c \windows\syslem32\rﬁsvcrt.dII
Getting associated modules done.
Image Base: 44000000 Size: 00070000 >

IAT Infos needed New Import Infos (IID+ASCI+LOADER) Options
OEP |0004F20E 1&T AutoSearch RVA IUUUUUUUU T [UUUUUUUU -
_About

Ry (00000000 Size 00001000 v 4dd new section

Load Tree ‘ Save Tree‘ Get Imports | M ﬂl

A

Figure 5.21: ImpRec is used to fix the IAT

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 44
NsPack 3.4 and 3.7 packer.

Notice that the OEP is not correct. Remember, the OEP was supplied using
OllyDump (above):

Start Address; |REEIRININ) Size: |7UUUU

Entry Point: |4F20E -> Modify: |8?8? Get EIP as OEP
Base of Code: 1000 Base of Data: |4FO00

Figure 5.22: OEP settings
As such, we need to fix up the OEP in ImpRec:

IAT Infos needed
OEP (0009797 AT AutoSearch ||

Rv4 [00000000 Size 00001000

Load Tleel Save Treel Get Imports |

Figure 5.23: Correcting the OEP

Then select “IAT AutoSearch” to continue.

When ImpREC finds the value, it will display a message, click on “OK”’:

Found something! lé,l

Found address which may be in the Original IAT, Try 'Get Import',
(If it is not correct, try RVA: 00001000 Size:0004E000)

.

Figure 5.24: Finding the value
Next, get the imports. This is done by clicking “Get Imports” on the lower left of

the screen:

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 45
NsPack 3.4 and 3.7 packer.

&8 Import REConstructor v1.6 FINAL (C) 2001-2003 MackT/uCF NI X
Attach to an Active Process
Ic:"-.data\hcl\tests"-.pack 2hcmd.exe (000D0AE4) L‘ Pick DLL
Imported Functions Found
[#- advapi32.dll FThunk:00001000 NbFunc:14 [decimal.20) valid:YES Shovineaid
[#- kemel32.dll FThunk:00001054 NbFunc:88 (decimal:136) valid:YES
[#- msvert.dil FThunk:00001 278 NbFunc: 45 (decimal:63) valid:YES Show Suspect

- ntdll.dll FThunk:00001390 NbFunc:4 (decimal:10] valid:YES

Auto Trace

Clear Imports

Log

rva:000011B0 forwarded from mod:ntdll.dll ord: 0460 name:RtiSizeHeap -
rva:000011B 4 forwarded from mod:ntdll.dll ord: 024D name:RtIRedllocateHeap

Clear Log

Current imports:
4 (decimal: 4 vali module(s) (added: +4 [decimal:+4

EB [decimal:235] imported function(s). [added: +EB [decimal:+235 v
IAT Infos needed New Import Infos (IID+ASCII+LOADER) Options
DEP |DUUDQ?9? 1AT AutoSearch || Ry (00000000 Size |000010B4
About
RvA 00001000 Size |0000036C v 4dd new section

el R

Exit

Load Tree I Save Tree |

HELNelelieH I Fix Dump ||

Figure 5.25: ImpRec to correct the [AT

We can see from the image above that all of the imports have been found

successfully. This is demonstrated by the “valid: Yes” flag in the “Imported Functions
Found” field. As ImpRec has correctly determined these values, we need to fix the dump.
To do this, look at the lower right-hand side of the screen and select “Fix Dump”. Ensure
that Import ReConstructor is running as the Administrative user on the system or it will

not be able to bind to the process.

You will be presented with the location of where you want to save the repaired

and unpacked executable.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 46
NsPack 3.4 and 3.7 packer.

. file to fix

‘ Organize™~ Views v JB New Folder
Fvontellhnks Narne Date modified Type Size
E' Documents BN 2 exe 23/07/2009 12:03 .., Appllcatfon
- e . [3. exce 23/07/2009 12:13 ... Application
& Recently Change B crd.exe 23/07/2009 9:08 AM Application
|| Ml Desktop M_?Inotepad.exe 23/07/2009 9:09 AM Application
i Recent Places BN unpacked_cmd.exe 23/07/2009 11:56 ... Application
B Computer gﬁﬁunpacked_cmd_.exe 23/07/2009 12:37 ... Application
E Pictures BN Up_iat_cmd.exe 23/07/2009 12:02 ... Application
B Music
Searches
|, Public
Folders A 0 | r
File name: unpacked_cmd_.exe v [PE files [*.exe, *.dl) v]
[Open |V] [Cancel]
———

Figure 5.26: Where to save the corrected file\

Enter the name of the dumped executable that you are fixing and select open.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 47
NsPack 3.4 and 3.7 packer.

4

.é‘ Import REConstructor v1.6 FINAL (C) 2001-2003 MackT/uCF

Altach to an Active Process

Ic:\data\hcl\tests\pack 2\emd.exe (00000&E4) _ﬂ Pick DLL
Imported Functions Found
advapi32.dll FThunk:00001000 NbFunc:14 (decimal:20) valid:YES Show Invalid
kernel32.dll FThunk:00001054 NbFunc:88 [decimal:136) valid:YES

msvert.dll FThunk:00001278 NbFunc: 45 (decimal.69) valid:YES Show Suspect
ntdll.dll FThunk:00001330 NbFunc:A [decimal:10) valid: YES

[+ [[+

Auto Trace

Clear Imports

Log

Fixing a dumped file... -
4 (decimal:4) module(s)

EB (decimal:235) imported function(s).

=+ New section added successfully. RY4:00070000 SIZE:00002000

Image Import Descriptor size: 50; Total length: 10B4

Clear Log

C:AData‘\HCL\Tests\Pack 2\unpacked_cmd_.exe saved successfully. v
IAT Infos needed New Import Infos (IID+4SCII+LOADER) Options
0EP |00009797 IAT AutoSearch Rvia 00000000 Size |000010B4
About
Rva 00001000 Size |0D0003BC ¥ Add new section

Exit

b b EERLE|

Load Tlee' Save Treel Get Imports |

A

Figure 5.27: All fixed
As is displayed above, the log should show that the unpacked executable was

saved. In this case (and this is not unusual) the unpacked executable is larger than the

original file (before it was initially packed).

BN crmd.exe 23/07/2009 9:08 AM Application 312 KB
| cmd.exe.bak 19/01/2008 5:33 PM BAKFile 312 KB
_|notepad.exe 23/07/2009 9:09 AM Application 148 KB
|| notepad.exe.bak 19/01/2008 5:33 PM BAK File 148 KB
BN unpacked_crmd.exe 23/07/2009 11:56 ... Application 443 KB
BN Up_iat_cmd.exe 23/07/2009 12:02 ... Application 453 KB
BN unpacked_cmd_.exe 23/07/200912:37 ... Application 456 KB

Figure 5.28: The directory listing

We see from the figure above, that “cmd.exe”, a file that was initially 312Kb in

size was packed to just 148Kb, but when it was unpacked, it has grown to 456Kb.

The unpacked file also runs correctly now that the IAT has been repaired (Fig.
5.29).

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the = 48
NsPack 3.4 and 3.7 packer.

C:\Data\HCL\Tests\Pack 2\unpacked_cmd_exe (=& s ‘j

icrosoft Windows [Uersion 6.8.6802]
Copyright <(c)> 20086 Microsoft Corporation. All rights reserved.

:\Data\HCL\Tests\Pack 2>_

Figure 5.29: The executable runs now.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 49
NsPack 3.4 and 3.7 packer.

6. Fixing the IAT

In this section, a process that is designed to manually correct the IAT is presented.

& Import REConstructor v1.6 FINAL (C) 2001-2003 MackT/uCF o | @ [
Attach to an Active Process
Ic:\users'\craig.wright.info-defense\desktop\calczexe (ODDD1TED) LI Pick DLL |

Imported Functions Found

? FThunk:00000000 NbFunc: 7 (decimal: 7) valid:NO -~ Show Invalid
? FThunk:00000020 NbFunc:11 (decimal:17) valid:NO
? FThunk:00000068 NbFunc:9 [decimal:9) valid:NO Show Suspect

- ? FThunk:000000390 NbFunc:8 [decimal:8] valid:NO
? FThunk:000000B4 NbFunc:1 [decimal:1) valid:NO
? FThunk:000000C0 NbFunc:4 (decimal:4) valid:NO
? FThunk:00000138 NbFunc:6 (decimal:6) valid:NO
? FThunk:0000015C NbFunc:7 [decimal: 7] valid:NO

m

gy i

(] [e [) [) 3]

-7 FThunk:00000184 NbFune:7 (decimal:7) valid:NO - Clear Imparts
Log
IAT read successfully. -
Current imports: Clear Log

0 (decimal:0) valid module(s)
51 (decimal:81) imported function(s). [added: +51 [decimal:+81

51 [decimal:81] unresolved poi ; imal: ¥
IAT Infos needed New Import Infos (IID+ASCII+LOADER) Options
OEP [000204E0° IAT AutoSearch Rva 00000000 Size 00000104

About

R4, (00000000 Size (00001000 IV Addnewsection
Exit
HET2 e iE3 | Fix Dump —‘

Figure 6.1: Not all imports are found

Load Tree | Save Tree |

We can see from the image above that not all of the imports have been found
successfully. This is demonstrated by the “valid: No” flag in the “Imported Functions
Found” field. As ImpRec has correctly determined these values, we need to fix the dump.

To do this, look at the lower right-hand side of the screen and select “Fix Dump”.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 50
NsPack 3.4 and 3.7 packer.

s ™

J Choose your dump file to fix
Ch your dump file to fi
@Qvl- Desktop » v | +4 l | Search L
‘ Organize v SViews v JB New Folder
eSOt CINnES Name : Size Type Date mod “
E‘ Documents ﬁ' Craig S, Wright =
. e : . Public g
& Recently Changed j‘.}Computer
Bl Desktop ¥ Network
i RecentPlaces () Altova DatabaseSpy 3KB Shortcut 19/07/200
(% Computer @Altova DiffDog 3KB Shortcut 19077200
B Pictures (30) Altova MapForce 3KB Shortcut 19/07/200
m Music @Altova Schema&gent 3KB Shortcut 19/07/200
(#) Altova SeranticWorks 3KB Shortcut 19/07/200
@ Searches o
_ @Altova StyleVision 3KB Shortcut 19/07/200
j Public @) Altova UModel 3IKB Shortcut 19/07/200
58 Altova XML Sov 3KB Shortcut 19/07/200 ©
Falders A k3 m | »
File name: calc2.exe v | PE files [“.exe, *dl) v

[Open |V] [Cancel]

Figure 6.2: Let's fix the file

Enter the name of the dumped executable that you are fixing and select open.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the @ 51
NsPack 3.4 and 3.7 packer.

& Import REConstructor v1.6 FINAL (C) 2001-2003 MackT/uCF o] @ =5
Attach to an Active Process
|c:\users"-.craig.wrightinfo-defense\desktop\cach.exe (000011ED) Ll Pick DLL |

Imported Functions Found

? FThunk:00000000 NbFunc:7 (decimal:7) valid:NO - Show Invalid
? FThunk:00000020 NbFunc:11 (decimal:17) valid:NO
? FThunk:00000068 NbFunc:3 (decimal:3) valid:NO Show Suspect

? FThunk:00000030 NbFunc:8 (decimal:8) valid:NO
? FThunk:000000B4 NbFunc:1 (decimal:1) valid:NO
? FThunk:000000C0 NbFunc:4 (decimal:4) valid:NO Auto Trace
? FThunk:00000138 NbFunc:E [decimal:B) valid:NO
? FThunk:0000015C NbFunc:7 [decimal: 7] valid:NO
? FThunk:00000184 NbFunc: 7 (decimal7) valid:NO - Clear Imports

m

Jajag i

[[) [[) [[

Log

IAT read successfully. -

Current imports: Clear Log

0 (decimal:0) valid module(s)
51 (decimal:81) imported function(s). (added: +51 [decimal:+81
51 [decimal:81] unresolved pointer(s]) (added: +51 [decimal:+81

IAT Infos needed New Import Infos (IID+ASCII+LOADER) Options
OEP [000204E0 _IAT AuoSearch | | pya 00000000 sice 0000010

About

Rva |00000000 Size 00001000 ¥ Add new section

(GELTHEETS: | Fix Dump | 4’5"“

Load Tree | Save Tree |

Figure 6.3: Saving the file
As it is displayed above (Fig. 6.3), the log should show that the unpacked
executable was saved. In this case (and this is not unusual) the unpacked executable is

larger than the original file (before it was initially packed).

Also note, that with many of the NsPack 3.4 options, the IAT does not

automatically resolve.

Mfarning! @

IAT is still invalid. You have to fix manually all unresolved pointers.

..

Figure 6.4: Still no luck

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 52
NsPack 3.4 and 3.7 packer.

We have to manually fix the IAT when confronted with selected sets of options.

6.1. Automation with OllyScript
To automate this process, we use OllyScript. We begin by loading the sample into

OllyDbg (as occurred in the previous section).

Start by opening OllyDbg. Go to:

[¥] Plug-ins -> OllyScript -> Run Script -> Load...

This has been displayed in the image below:

bug Options Window Help
X| tenebzethis | o LJE|M|T|W|H|c|/|K[B|R

2 OllyDump »

3 OllyScript » Run script » Load...
Abort C\Data\HCL\NSP
Pause ChData\HCL\nsp:
Resume C\Users\Craig.\W't
Step C:A\Data\HCLANSP
About) C:\Users\Craig.\W

T

Figure 6.5: Using OllyScript
To do this, OllyScript needs to be installed before you open Olly. Again, as in the

last section, ensure that you have copied the plug-in to the correct directory.

Load the script first, and then open the sample (as in the first instance).

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the = 53

NsPack 3.4 and 3.7 packer.

OllyDbg - cmd.exe - [CPU - main thread, module cmd]

@Eile View Debug Plugins Options Window Help

_m_r >in| wied $0] +f LiE|m{T|wH|C|/[K|B|R[|S] _=UI

Paused

4ANdF2A5

Figure 6.6:

Again, we are at the start of our packed executable.

S 9C
60

. ES 00000000

§ S

. a7

8038 6EFEFFFF

v BF24 42620000

. a1
2B8S B2FEFFFF
8985 B2FEFFFF

8185 32FEFFFF
S8DBS VEFEFFFF

48
63 00100000
€8 00100066

A 6o
FF95 SRFEFFFF

:v OF34 69030000
2985 PAFFFFFF

PUSHFD
CFlLL ch'nd - 4AD4F215

SUB EBP

LEA ECX, Dl\lORD PTR SS'[EBP—192]
CHP BYTE PTR DS:[ECX],

JE cmd.4AD4F46R

MOV BYTE PTR DS:[ECX], 1

EAX, EBP
SUB ERX,DWORD PTR SS:[EBP-1FE]
MOV DWORD PTR SS:[EEBP-1FE], ERX
ADD DWORD PTR £S:[EBP-1CE], EAX
LEA ESI,DWORD PTR SS: CEEP-18A1
ADD DgﬂgD PTR DS:[ESI],ERAX

5]
CALL Dlu.IORIJ PTR $S: [EBP-1661
TEST ERX,El
JE cnd. 4AD4FSCE
MAU AHARATPTR S8 FFRP=1MAT . FAx

Loaded in Olly and running

This is the QEP (original entry pou.nt].
kernel32.763FDBE?

kernel32.BaseThreadInitThunk
kernel32.BaseThreadInitThunk

kernel32.BaseThreadInitThunk

N M AM-AMNTITO m mnwwmﬂwhmn4ml

kernel32.BaseThreadInitThunk
kevrne | 232 _RaseThreadTnitThunk

Vneng

This time, instead of manually

finding the OEP, we will use the script that we loaded. To do this, go to:

Plug-ins -> OllyScript -> Run Script -> C:\Data\...

OllyDbg - cmd.exe - [CPU - main thread, module cmd]
@ File View Debug Options Window Help

Paced BIIX] | ranahzetns o | o) L|E|M|T|w/H|c|/|K|B|R|: S| =2
aoarzoe EEREETEE 2 OllyDurnp y F— - | Reaisters (FPU)
ES 0000001 - =
"gED - 3 OllyScript » Run script » Load...
DS0 6EFEFFFF ™ TLER ECK, DUORDNPTRIY
L R B SEPCE:TEHETR HssLE Abort C\Data\HCL\NSPack 3.7\Deliverables\OllyScript-NSPack3.7.t¢t
gos o 933 EEEEQ;R DS tEf Pause C\Data\HCL\nspack.olly.td
= g | -
152 SSFEFFFF o0 DUCRD PTR 52 it Resume Ci\Users\Craig.WrightINFO-DEFENSE\Desktop\Olly_OEP_NsPack.bdt
D58 (Tt LED DhoRD PTR Doite Step CAData\HCLANSPack 3.7\NsPack 3.7 (Unpacking)\NsPack 3.7 OEP Finder #2;
FUSH EBP o
g 40 Pﬂgn sﬁl About Ci\Users\Craig.Wright INFO-DEFENSE\Desktop\nSPack 2.x - 3x.bxt
S 00100000 PUSH 1660 r [0 @ LaztErr ERROR_SUCCESS (08
2 A1 ARGGAGR PlICH 1GGG T '
Figure 6.7: Loading the script in Olly

Select the correct script that is loaded into the OllyScript plug-in. The script used

in this instance has been included in the Appendix.

We will first get the statement that this code is packed again. Select “Yes” to

continue.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 54
NsPack 3.4 and 3.7 packer.

Compressed code? L-Z_hJ

Quick statistical test of module 'cmd’ reports that its code section is
either compressed, encrypted, or contains large amount of embedded
data. Results of code analysis can be very unreliable or simply wrong.
Do you want to continue analysis?

Yes

Figure 6.8: The file is packed
The script should complete and return the message displayed in Fig. 6.9.

CllyScript &J

(0) Script finished

Figure 6.9: The script completed
Click “OK” to continue.

At this point, we should find that we are at the OEP.

.~ E9 FEFDFFFF JMP cmd. 4ADBISET
o8 NOP
98 NOP
98 NOP
98 NOP
o8 NOP
¥ 8BFF MOU EDI,EDI
. S5 PUSH _EBP
gEEC HOU EBP,ESP
8B7S 88 MOU ESI I:FIRG.!:I
. 33Ca ®OR_EAX kernel32.BaseThreadInitThunk
> 3B7S BcC cHP ESI, [FIRG 2] ntdll.77AFBFCS
-~ 7311 JNB SHORT cmd. 4ADBI7EF
. 95Ca TEST _EAX,ERAX kernel32.BaseThreadInitThunk
. 75 80 JNZ SHORT cmd. 4ADB97SF
SBOE MOV _ECX,DWORD PTR DS:[ESI]
. 85C%2 TEST ECX,ECX
74 B2 JE SHORT cmd. 4ADBI7SA
. FFD1 CALL Ei
> 83C6 84 AOD ESI
.~ EB EA JMP SHORT cmd. 4ADBI779
> SE POP kernel32. 763FDBED
sD POP EBP kernel32. 763FDBED
c3 RETN
98 NOP
98 NOP
98 NOP
gg NO \F
NOP
> Eg ?gFFIFFFF CFI.L ?md .4ADB91A1 This is the OEP (original entry point). Use this to f
68 8898084A PUSH cmd. 4ADB9888
ES 6E99FFFF CALL cmd.4ADB3116
EE L 0 S

Flgure 6.10: The OEP

At this point, we will dump and reconstruct the IAT in the same manner as in the

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the = 55

NsPack 3.4 and 3.7 packer.

previous section.

6.2.

Summary of the process

The summary of the method to uncompress NsPack in OllyDbg involves the

following steps:

1.

Craig S Wright

At entry point, add a breakpoint in the PUSHA instruction and run the

application.

After it breaks, follow the ESP register value in dump; add a hardware
breakpoint with 4 bytes length in the first bytes.

Run the application again (F9).
At the next break (BP), the EIP will be at the transfer command.

Simply single step into it (F8) and the value at EIP will be at the original

entry point.

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 56
NsPack 3.4 and 3.7 packer.

7. Analyzing NsPack itself

Looking at the NsPack executable and using PEiD we see that NsPack is itself
packed using ASProtect Version 2.1.x.

[44 PEID v0.95 (o] @ (=3

File: | C:\Data\HCL\NSPack 3.7\Nspack3.7.exe

Entrypoint: | 00001000 EP Section: il
File Offset: 00000600 First Bytes: |68,01,00,54 | > |
Linker Info: 6.0 Subsystem: |Win32 GUI >

ASProtect 2.1x SKE -> alexey Solodovnikov [Overlay]
Multi Scan | Task Viewer | Options | About |

[V Stay on top

Figure 7.1: NsPack uses ASProtect
It is also possible to quickly get the OEP of NsPack 3.7 using PEiD:

[¥] Plug-ins -> Generic OEP Finder

[PEID v0.95 [@ =)

File: | C:\Data\HCL\MSPack 3.7\Nspack3.7.exe

Entrypoint: | 00001000 EP Section: =1

File Offset: | 00000600 First Bytes: |68,01,D0,54 L‘

Linker Info: | 6.0 Subsystem: | Win32 GUI B

ASProtect 2.1x SKE -> Alexey Solodovnikov [Overlay]

Multi Scan Task Viewer Options | About |

IV stay on top Plugins > Generic OEP Finder
MNormal Scan DS
Degnlean PEID Generic Unpacker

Hardcore Scan

External Scan

Figure 7.2: PEiD and the OEP finder
In this case we have the OEP returned at OEP: 004897F7.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 57
NsPack 3.4 and 3.7 packer.

GenOEP ==

Found OEP: 004897F7

..

Figure .3: The OEP is found
Next, we start Olly. The following plug-in is essential:

[¥] IsDebugPresent API

ASProtect has a debugger detection routine. The plug-in is needed to ensure that

the program does not crash prematurely. This file is available from OpenRCE:

To load and enable this plug, go to:

[¥] Plug-ins, IsDebugPresent
[¥] Select “option”

& OllyDbg - [CPU]
@File View Debug |P|ugins Options Window Help

Ready (ﬂﬁpq 1 AnalyzeThis 4 [‘fﬂﬂﬂﬂﬂ
2IsDebugPresent » Hide
3 OllyDump » Restore
4 OllyScript » Option
About
Durmper

Figure 7.4: The IsDebugPresent flag
The auto-hide function should be set to match the load times of the host running

the analysis.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the = 58
NsPack 3.4 and 3.7 packer.

T s WARNING this option may cause
v AutoHide o) lems

Sleep Time (1000 milliseconds

Figure 7.5: Setting options

[¥] Next, select whether to automatically hide the debugger not (Autohide). If
checked when you load an exe, debugger is hidden and you can choose

how long thread will sleep until patch byte API is done (Sleep Time).

f¥] It is also possible to manually hide or restore debugger with menu option.
Ensure that the exceptions have been disabled (other than Kernel32
Memory access violations) by entering “Alt-O” in Olly and removing any

ticked boxes:

= Debugging options =
Commands | Disasm | CPU | Registers | Stack | Analysis1 | Analysis 2 | Analysis 3 |
Secuity | Debug | Events Exceptions | Trace | SFX | Sings | Addresses |

[V |gnore memory access violations in KERNEL32

Ignore (pass to program] following exceptions:
|7 INT3 breaks

[” Memory access violation

I Integer division by 0

I Invalid or privileged instruction
|7 AllFPU exceptions

I Ignore also following custom exceptions or ranges:

00000000 .. FFFFFFFF . |

Add range |

v Delete selection |

_| 0K | Undo | Cancel |

Figure 7.6: Set the options

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 59

NsPack 3.4 and 3.7 packer.

71. Quit and load NsPack 3.7.

Enter “F9” to ‘run’ the program This will take us to the first exception:

<

M= ¢

g

| Access violation when wiiting to [00000000] - use Shift+F7/F8/F9 to pass exception to program

Figure 7.7:

We will need to count the number of exceptions that are returned. With this

Exception 1

information we can restart and step directly to the final exception, BP on the code section

(where we should reach the OEP).

Next, dump the program and repair the IAT.

To do this, enter “Shift + F9” for each returned exception.

number of exceptions returned.

* OllyDbg - Nspack3.7.exe - [CPU - thread 00001064, module kernel32]

@F\[r‘- View Debug

Plugins

Options findow Help

Remember to count the

Hunnln? IBI«IXI »[11] ﬁ]ﬂl Hﬂﬁ ﬁl

1669

74A0BE0G

<

NOP
MOV EDI,EDI
HOU EBP ESP

PUSH X
cHP DUDﬂD PTR SS: [EBP+18], =
PUSH ESI
JE kernel32. ?6948343
WORD PTR SS

LJE|m]T

w|n|c|/s|K|B|R|.|5]

Registers (FPU)

P EBP+1

MOU ESI,OWORD PTR FS:[1

LEA EAX, DWORD PTR SS'EEBP-BJ

USH ERX

ADD ESI,

CRLh DNDRD PTR DS: [<&ntdlLl.RtlIn
LEgHEnX . DWORD PTR SS:[EBP-81

PUS
CRLL DNDRD PTR DS:[<&ntdlLl.RtlAn
TEST EAX, ERAX
JL kernel32 7694B332
PTR DS: [ESI+4]
SS C

6a4A36ER| 3F

Figure 7.8:

Skipping past the exceptions, we can interact with NsPack (Fig. 7.8).

Craig S Wright

LERUE
RETN m
PUSI
CRLL kernelSZ 7693B25B
ROR ERX, EAX
JHP kernel32.7693A98C
NUP
NOP
NOP
NOP
MOV EDI,EDI
MOU EBP.ESP
ASCII
2 U
S| B[FuB |
AXTuE;)
3 49Uy ;|
#r/
117 o,
1 Ul dwid
1 cAdul|
1 mdw
1 ~Edw3
3 v
1 yidw' 4
1 Iidwi
1 8 ++3ul
77 F4 59 11 77 58 BE 77 Pudwa

g,NsPaclz By North Star

Options(@) ~ Help(H)

@ File Im Directory |@ Settings]%Q About |

C:AData\HCLYNSPack 3.7\Nspack3.7 Samples\OriginalFiles\EXE s\calc.exe

Ver3.7

0%

@ Compress(C) &Il Exitix)

Interacting with the program being debugged

Open(0)

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 60
NsPack 3.4 and 3.7 packer.

From this we have the message that the executable is packed. This was already

known, so simply select “yes” to continue.

* OllyDbg - Nspack3.7.exe - [CPU - main thread, module Nspack3_]

@Fll»‘: View Debug Plugins Options idow Help
umrs (@40 x] »n1] v+ 3113 4+ wE[w]]w|a]c|/|K|BIR]:]s]
GG PUSH Nepack3_. 095ADGGT + [Reaisters (FPU;

— Eﬂﬁ 76930007 k¢

~ | EDX 98421008 N
EBX 7FFD3000

RETN
PREFIX REPNE:
PUSH _EBP

ESP @@12FFEC
oty o EBP B012FF94
JE SHORT Nepack3_.B@408FEF Eot
PREFIX REP:
coa EIP 00401600 N
IN AL, DX ;
Nz SHORT Nspack3_.0@401062 P BRBEE
FRR SEB7:563FASDA 20 R
2 B el T &S oode N
JNZ SHORT Nspack3_.<Modu leEntryPoint>
R ERLELP 0 @ LastErr Ef
EFL 0BO00246 (1
STB empty 8.0
SAHF ST1 empty 9.8
HOU BYTE PTR DS:[DBC3B4151, AL ST ety 28
SAR BYTE PTR DS:[EST+23DRAASE] : o 3T empty 0.0
CB5 DUORD PTR DS: (ECK+EDR-441, EST g1 cnovs 2.2
: . STE empty 9.0

JEBE SHORT Nspack3_.B88481065 ST7 empty 8.9
FST @888 Cond

HCHe BYTE PTR DS: [EDI+EDIN2+B11FSDEF]. BL

ROLBYTE PR DS:[e6 FCU @27F Prec
by Eby. o2 Compressed code? 23
HMOU EDI, 46

INC EAX
SUB AL, GE?
INC ESP
ADD EAX, ECX

1oUs nwonn PTR ES: [{

Quick statistical test of module 'Nspack3_' reports that its code section
SUB g|_ is either compressed, encrypted, or contains large amount of
PSHUFw nns,nne, aE:F e‘mbedded data, Results of code an§|y5|s can b.e very unreliable or
ADD DWORD PTR DS:[E(] simply wrong. Do you want to continue analysis?
gHEHEr;Dj. EBX
cs

Figure 7.9: Compression noted
Olly has now loaded the module and is awaiting our input. We should go directly

to this point if the plug-in (IsDebugPresent) loaded:

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 61
NsPack 3.4 and 3.7 packer.

* OllyDbg - Nspack3.7.exe - [CPU - main thread, module Nspack3_]
[€] File View Debug Plugins Options MWindow Help

Pased | B4 X] >[I

00401000 €5 O1005AGD [Begisters (FPU) < ¢ ¢ o< o< ¢ ¢ o<
01090 El 3 Eg§ 76930007 kerne|32.BaseThreadln it Thunk
&

280
EDX 06401000 Nspack3_.<Modu leEntryPoint>
EBX 7FFD3000

ESP @012FFEC

EBP 0012FF3d

ESI 00000000

EDI G0006600

EIP 00401099 Nspack3_.<ModuleEntruPoint>
C @ ES 0823 32bit B(FFFFFFFF)

€S @818 32bit B(FFFFFFFF)

S5 9023 32bit B(FFFFFFFF)

DS 0023 32bit D(FFFFFFFF)

FS 0038 32bit 7FFOFODO(4000)

65 0998 NULL

LastErr ERROR_SUCCESS (00000008)
EFL 98096246 (ND, N8, E, BE, NS, PE, GE, LE)
ST9 empty 0.
ST1 empty 8.
ST2 empty 8.
ST3 empty !
$T4 empty 0.
STS empty 8.
8
8
[
F

So-eND
coso-®-

ST6 empty
ST7 empty

SOEEEEED

32109 ESPUDZ
FST GRG0 Cond B 00D Err 000000
rec NEAR,53 Mask 1111

D1
CHAR *u’ 88 (G
CHAR R FEu o27F 11

FEEEEEEEEEEE e REEEEEEEEEEEEEEEEEEEEEE e

" 7693D0ET
i

< » < [

Analysing Nspack3_: 1 heuristical procedure

Figure 7.10: Jumping to the exception
The reason for counting the exceptions was to be able to jump directly to final

exception.

Select “M” (See below circled in the upper left). This gives us the Memory map
(Fig. 7.11).

We now set a breakpoint on the section ‘code’. Do this with the mouse (Fig. 7.12),

or by entering ‘F2’.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 62
NsPack 3.4 and 3.7 packer.

; P
| LjE|m|y|wn|c|s|K[B|R]..|5]

N~

Unknown command
] Memory map =1 | Bo ()
Address ' Size Ownexr Section |Contains Type _ Access -
AR370000 | BABAZ2A0A lap 90841002 R
lap 4 R
lap 4
Al Priv 4 E
3 Priv 4 E
srClientCintdll.CsrClientCallServer :J ::::: 2 E
IS3EQH Priv 4 E
3F G Priv 4 E
4 Nspack3_ E headeT nag
itForSing| ntdll.ZullaitForSinaleObject Gados e (e T g
4BCH Nespack3_ mag R
FF Nspack3_ mag R
5741 Nspack3_ | .rsrc resources mag R
SAD! Nspack3_ | .data imports,relocations mag R
SE 7 a1 Nspack3_ | .adata Mag
SF @i F Map 4
970 Map 4
Priv 4 E
ADG! Priv 4 E
REGI Priv 4 E
F ol Priv 4 E
[a]={a]5] Priv 4 E -
BB 101 Priv 4 E
< »

Figure 7.11: A Memory map
@ Memaory map (ol ==

_Addre Owner Section |Contains | Type | Access I~
370 2 Map ©0841062 R
350 1 Map 00841062 R
390 2 Map ©8841062 R
3R 1 Priv 80821848 RWE
3B 1 Priv 00821840 RWE
3C 1 Priv 00821040 RWE
3D 1 Priv 80021048 RWE
3E 1 Priv 80821848 RWE
Ba3F 2816 Priv 80021840 RUE
88460000 8610 Nepack3_ PE header Imag 81681662 R
8040 BAS0OA Nspack3_ code Leasa @1GEIARD B
Ba4R' 8130 Nspack3_ data, exports Actuali
004BCOGE| BPA43609| Nspack3_ ctualize
B4FF 75! Nspack3_ L
3574/ 391 Nspack3_ | .rsrc resources . Wiew in Disassembler Enter
BSAD 3A Nepack3_ |.data imports,relocations
ggtr:(?é Nepack3_ | .adata Dump in CPU
637 a3l
GRS 43 Dump
BAD a1
BOAEOBBG | 001068 Search Ctrl+B

DoBo0aGG| AARD1000
00B16000 | 00661000 Search next Ctrl+L
£

Set break-on-access F2

Set memory breakpoint on access

Set memory breakpoint on write

Set access 4
Copy to clipboard »
Sort by »
Appearance »

Figure 7.12: Break on access

Using the standard techniques, we can then rebuild the IAT.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the = 63
NsPack 3.4 and 3.7 packer.

7.2. Transfer Command
This is where the program jumps to the real (unpacked) original code entry point
(OEP).

00000000 61 POP A
00000001 9D POPF
00000002 E9 ??7 7?7727 JIMP <value>

7.3. Entry Point Signature
The entry point signature is the series of unique OP code instructions in a binary
that we can use to make a simple detector. It is still necessary to test the hypothesis that
the packer detected actually exists (it is not a false positive), but testing a small number

of possible files is simpler than testing all files on a system.

00000000 9C PUSHF

00000001 60 PUSH A

00000002 E8 00 00 00 00 CALL 00000003
00000007 5D POP EBP

00000008 83 ED 07 SUB EBP, 7

0000000B 8D ??7 2?7727 7? LEA ECX, [EBP-value]
00000011 80 3901 CMP Byte PTR [ECX], 1
00000014 OF 84 7?27?7777 Iz value

9C 60 E8 00 00 00 00 5D 83 ED 07 8D ?? ?? 22 22 27 80 39 01 OF ?? ?? 7? 00 00

Hence a simple signature could be defined as:

[NsPack 3.7 -> Liu Xing Ping]
signature = 9C 60 E8 00 00 00 00 5D 83 ED 07 8D 85 ?? ?? FF FF ?? 38 01 OF 84 ?? 02 00 00 ?? 00 01

ep_only = true

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 64
NsPack 3.4 and 3.7 packer.

7.4. Basic Details of NsPack 3.7
In general, NsPacked files report having three sections (.nsp0, .nspl, and .nsp2).
This is user configurable and these can be set to any value. Consequently, the Entry Point
Signature (above) is a better means of detecting NsPack than simply using the section

headers alone.

7.41. PE Structure information

PE Info returns the following information above a generic NsPack compresses
file.
(base data)
entrypointaddress.: 0x7b48e3
(3 sections)
name viradd virsiz rawdsiz ntrpy md5
nsp0 0x1000 0x3b0000 0x0 0.00 d41d8cd98f00b204e9800998ect8427¢
nspl 0x3b1000 0xab000 Oxaa6¢3 7.99 beSe2alla697427c5ec95bbScabealde
nsp2 0x45c¢000 0x128b 0x0 0.00 d41d8cd98f00b204e9800998ectB8427¢

Note: The section names are variable and can be set to anything by the user.

(1 imports)
> KERNEL32.DLL: LoadLibraryA, GetProcAddress, VirtualProtect, VirtualAlloc,
VirtualFree, ExitProcess

As noted, the user can change the section names from the default ‘.nspX’ value.

The first section is unpacked.

7.4.2. Calculating the PE File Execution Start Offset in NsPacked

files

In the image below, we see the header information of a typical program that is
packed using NsPack. This first example uses the standard options and naming for the

section headers.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the

65

NsPack 3.4 and 3.7 packer.

Member Offset Size Value Meaning
Machine 000000E4 Word 014C Intel 386
NumberOfSections | 000000E6 Word 0003

TimeDateStarmp 000000ES Dwvord 48025287
PointerToSymbolT... | 000000EC Dwvord 0ooooooo
NumberOfSymbaols | 000000F0 Dwvord 00000000
SizeOfOptionalHea... | 000000F4 Word 00ED

Characteristics 000000F6 Word 010F Click here

Figure 7.13: The structure of NsPack

This file also has the following Optional Header Section:

Member Offset Size Value Meaning
Magic 000000F8 Word 010B PE32
MajorLinkerVersion 000000FA, Byte 07
MinorLinkerVersion 000000FE Byte 04

SizeOfCode 000000FC Dwvord 00000000
SizeOflnitializedData 00000100 Dwvord 00000000
SizeOfUninitializedData 00000104 Dword 00030000
AddressOfEntryPoint 00000108 Dword 000380F9 .nspl
BaseOfCode 0o00010C Dwvord 00001000

BaseOfData 00000110 Dwvord 00031000

ImageBase 00000114 Dwvord 01000000
Section&lignment noooo11s Dwvord 00001000
FileAlignment 0000011C Dwvord 00000200

Figure 7.14: Optional Headers

With the standard NsPack section naming conventions.

Figure 7.15: Standard naming of the sections

MName Wirtual Size Virtual Address | Raw Size Raw Address Reloc Address | Linenumbers Relocations N...
Byte[8] Dwaord Dward Dword Dword Dword Dword Ward

.nspl 00030000 00001000 00000000 00000400 00000000 00000000 0000

.nspl 0000D000 00031000 0000CFC2 00000400 00000000 00000000 0000

.nsp2 00001538 0003E000 00000000 00000400 00000000 00000000 00oo

The address of entry point that is stored in the optional header is a relative virtual

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 66
NsPack 3.4 and 3.7 packer.

address (RVA), where the loader will begin execution. An RVA is simply the offset of an
item, relative to where the file is memory-mapped.

A comparison of the unpacked Notebook.exe and an NsPack version of the same

are displayed below loaded into Protection ID to display the section and header values.

oEET0 PROTECTION iD v0.5.2.3 MARCH 2009 OoRdE]
FileName C:\Data\HCL\NSPack 3.7\Nspack3.7 Samples\OriginalFiles\EXE s\notepa
i ;"EZHH:::;' Name | VitSize RvA PhysSize Offset Flag
FileHeader nspl 0x00030000 0x00001000 0x00000000 0x00000400 0xFO0000GO0
OptionaHeader | -Nsp1 0x0000D000 0x00031000 0x0000CFC2 0x00000400 0xE0000060
=] Sectionlnfo nsp2 0x00001538 0x0003E000 0x00000000 0x00000400 0xE0000060
o [=~ Import Dir
ks Data
Resource Dir
MemUsed | OMB 32Bit File
tatus perational... ueue
Eiem s e L
= [| 0|

Figure 7.16: The packed sections
And the unpacked version is displayed in Fig. 7.17.

AR PROTECTION iD v0.6.2.3 MARCH 2009 o] ﬂ@[}l k4
FileName C:\Windows\notepad.exe
M2 Heades =l Name s vitsize RvA PlussSize Offset Flsg
-1+ PE Header ;
FileHeader Ltext 0x00008F40 0x00001000 0%00009000 0x00000400 0x60000020
OptionalHeader .data 0«00002124 0x00004000 0x00001000 0<00009400 0xCOO000D40
Sectionlnfo = rsic 0x00019418 0<0000D000 0x00019C00 0x00004400 0x40000040
+- Import Dir reloc 0<00000D18 000027000 0<00000EQ0 0x00024000 0x42000040
Resource Dir
+)- Fisups Dir
Debug Dir
+|- Load Config Dir =
£ - ‘H‘l m| »
MemUsed =~ OMB 32Bit File
Status Operational... Queue
h |

Figure 7.17: Unpacked sections

The following are the basic stages used to get to the file execution start offset:

1. Determine each section’s virtual memory map (that is the virtual start
address and end address. The virtual address and virtual size for each

section can be found in the section header from the executables PE

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the = 67
NsPack 3.4 and 3.7 packer.

Header).

2. Establish in which section’s virtual space the address of entry point is

located.

3. Validate the offset of that section as per the section header. In the section
header, the pointer to raw data field gives us the file-based offset where

the section data/bytes begin.

4. Calculate the difference between the address of entry point and the virtual
address of the section in which the entry point lies. Add this difference to
the pointer to raw data, which is the file-based offset of the section, in

order to get the file-based execution start offset for the particular file.
Hence, using this data we can calculate the file execution start offset for this file:

[(Address of Entry Point) — (Virtual Address) | + (Pointer to Raw Data)
= (file execution start offset)
The ‘Pointer to Raw Data’ value is also called the ‘Offset’ or ‘Raw Address’.
Now, by inserting the values from our tables above, we get (these values come from

the .nsp0 section header and the main optional headers):

(0x000380F9 - 0x00001000) + 0x00000400 = 0x00038CF9
This calculated value is not necessarily the offset where file execution actually

begins with NsPack compressed files.

If we take another example, in this case packed with several NsPack options

applied, we get a different type of calculation.

File Optional Header

Number of sections: 02 Section alignment: 00001000
Address of entry point: 00001010 File alignment: 00000200
Image base: 00400000

Section Headers

Section Virtual Virtual Size of Pointer Characteristics

name size Address raw data raw data

nsp0 00004000 00001000 0000000B 0000001C E0000060

nspl 0000203D 00005000 00000CFD 00000200 E0000060

Hence we have:

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the = 68
NsPack 3.4 and 3.7 packer.

(0x00001020 - 0x00001000) + 0x0000001B = 0x0000003B

In Windows, the loader rounds the pointer to raw data to 0x00000000 as it is
lower that the ‘file alignment value’ (in this example = 0x00000200). As a consequence,
the loader assumes that the first section, nsp0, starts at file offset 0 and loads the section
accordingly in the memory. So if we round the pointer to raw data, as the loader does, the

file execution start offset is calculated as follows:

(0x00001020 - 0x00001000) + 0x00000000 = 0x00000040

The offset 0x00000040 is located within the DOS header of the PE file. Hence
this means that it can land within the reserved section of the DOS header (this section is
normally filled with zeros). From this location, NsPack inserts a five-byte jump
instruction. The reason is that this will transfer control to code further ahead in the

program.

Note: It is essential that a check is implemented for occasions where the pointer to
raw data is not a multiple of the file alignment. In these instances, this value needs to be
rounded to the nearest multiple and the remaining extra bytes should be passed over. For
files whose file alignment value is not 0x00000200, the loader rounds it to a multiple of

0x00000200.

As noted, the section header names are variable and as can be seen in the section
header table displayed below, these can easily be changed (with a flag in the program) to

a different set of values.

Name Yirtual Size Virtual Address | Raw Size Raw Address Reloc Address | Linenumbers Relocations N...
Byte[8] Dwvord Dword Dwvord Dword Dwvord Dword Word

AR 0000C000 00001000 00000000 00000200 00000000 00000000 0ooo

AL 00005000 00000000 0000404D 00000200 00000000 00000000 0000

AR 0000038C 00012000 00000000 00000200 00000000 00000000 0000

Figure 7.18: Strange section names

Also note that section ‘.nspl’ (or its equivalent if renamed) can extend beyond the

raw file offset of section ‘.nsp2’

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 69
NsPack 3.4 and 3.7 packer.

7.5. The decompression algorithm
NsPack uses a single format for compression/decompression. There seems to be
little difference between the versions of the program for this function. The initial section
of all NsPack 3.7 (and version 3.4) compressed executables is .nspl (or the renamed
functional equivalent) with first bytes, 9C,60,E8,00. The basic layout the routine is
displayed below:

PUSHAD /* PUSHAD saves all the register values onto the stack */
/*de-compression routine here (see appendix)*/
POPAD /*POPAD restores the previously saved data */
/* from the stack to the registers */
JMP OEP /* The Real Original EP */
The Jump to the OEP is made after the de-compression has run and the executable

code has been decompressed.

loc_46D46B:

popa

popf

jmp near ptr byte 4812A8 ; Jumpt to the Data Sejgment - the OEP
start endp

Figure 7.19: IDA Pro

The de-compressed code is in effect the original code and it does not have a
record that any additional code has been executed prior to arriving at the OEP. The reason
for this is that the instructions in the de-compressed code are expecting certain values.
These may conflict with any errors that might result from variations in the register values.

Consequently, the only instruction that will interact with the values placed on the stack by

PUSHAD is the final POPAD instruction.

7.6. Data Structures
Data is stored as a little endian format. This is the least significant bit (LSB)
precedes the most significant bit (MSB) in memory. When certain options are used, the

COFF line numbers can be removed from the resultant packed executable. COFF symbol

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 70
NsPack 3.4 and 3.7 packer.

table entries for local symbols can also be removed.

7.7. Functions
The main decompression routine utilizes five (5) functions. These have been
disassembled in the Appendices. The entry-point for the decompression function of
NsPack begins with a pushf and pusha. These commands save all the registers (pusha)

which are later restored using a popa (Fig. 7.20).

public start
start proc near

5 FUNCTION CHUNK AT 0646D55B SIZE 006806089 BYTES

pushf

pusha

call $+5

pop ebp

sub ebp, 7

lea eax, [ebp-11Fh]
cmp byte ptr [eax], 1
jz loc_40OD3F7

1
Figure 7.20: DA Pro showing the ASM function

The popa/popf listed below shows the end of the decompression routine.

YVYY
AN L
loc_4BD3F7:
mov eax, 6
cmp eax, @
jz short loc_406D40B
|
EEN L EEN L
popa
popf loc_48D4BB:
mov eax, 1 popa
retn O8Ch popf
jmp near ptr dword_4012A8
start endp

Figure 7.21: The flow graph

Breaking or dumping the decompressed program is possible at the final pop

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the @ 71
NsPack 3.4 and 3.7 packer.

instructions. The memory image has been decompressed at this stage. The section, .nsp0
(or equivalent name) is a working area used by the program to load the decompressed

data. The start of this section later becomes the location of the decompressed function.

.NSPO\ -NSP1 NSP2
* _62i_1:00468D55B push 0
* _62i_1:808408D55D call dword ptr [ebp-BEBh]
* _62i_1:0040D563 retn

62i_1:0040D563 ; END OF FUNCTION CHUNK FOR start
621 1100BOD5ES 5 ———— =~

* _62i_1:0040D564 dd 118BBBFFh, 7564513Bh, 411c76ah, 2366116h, 7C3FFOCh
_62i_1:0048D564 dd 89420828Ah, 448B6611h, 831C0424h, 8331861h, 1E56836Ch
_62i_1:0048D564 dd 41D868326h, 6AFFO849h, S58OFEBB5h, 39C9E85Eh, OCEA8BO2h
_62i_1:0048D564 dd 6CBB6BBOFh, OGBOSE2C1h, 893E4EC2h, BEA750F41h, 4BESEh
_62i_1:0040D564 dd 718B5653h, 6DB3367088h, 8057D285h, 2C7EBC79h, BEA1C5576h
_62i_1:0040D564 dd BE38BEED1h, 572FE3Bh, 1D83E82Bh, 778181CBh, 187366C5h
_62i_1:0040D564 dd 81AE6C1h, 848985E8h, OF8OBE741h, 5DD8754Dh, 5F628967h
_62i_1:0048D564 dd 1C5E7A4Ch, BB35BC38Bh, 4F97F28Ch, OB70F5761h, BC1C2DC3%h
_62i_1:0048D564 dd 1EBBE83Ch, 7EGOC7AFh, 73F83BOCh, 46893146h, OGF566CBBCh
_62i_1:0040D564 dd 6DO8348EG1h, 98FO1EBFh, BC1FA2Bh, OF883085FFh, 81398966h
_62i_1:0040D564 dd 5CA87E7Fh, OCE148B19h, 889F2AE8h, 1DE1644Eh, OF166BA38h
_62i_1:0040D564 dd BEE®72DFh, ODO2B42EBh, 566DF84Fh, BAB6FD78%9h, BAD2BC8Fh
_62i_1:0048D564 dd 58C1E6DBh, BDFC29EEAh, BE742A386h, 40021FFEh, 81C35ES5Fh
_62i_1:0048D564 dd 5351ECD6h, BDA3E16BBh, BES8DB8594h, 1A7EF961h, 4BFC5D8%h
_62i_1:0048D564 dd 8DO8855B2h, OCE63476h, 3FE83E18h, BE6C6B3FDh, 75FCOC4Dh
_62i_1:0040D564 dd 42C25EEBh, 6D3CB8BO2h, 45BS5FE2h, 191F95C%h, 6DD89763Ah

62i 1:0040D564 dd 57309CF8h, 3942FFC3h, BD98BC97Dh, 7EFCA8FBh, 78566528h

Figure 7.22: The first section
The section, .nsp2 (or equivalent name) holds the compressed (original)
executable. This data is called by the decompression routine (.nsp1). This routine takes

the data from .nsp2 and copies it (once it is decompressed) into .nsp0.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 72
NsPack 3.4 and 3.7 packer.

7.8. Differences in versions
The differences in versions 3.4 and 3.7 of NsPack are small. This can be seen in

the table below and in the appendix.

Version 3.7 Version 3.4

.nsp1:4AD5COB3 mov ecx, edi | 62i_1:0040D251 mov eax, [ebp-163h]
.nsp1:4ADSCOBS mov eax, [ebp-1E6h] | 62i_1:0040D257 add eax, SAAh
.nsp1:4ADSCOBB add eax, SAAh | 62i_1:0040D25C call eax
.nsp1:4ADSCOCO call eax | 62i_1:0040D2SE pop ebx
.nsp1:4ADSCOC2 pop ebx | 62i_1:0040D25F pop edx
.nsp1:4ADSCOC3 pop ecx | 62i_1:0040D260 pop ecx
.nsp1:4ADSC0C4 pop edi | 62i_1:0040D261 pop edi

Even when separate options are selected, the decompression routine remains the

same (with different section header names and locations).

|.nspl:4AD5C13B lea ecx, [ebp-1CAh] |jli_l:0040D2D8 lea ecx, [ebp-147h]

The differences that result from the options are associated with the location that

the data is mapped to in the executable. The structure varies slightly between versions.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the = 73

NsPack 3.4 and 3.7 packer.

7.9. NsPack Dependencies

The following section displays the dependencies used by NsPack. PE Explorer

Dependency Scanner is used for this first analysis.

File Help
V| B H| e
Sl Nspack3. 7.exe

=& kemel32.dl

B ndidi

-8 advapiz2.di
B ndidi
B kemel32.dl
-8 pertd.di
+ El wintrust.dll
-8 user32.dl
+ El secur32.dll
- J8 berypt.di
-8 cometl32.dl
-8 gdiz2.di

B ndidi

B kemel32.dl
B user32di
B advapiz2.di
+ u oleaut32.dll
=3 olepro32.dil
& msvert.di
B cleaut32.di
3 kemel32.dl
u user32.dll
a gdi32.dl
B advapiz2.di
B cle32.dl
+ u shell32.dll
= u user32.dil
B nididi
B kemel32.di
B gdizzd
B advapiz2.di
El msimg32.dll

Always Rescan

-~

m

Path: C:\Data‘\HCLYNSPack 3.7%\NsPack 3.7 (Unpacking)i\Nspack3.7.exe

Version Info

Info:

Signature:

Struc Version:
File Version:
Product Version:
File Flags Mask:
File Flags:
File 03:

File Type:

File SubType:
File Date:

%2/ PE Explorer Dependency Scanner - C:AData\HCLYMNSPack 3.7\NsPack 3.7 (Unpacking)\Nspack3.7.exe

VS_VERSION INFO
FEEF04EDh

o wwke

.0
.7.0.0
.7.0.0
.63

WINDOWS32

APP

UNEXNOWN

00:00:00 0O0/00/0000

Struc has Child(ren). Size: 752 bytes.

Child Type:

StringfileInfo

Lancuage /Code Page: 205271200

Comments:
CompanyName:
FileDescription:
FileVersion:
InternalName:
LegalCopyright:
LegalTrademarks:
OriginalFilename:
PrivateBuild:
ProductNane:
ProductVersion:
SpecialBuild:

Child Type:
Translation:

North Star

3, 7, 0,0
nSpack

2222 (C) 2004
nipack.EXE
nSpack 2222

3, 7,0,0

VarFileInfo
2052/1200

m

o)

Figure 7.23: The dependencies used by NsPack

The dependencies used by an executable provide us with an insight into the

program. These allow us to see the possible system calls that may be made and if the

program uses network calls and other such features.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 74
NsPack 3.4 and 3.7 packer.

-

Always Rescan

Struc has Child(ren). Size: 752 bytes.

% PE Explorer Dependency Scanner - C:\Data\HCLANSPack 3.7\MsPack 3.7 (Unpacking)\Nspack3.7.exe [o][E)=z
File Help
V| B H| e
SR) Nspack3.7.exe Path: C:\Data\HCLYNSPack 3.74NsPack 3.7 (Unpacking)\Nspack3.7.exe
-3 kemel32.dl)
-3 advapi32.di Version Info
-l cometi32.dl Info: VS_VERSIOH_IHFO -
-3 gdiz2.dl Signature: FEEF04EDh
+ u oleaut32.dll Struc Version: 1.0
-3l olepro32.dl File Version: 3.7.0.0
-8 shell32.dl Product Version: 3.7.0.0
-8 user32.dl File Flags Mask: 0.63
+ u winmm.dll File Flags:
3-8 winspool drv File 03: VINDOWS32
-8 comdig2 di File Type: APP
+ u ole32.dl File SubType: UNENOWN
) File Date: 00:00:00 00/00/0000
-3l oledlg.dl

Child Type: StringfileInfo

Language /Code Page: 2052/1200 =
Comments:

CompanyName: North S5tar
FileDescription: nSpack Microsoft 2222222
FileVersion: 3, 7, 0,0

InternalName: nSpack

LegalCopyright: 2222 (C) 2004
LegalTrademarks:

OriginalFilename: nSpack.EXE

PrivateBuild:

ProductNanme: nSpack 2222
ProductVersion: 3, 7, 0,0

SpecialBuild:

Child Type: VarFileInfo

Translation: 205271200

o

Figure 7.24: Detailed info

PE Explorer can be used to display the executables dependencies. Another option

is to use Dependency Walker (http://www.dependencywalker.com/). As the site states:

Dependency Walker is a free utility that scans any 32-bit or
64-bit Windows module (exe, dll, ocx, sys, etc.) and builds a
hierarchical tree diagram of all dependent modules. For each
module found, it lists all the functions that are exported by
that module, and which of those functions are actually being
called by other modules. Another view displays the minimum
set of required files, along with detailed information about
each file including a full path to the file, base address,
version numbers, machine type, debug information, and
more.

This tool is free and can be used for analyzing the functional dependency tree of a

program.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 75

NsPack 3.4 and 3.7 packer.

B Dependency Walker - [Nspack3.7.exe]
B} File Edit \iew Options Profile

SH O R o E HAE

Window Help

rmBEMN

o @ NSPACK3.TEXE
KERNEL32.DLL
ADVAPI32.DLL
COMCTL32.0LL
GDI32.DLL
OLEAUT32.0LL
OLEPRO32.0LL
SHELL32.0LL
MSVCRT.DLL
KERNEL32.DLL
GDI32.DLL
USER32.DLL
ADVAPI32.DLL
SHLWAPLDLL
NTDLL.DLL
RPCRT4.DLL

O0000000o

#

IEEEEEEEE

~ [Pt [oOrdinal » | Hint | Function

Entry Point

E Ordinal | Hint | Function

Entry Point

Module

File Size

Link Checksum

Real Checksum Subsystem Preferred Base

Actual Bas

{7 IESHIMS.DLL Error opening file. The system cannot find the file specified (2). 4
@ | NSPACK.T.EXE Could not find the section that owns the Export Directory.

3 |IEFRAMEDLL 21/11/2009 5:34p | 21/11/2009 5:35p | 11,069,952 | A 000495309 0x00A95309 x86 GUI v 0x75160000 Unknown
O | ADvaPI2.DLL 11/04/2009 5:28p | 11/04/2008 5:22p 800,768 [A 0x000CIBT3 0x000C9B73 x86 Console v 0x77C80000 Unknown
O | comcTL32.0LL 19/01/2008 6:26p | 19/01/2008 6:26p 531,968 [A 000086963 0x00086963 x86 GUI v 0x70800000 Unknown
O | comMpLG32.0LL 11/04/2009 5:28p | 11/04/2009 5:26p 450,560 [A 000076549 0x00076549 x86 GUI v 0x6FC20000 Unknown
M | anrz ni 11/04/200Q_S:28n | 11/04/200Q_5:77n 2074721 4 MANNSACIT MNNNSACIT YRR ansale (a%) ~ITRANNAN Hinknawen

< m

Warning: At least one delay-load dependency module was not found.

Warning: At least one module has an unresolved import due to a missing export function in a delay-load dependent module.

Warning: At least one module was corrupted or unrecognizable to Dependency Walker, but still appeared to be a Windows module.

For Help, press F1 4

Figure 7.25: Using Dependency walker

The decency tree for NsPack is displayed in Fig 7.26. From this we can see no

network modules are loaded.

B Dependency Walker - [Nspack3.7.exe]

B File Edit View Options Profile Window Help -8 %x
FHE O R e LAE S A BEONR
= . NSPACK3.T.EXE Ordinal ~ Hint Function Entry Point
a N/A 0(0x0000) | GetProcAddress Mot Bound
] ADVAPI2.DLL N/A 0{0x0000) | GetModuleHandle& Mot Bound
O COMCTL32.DLL N/A 0(0x0000) | LoadLibrarya Not Bound
O GbBz.DLL
1 OLEAUT32.DLL
] OLEPRO32.DLL
0 SHELL32.DLL < m])
1 USER32.DLL
O] WINMM.DLL E Ordinal ~ Hint Function Entry Point -
1 WINSPOOL.DRV = 1(0x0001)| 35(0x0023) | BaseThreadInitThunk 0x0004D0D7 [l
O] COMDLG32.0LL % 2(0x0002)| 712 (0x02C8) | InterlockedPushListSList MTDLL.RtlinterlockedPushListSList
: 3 3(0x0003) 0{0x0000) [AcquireSRWLockExclusive NTDLL.Rtl&cquire SRWLockExclusive
0 oLeszoLL €% 4(0x0004)| 1(0x0001) | AcquireSRWLockShared NTDLL.RtAcquireSRWLockShared
00 OLEDLG.DLL €3 | S@0005)| 2(0x0002) | ActivateActCh 00001C631
5] OLEAUT32DLL = 6(0x0006) 3(0x0003) [AddAtoma 0x00018086 <
»] KERMEL32.DLL alr D I E—] N
A | Module File Time Stamp I Link Time Stamp I File Size | Attr, | Link Checksum | Real Checksum I CPU I Subsystem] Symbals I Preferred Base I Actual Bas +
IESHIMS.DLL Error opening file. The system cannot find the file specified (2). [
NSPACK3.7.EXE Could not find the section that owns the Export Directory.
IEFRAME.DLL 21/11/2008 5:34p | 21/11/2009 5:35p | 11,069,952 | A 000495309 0x00A95309 x86 GUI v 0x75160000 Unknown
0 | ADvAPE2.DLL 11/04/2009 5:28p | 11/04/2009 5:22p 800,768 [A 0x000CIBT3 0x000C9B73 x86 Console v 0x77C80000 Unknown
O | comcTL32.0LL 19/01/2008 6:26p | 19/01/2008 6:26p 531,968 [A 000086963 0x00086963 x86 GUI v 0x70800000 Unknown
O | compLG32.0LL 11/04/2009 5:28p | 11/04/2009 5:26p 450,560 [A 000076549 0x00076549 x86 GUI v 0x6FC20000 Unknown
M L anmznn 11/04/7000S:78n | 11/04/7000 5:22n 20747718 MANNSACT AAANSACTT VAR Cansals [aY wITRAANNAND Habnasm
« m »
Warning: At least one delay-load dependency module was not found
Warning: At least one module has an unresolved import due to a missing export function in a delay-load dependent module.
Warning: At least one module was corrupted or unrecognizable to Dependency Walker, but still appeared to be a Windows module.
For Help, press F1 4

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 76
NsPack 3.4 and 3.7 packer.

Figure 7.26: Detailed info in the tree
Another option is to use the tools from SysInternals to display the executable
information associated with the NsPack compression program. In Fig 7.27 the detailed

information from SysInternal Process Explorer (http://technet.microsoft.com/en-

us/sysinternals/default.aspx) is displayed.

e

&5 Nspack3.7.exe:10120 Properties (o3)=z

Image \Performance Performance Graph | Threads | TCP/IP | Security | Environment ‘ Job lStrings
V| Resolve addresses

Profoi.. Local Address Remote Address State

oK | l Cancel

Figure 7.27: Details in Process explorer
Selecting the process and then right-clicking to display the options allows the user

to choose 'properties'.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 77
NsPack 3.4 and 3.7 packer.

-

@ Nspack3.7.exe:10120 Properties

l Image I Performance | Performance Graph I Threads I TCR{IP I Security I Environment: I Job ‘ Strings \

[F=3(Ho ()

Printable strings found in the scan:

PMOVMSKB_GdVRdq: required SSE2, use --enable-sse option -
PSUBUSB_Vdgwdaq: required SSE2, use --enable-sse option

PSUBUSW_Vdgwdq: required SSE2, use --enable-sse option

PMINUE_Vdgwdq: required SSE2, use --enable-sse option

PADDUSB_Vdqwdq: required SSE2, use --enable-sse option

PADDUSW _Vdgwdaq: required SSE2, use --enable-sse option

PMaXUB_Vdgwdag: required SSE2, use --enable-sse option

PAVGE_Vdgwdq: required SSE2, use --enable-sse option

PSRAW_Vdgwdg: required SSE2, use --enable-sse option

PSRAD_Vdqwdq: required SSE2, use --enable-sse option

PAVGW _Vdgwdg: required SSE2, use --enable-sse option

PMULHW _Vdqwdq: required SSE2, use --enable-sse option [
PSUBSE_Vdqwdq: required SSE2, use --enable-sse option

PSUBSW_Vdgqwdq: required SSE2, use --enable-sse option

PMINSW _Vdqwdag: required SSE2, use --enable-sse option

PADDSE_Vdgwdg: required SSE2, use --enable-sse option

PADDSW_Vdgwdq: required SSE2, use --enable-sse option

PMaXSW_Vdgw/dg: required SSE2, use --enable-sse option

PSLLW_Vdgwdq: required SSE2, use --enable-sse option

PSLLD_Vdgwdag: required SSE2, use --enable-sse option &
< | m [3

) lmage @ Memory [Save][Find

[oK] [Cancel

]

"

Figure 7.28: The strings from the executable in memory

This tab will allow us to see what is running on the system. This is less accurate

then using a dependency scanner, but does help with a dynamic analysis of the running

program.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the = 78
NsPack 3.4 and 3.7 packer.

8. Conclusion

This paper was written to provide a detailed analysis of NsPack (a formerly semi-
commercial PE packer) written by Liu Xing Ping and distributed from by North Star
Software in China. NsPack is an executable file compressor for Windows 32 and 64 bit
PE based executables. It also has the capability to work on .NET files. In marketing
material and in tests (figure 3.3), it is shown that NsPack is capable of compressing the
size of a 32-bit or 64-bit Windows executable by up to 60%. It is claimed (NsPack, 2009)
that no noticeable performance change will result from this compression. There are better
compression programs, but not all of these support 64-bit exe, dll, ocx and scr files. In
addition, the far lower deployment rate of NsPack when compared to more common
packers (such as UPX) means that less effort has been made to understand and

automatically unpack the algorithm used.

The greatest challenge posed by NsPack is the ability to recompress an already
compressed executable file. NsPack will recompress a PE file that has been compressed
using Upx, Aspack, Pecompact, and several other packers. This slows the execution of
the packed executable considerably, but make reverse engineering of the program
extremely complex. Malware authors use this technique to further obfuscate their
payloads. The techniques have not been widely deployed at present due to the inability of
many anti-virus vendors to effectively decompress a large number of packers in real time.
To help combat this, we analyzed the NsPack binary executable in section 6. The
Entrypoint of NsPack generally makes use of a JMP instruction followed by a PUSHF
and PUSHA command.

The detection and analysis of many common packers remains a mystic art to
many people. With more than 80% of malware using some type of packer, this is
something that needs to change. As was noted at the start of this paper, the intensification
of cybercrime will only end in the development of greater volumes of malware. As these
products are commercialized, the authors are likely to escalate their endeavors (Debrosse,
2009) leading to malicious software that is more difficult to detect and stop. Packers,

allow the cybercriminal to simply increase the costs of detecting their products. This

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 79
NsPack 3.4 and 3.7 packer.

results in greater expected returns through a more successful campaign. Consequently, it
is imperative that information security professional understand PE Packers whether they
work in the AV industry or for general commercial ventures. In the former occasion, an
understanding of the packer problem is only likely to become more important. In the
later, knowledge of packers can only aid the security professional to gain a

comprehension of the predicament to its true degree.

For the preponderance of security professionals, an analysis of malware (and
hence packers) will be for the most part critical only when an incident has occurred.
Knowledge as to the processes that an attacker has used to obscure their software can be
the key in any successful incident handling exercise involving malware. As the majority
of security incidents are coming to be based on some form of malware, a good
understanding of how packers work is becoming more and more crucial. As NsPack
remains one of the most common PE Packers with high rates of reported use and
discovery (NsPack is in the top 10 list for PE Packers used on malware samples stored in
the AML database) and with the relatively low accuracy rates for detection, it is important
that security professionals gain a more comprehensive understanding of this and related
packers. For this reason, this paper was written as a broad analysis of NsPack that will

help both the novice and experienced anti-malware professional.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 80
NsPack 3.4 and 3.7 packer.

9. References
Arbor Networks. (2007) Arbor malware library (AML). http://www.arbornetworks.com.

Chess, D., & White, S,. (2000) "An undetectable computer virus". In Virus Bulletin
Conference, September 2000.

Cohen. F (1987) "Computer viruses: Theory and experiments". In 7th DOD/NBS
Computers and Security Conference, volume 6, pages 22--35, September 1987.

Debrosse, Jeff (2009)"Navigating the New Cybercrime Threatscape" TechNewsWorld
(http://www.ecommercetimes.com/story/68067.html), Viewed, 07 Jan 2010.

Doyle, John F. (2009) "Fall 2009 — Computer Structures C335 Syllabus, ASM"
http://homepages.ius.edu/jfdoyle/C335/syllabusc335fall2009.htm

Guo, Fanglu, Ferrie, Peter & Chiueh, Tzi-cker (2008) "A Study of the Packer Problem
and Its Solutions", Symantec Research Laboratories, Lecture Notes in Computer
Science

Ferrie, Peter. (2006) "Attacks on Virtual Machines". In Proceedings of AVAR Conference.

Iczelion's Win32 Assembly Homepage, http://win32assembly.online.fr/tutorials.html,
Last viewed 20 May 2010.

Jeong, K., & Lee, H. (2008) "Code graph for malware detection”. In Information
Networking. ICOIN. International Conference on, Jan 2008.

Kath, Randy (1997) "The Portable Executable File Format from Top to Bottom"
Microsoft Developer Network Technology Group. (Available from:
http://www.pelib.com/resources/kath.txt)

Lyda, R., Hamrock, J. (2007) “Using entropy analysis to find encrypted and packed
malware”, IEEE Security and Privacy (S&P), 5(2), pp. 40-45.

Masta "masta_'s Tutorial on Win95 ASM Coding Part 0"
http://win32assembly.online.fr/w32 00.txt, Last viewed 11 Apr 2010.

North Star Software. (2008) NsPack. http://www.nsdsn.com/eng/index.htm.

Oberheide, J., Bailey, M., & Jahanian F. (2009) "PolyPack: An Automated Online
Packing Service for Optimal Antivirus Evasion", 3rd USENIX Workshop on
Offensive Technologies (WOOT '09)

PEiD, available at http://www.peid.info/.

Protection ID - the ultimate Protection Scanner, available at

http://pid.gamecopyworld.com/.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 81
NsPack 3.4 and 3.7 packer.

Perdisci, R., Lanzi, A., & Lee, W. (2008) “Classification of Packed Executables for
Accurate Computer Virus Detection”, Pattern Recognition Letters, pp. 1941-1946,
29(14).

Pietrek, Matt (1998) "Windows System Programming Secrets", John Wiley & Sons Inc,
USA

Pietrek, Matt (1994) "Peering Inside the PE: A Tour of the Win32 Portable Executable
File Format" Microsoft Developer Network Technology Group. (Available from:
http://msdn.microsoft.com/en-us/library/ms809762.aspx)

Shafiq, M. Zubair,. Tabish, S. Momina., Farooq, Muddassar (2009) "PE-Probe:
Leveraging Packer Detection and Structural Information to Detect Malicious
Portable Executables", Next Generation Intelligent Networks Research Center
(nexGIN RC) National University of Computer & Emerging Sciences (NUCES-
FAST) Islamabad, 44000, Pakistan.

Stewart, Joe. (2006) "OllyBonE v0.1, Break-on-Execute for OllyDbg".

Taha, G., (2008) “Counterattacking the packers”, McAfee Avert Labs, Aylesbury, UK.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 82
NsPack 3.4 and 3.7 packer.

10. Appendix 1 - NsPack Unpacking / De-Compression
The following is the main() unpacking routine from an NsPack 3.7 compressed
executable. This is always the ‘nsp1’ (or the equivalently renamed segment).

.nspl:4AD5SBFFE

.nspl:4AD5SBFFE ; =============== S UBROUTINE
.nspl:4AD5SBFFE

.nspl:4AD5BFFE

.nspl:4AD5SBFFE public start
.nspl:4AD5SBFFE start proc near
.nspl:4AD5SBFFE

.nspl:4AD5SBFFE ; FUNCTION CHUNK AT .nspl:4AD5C3BE SIZE 00000009 BYTES
.nspl:4AD5SBFFE

.nspl:4ADSBFFE pushf

.nspl:4AD5SBFFF pusha

.nspl:4AD5C000 call $+5
.nspl:4AD5C005 pop ebp
.nspl:4AD5C006 sub ebp, 7
.nspl:4AD5C009 lea ecx, [ebp-1A2h]
.nspl:4AD5CO0F cmp byte ptr [ecx], 1
.nspl:4AD5C012 jz loc_4AD5C25A
.nspl:4AD5C018 mov byte ptr [ecx], 1
.nspl:4AD5C01B mov eax, ebp
.nspl:4AD5C01D sub eax, [ebp-20Eh]
.nspl:4AD5C023 mov [ebp-20Eh], eax
.nspl:4AD5C029 add [ebp-1DEh], eax
.nspl:4AD5CO02F lea esi, [ebp-19Ah]
.nspl:4AD5C035 add [esi], eax
.nspl:4AD5C037 push ebp
.nspl:4AD5C038 push esi
.nspl:4AD5C039 push 40h
.nspl:4AD5C03B push 1000h
.nspl:4AD5C040 push 1000h
.nspl:4AD5C045 push 0

.nspl:4AD5C047 call dword ptr [ebp-166h]
.nspl:4AD5C04D test eax, eax
.nspl:4AD5C04F jz loc_4AD5C3BE
.nspl:4AD5C055 mov [ebp-1E6h], eax
.nspl:4AD5C05B call $+5
.nspl:4AD5C060 pop ebx
.nspl:4AD5C061 mov ecx, 367h
.nspl:4AD5C066 add ebx, ecx
.nspl:4AD5C068 push eax
.nspl:4AD5C069 push ebx
.nspl:4AD5C06A call sub_4AD5C31F
.nspl:4AD5CO6F pop esi
.nspl:4AD5C070 pop ebp
.nspl:4AD5C071 mov esi, [esi]
.nspl:4AD5C073 mov edi, ebp
.nspl:4AD5C075 add edi, [ebp-21Eh]
.nspl:4AD5C07B mov ebx, edi
.nspl:4AD5C07D cmp dword ptr [edi], O
.nspl:4AD5C080 jnz short loc_4AD5C08C
.nspl:4AD5C082 add edi, 4
.nspl:4AD5C085 mov ecx, O
.nspl:4AD5C08A jmp short loc_ 4ADS5COA2

.nspl:4AD5CO8C ; ————————— - - -
.nspl:4AD5C08C

.nspl:4AD5C08C loc_4AD5C08C: ; CODE XREF: start+82j
.nspl:4AD5C08C mov ecx, 1

.nspl:4AD5C091 add edi, [ebx]

.nspl:4AD5C093 add ebx, 4

.nspl:4AD5C096

.nspl:4AD5C096 loc_ 4AD5C096: ; CODE XREF: start+CFj
.nspl:4AD5C096 cmp dword ptr [ebx], O

.nspl:4AD5C099 jz short loc_4AD5COCF

.nspl:4AD5C09B add [ebx], edx

.nspl:4AD5C09D mov esi, [ebx]

.nspl:4AD5CO9F add edi, [ebx+4]

.nspl:4AD5C0A2

.nspl:4AD5COA2 loc_4ADSCOAZ2: ; CODE XREF: start+8Cj
.nspl:4AD5C0A2 push edi

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the

.nspl:4AD5COA3
.nspl:4AD5C0A4
.nspl:4AD5COAS
.nspl:4AD5COAB
.nspl:4AD5COB1
.nspl:4AD5COB3
.nspl:4AD5COBS
.nspl:4AD5COBB
.nspl:4AD5C0CO
.nspl:4AD5C0C2
.nspl:4AD5C0C3
.nspl:4AD5C0C4
.nspl:4AD5C0CS
.nspl:4AD5C0CS8
.nspl:4AD5COCA
.nspl:4AD5COCD

NsPack 3.4 and 3.7 packer.

ecx
ebx

dword ptr [ebp-162h]
dword ptr [ebp-166h]
edx, esi

ecx, edi

eax, [ebp-1E6h]

eax, 5AAh

eax

ebx

ecx

edi

ecx, 0O

short loc_4ADS5COCF
ebx, 8

short loc_ 4AD5C096

NSPl:4ADSCOCE ; —m

.nspl:4AD5COCF
.nspl:4AD5COCF loc_4ADS5COCF:
.nspl:4AD5COCF
.nspl:4AD5COCF
.nspl:4AD5C0D4
.nspl:4AD5C0D6
.nspl:4AD5C0ODC
.nspl:4AD5COE2
.nspl:4AD5COE8
.nspl:4AD5COEB
.nspl:4AD5COEE
.nspl:4AD5COF0
.nspl:4AD5COF2
.nspl:4AD5COFS
.nspl:4AD5COF7
.nspl:4AD5COF7 loc_4ADS5COF7:
.nspl:4AD5COF7
.nspl:4AD5COF7
.nspl:4AD5COF9
.nspl:4AD5COFA
.nspl:4AD5COFC
.nspl:4AD5COFC loc_4ADSCOFC:
.nspl:4AD5COFC
.nspl:4AD5COFE
.nspl:4AD5C100
.nspl:4AD5C102
.nspl:4AD5C106
.nspl:4AD5C108
.nspl:4AD5C10A
.nspl:4AD5C10C
.nspl:4AD5C10E
.nspl:4AD5C111
.nspl:4AD5C115
.nspl:4AD5C118
.nspl:4AD5C11A

push
push
push
call
lea
mov
lea
mov
mov
cmp
jz

mov
inc
sub

; CODE XREF: start+9Bj
; start+CAj

8000h

0

dword ptr [ebp-1E6h]

dword ptr [ebp-162h]

esi, [ebp-1DEh]
ecx, [esi+8]
edx, [esi+10h]
esi, [esi]

edi, esi

ecx, O

short loc_4AD5C136

; CODE XREF: start+100j
; start+10Ej
al, [edi]
edi
al, OE8h
; CODE XREF: start+136j
al, 1
short loc_4AD5COF7
eax, [edi]
byte ptr [edx+1l], O
short loc_4AD5C1l1C
bl, [edx]
[edi], bl
short loc_4AD5COF7
bl, [edi+4]
ax, 8
eax, 10h
al, ah
short loc_4AD5C126

nSPl:4AD5CLIC ; —mmm oo

.nspl:4AD5C11C
.nspl:4AD5C11C loc_4ADS5SCl1C:
.nspl:4AD5C11C
.nspl:4AD5C11F
.nspl:4AD5C121
.nspl:4AD5C124
.nspl:4AD5C126
.nspl:4AD5C126 loc_ 4AD5C126:
.nspl:4AD5C126
.nspl:4AD5C128
.nspl:4AD5C12A
.nspl:4AD5C12C
.nspl:4AD5CI12F
.nspl:4AD5C132
.nspl:4AD5C134
.nspl:4AD5C136
.nspl:4AD5C136 loc_4AD5C136:
.nspl:4AD5C136
.nspl:4AD5C13B
.nspl:4AD5C141
.nspl:4AD5C144
.nspl:4AD5C147
.nspl:4AD5C14D
.nspl:4AD5C14F
.nspl:4AD5C152
.nspl:4AD5C154
.nspl:4AD5C157

Craig S Wright

mov
xchg
rol

xchg

sub
add
mov
add
sub
mov
loop

call
lea
mov
cmp
jz
mov
sub
jz
mov
lea

; CODE XREF: start+108j
bl, [edi+4]
al, ah
eax, 10h
al, ah
; CODE XREF: start+11Cj
eax, edi
eax, esi
[edi], eax
edi, 5
bl, OE8h
eax, ebx
loc_4AD5COFC
; CODE XREF: start+F7j
sub_4AD5C275
ecx, [ebp-1CAh]
eax, [ecx+8]
eax, O
loc_4ADSCICE
esi, edx
esi, [ecx+10h]
short loc_4AD5CICE
[ecx+10h], esi
esi, [ebp-19Ah]

83

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the

.nspl:4AD5C15D
.nspl:4AD5C15F
.nspl:4AD5C162
.nspl:4AD5C164
.nspl:4AD5C167
.nspl:4AD5C169
.nspl:4AD5C16B
.nspl:4AD5C16E
.nspl:4AD5C171

NsPack 3.4 and 3.7 packer.

esi, [esi]

ebx, [esi-4]

eax, [ecx]

eax, 1

short loc_4AD5C173
edi, edx

edi, [ecx+8]

ecx, [ecx+10h]

short loc_4AD5C17B

NSPl:4ADSCL 73 | o

.nspl:4AD5C173
.nspl:4AD5C173 loc_4AD5C173:
.nspl:4AD5C173
.nspl:4AD5C175
.nspl:4AD5C178
.nspl:4AD5C17B
.nspl:4ADSC17B loc_4AD5C17B:
.nspl:4AD5C17B
.nspl:4AD5C17B
.nspl:4AD5C17D
.nspl:4AD5C17F
.nspl:4AD5C180
.nspl:4AD5C182
.nspl:4AD5C184
.nspl:4AD5C186
.nspl:4AD5C188
.nspl:4AD5C188 loc_4AD5C188:
.nspl:4AD5C188
.nspl:4AD5C188
.nspl:4AD5C18A
.nspl:4AD5C18C
.nspl:4AD5C18E ;
.nspl:4AD5C18E
.nspl:4AD5C18E loc_4ADS5C18E:
.nspl:4AD5C18E
.nspl:4AD5C190
.nspl:4AD5C193
.nspl:4AD5C196
.nspl:4AD5C199
.nspl:4AD5C19B
.nspl:4AD5C19D
.nspl:4AD5C19F
.nspl:4AD5C1A2

xor
mov
inc
or
jz
cmp
ja

; CODE XREF: start+169j
edi, esi
edi, [ecx+8]
ecx, [ecx+10h]

; CODE XREF: start+173j
; start+18Ej

eax, eax

al, [edi]

edi

eax, eax

short loc_4AD5C1A4

al, OEFh

short loc_4AD5C18E

; CODE XREF: start+19Dj
; start+1A4j

ebx, eax

[ebx], ecx

short loc_4AD5C17B

.NSPl:4ADSCIAL ; ——mm

.nspl:4AD5C1A4
.nspl:4AD5C1A4 loc_4ADSCI1A4:
.nspl:4AD5C1A4
.nspl:4AD5C1A6
.nspl:4AD5C1A8
.nspl:4AD5C1AA
.nspl:4AD5C1AD
.nspl:4AD5C1AF
.nspl:4AD5C1AF loc_ 4ADSCIAF:
.nspl:4AD5C1AF
.nspl:4AD5C1BO
.nspl:4AD5C1B2
.nspl:4AD5C1B4
.nspl:4AD5C1B6
.nspl:4AD5C1BA

.NSPl:4ADSCIBC ; ————— e m e

.nspl:4AD5C1BC
.nspl:4AD5C1BC loc_4ADSCIBC:
.nspl:4AD5CIBC
.nspl:4AD5CI1BE
.nspl:4AD5CIC1
.nspl:4AD5C1IC1 loc_4ADS5CICL:
.nspl:4AD5C1C1
.nspl:4AD5C1C2
.nspl:4AD5C1C4
.nspl:4AD5C1C6
.nspl:4AD5C1C8
.nspl:4AD5C1CC

; CODE XREF: start+188j
al, OFh
eax, 10h
ax, [edi]
edi, 2
eax, eax
short loc_ 4AD5C188
eax, [edi]
edi, 4
short loc_4AD5C188
; CODE XREF: start+184j
ebx, ebx
edi, esi
eax, [esi]
eax, 0
short loc_4ADS5CICE
; CODE XREF: start+1BCj
eax, eax
short loc_4AD5C1BC
ebx, eax
[edit+ebx], cx
short loc_4ADS5SCILAF
; CODE XREF: start+1B4j
ebx, ebx
ecx, 10h
; CODE XREF: start+1CEj
eax, eax
short loc_4AD5C1CE
ebx, eax

[edit+ebx], cx
short loc_4AD5C1Cl

NSPL:4ADSCICE 7 = m oo oo o

.nspl:4AD5CICE
.nspl:4ADS5CICE loc_4ADSCICE:
.nspl:4AD5CICE
.nspl:4AD5CICE
.nspl:4AD5C1D4
.nspl:4AD5C1D6
.nspl:4AD5C1DC

Craig S Wright

lea
mov
lea
mov

; CODE XREF: start+149j

; start+154j
esi, [ebp-20Eh]
edx, [esi]
esi, [ebp-1B2h]
al, [esi]

84

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the

.nspl:4AD5C1DE cmp
.nspl:4AD5C1EQ jnz
.nspl:4AD5C1E2 add
.nspl:4AD5C1ES push
.nspl:4AD5C1E6 push
.nspl:4AD5C1E7 push
.nspl:4AD5C1E8 push
.nspl:4AD5C1EA push
.nspl:4AD5CI1EF push
.nspl:4AD5CLFO call
.nspl:4AD5C1F6 pop
.nspl:4AD5C1F7 pop
.nspl:4AD5C1F8 cmp
.nspl:4AD5C1FB jnz
.nspl:4AD5C201 add
.nspl:4AD5C204 mov
.nspl:4AD5C209 rep
.nspl:4AD5C20B sub
.nspl:4AD5C20E sub
.nspl:4AD5C211 push
.nspl:4AD5C212 push
.nspl:4AD5C215 push
.nspl:4AD5C21A push
.nspl:4AD5C21B call
.nspl:4AD5C221

.nspl:4AD5C221 loc_4AD5C221:
.nspl:4AD5C221 push
.nspl:4AD5C222 pop
.nspl:4AD5C223 sub
.nspl:4AD5C229 xor
.nspl:4AD5C22B mov
.nspl:4AD5C22D cmp
.nspl:4AD5C230 jz
.nspl:4AD5C232 inc
.nspl:4AD5C233 lea
.nspl:4AD5C239 mov
.nspl:4AD5C23B

.nspl:4AD5C23B loc_4AD5C23B:
.nspl:4AD5C23B push
.nspl:4AD5C23C push
.nspl:4AD5C23D push
.nspl:4AD5C23E push
.nspl:4AD5C23F push
.nspl:4AD5C240 push
.nspl:4AD5C242 push
.nspl:4AD5C245 mov
.nspl:4AD5C248 add
.nspl:4AD5C24A push
.nspl:4AD5C24B call
.nspl:4AD5C251 pop
.nspl:4AD5C252 pop
.nspl:4AD5C253 pop
.nspl:4AD5C254 pop
.nspl:4AD5C255 add
.nspl:4AD5C258 loop
.nspl:4AD5C25A

.nspl:4AD5C25A loc_4AD5C25A:
.nspl:4AD5C25A

.nspl:4AD5C25A mov
.nspl:4AD5C25F cmp
.nspl:4AD5C262 jz
.nspl:4AD5C264 popa
.nspl:4AD5C265 popf

.nspl:4AD5C266 mov

.nspl:4AD5C26B retn
.nspl:4AD5C26E ; ————————————————————
.nspl:4AD5C26E

.nspl:4AD5C26E loc_4AD5C26E:
.nspl:4AD5C26E popa
.nspl:4AD5C26F popf

.nspl:4AD5C270 jmp
.nspl:4AD5C270 start
.nspl:4AD5C270

Craig S Wright

NsPack 3.4 and 3.7 packer.

al, 1

short loc_4AD5C221
edx, [esi+4]

esi

edx

esi

4

100h

edx

dword ptr [ebp-16Ah]
edi

esi

eax, 1
loc_4AD5C3BE

esi, 8

ecx, 8

movsb

esi, 0OCh

edi, 8

esi

dword ptr [esi-4]

100h

edi

dword ptr [ebp-16Ah]
; CODE XREF: start+lE2]j

ebp

ebx

ebx, 15h

ecx, ecx

cl, [ebx]

cl, 0

short loc_4AD5C25A

ebx

esi, [ebp-20Eh]

edx, [esi]
; CODE XREF: start+25Aj

esi

ecx

ebx

edx

esi

dword ptr [ebx]

dword ptr [ebx+4]

eax, [ebx+8]

eax, edx

eax

dword ptr [ebp-16Ah]

edx

ebx

ecx

esi

ebx, 0Ch

loc_4AD5C23B

; CODE XREF: start+14j
; start+2323

eax, O

eax, O

short loc_4AD5C26E

; CODE XREF: start+264j

near ptr 4AD09797h

85

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the @ 86
NsPack 3.4 and 3.7 packer.

10.1. Reversing Assembly to produce C/C++ Code

In this section we cover the reversing process used to take assembled code and
create a C/C++ representation of the code. This is used for automated unpackers that can
be added into other programs as a routine. There are a number of problems that are
associated with reverse engineering code. Some of these are noted below. Assembly code
loses many of the richness of source code when it is compiled. It is generally expected
that comments are lost and would not be recoverable in executable code, however,
classes, macros, templates and include files are also lost during compilation. This does
not mean that we cannot recover many useful aspects of the code. Executable code

(especially when disassembled) retains:

[¥] Dynamic Links

[¥] Local Variables (although the richness of naming will be lost)

[¥] Parameters
¥} Switch statements

Variables do not hold data; they are a pointer to the location where the data has

been stored by the system.

10.1.1. Execution Control

The Instruction Pointer (IP) always points to the next instruction when executing.
This is the point where the next or subsequent fetch is to occur. Altering the IP allows
different sections of the algorithm to be executed in place of the following sequential

instruction.

The Intel processor supports the following three execution control methods:

[¥] Sequential
[¥] Unconditional branching

[¥] Conditional branching.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 87
NsPack 3.4 and 3.7 packer.

Sequential branching is the normal execution process. As the name suggests, with
sequential branching, one instruction follows after another in order. This is a standard

fetch/execute cycle with the IP'? incrementing in numerical order.

An Unconditional branch involves the non-sequential execution or redirection of
instructions. An unconditional branch jumps to another address and unconditionally

executes the instructions at that point.

A Conditional branch is also executed non-sequentially. The difference to an
unconditional branch is that the branch to the instruction to be executed occurs
conditionally. This means that where a logical condition returns a true result, the
instruction at the specified address is executed. In the event that a false result is returned,

the instruction is executed sequentially.

10.1.2. Decompiling with HexRays

HexRays has a semi-automated decompiler. We will use this to examine the code

and as an aid to reversing the assembled code into C++.

621 1:0040D412 ; =============== S UBROUT I NE

621 1:0040D412
“62i_1:0040D412

621 1:0040D412 sub_40D412 proc near ; CODE XREF: start:loc_40D2D3p
621 1:0040D412 mov esi, [ebp-193h]

621 1:0040D418 or esi, esi

621 1:0040D41A jz loc 40D4B7

621 1:0040D420 mov edx, [ebp-18Bh]

621 1:0040D426 add esi, edx

621 1:0040D428

621 1:0040D428 loc 40D428: ; CODE XREF: sub 40D412+61]
621 1:0040D428 cmp dword ptr [esi], O

621 1:0040D42B jnz short loc 40D43B

621 1:0040D42D cmp dword ptr [esi+4], O

621 1:0040D431 jnz short loc 40D43B

621 1:0040D433 cmp dword ptr [esi+8], O

621 1:0040D437 jnz short loc 40D43B

621 1:0040D439 Jjmp short loc 40D4B5

621 1:0040D43B ;

621 1:0040D43B

621 1:0040D43B loc_40D43B: ; CODE XREF: sub_ 40D412+197
621 1:0040D43B ; sub 40D412+1Fj

621 1:0040D43B mov ebx, [esi+8]

621 1:0040D43E add ebx, edx

621 1:0040D440 push ebx

621 1:0040D441 push edx

621 1:0040D442 push esi

621 1:0040D443 lea edi, [ebp-9Fh]

621 1:0040D449 add edi, [esi+4]

621 1:0040D44C add esi, OCh

12 Tnstruction pointer

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the

621 1:0040D44F
621 1:0040D450
621 1:0040D456
621 _1:0040D457
621 1:0040D458
621 1:0040D459
621 1:0040D45C
621 1:0040D45E
621 1:0040D464
621 1:0040D466
621 1:0040D469
621 1:0040D469
621 1:0040D469
621 _1:0040D46B
621 1:0040D46D
62i_1:0040D470
62i_1:0040D472

621 1:0040D473

621 1:0040D475

loc_40D469:

push
call
pop
pop
pop
cmp
jz
mov
add
add

Xor
mov
cmp
jnz
inc
jmp

NsPack 3.4 and 3.7 packer.

edi

dword ptr [ebp-O0FFh]
edi

edx

ebx

eax, 0

short loc_40D4B7
[ebp-183h], eax

edi, [esi]

esi, 4

; CODE XREF: sub_ 40D412+Alj
ecx, ecx
cl, [esi]
ecx, 0
short loc 40D475
esi
short loc_40D428

62i_1:0040D475
621 1:0040D475
621 1:0040D475
62i_1:0040D477
621 _1:0040D479
621 1:0040D47A
62i_1:0040D47B
621 _1:0040D47C
621 1:0040D47F
62i_1:0040D481
621 1:0040D482
621 1:0040D484
621 1:0040D489
62i_1:0040D489
62i_1:0040D489
621 1:0040D48B
621 1:0040D48E
621 _1:0040D48F
621 _1:0040D490
62i_1:0040D496
62i_1:0040D49C
621 1:0040D49D
621 1:0040D49E
62i_1:0040D49F
62i_1:0040D4A0
621 1:0040D4A3
621 1:0040D4A5
62i 1:0040D4A7
621 1:0040D4AA
621 _1:0040D4AD
62i_1:0040D4AF
621 _1:0040D4B2
621 1:0040D4B3
“62i_1:0040D4B5

loc_40D475:

loc_40D489:

mov
add
push
push
push
cmp
jnz
inc
mov
and

; CODE XREF: sub_ 40D412+5Ej
eax, edi
edi, ecx
edx
ebx
eax
byte ptr [eax], OFFh
short loc_40D489
eax
eax, [eax]
eax, 7FFFFFFFh

; CODE XREF: sub 40D412+6Dj

cl, [edi]

byte ptr [edi], O
ecx

eax

dword ptr [ebp-183h]
dword ptr [ebp-0FBh]
ecx

edx

ebx

edx

eax, 0

short loc_40D4B7
[edi], cl

[esi-4], eax

dword ptr [esi-4]
dword ptr [ebx]

ebx, 4

esi

short loc_40D469

621 1:0040D4B5
621 1:0040D4B5
62i_1:0040D4B5
62i_1:0040D4B6
621 1:0040D4B7

62i 1:0040D4B7
62i 1:0040D4B7
62i 1:0040D4B7
62i 1:0040D4B7
621 1:0040D4B7
621 1:0040D4B7
621 1:0040D4BC

Craig S Wright

loc_40D4B7:

sub_40D412

Jrmp
endp

; CODE XREF: sub 40D412+87
; sub_40D412+4Aj
loc_40D55B

88

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 89
NsPack 3.4 and 3.7 packer.

10.1.3. Decompiled code

The results of using HexRays to decompile the assembled code (10.1.2) are

displayed below. As we stated in 10.1.1, a good deal of information is lost.

void usercall sub 40D412 (int al<ebp>)
{
int vl; // esi@l
int v2; // edx@2
int v3; // esi@2
int vé4; // eax@7
int v5; // ebx@7
int v6; // esi@7
int v7; // STOC_4@7
int v8; // edi@s8
int v9; // esi@8
int v10; // ecx@9
int v11; // eax@11
int v12; // ST14 4@11
int v13; // eax@1l3
char v14; // ST08_1@13
int v15; // ST14_4@7
int v16; // ST10_4@7
int v17; // edi@7
char v18; // cl@l3

vl = *(_DWORD *) (al - 403);
if (vl)
{
v2 = *(_DWORD *) (al - 395);
v3 = v2 + vl;
while (*(DWORD *)v3 || *(DWORD *) (v3 + 4) || *(DWORD *) (v3 + 8))
{
vl5 = v2 + *(_DWORD *) (v3 + 8);
vlie = v2;
vl = v3;
v1l7 = *(_DWORD *) (v3 + 4) + al - 159;
ve = v3 + 12;
v4d = (*(int (__stdcall **) (int)) (al - 255)) (v17);
v2 = v16;
v = v15;
if ('vd)
break;
*(_DWORD *) (al - 387) = v4;
v8 = *(DWORD *)v6 + v7;
v9 = v6 + 4;
while (1)
{
v10 = *(_BYTE *)v9;

if (!'v10)
break;
vlil = v8;
v8 += v10;
v1i2 = v2;
if (*(_BYTE *)vll == -1)

vll = *(_DWORD *) (vll + 1) & Ox7FFFFFFF;
v1l8 = *(_BYTE *)v8;
*(_BYTE *)v8 = 0;
v1ld = v18;
vl3 = (*(int (__ stdcall **) (_DWORD, int)) (al - 251)) (* (_DWORD *) (al -
387), vl1l);

v2 = vl1l2;
if (!'v13)
return;

*(_BYTE *)v8 = vl14;
*(_DWORD *) (v9 - 4) = v13;
*(_DWORD *)v5 = *(_DWORD *) (v9 - 4);

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 90
NsPack 3.4 and 3.7 packer.

v5 += 4;
++v9;

v3 = v9 + 1;

To workout what we have lost and to recreate this information, we will use the
graphing functions of IDA Pro. As is displayed in 10.1.4, a flow graph provides more

information as to the calls and jumps used by a routine.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 91
NsPack 3.4 and 3.7 packer.

10.1.4. Function 1 — The first function

The first function is used by the decompression routine. It conducts a series of
comparisons against the various registers (using compare functions) and processing the

values using the stack where values in the registers are set to be updated.

sub_40D412 proc near
esi, [ebp-193h]
or esi, esi

i loc_uoDuB7

ERN L
Imov edx, [ebp-18Bn]
ladd esi, edx

dword ptr [esi], o
short loc_4epu3B

inz

lcmp duord ptr [esi+8], 0|
short loc_4epu3p

ebx, [esi+8]
ladd ebx, edx
push ebx
push edx
push esi
1ea edi, [ebp-9Fh]
ladd edi, [esi+4]
ladd esi, och

edi
duord ptr [ebp-0FFh]
edi

eax, 8
short loc_40D4B7

!

N Nl
mou [ebp-183n], eax|
add edi, [esi] [loc_uoDuBS:
add esi, 4 c
retn

%
byte ptr [eax], OFFh|
short loc_48pig9

c1, [edi]

mou
nou byte ptr [edi], ©
push cx
push eax

push dword ptr [ebp-183n]
call dword ptr [ebp-6FBh]
pop ecx
pop edx
pop ebx
edx

eax, o
short loc_4OD4B7

[edi], cl
[esi-u], eax
push dword ptr [esi-4]
pop duord ptr [ebx]
ladd ebx, 4

B7:
limy 1oc_uoD558|
[sub_u0D412 endp

esi
short loc_40D469

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 92
NsPack 3.4 and 3.7 packer.

1.1.1. Function Pseudo Code
The following is a low level representation of the MASM function which will be
converted to a High level pseudo code and C++.

1.1.2. ASM

621 1:0040D412 ; =============== S UBROU T I NE

62i 1:0040D412
62i 1:0040D412

621 1:0040D412 sub 40D412 proc near ; CODE XREF: start:loc 40D2D3p
621 1:0040D412 mov esi, [ebp-193h]
621 1:0040D418 or esi, esi
621 1:0040D41A jz loc _40D4B7
621 1:0040D420 mov edx, [ebp-18Bh]
621 1:0040D426 add esi, edx
621 1:0040D428
621 1:0040D428 loc_40D428: ; CODE XREF: sub 40D412+61]
621 1:0040D428 cmp dword ptr [esi], 0
621 1:0040D42B jnz short loc_ 40D43B
621 1:0040D42D cmp dword ptr [esi+4], O
621 1:0040D431 jnz short loc 40D43B
621 1:0040D433 cmp dword ptr [esi+8], O
621 1:0040D437 jnz short loc 40D43B
621 1:0040D439 jmp short loc 40D4BS5

621 1:0040D43B ;

621 1:0040D43B

621 1:0040D43B loc_ 40D43B: ; CODE XREF: sub 40D412+19j
621 1:0040D43B ; sub 40D412+1Fj
621 1:0040D43B mov ebx, [esi+8]
621 1:0040D43E add ebx, edx
621 1:0040D440 push ebx
621 1:0040D441 push edx
621 1:0040D442 push esi
621 1:0040D443 lea edi, [ebp-9Fh]
621 1:0040D449 add edi, [esi+4]
621 1:0040D44C add esi, OCh
621 1:0040D44F push edi
621 1:0040D450 call dword ptr [ebp-0FFh]
621 1:0040D456 pop edi
621 1:0040D457 pop edx
621 1:0040D458 pop ebx
621 1:0040D459 cmp eax, 0
621 1:0040D45C jz short loc_ 40D4B7
621 1:0040D45E mov [ebp-183h], eax
621 1:0040D464 add edi, [esi]
621 1:0040D466 add esi, 4
621 1:0040D469
621 1:0040D469 loc 40D469: ; CODE XREF: sub_ 40D412+Alj
621 1:0040D469 xor ecx, ecx
621 1:0040D46B mov cl, [esi]
621 1:0040D46D cmp ecx, 0
621 1:0040D470 jnz short loc 40D475
621 1:0040D472 inc esi
621 1:0040D473 jmp short loc 40D428

621 _1:0040D475 ;

621 1:0040D475

621 1:0040D475 loc_40D475: ; CODE XREF: sub_40D412+5Ej
621 1:0040D475 mov eax, edi

621 1:0040D477 add edi, ecx

621 1:0040D479 push edx

621 1:0040D47A push ebx

621 1:0040D47B push eax

621 1:0040D47C cmp byte ptr [eax], OFFh

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the

621 1:0040D47F
621 1:0040D481
621 1:0040D482
621 1:0040D484
621 1:0040D489
621 1:0040D489
621 1:0040D489
621 1:0040D48B
621 1:0040D48E
62i_1:0040D48F
621 1:0040D490
621 1:0040D496
621 1:0040D49C
621 _1:0040D49D
621 _1:0040D49E
621 1:0040D49F
62i_1:0040D4A0

621 1:0040D4A3
621 1:0040D4A5
621 1:0040D4A7
62i_1:0040D4AA
621 1:0040D4AD
621 1:0040D4AF
62i 1:0040D4B2
621 1:0040D4B3

621 1:0040D4B5

loc 40D489:

NsPack 3.4 and 3.7 packer.

jnz short loc_40D489
inc eax

mov eax, [eax]

and eax, T7FFFFFFFh

; CODE XREF: sub 40D412+6Dj

mov cl, [edi]

mov byte ptr [edi], O
push ecx

push eax

push dword ptr [ebp-183h]

621 1:0040D4B5
621 1:0040D4B5
62i_1:0040D4B5
62i_1:0040D4B6

621 1:0040D4B7

62i 1:0040D4B7
62i_1:0040D4B7
621 1:0040D4B7
621 1:0040D4B7
621 _1:0040D4B7
621 _1:0040D4B7
621 1:0040D4BC

Craig S Wright

loc 40D4B7:

sub_40D412

call dword ptr [ebp-0FBh]
pop ecx
pop edx
pop ebx
pop edx
cmp eax, 0
jz short loc_ 40D4B7
mov [edi], cl
mov [esi-4], eax
push dword ptr [esi-4]
pop dword ptr [ebx]
add ebx, 4
inc esi
jmp short loc 40D469
; CODE XREF: sub_ 40D412+27]
clc
retn
; CODE XREF: sub_40D412+83
; sub_40D412+4Aj
jmp loc_40D55B
endp

93

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 94

NsPack 3.4 and 3.7 packer.

1.2. Function 2 — Memory Functions

The function processes and copies memory from across sections.

[EX

; Attributes: bp-based frame
sub_4ODLBC proc near

arg_B8= dword ptr 8
arg_h= dword ptr OCh

; FUNCTION CHUNK AT 00400557 SIZE 00000004 BYTES)

push ebp

mou ebp, esp

moy esi, [ebp+arg_0]
mov edi, [ebp+arg_4]
cld

moy dl, 8en

sub_40D53B
short loc_468D4CS|

ecx, ecx
sub_46D53B
short loc_40D4F2)

eax, eax
sub_408D53B
short loc_46D503|

sub_u00547

ecx
loc_40D50F

[ov a1, 1on |

shr eax, 1
jz short loc_ 4080557

ebp, eax
call sub_46BD545

cnp eax, 7D6oh
jnb short loc_40052F
— 1

eax, 500h
jnb short loc_40D536|

sub_46D53B
al, al
short loc_4OD4EY

eax, 7Fh
short loc_ 480531

ELTM
loc_40D52F : short loc_40D4C9|
ecx .
ELIM ELIM ELIM
mov eax, ebp adc ecx, 2
call sub_&0D545 loc_40D530: mov ebp, eax
inp short loc_400531| |inc ecx jnp short loc_400531
' |

np short loc_4@DACo|
Sub_kOD4BC endp

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the = 95
NsPack 3.4 and 3.7 packer.

1.2.1. Function Pseudo Code

//function_ 2
unsigned int _ cdecl sub 40D4BC(int al, void *a2)
{
void *v2; // edi@l
int v3; // esi@l
unsigned int v4; // eax@5
int v5; // ecx@5
unsigned int result; // eax@6
unsigned int v7; // ecx@6
unsigned _ int8 v8; // cf@ll
char v9; // cf@3
char v10; // cfe4
char v11l; // cf@5
char v12; // cf@6
char v13; // ttee
unsigned _ int8 vl14; // cf@6
char v15; // cfe@eé
signed int v16; // ecx@9

v3 = al;
v2 = az2;
LABEL 2:
*(_BYTE *)v2 = *(_BYTE *)v3++;
v2 = (char *)v2 + 1;
while (1)
{
while (1)
{
sub 40D53B() ;
if ('v9)
goto LABEL 2;
sub 40D53B() ;
if (v10)
break;
sub 40D547 () ;
if (vlie == 2)

{
result = sub_40D545() ;
goto LABEL 18;
}
++v3;
result = sub 40D545();
if (result >= 0x7D00)
goto LABEL 16;
if (result < 0x500)
{
if (result > O0x7F)
goto LABEL 18;
LABEL 16:
++v7;
}
LABEL 17:
++v7;
LABEL 18:
memcpy (v2, (char *)v2 - result, v7);
v2 = (char *)v2 + v7;

4 = sub_40D53B() ;
£ (!'vlil)

break;

do

{
result = sub 40D53B();

}
v
i

v1i3 = v12;

vl4 = MKCADD (vl12, result);

LOBYTE (result) = v13 + (BYTE)result;
vl5 = v14 | _ MKCADD (result, result);

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 96
NsPack 3.4 and 3.7 packer.

LOBYTE (result) = 2 * (_BYTE)result;
}
while (!v15);
if ((_BYTE)result)
goto LABEL 17;
*(_BYTE *)v2 = result;

v2 = (char *)v2 + 1;
}
LOBYTE (v4) = *(_BYTE *)v3++;
v8 = MKCSHR (v4, 1);

result = v4d >> 1;
if (result)

{
v7 = v8 + v5 + 2;

goto LABEL_18;
}

return result;

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 97
NsPack 3.4 and 3.7 packer.

[77

//function 2

rain () B

unsigned __ int8 vi14:; // cf@é
char v15: // cf@é
signed int vi6: // ecx@s
v3i = al;
vz = a2;

[LaBEL_2:

#(_BYTE #)vz = #(_BYTE 7)v3++;
v2Z = [(char *)v2Z + 1;

while (1 |

sub_40D53B ()

if [v)
goto LABEL_2:

sub_40DS3E ()

if [vi0)
break;
sub_40D547 () ;

if [V16 == 2)

result = sub_40D545()
goto LABEL_18:

++v3:

result = sub_40D545()
if | result >= 0x7D0O0)

goto LABEL_16;
if | result < 0x500)

if | result > Ox7F)
goto LABEL_18:

LABEL_16:
+H+v7:

LABEL_17:

++v7;
LABEL_18:

memcpy(vz, (char *)vZ - result, v7):

vz = (char *|vZ + v7;

N
v4 = sub_40D53B ()
do

result = sub_40DS3B():

V13 = viz:

w14 = _ MKCADD__ (v12, result):

LOBYTE (result) = w13 + (_BYTE)result:
v1S = v14 | _ MKCADD__ (result, result):
LOBYTE result) = 2 * [_BYTE)result;

while [!w15 |:

N
if ((_BYTE)result |

goto LABEL_17:

"{_BYTE “)wz = result;

vZ2 = (char *)v2 + 1;
0000000000000

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

Craig S Wright

CODE XREF: start+6Bp

CODE XREF: sub_ 40D4BC+127

CODE XREF':
sub_40D4BC+7Dj

sub_40D4BC+343

Il
o

; Reset ECX

Il
o

; Reset EAX

1.2.2. ASM
62i 1:0040D4BC ; =============== S UBROUTTINE
621 1:0040D4BC
621 1:0040D4BC ; Attributes: bp-based frame
621 1:0040D4BC
621 1:0040D4BC sub_ 40D4BC proc near
621 1:0040D4BC
621 1:0040D4BC arg_ 0 = dword ptr 8
621 1:0040D4BC arg 4 = dword ptr O0Ch
621 1:0040D4BC
_62i_1:0040D4BC ; FUNCTION CHUNK AT _62i_1:0040D557 SIZE 00000004 BYTES
621 1:0040D4BC
621 1:0040D4BC push ebp
621 1:0040D4BD mov ebp, esp
621 1:0040D4BF mov esi, [ebpt+arg 0]
621 1:0040D4C2 mov edi, [ebp+targ 4]
621 1:0040D4C5 cld
621 1:0040D4C6 mov dl, 80h
621 1:0040D4C8
621 1:0040D4C8 loc 40D4CS8:
621 1:0040D4cC8 mov sb
621 1:0040D4C9
621 1:0040D4C9 loc_40D4C9:
621 1:0040D4C9
621 1:0040D4C9 call sub_ 40D53B
621 1:0040DACE jnb short loc_40D4C8
621 1:0040D4DO Xor ecx, ecx
621 1:0040D4D2 call sub_ 40D53B
621 1:0040D4D7 jnb short loc 40D4F2
621 1:0040D4D9 XOor eax, eax
621 1:0040D4DB call sub_ 40D53B
621 1:0040D4EO jnb short loc_40D503
621 1:0040D4E2 mov al, 10h
621 1:0040D4E4
621 1:0040D4E4 loc_40D4E4: CODE XREF: sub_ 40D4BC+2Fj
621 1:0040D4E4 call sub_40D53B
621 1:0040D4EQ adc al, al
621 1:0040D4EB jnb short loc_ 40D4E4
621 1:0040D4ED jnz short loc_ 40D530
621 1:0040D4EF stosb
621 1:0040D4F0 Jjmp short loc_40D4C9
621 1:0040D4F2 ;
621 1:0040D4F2
621 1:0040D4F2 loc_40D4F2: CODE XREF: sub_ 40D4BC+1Bj
621 1:0040D4F2 call sub_40D547
621 1:0040D4F7 dec ecx
621 1:0040D4F8 loop loc_40D50F
621 1:0040D4FA mov eax, ebp
621 1:0040D4FC call sub_40D545
~ 621 1:0040D501 jmp short loc 40D531
621 1:0040D503 ;
621 1:0040D503
621 1:0040D503 loc 40D503: CODE XREF: sub_ 40D4BC+247
621 1:0040D503 lodsb
621 1:0040D504 shr eax, 1
621 1:0040D506 jz short loc_40D557
621 1:0040D508 adc ecx, 2
621 1:0040D50B mov ebp, eax
621 1:0040D50D Jjmp short loc_40D531
621 1:0040D50F ;
621 1:0040D50F
621 1:0040D50F loc_ 40D50F: CODE XREF: sub_ 40D4BC+3Cj
621 1:0040D50F xchg eax, ecx
621 1:0040D510 dec eax
621 1:0040D511 shl eax, 8

98

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the

621 1:0040D514
621 1:0040D515
621 1:0040D517
“621_1:0040D51C
621 1:0040D521
T62i 1:0040D523
621 1:0040D528
~62i 1:0040D52A
621 1:0040D52D
"621 1:0040D52F
621 _1:0040D52F
621 1:0040D52F
621 1:0040D530
"621 1:0040D530
621 _1:0040D530
621 1:0040D530
"62i 1:0040D531
621 1:0040D531
621 1:0040D531
"62i 1:0040D531
621 1:0040D532
621 1:0040D534
621 1:0040D536
"62i 1:0040D538
621 _1:0040D539
621 1:0040D539
621 1:0040D539

Craig S Wright

loc_40D52F:

loc_40D530:

loc 40D531:

sub_ 40D4BC

lodsb
mov
call
cmp
jnb
cmp
jnb
cmp
ja

inc

inc

push
mov
sub

NsPack 3.4 and 3.7 packer.

ebp, eax
sub_40D545

eax, 7D00h

short loc_ 40D52F
eax, 500h

short loc 40D530
eax, 7Fh

short loc_40D531

; CODE XREF: sub 40D4BC+65]

ecx
; CODE XREF: Sub_40D4BC+31j
; sub_ 40D4BC+6Cj

ecx
; CODE XREF': Sub_4OD4BC+45j
; sub_40D4BC+51j

esi

esi, edi

esi, eax

rep movsb

pop
jmp
endp

esi
short loc 40D4C9

99

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the = 100
NsPack 3.4 and 3.7 packer.

10.2. Function 3 — Math
This function is called from within Function 5 (below) as well as from within

Function 2 (above). ESI is the 32 bit Data Pointer for source of string operations.

EAN Ll

sub_468D53B proc near
add dl, dl
jnz short locret_ 48D54%4

L*l—

ERN L

mou dl, [esi]
inc esi
adc dl, dl

P
ERN L

locret_46D544:
retn
sub_48D53B endp

ADC is a large number addition function — used here to double the DL register.
The DL general purpose register is the 8 bit I/O Pointer value associated with the 32 bit
EDX register.

1.2.3. Function Pseudo Code

DL = DL +DL (Double DL or DL = 2x DL)
IF (DL <> 0) (Not Equal to O, EFlag, ZF = 0)
[ESI] = [ESI] + DL ([ESI] is the memory location pointed to by the value held

In the ESI register)
ESI = ESI + 1
DL = 2x DL (or, DL = DL +DL)
Return
~ int64 usercall sub 40D53B<edx:eax>(char al<dl>, int a2<esi>)
{
unsigned _ int8 v2; // cf@l
__int64 result; // gax@l
char v4; // zf@l

v2 = _ MKCADD (al, al);
vd = 2 * al ==
BYTE4 (result) = 2 * al;
if (v4d)
BYTE4 (result) = 2 * (v2 + *(BYTE *)a2);

return result;

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the

1.2.4. ASM

621 1:0040D53B

7

621 1:0040D53B
621 1:0040D53B
621 1:0040D53B

sub_40D53B

sub 40D4BC:loc_40D4C9p

621 1:0040D53B
621 1:0040D53B
621 1:0040D53D
621 1:0040D53F

621 1:0040D541
621 1:0040D542
621 1:0040D544
"621 1:0040D544
621 1:0040D544
“62i_1:0040D544
621 1:0040D544

Craig S Wright

locret_40D544:

sub_ 40D53B

NsPack 3.4 and 3.7 packer.

SUBROUTTINE

proc near ; CODE XREF':

add
jnz
mov

inc
adc

retn
endp

; sub_40D4BC+16p
dl, di
short locret 40D544
dl, [esi]
;add to the memory pointed to by ESI
; the contents of dl
esi
dl, di

; CODE XREF: sub 40D53B+2j

101

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 102
NsPack 3.4 and 3.7 packer.

10.3. Function 4 — Clear ECX
The function below clears the ECX register. This sets the ECX register = 0x000.

ECX is a 32 bit register that is used as a counter for string and loop functions.

ERN Ll

sub_46D545 proc near
b{ilg ecx, ecx
sub_48D545

10.3.1. Function Pseudo Code

XOR ECX, ECX (Clear the ECX register)
10.3.2. ASM

621 1:0040D545 ; =============== S UBROUT I NE

621 1:0040D545
621 1:0040D545

621 1:0040D545 sub_40D545 proc near ; CODE XREF: sub 40D4BC+40p
621 1:0040D545 ; sub_40D4BC+5Bp

621 1:0040D545 Xor ecx, ecx

621 1:0040D545 sub_40D545 endp ;

621 1:0040D545

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 103
NsPack 3.4 and 3.7 packer.

10.4. Function 5 — Add ECX register
The function below starts by incrementing ECX ()- this is adding 1 to ECX then
looping while calling Function 3 and doubling the ECX register.

ECX is a 32 bit register that is used as a counter for string and loop functions.

ADC is a large number addition function — used here to double the register.

BN

sub_48D547 proc near
inc ecx

ERN Ll

loc_48D548:

call sub_46D53B
adc ecx, ecx
call sub_46D53B

jb short loc_46D548
|

ERN Ll

retn
sub_48D547 endp

10.4.1. Function Pseudo Code

ECX = ECX +1
Do While (ECX < Function 3 (Returned)) (Carry Flag; EFLAGS,
CF = 1)
Run Function 3
ECX = ECX x2 (ADC is a doubling function for large
numbers)
Run Function 3
Return

int cdecl sub_ 40D547()
{
int result; // eax@1l
char vl1; // cf@l

do
{

sub 40D53B() ;

result = sub 40D53B();
}

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 104
NsPack 3.4 and 3.7 packer.

while (vl);
return result;

}

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the

1.2.5. ASM

621 1:0040D547 ; ===========

621 1:0040D547

621 1:0040D547

621 1:0040D547 sub_40D547
sub 40D4BC:loc_40D4F2p
621 1:0040D547

621 1:0040D548

621 1:0040D548 loc 40D548:

621 1:0040D548
621 1:0040D54D
"621_1:0040D54F
621 1:0040D554

621 1:0040D556
621 1:0040D556 sub 40D547

Craig S Wright

NsPack 3.4 and 3.7 packer.

SUBROUTTINE

proc near ; CODE XREF':

inc

call
adc
call
Jjb

retn
endp

eCcx

; CODE XREF: sub_ 40D547+Dj
sub_40D53B
ecx, ecx
sub_40D53B
short loc_40D548
; continue execution from loc_40D548:
; if result was less than

105

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the

10.5.
& 3.7

Version 3.7

106

NsPack 3.4 and 3.7 packer.

Version 3.4

Comparison of Main() Functions between NsPack 3.4

.nspl:4ADSBFFE

.nspl:4ADSBFFE
OUTINE ==

.nspl:4ADSBFFE
.nspl:4ADSBFFE
.nspl:4ADSBFFE

.nspl:4ADSBFFE start

.nspl:4ADSBFFE
.nspl:4ADSBFFE

b

public start

proc ncar

; FUNCTION CHUNK AT

.nspl:4ADSC3BE SIZE 00000009 BYTES

.nspl:4ADSBFFE
.nspl:4ADSBFFE
.nspl:4ADS5SBFFF
.nspl1:4AD5C000
.nsp1:4AD5C005
nspl:4AD5C006
.nspl1:4AD5C009
nspl:4AD5SCOOF
nspl:4ADS5SCO012
.nspl:4ADSCO18
.nspl:4AD5CO1B
nspl:4ADS5SCO1D
.nspl:4AD5C023
.nspl:4AD5C029
.nspl:4ADSCO2F
nspl:4AD5CO035

Craig S Wright

pushf
pusha
$+5
ebp
ebp, 7
ecx, [ebp-1A2h]

call
pop
sub
lea
cmp byte ptr [ecx], 1
jz loc_4ADS5SC25A
mov byte ptr [ecx], 1
mov eax, ebp
eax, [ebp-20Eh]
[ebp-20Eh], eax
[ebp-1DEh], eax
esi, [ebp-19Ah]

[esi], eax

sub
mov
add
lea

add

SUBR

[62i_1:0040D19B

| 62i 1:0040D19B ;
OUTINE=—=—=

| 62i 1:0040D19B
| 62i 1:0040D19B
| 62i_1:0040D19B

| 62i 1:0040D19B
| 62i 1:0040D19B ;

| 62i 1:0040D19B
| 62i 1:0040D19B
| 62i 1:0040D19C
| 62i 1:0040D19D
| 62i 1:0040D1A2
| 62i 1:0040D1A3
| 62i 1:0040D1A6
| 62i 1:0040D1AC
| 62i 1:0040D1AF
| 62i 1:0040D1B5
| 62i 1:0040D1B8
| 62i 1:0040D1BA
| 62i 1:0040D1C0
| 62i 1:0040D1C6
| 62i 1:0040D1CC

| 62i 1:0040D1D2

| 621 1:0040D19B start

public start

proc ncar

FUNCTION CHUNK AT

| 621 1:0040D55B SIZE 00000009 BYTES

pushf
pusha
call $+5
ebp
ebp, 7

eax, [ebp-11Fh]

pop
sub
lea
cmp byte ptr [eax], 1
jz loc_40D3F7

mov byte ptr [eax], 1
mov edx, ebp

edx, [ebp-18Bh]
[ebp-18Bh], edx
[ebp-15Bh], edx

esi, [ebp-117h]

sub
mov
add
lea

add [esi], edx

SUBR

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the

.nsp1:4AD5C037 push ebp
.nsp1:4AD5C038 push esi

nspl:4AD5C039 push 40h

.nsp1:4AD5C03B 1000h
nspl:4AD5C040 1000h
nspl:4AD5C045
nspl:4ADS5SC047
.nspl:4AD5C04D
.nspl:4ADSCO4F
.nspl:4AD5CO055
.nspl:4AD5SCO05B
.nsp1:4AD5C060
nspl:4ADS5C061
nspl1:4AD5C066
nspl:4ADS5SC068
.nsp1:4AD5C069
nspl:4ADSCO6A call
.nsp1:4ADSCO6F pop
.nsp1:4AD5C070 pop
.nspl:4ADS5CO071
.nspl:4AD5CO073
.nspl:4ADS5CO75
nspl:4ADS5SCO7B
.nspl:4ADS5SCO07D
nspl:4AD5CO080 jnz
.nspl:4AD5C082 add
.nspl:4AD5CO085
nspl:4ADS5SCO8A jmp
nspl:4AD5CO8C ; ---

push
push
push 0
call dword ptr [ebp-166h]
test eax, eax
loc 4AD5C3BE
[ebp-1E6h], eax
$+5
ebx

ecx, 367h

jz
mov
call
pop
mov
add ebx, ecx
push eax
ebx

sub 4AD5SC31F

push

esi
ebp
mov esi, [esi]
edi, ebp
edi, [ebp-21Eh]

ebx, edi

mov
add
mov
cmp dword ptr [edi], O
short loc 4ADS5SC08C
edi, 4

ecx, 0

short loc 4AD5CO0A2

mov

.nspl1:4ADS5CO08C

Craig S Wright

107

NsPack 3.4 and 3.7 packer.

| 62i_1:0040D1D4
| 62i 1:0040D1D5
| 62i_1:0040D1D7
| 62i 1:0040D1DC
| 62i 1:0040D1E1
| 62i_1:0040D1E3
| 62i 1:0040D1E9
| 62i 1:0040D1EB
| 62i 1:0040DIF1
| 62i 1:0040D1F7
| 62i_1:0040D1FC
| 62i 1:0040DIFD
| 62i 1:0040D202
| 62i_1:0040D204
| 62i 1:0040D205
| 62i1:0040D206

push
push
push
push
call
test
jz
mov
call
pop
mov
add
push
push

call

| 62i_1:0040D20B
| 62i1:0040D20C
| 62i 1:0040D20E
| 62i 1:0040D210
| 62i 1:0040D216
| 62i 1:0040D218
| 62i 1:0040D21B
| 62i 1:0040D21D
| 62i 1:0040D220
| 62i 1:0040D225 jmp
| 62i 1:0040D227 ; ---

popa
mov
mov
add
mov
cmp
jnz
add

mov

| 62i 1:0040D227

pusha

40h
1000h

1000h
0

dword ptr [ebp-0F3h]
eax, eax

loc_40D55B

[ebp-163h], eax

$+5

ebx

ecx, 368h
ebx, ecx
eax

ebx

sub_ 40D4BC

esi, [esi]

edi, ebp
edi, [ebp-19Bh]
ebx, edi

dword ptr [edi], O
short loc_40D227
edi, 4

ecx, 0

short loc 40D23D

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the

.nspl:4ADS5SCO8C loc_4ADS5SCO8C: ;
CODE XREF: start+82]

nspl:4AD5SC08C mov
.nspl:4AD5C091 add
nspl:4AD5C093 add

ecx, 1
edi, [ebx]
ebx, 4
.nspl1:4AD5C096

nspl:4AD5C096 loc 4AD5C096:
XREF: start+CFj

nspl:4ADS5C096 cmp dword ptr [ebx], 0
nspl:4AD5SC099 jz short loc 4ADSCOCF
nspl:4AD5SC09B add [ebx], edx

nspl:4ADSC0O9D mov
nspl:4ADS5SCO9F add

; CODE

esi, [ebx]

edi, [ebx+4]

.nspl:4AD5SCO0A2

nspl:4AD5CO0A2 loc 4AD5CO0A2: ;
CODE XREEF: start+8Cj

nspl:4ADSCOA2 push
.nspl:4AD5SCOA3 push

edi

eCcXx

ebx
dword ptr [ebp-162h]
dword ptr [ebp-166h]

nspl:4ADSC0A4 push
nspl:4AD5COAS push
nspl:4AD5SCOAB push

nspl:4ADSCOB1 mov edx, esi
.nsp1:4ADSCOB3 mov ecx, edi
.nspl1:4ADSCOBS mov eax, [ebp-1E6h]
.nspl1:4ADSCOBB add eax, SAAh
.nspl:4ADSCOCO call eax
.nspl1:4ADSCO0C2 pop ebx
.nspl:4ADSCOC3 pop ecx
.nsp1:4ADSC0C4 pop edi
.nsp1:4ADSCOCS cmp ecx, 0

Craig S Wright

108
NsPack 3.4 and 3.7 packer.

| 621_1:0040D227 loc_40D227:
XREF: start+80j

| 621 1:0040D227 mov
| 621 1:0040D22C add
| 621 1:0040D22E add

; CODE

ecx, 1
edi, [ebx]
ebx, 4

| 621_1:0040D231

| 621 1:0040D231 loc_40D231:
XREF: start+CFj

| 621 1:0040D231 cmp dword ptr [ebx], 0
| 621 1:0040D234 jz short loc_40D26C
| 621 1:0040D236 add [ebx], edx

| 621 1:0040D238 mov
| 621 1:0040D23A add

; CODE

esi, [ebx]

edi, [ebx+4]

| 62i 1:0040D23D

| 621 1:0040D23D loc_40D23D:
XREF: start+8A]

| 62i 1:0040D23D
| 62i 1:0040D23E
| 62i_1:0040D23F
| 62i1:0040D240

| 62i 1:0040D241

| 62i 1:0040D247

| 62i 1:0040D24D
| 62i 1:0040D24F
| 62i_1:0040D251

| 62i_1:0040D257
| 62i_1:0040D25C
| 62i_1:0040D25E
| 62i_1:0040D25F
| 62i_1:0040D260
| 62i_1:0040D261

; CODE

push edi

push ecx
push edx
ebx
dword ptr [ebp-OEFh]

dword ptr [ebp-0F3h]

push
push
push
mov edx, esi
ecx, edi
eax, [ebp-163h]

eax, SAAh

mov
mov
add
call eax
pop ebx
pop
pop

pop

edx
ecx

edi

| 62i 1:0040D262 cmp ecx, 0

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the

nspl:4ADSCOCS jz

nspl:4ADSCOCA add
nspl:4AD5SCOCD jmp
.nspl:4ADSCOCEF ; ---

short loc 4ADS5SCOCF
ebx, 8
short loc 4AD5C096

.nspl:4ADSCOCF

nspl:4ADSCOCF loc_ 4ADS5SCOCEF: ;
CODE XREF: start+9Bj

.nspl:4ADSCOCF ; start+CAj
nspl:4ADSCOCF push 8000h
.nspl:4AD5COD4 push 0

nspl:4ADS5SCOD6 push dword ptr [ebp-1E6h]
nspl:4ADSCODC call dword ptr [ebp-162h]
nspl:4ADSCOE2 lea esi, [ebp-1DEh]
nspl:4ADSCOES mov
.nspl:4ADSCOEB lea
.nspl:4ADSCOEE mov
nspl:4ADSCOFO mov
.nspl:4ADSCOF2 cmp
nspl:4ADSCOFS jz

ecx, [esi+8]
edx, [esi+10h]
esi, [esi]
edi, esi
ecx, 0
short loc 4AD5C136
nspl:4ADSCOF7

nspl:4ADS5SCOF7 loc 4ADS5SCOF7:
XREF: start+100j

.nspl:4ADSCOF7

.nspl:4ADSCOF7 mov
nspl:4ADSCOF9 inc
.nspl:4ADSCOFA sub

; CODE

; start+10E;j
al, [edi]

edi

al, OE8h

.nspl:4ADSCOFC

nspl:4AD5COFC loc_4ADSCOFC: ;
CODE XREF: start+136]

.nspl:4ADSCOFC cmp

al, 1

Craig S Wright

109
NsPack 3.4 and 3.7 packer.

| 62i 1:0040D265 jz
| 62i 1:0040D267 add
| 62i 1:0040D26A jmp
| 62i 1:0040D26C ; ---

short loc 40D26C
ebx, 8
short loc 40D231

| 62 1:0040D26C

| 621 1:0040D26C loc_40D26C:
[XREF: start+99j

| 62i1:0040D26C
| 62i1:0040D26C
| 62i 1:0040D271
| 62i 1:0040D273
| 62i 1:0040D279
| 62i 1:0040D27F
| 62i 1:0040D285
| 62i 1:0040D288
| 62i 1:0040D28B
| 62i 1:0040D28D
| 62i 1:0040D28F
| 62i 1:0040D292

; CODE

; start+CAj
push 8000h
push 0
push dword ptr [ebp-163h]
dword ptr [ebp-0EFh]
esi, [ebp-15Bh]

call
lea

mov ecx, [esi+8]
lea edx, [esi+10h]
mov esi, [esi]
mov edi, esi
ecx, 0

short loc_40D2D3

cmp
jz
| 621 1:0040D294

| 62i 1:0040D294 loc_40D294:
XREF: start+100j

| 62i 1:0040D294

| 62i 1:0040D294 mov
| 62i 1:0040D296 inc
| 62i 1:0040D297 sub

;: CODE

; start+10E;
al, [edi]

edi

al, OE8h

| 621 1:0040D299

| 621 1:0040D299 loc_40D299:
XREF: start+136j

; CODE

[621 1:0040D299 cmp al, 1

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the

.nspl:4ADSCOFE
.nspl:4ADSC100
.nspl:4ADS5C102
nspl:4AD5C106
nspl:4ADSC108
nspl:4ADSCI0A
nspl:4ADSC10C
.nspl:4ADSCI0E
.nspl:4ADSCI11
.nspl:4ADSC115
.nspl:4ADSCI118
nspl:4ADSCITA
nspl:4ADSCI11C

.nspl:4ADSCI1C

ja shortloc 4AD5COF7

mov eax, [edi]
cmp byte ptr [edx+1], 0
short loc 4ADSCI11C
bl, [edx]
[edi], bl
short loc 4ADS5COF7

bl, [edi+4]

jz
mov
cmp
jnz
mov
shr

rol

ax, 8
eax, 10h
xchg al, ah

jmp short loc 4AD5C126

5 ---

.nspl:4AD5C11C loc_4ADSC11C: ;
CODE XREF: start+108;]

nspl:4ADSCI1C
.nspl:4ADSCI1F
nspl:4ADSCI121
nspl:4AD5C124

.nspl:4AD5C126

nspl:4AD5C126 loc 4AD5C126:

XREF: start+11Cj
.nspl:4ADS5C126
.nspl:4ADS5C128
nspl:4ADSCI12A
.nspl:4ADSC12C
.nspl:4ADSCI12F
.nspl:4AD5C132
.nspl:4AD5C134

nspl:4AD5C136

Craig S Wright

mov bl, [edi+4]
xchg al, ah
rol eax, 10h

xchg al, ah

; CODE

sub eax, edi

add eax, esi
mov [edi], eax
add edi 5

sub bl, OE8h
eax, ebx

loc 4AD5COFC

mov

loop

110

NsPack 3.4 and 3.7 packer.

| 62i 1:0040D29B

| 62i 1:0040D29D
| 62i 1:0040D29F

| 62i_1:0040D2A3
| 62i 1:0040D2A5
| 62i 1:0040D2A7
| 62i_1:0040D2A9
| 62i 1:0040D2AB
| 62i 1:0040D2AE
| 62i 1:0040D2B2
| 62i 1:0040D2B5

| 62i_1:0040D2B7

| 62i 1:0040D2B9

XREF: start+108]

| 621 1:0040D2B9
| 621 1:0040D2BC
| 621 1:0040D2BE
| 621 1:0040D2C1

| 621 1:0040D2C3

XREF: start+11Cj

| 621 1:0040D2C3
| 621_1:0040D2C5
| 621 1:0040D2C7
| 621 1:0040D2C9
| 621 1:0040D2CC
| 621 1:0040D2CF
| 621 1:0040D2D1

| 62i 1:0040D2D3

| 621 1:0040D2B9 ;

| 62i 1:0040D2B9 loc_40D2B9:

| 62i_1:0040D2C3 loc_40D2C3:

ja shortloc 40D294

mov eax, [edi]
cmp byte ptr [edx+1], 0
short loc 40D2B9
bl, [edx]
[edi], bl
short loc_40D294

bl, [edi+4]

jz
mov
cmp
jnz
mov
shr

rol

ax, 8
eax, 10h
xchg al, ah
jmp short loc 40D2C3

; CODE

mov bl, [edi+4]
xchg al, ah
rol eax, 10h

xchg al, ah

; CODE

sub eax, edi

add eax, esi
[edi], eax
edi, 5

bl, 0E8h

mov
add
sub
eax, ebx

loc_ 40D299

mov

loop

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the

XREF: start+F7j

nspl:4AD5CI136 call
nspl:4ADSCI3B lea
nspl:4ADSC141 mov
.nspl:4AD5C144
nspl:4ADSC147
.nspl:4AD5C14D
nspl:4ADS5CI14F
.nspl:4ADSCI152
nspl:4AD5C154
nspl:4ADSC157
nspl:4ADSCI15D
.nspl:4ADSCISF
nspl:4ADSC162
nspl:4ADSC164
nspl:4AD5C167
.nspl:4ADS5C169
nspl:4AD5C16B
nspl:4ADSC16E
nspl:4ADSC171 jmp
.nspl:4ADSC173 ; ---

cmp
4
mov
sub
4
mov
lea
mov
lea
mov
cmp
jz
mov
add

mov

nspl:4ADS5SC173

XREF: start+169j
nspl:4ADSCI73 mov
nspl:4ADSC175 add
nspl:4ADSC178 mov

.nspl:4ADSC17B

CODE XREF: start+173;
.nspl:4AD5C17B

Craig S Wright

.nspl1:4AD5C136 loc 4AD5C136:

sub 4AD5C275

ecx, [ebp-1CAh]

eax, [ecx+8]

eax, 0

loc 4ADSCICE

esi, edx

esi, [ecx+10h]

[ecx+10h], esi
esi, [ebp-19Ah]
esi, [esi]
ebx, [esi-4]
eax, [ecx]

eax, 1

edi, edx
edi, [ecx+8]

ecx, [ecx+10h]

; CODE

short loc 4ADSCICE

short loc 4AD5C173

short loc 4AD5C17B

nspl:4AD5C173 loc 4AD5C173:

edi, esi
edi, [ecx+8]

ecx, [ecx+10h]

nspl:4AD5C17B loc 4ADSC17B:

; start+18Ej

; CODE

9

111

NsPack 3.4 and 3.7 packer.

[XREF: start+F7j
| 621_1:0040D2D3 call
| 621 1:0040D2DS8 lea

| 621 _1:0040D2E1 cmp
| 621 1:0040D2E4 jz

| 62i 1:0040D2EC sub
| 62i 1:0040D2EF
| 62i 1:0040D2F1
| 62i 1:0040D2F4
| 62i 1:0040D2FA
| 62i 1:0040D2FC
| 62i 1:0040D2FF
| 62i 1:0040D301
| 62i1:0040D304
| 62i 1:0040D306
| 62i1:0040D308
| 62i 1:0040D30B
| 62i 1:0040D30E jmp
| 62i 1:0040D310 ; ---

jz
mov

lea

lea

cmp
jz
mov

add

| 62i_1:0040D310

[XREF: start+169j

| 621 1:0040D310 mov
| 621 1:0040D312 add
| 62i 1:0040D315 mov

| 621 _1:0040D318

[XREF: start+173j

| 621 1:0040D318

| 621 1:0040D2D3 loc_40D2D3:

| 62i 1:0040D2DE mov

| 62i 1:0040D2EA mov

mov

mov

mov

| 621 1:0040D310 loc_40D310:

| 621 1:0040D318 loc_40D318:

; CODE

sub_40D412
ecx, [ebp-147h]

eax, [ecx+8]

eax, 0

loc_ 40D36B

esi, edx

esi, [ecx+10h]

short loc 40D36B

[ecx+10h], esi

esi, [ebp-117h]

esi, [esi]

ebx, [esi-4]

eax, [ecx]

eax, 1

short loc 40D310

edi, edx

edi, [ecx+8]

ecx, [ecx+10h]

short loc 40D318

; CODE

edi, esi
edi, [ecx+8]

ecx, [ecx+10h]

; CODE

; start+18Ej

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the

nspl:4ADSCI7B xor eax, eax
nspl:4ADSC17D mov al, [edi]
nspl:4ADSCI7F inc edi
nspl:4ADSC180 or eax, eax
nspl:4ADS5C182 jz shortloc 4AD5SC1A4
nspl:4AD5C184 cmp al, OEFh
nspl:4ADS5C186 ja shortloc 4ADSCI8SE

.nspl:4ADS5C188

nspl:4AD5C188 loc 4AD5C188:
XREF: start+19Dj

; CODE

.nspl:4ADS5C188 ; start+1A4j
nspl:4ADSCI88 add ebx, eax
nspl:4ADSCI8A add [ebx], ecx

nspl:4ADSCI18C jmp
.nspl:4ADSCI8E ; ---

short loc 4AD5C17B

.nspl:4ADSCI8E

.nspl:4AD5CISE loc 4AD5CI18E: ;
CODE XREF: start+188]

nspl:4ADSCI8E and
nspl:4ADS5C190 shl

.nspl:4AD5C193
nspl:4AD5C196
.nspl:4ADS5C199
.nspl:4AD5C19B
nspl:4ADS5SC19D
.nspl:4ADSCI9F
nspl:4ADSCIA2 jmp
.nspl:4ADSCI1A4 ; ---

al, OFh
eax, 10h

ax, [edi]
edi, 2

mov
add
or eax, eax
jnz short loc 4AD5C188
mov

add

eax, [edi]
edi, 4
short loc 4AD5C188

.nspl:4ADS5C1A4
nspl:4AD5C1A4 loc 4ADS5SC1A4: ;

Craig S Wright

112
NsPack 3.4 and 3.7 packer.

| 621 1:0040D318 xor eax, eax
| 621 1:0040D31A mov al, [edi]
| 621 _1:0040D31C inc edi

| 621 1:0040D31D or eax, eax

| 621 1:0040D31F jz shortloc 40D341
| 621 1:0040D321 cmp al, OEFh
| 621 1:0040D323 ja shortloc 40D32B

| 62i 1:0040D325

| 621 1:0040D325 loc_40D325:
XREF: start+19Dj

| 62i 1:0040D325

| 62i 1:0040D325 add
| 62i 1:0040D327 add
| 62i 1:0040D329 jmp
| 62i 1:0040D32B ; ---

; start+1A4j
ebx, eax

[ebx], ecx

| 62i 1:0040D32B

| 621 1:0040D32B loc_40D32B:
XREF: start+188;]

| 621 1:0040D32B and
| 621 1:0040D32D shl
| 621 1:0040D330
| 621 1:0040D333
| 621 1:0040D336
| 621 1:0040D338
| 621 1:0040D33A mov
| 621 1:0040D33C add
| 621 1:0040D33F jmp
| 621 1:0040D341 ; ---

al, OFh

eax, 10h
ax, [edi]
edi, 2

mov
add
or eax, eax
jnz
eax, [edi]

edi, 4

| 62i 1:0040D341

| 62i 1:0040D341 loc_40D341:

; CODE

short loc 40D318

; CODE

short loc_40D325

short loc_40D325

; CODE

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the

CODE XREF: start+184;
nspl:4ADSC1A4 xor
nspl:4ADSC1A6 xchg edi, esi
nspl:4ADSC1A8 mov
nspl:4ADSCIAA cmp
nspl:4AD5SCIAD jz

ebx, ebx

eax, [esi]
eax, 0

short loc 4ADSCICE

nspl:4ADSCIAF

.nspl:4ADSCIAF loc 4ADSCIAF: ;
CODE XREEF: start+1BCj

nspl:4ADSCIAF lodsd
nspl:4ADS5SCIB0O or
nspl:4ADSCIB2 jz
nspl:4ADSCIB4 add
nspl:4AD5SCIB6 add
nspl:4ADSCIBA jmp
nspl:4ADSCIBC ; ---

eax, eax
short loc 4AD5CI1BC
ebx, eax
[edi+ebx], cx

short loc 4AD5SCI1AF

nspl:4ADSCIBC

nspl:4ADSCIBC loc 4ADSCI1BC: ;
CODE XREF: start+1B4;

nspl:4ADSCIBC xor
nspl:4ADSCIBE shr

ebx, ebx

ecx, 10h

nspl:4AD5CIC1

nspl:4ADSCICI1 loc 4ADSCICI: ;
CODE XREF: start+1CEj

nspl:4ADSCIC1 lodsd
nspl:4ADSCIC2 or
nspl:4ADSCIC4 jz
nspl:4AD5CIC6 add
nspl:4ADSCIC8 add
nspl:4ADSCICC jmp
nspl:4ADSCICE ; ---

eax, eax
short loc 4AD5CI1CE
ebx, eax
[edi+ebx], cx

short loc 4ADS5CIC1

Craig S Wright

113
NsPack 3.4 and 3.7 packer.

XREF: start+184j
| 621 1:0040D341
| 621 1:0040D343
| 621 1:0040D345
| 621 1:0040D347
| 621 1:0040D34A jz

xor ebx, ebx
xchg edi, esi
mov eax, [esi]
eax, 0

short loc 40D36B

cmp

| 62i1:0040D34C

| 621 1:0040D34C loc_40D34C:
XREF: start+1BCj

| 621 1:0040D34C lodsd
[621_1:0040D34D or

| 621 1:0040D34F jz

| 621 1:0040D351 add
| 621 1:0040D353 add
| 621 1:0040D357 jmp
| 621 1:0040D359 ; ---

; CODE

eax, eax

short loc 40D359
ebx, eax
[edit+ebx], cx

short loc_40D34C

| 62i 1:0040D359

| 621 1:0040D359 loc_40D359:
XREF: start+1B4;j

| 62i 1:0040D359 xor
| 62i 1:0040D35B shr

; CODE

ebx, ebx

ecx, 10h

| 62i 1:0040D35E

| 621 1:0040D35E loc 40D35E:
XREF: start+1CE;j

| 621 _1:0040D35E lodsd
| 621 1:0040D35F or

| 621 1:0040D361 jz

| 621 1:0040D363 add
| 621 1:0040D365 add
| 621 1:0040D369 jmp
| 621 1:0040D36B ; ---

; CODE

eax, eax

short loc 40D36B
ebx, eax
[editebx], cx

short loc 40D35E

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the

nspl:4AD5CICE

nspl:4ADSCICE loc 4ADSCICE: ;
CODE XREF: start+149j

.nspl:4ADSCICE
nspl:4ADSCICE
.nspl:4AD5C1D4
nspl:4ADSC1D6
nspl:4ADSCIDC
.nspl:4ADSCIDE
.nspl:4ADSCIEO
nspl:4ADSCIE2
.nspl:4ADSCIES
.nspl:4ADSCIE6
.nspl:4ADSCIE7
.nspl:4ADSCIES
.nspl:4ADSCIEA
.nspl:4ADSCIEF
.nspl:4ADSCIFO
nspl:4ADSCIF6
.nspl:4ADSCIF7
.nspl:4ADSCIF8
.nspl:4ADSCIFB
nspl:4ADSC201
.nspl:4AD5C204
.nspl1:4AD5C209
.nspl:4AD5C20B
.nspl:4ADSC20E
.nspl:4ADSC211
.nspl:4AD5C212
.nspl:4ADS5C215
nspl:4ADSC21A

Craig S Wright

; ...start+154j
lea esi, [ebp-20Eh]
mov edx, [esi]
lea esi, [ebp-1B2h]

al, [esi]
al, 1
short loc 4AD5C221

edx, [esit4]

mov
cmp
jnz
add
push esi
push edx
push esi
push 4
push 100h

edx

dword ptr [ebp-16Ah]

edi

push
call
pop
pop

cmp

esi
eax, 1
jnz loc 4AD5C3BE
add esi, 8
mov ecx, 8
rep movsb

esi, 0Ch

edi, 8

sub
sub
push esi
push dword ptr [esi-4]
100h

edi

push
push

114

NsPack 3.4 and 3.7 packer.

| 62i 1:0040D36B

XREF: start+149j
| 621 1:0040D36B
| 621 1:0040D36B
| 621 1:0040D371
| 621 1:0040D373
| 621 1:0040D379
| 621 1:0040D37B
| 621 _1:0040D37D
| 621 1:0040D37F
| 621 1:0040D382
| 621 1:0040D383
| 62i 1:0040D384
| 621 1:0040D385
| 621 1:0040D387
| 621 1:0040D38C
| 621 1:0040D38D
| 621 1:0040D393
| 621 1:0040D394
| 621 1:0040D395
| 621 1:0040D398
| 62i_1:0040D39E
| 621 1:0040D3A1
| 621 1:0040D3A6
| 621 1:0040D3A8
| 62i 1:0040D3AB
| 621 1:0040D3AE
| 62i 1:0040D3AF
| 621 1:0040D3B2
| 621 _1:0040D3B7

| 62i 1:0040D36B loc_40D36B:

; CODE

; start+1547 ...
lea esi, [ebp-18Bh]
mov edx, [esi]
lea esi, [ebp-12Fh]
mov al, [esi]

al, 1
short loc 40D3BE

edx, [esit4]

cmp
jnz
add
push esi
push edx
push esi

push 4

100h

push edx

dword ptr [ebp-0F7h]

edi

push

call
pop
pop

cmp

esi
eax, 1
jnz loc_40D55B
add esi, 8
mov ecx, 8
rep movsb

esi, 0Ch

edi, 8

sub
sub
push esi
push dword ptr [esi-4]
100h

edi

push
push

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the

nspl:4AD5SC21B call dword ptr [ebp-16Ah]

nspl:4ADSC221

nspl:4AD5C221 loc 4AD5C221:
XREF: start+1E2j

nspl:4ADS5C221

.nspl:4AD5C222

nspl:4ADS5C223

.nspl:4ADS5C229
.nspl:4AD5C22B
.nspl:4ADS5C22D
.nspl:4ADS5C230
nspl:4AD5C232
.nspl:4ADS5SC233
.nspl:4AD5C239

; CODE

push ebp
pop

sub

ebx

ebx, 15h

XOI €cx, ecx
cl, [ebx]
cl,0

short loc 4AD5C25A

mov

cmp
jz
ebx

esi, [ebp-20Eh]

inc
lea

mov edx, [esi]

.nspl:4AD5C23B

.nspl:4AD5C23B loc 4AD5C23B:
CODE XREF: start+25A]

.nspl:4AD5C23B
.nspl:4ADS5C23C
.nspl:4AD5C23D
.nspl:4ADSC23E
.nspl:4ADSC23F
nspl:4ADS5C240
.nspl:4AD5C242
.nspl:4AD5C245
.nspl:4AD5C248
.nspl:4ADSC24A
.nspl:4AD5C24B
.nspl:4ADS5C251
.nspl:4ADS5C252

2

push esi
push ecx
push ebx
push edx
push esi
push dword ptr [ebx]
push dword ptr [ebx+4]
mov
add

push

eax, [ebx+8]
eax, edx
eax

call dword ptr [ebp-16Ah]

pop
pop

edx

ebx

115
NsPack 3.4 and 3.7 packer.

| 621 _1:0040D3B8 call dword ptr [ebp-0F7h]

| 62i_1:0040D3BE

| 621 1:0040D3BE loc 40D3BE:
XREF: start+1E2;j

| 62i 1:0040D3BE
| 62i 1:0040D3BF
| 62i1:0040D3C0
| 62i 1:0040D3C6
| 62i 1:0040D3C8
| 62i 1:0040D3CA
| 62i 1:0040D3CD
| 62i 1:0040D3CF
| 62i 1:0040D3D0
| 62i 1:0040D3D6

; CODE

push ebp
ebx

ebx, 21h

pop

sub

XOr €cX, ecX
cl, [ebx]
cl, 0

short loc_ 40D3F7

mov
cmp
jz

inc ebx
lea esi, [ebp-18Bh]

mov edx, [esi]

| 62i 1:0040D3D8

| 621 1:0040D3D8 loc 40D3DS:
XREF: start+25A]

| 62i 1:0040D3D8
| 62i 1:0040D3D9
| 62i_1:0040D3DA
| 62i 1:0040D3DB
| 62i 1:0040D3DC
| 62i_1:0040D3DD
| 62i 1:0040D3DF
| 62i 1:0040D3E2
| 62i 1:0040D3E5
| 62i 1:0040D3E7
| 62i_1:0040D3E8
| 62i 1:0040D3EE
| 62i 1:0040D3EF

; CODE

push esi

push ecx
push ebx
push edx
push esi

dword ptr [ebx]

dword ptr [ebx+4]

push
push
mov eax, [ebx+8§]
add eax, edx

eax

dword ptr [ebp-0F7h]

edx

push
call
pop
pop ebx

€CX

nspl:4ADS5SC253 ecx

pop

Craig S Wright

| 62i_1:0040D3F0 pop

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 116

nspl:4AD5C254 pop esi
nspl:4ADSC255 add ebx, 0Ch
nspl:4AD5C258 loop loc 4ADSC23B
nspl:4ADS5SC25A

nspl:4ADSC25A loc 4ADSC25A: ;
CODE XREF: start+14j

nspl:4AD5SC25A ; start+232j
.nspl:4ADSC25A mov eax, 0
nspl:4ADSC25F cmp eax, 0

nspl:4ADSC262 jz
.nspl:4AD5C264 popa
nspl:4AD5C265 popf
nspl:4ADS5SC266 mov eax, 1
nspl:4AD5SC26B retn 0Ch
.nspl:4ADSC26E ; ---

nspl:4AD5C26E

.nspl:4AD5C26E loc 4ADS5C26E: ;
CODE XREF: start+264;j

.nspl:4ADSC26E popa
nspl:4ADSC26F popf
.nspl:4ADS5C270 jmp
.nspl:4ADS5C270 start

nspl:4AD5C270

short loc 4AD5C26E

near ptr 4AD09797h
endp

NsPack 3.4 and 3.7 packer.

| 621 1:0040D3F1 pop esi
| 621 1:0040D3F2 add ebx, OCh
| 621 1:0040D3F5 loop loc 40D3DS8

| 62i 1:0040D3F7

| 621 1:0040D3F7 loc 40D3F7:
XREF: start+14;j

| 621 1:0040D3F7

| 621 1:0040D3F7 mov
| 621_1:0040D3FC cmp
| 621 1:0040D3FF jz
| 621_1:0040D401 popa
| 621_1:0040D402 popf
| 621 1:0040D403 mov
| 62i1_1:0040D408 retn OCh
| 621 1:0040D40B ; ---

; CODE

; start+232]
eax, 0
eax, 0

short loc_40D40B

eax, 1

| 62i 1:0040D40B

[621 1:0040D40B loc_40D40B:
[XREF: start+264j

| 621_1:0040D40B popa
| 621 1:0040D40C popf
| 621_1:0040D40D jmp
| 62i_1:0040D40D start

| 621 1:0040D40D

; CODE

near ptr dword 4012A8
endp

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the

11. Appendix — Olly Scipt

The following samples are Olly-script that can be used to unpack the NsPack

version 3.7 packer.

~.

NsPack 3.7 unpacking script for Olly

Date 22/07/2009

R

~.

*/

var cpa

var errorcnt
_tryAgain:
find eip,
cmp S$RESULT, O
je _tryNSPack
mov cpa, SRESULT
add cpa, 2
bp cpa
run

bc cpa
sto

cnt eip,
an eip
ret
_tryNSPack:
cmp errorcnt,l
je notNSPack
mov errorcnt,l

"This is the OEP

sto
JMP tryAgain
_notNSPack:

(original entry point).

NsPack 3.4 and 3.7 packer.

Use this to fix the IAT"

msg "*** This executable does not look to be packed using NsPack***"

ret

Craig S Wright

117

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 118
NsPack 3.4 and 3.7 packer.

11.1. Olly Scipt OEP locator
The following samples are olly-script that can be used to unpack the NsPack

version 3.4 packer.

; NsPack 3.4 OEP finder script for Olly

; Date : 10/08/2009

*/

var t

sti

sti

mov t,esp

bphws t,"r"

run

bphwec t

sti

sti

cmt eip, "This is the OEP (original entry point). "
msg "Dump & use this to fix the IAT!"
ret

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 119
NsPack 3.4 and 3.7 packer.

12. More Appendixes...

The following provide unpacking code samples for use in analyzing NsPack.

12.1. The Unpack Code

The following is the code used to unpack the embedded executable file:

/* loop to unpack the code from the compressed data*/

/*

read struct (self, struct)

read_struct (struct) --> Read structure from file into memory.
This loads the file into memory from
disk without executing it.

'*in table' is a pointer referencing the position in the data
ssize is the 32 bit value at the point of the data we have read into the function.
*/
while (true) {
uint32 t former size = initial byte & amount unpacked to date;
uint32_t table position;

uint32 t temp value = point in tablel;

if (read struct.error) return 1;
/* check once per mainloop - if there is an error, end */

if (!load_single bit from table(&tablel (point_in tablel<<4) + former_size],
&read struct)) {

uint32 t shft = 8 - (table rem&Oxff);
shft &= 0Oxff;
table position = (point in table2>>shft) +

((putsamount unpacked to date)<<(table rem&0xff));
table position *=3;
table position<<=8;

point_in table2 = last bit = 1;

if (load single bit from table(&table[point in tablel+0xcO], &read struct)) {
if (!load single bit from table(s&table[point in tablel+Oxcc], &read struct)) {
table position = point_in_ tablel+0xf;
table position <<=4;
table position += former size;
if (!load single bit from table(s&table[table position], &read struct)) {
if (!amount unpacked to date) return point in table2;

point in tablel = 2*((int32_ t)point in tablel>=7)+9;
if (!buffer bounded(destination_point, dsize,
&destination point[amount unpacked to date - last bytes[0]], 1)) return 1;
point in table2 = (uint8_ t)destination point[amount unpacked to date -
last bytes[0]];

destination point[amount unpacked to date] = point in table2;
amount unpacked to_date++;

if (amount unpacked to date>=dsize) return 0;

continue;

} else {
former size = load a variable number of bits from table(&table[0x534],

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the = 120
NsPack 3.4 and 3.7 packer.

&read struct, former size);

point in tablel ((int32_t)point in tablel>=7);
point in tablel = ((point_in tablel-1) & Oxfffffffd)+0xb;

}

} else {

if (!load single bit from table(&table[point in tablel+0xd8], &read struct)) {
table position = last bytes[1];

} else {
if (!load single bit from table(s&table[point in tablel+Oxed], &read struct)) {

table position = last bytes[2];

} else {

table position = last bytes[3];
last bytes[3] = last bytes[2];
}

last bytes[2] = last bytes[1l];
}

last bytes[1]

last_bytes[0];

last bytes[0] = table position;
former size = load a variable number of bits from table(&table[0x534],
&read struct, former size);
point in tablel = ((int32 t)point in tablel>=7);
point in tablel = ((point in tablel-1) & Oxfffffffd)+0xb;
}
} else {
last bytes[3] = last bytes[2];
last bytes[2] = last bytes[l];
last bytes[1l] = last bytes[0];
point in tablel = ((int32 t)point in tablel>=7);
point in tablel = ((point in tablel-1) & Oxfffffffd)+0xa;
former size = load a variable number of bits from table(&table[0x332],

&read_struct, former size);

table position = ((int32 t)former size>=4)?3:former size;

table position<<=6;

table position = load n bits from table(&table[0x1bO+table position], 6,
&read_struct);

if (table position>=4) ({

uint32 t s = table position;
s>>=1;
s==;

temp value = (table position & point in table2) | 2;
temp value<<=(s&0xff);

if ((int32 t)table position<Oxe) {
temp value += load bitmap (&tablel (temp value-table position)+0x2af], s,
&read_struct);
} else {
s += Oxfffffffc;
table position = get bitmap(&read struct, s);
table position <<=4;
temp_value += table position;
temp value += load bitmap (&table[0x322], 4, &read struct);
}

} else {

last bytes[0] = temp value = table position;
}
last _bytes[0] = temp value+l;

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

}

/* nspack_unpacking function_end */
if (last _bytes[0] > amount unpacked to date) return point in table2;
former size +=2;

if (!buffer bounded(destination_point, dsize,
&destination_point[amount unpacked to_date], former_ size) ||
!buffer bounded(destination point, dsize,
&destination point[amount unpacked to date - last bytes[0]], former size)
) |
return 1;
}
do {
destination point[amount unpacked to date] =
destination point[amount unpacked to date - last bytes[0]];
amount unpacked to date++;
} while (--former size && amount unpacked to date<dsize);
point in table2 = (uint8_ t)destination point[amount unpacked to date - 1];

if (amount unpacked to date>=dsize) return 0;

This function is described in detail below.

Craig S Wright

121

122

NsPack 3.4 and 3.7 packer.

BE-G--8~8 Li-@-i—¢

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the

N}

i-a=g li-iee [ioi-a-e

e®1_r oli-é-oli-a-ele

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

12.1.1. Functions used in packing routines

The following are functions/routines used in the following sections:
readlnt 32

int32 t readInt 32 (const char *buff)

{

int32 t value;

/* Ensure that data is in correct 'Endian' Format */

/* Case 1 - Big Endian */
/* If the data is Big Endian - set the value this way */
CASE 1 (BE)
value = *(int32 t *) buff;
/* case 1 is not likely to apply in NsPack, */
/* but we should check to be sure */

/* Case 2 - Little Endian */
/* If the data is Big Endian - set the value this way */
CASE 2 - LE (expected)

value = buff[0] & Oxff;

value |= (buff[l] & O0xff) << 8;
value |= (buff[2] & Oxff) << 16;
value |= (buff[3] & Oxff) << 24;

/* We are processing the data as 'Big Endian' */
/* So we want to reverse the format that we expect */
/* As the buffer is read into the system */

/* Pass the returned function value back to the system */
return value;

}

/* This function reads the data - a 32bit word and returns */
/* it to the system in Big Endian format*/

123

/* for the standard data stream in an Intel Little Endian */ /* system, we will reverse

the order of the data for */
/* processing */

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the

n

1?]

NsPack 3.4 and 3.7 packer.

!
L

/% Ensure
/% Case 1

value

/% Case 2

value
value
value
value

int32_t readInt_ 32

int3z_t wvalue;

(const char “buff)

that data is in correct 'Endian'
- Big Endian */

“iint3Z_t ¥) buff;

- Little Endian */

buff[0] &

(buff[1]
(buff[2]
(buff[3]

Oxff:

& Ox£ff) << 8;
& Oxff) << 16;
& Oxff) << 24;

/% Pass the returned function value back to the svstem */

Format */

Craig S Wright

Ireturn value;

124

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 125
NsPack 3.4 and 3.7 packer.

cli_context
Based on the 1ibGDS library
See: http://libgds.info.ucl.ac.be/

http://libgds.info.ucl.ac.be/doc/html/cli__ctx_8c-source.html

Structure — DeNSP

The following structure used in this document relates to the results of the 'read_struct'
function.

struct DeNSP read_struct;

/* This is defined in full as... */
struct DeNSP {
char *src point curr;
char *src_point_end;
uint32 t bitmap;
uint32 t old value;
int error;
/* the following values are not in the original structure /*
/*and are included later in the function */
uint32 t tablesz;
char *table;

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the =126
NsPack 3.4 and 3.7 packer.

buffer bounded

This function ensures that the second buffer is contained within the first (i.e. buffer2 is
contained inside bufferl).

buffer bounded(bufferl, bufferl size, buffer2, buffer2 size);

/*

This function is a check routine to ensure that a buffer does not cause an overrun.

If data is returned that exceeds the initial buffer being processed, the function will
exit instead of writing past the end of the first buffer.

*/

(bufferl size > 0 && \
buffer2 size > 0 && \
buffer2 size <= bufferl size && \
buffer2 >= bufferl && \
buffer2 + buffer2 size <= bufferl + bufferl size && \
buffer2 + buffer2 size > bufferl) ;

/*The function checks the 2 buffers, bufferl and buffer2 with respective size (length):
bufferl bufferl size
buffer2 buffer2 size
This is done to ensure that buffer (when an additional amount of data is added) is
larger or equal in length to the buffer it is being compared to (or that one buffer does
not exceed the other buffer that is being written over).

The function returns 'TRUE' logically if all of the following conditions are met:
bufferl has a size of > 0
buffer2 has a size of > 0

All values of the function have to be logically 'TRUE' for the function to return a value
of '"TRUE'.

Basically a bounds check to stop security and other errors.

*/

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

load_bitmap
Load the data as a bitmapped variable.

uint32 tload bitmap(struct DeNSP *read struct, uint32 t bits) {
uint32 tretv=0;

/*

read struct (self, struct)

read struct (struct) --> Read structure from file into memory.
This loads the file into memory from
disk without executing it.

retv is a 32bit variable used as a marker and is initially set = 0.

bits is the 32 bit value at the point of the data we have read into the function.
*/

if ((int32 t)bits <= 0)
return 0;
/* This variable is signed */
/* As such we want to validate that we have not rolled */
/* to a negative value */

while (bits--) {

/* We loop a number of times that is defined by the */

/* 32-bit variable 'bits' that is loaded into the */

/* function at start */

read struct -> bitmap >>= 1;

/* Remember this is an unsigned value */
/* we start by reading the value at position */
/* 'bitmap' x 2 (right shifted 1) */

retv <<= 1;
/* Set the value 'retv' x2 or */
/* retv = retv * 2 */

if (read struct -> old value >= read struct -> bitmap) {
/* Note: this value is unsigned */
/* We want to compare the value of */
/* 'read struct' at the [old value] to the value of */
/* 'read struct' at the entry [bitmap] */
/* In the event that the entry at [old value] is >= to */
/* the value at [bitmap] we assign the value as follows */

read struct -> old value -= read struct -> bitmap;
/* Set [old value] = [old value] - [bitmap] */
retv |= 1;

/* Set 'retv' using a Bitwise-inclusive-OR assignment */
/* retv = retv OR '0001' */
}

if (read struct -> bitmap < 0x1000000) {
/* Next, test if the value at [bitmap] is > 0x1000000 */

read struct-> bitmap <<= 8;
/* if the value is > 0x1000000, we want to left shift it */
/* or [bitmap] = [bitmap] * 256 */

read_struct -> old value = (read struct -> old value << 8) |

Craig S Wright

127

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 128
NsPack 3.4 and 3.7 packer.

load byte(read struct);
/* The reset the value at [old value] */
/* Use an OR operation */
/* [old value] x 256 OR the function value */
/* from running load byte at the current value of */
/* read_struct */

}
}
return retv;

/* Output the new value of retv */
}

return 0;

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

j—i

if ((int3z_tjbits <= 0) |

return 0O;

N

/* This variable is signed */
/* As such we want to validate that we have not rolled */
/* to a negative value */

N7
/* We loop a number of times that is defined by the */
/* 32-pit variable 'bits' that is loaded into the */
/* function at start */
read_struct -> bitmap >>= 1;
/* Remember this is an unsigned value */
/% we start by reading the value at position */
/* 'bitmap' x 2 (right shifted 1) */
retv <<= 1;
/* Set the value 'retv' x2 or */
/* retv = retv * 2 #/
if (read_struct -> old wvalue >= read_struct -- bitmap]} \'1
N7

/* Note: this value is unsigned */

/* We want to compare the value of */

/#* 'read struct' at the [old value] to the value of */

/#* 'read struct' at the entry [bitmap] */

/#* In the event that the entry at [old value] is >= to */
/#% the value at [bitmap] we assign the value as follows */

read struct -> old value -= read struct -> bitmap:
/% Set [old value] = [old value] - [bitmap] */
retv |= 1;

/% Set 'retv' using @ Bitwise-inclusive-OR assigument */
/* retv = retv OR '0001" */

if (read struct -> bitmap < OxlDOODDD]}

J*
S

S*
S*
S
S
S

/* Next, test if the value at [bitmap] is > 0x1000000 */
read_struct-> hitmap <<= &

1f the value is > 0x1000000, we want to left shift it */
or [bitmap] = [bitmap] * 256 */
read_struct -> old value = (read struct -> old value << 5) | load byte(read struct):
The reset the value at [old value] */
Use an OR operation */
[old value] x 256 OR the function value */
from running load byte at the current value of */

read struct */

K

Craig S Wright

129

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

next_bit

uint32_t next bit (uintl6_t *intable, uint32_t back, struct DeNSP *read_struct)
{

/*

read_struct (self, struct)

read struct (struct) --> Read structure from file into memory.
This loads the file into memory from
disk without executing it.

'*in table' is a pointer referencing the position in the data
ssize is the 32 bit value at the point of the data we have read into the function.
*/

/* start counting from 1 - we want to read in 0x100 bits */
/* FF or 256 decimal*/

uint32 t pos = 1;
uint32 t next bit = 0;
uint32 t i;

if ((int32_t)back<=0)
/* This variable is signed */
/* As such we want to validate that we have not rolled */
/* to a negative value */
return 0;

for (i=0; i< back; i++) {
/* Loop from 0 until i< back incrementing i = i+1 */

uint32 t bit = load single bit from table (&intable[pos],
read_ struct);

/* Set the value 'bit' to the returned value of the */

/* function */

pos=(pos*2) + bit;
/* set pos = pos x2 + the value we just calculated*/

next bit |= (bit << i);
/* Set next bit = next bit bitwise OR’d with the returned */

/* value of bit that has been right shited ‘i’ times */
/* each time we loop, the right sift increases */

}

return next bit;
/* Output the new value 'next bit' */

Craig S Wright

130

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 131
NsPack 3.4 and 3.7 packer.

Inext_bit

uint3iz_t pos = 1;
uint3zZ_t next_hit = 0;
uint3iz_t i;

if [[int32_t]back<=0]

/% This variable is signed */ ;
/% As such we want to wvalidate that we have not rolled */
S* to a negative value */

return 0O;

C3

V4
™\

tﬂfor [1=0; i< back: i++j| Ng
AN I 7
N
/* Loop from O until i< back incrementing i = 1i+1 */

uint3iZ_t bit = load single bit from table (&intablel[pos],
read struct);

/% Set the value 'bit' to the returned value of the */

/% function */

pos=(pos®2) + bit;

/* set pos = pos X2 + the value we just calculated*/
next_bit |[= (bit << 1i):

/* Set next bit = next bit bitwise OR'd with the returned */
/% value of bit that has been right shited 'i' times */

/* each time we loop, the right sift increases */

l, 2
[:

Ireturn next_bit;

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 132
NsPack 3.4 and 3.7 packer.

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

load_byte

uint32 t load byte(struct DeNSP *read struct) ({

/*

read_struct (self, struct)

read_struct (struct) --> Read structure from file into memory.
This loads the file into memory from
disk without executing it.

*/

/* This function reads and updates 32bit values Jjumping the
Pointer to the next value in the table */

uint32_t ret;

if (read struct -> src point curr >= read struct-> src point end) {
/* If the value at [src_point curr] is >= that at */
/* [src_point _end] we set an error and end */

read_struct->error = 1;
return O0xff;

ret = *(read struct->src_point curr);
/* set the pointer value ret to [src_point curr] */

read_struct -> src_point curr++;
/* read the value at the next point */
/* src_point_curr = src_point curr + 1 */

return ret&Oxff;

/* return ret after we have */
/* cleared the values of ret other than the last 256 bits */

Craig S Wright

133

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 134

NsPack 3.4 and 3.7 packer.
load hyte
S*

S *
read struct{self, struct)
read struct(struct) ——> Read structure from file into memory.
This loads the file into memory from
disk without executing it.
£/
/#* This function reads and updates 32bit values jumping the
Pointer to the next value in the table *#/
uint3z_t ret:

N7

if (read struct -> src_point curr >= read struct-> src_point_endj#1

N
/* If the value at [src point curr] is >= that at */

/% [src point end] we set an error and end */
read struct->error = 1;

Ireturn Oxff;

y
N
ret = *(read sStruct->src_point_curr):
/* set the pointer value ret to [src point curr] */
read struct -> Src_point_curr++; B B
S* read the value at the next point */
/#* src point curr = src point curr + 1 */

Ireturn ret&0Oxff:;

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

load_single bit _from_table
int load single bit from table(uint16 t *in_ table, struct DeNSP *read_struct) {

/*

read_struct (self, struct)

read_struct (struct) --> Read structure from file into memory.
This loads the file into memory from
disk without executing it.

'*in table' is a pointer referencing the position in the data
ssize is the 32 bit value at the point of the data we have read into the function.
*/

/*
There are 2 real parts to this function. Basically, the function reads, swaps and

processes values using marker variables and pointers. As the values are unsigned, the

function also has a check routine (security, function etc).
*/
uint32 t nval;

if (!buffer bounded((char *)read struct->table, read struct->table size, (char
*)in table, sizeof (uintl6_t)))
{
read struct->error = 1;
return Oxff;
/* This is a simple bounds check to ensure safety */
/* the real function follows */

}

/* 'nval' is calculated using the multiplication of the pointer */
/* and the left shifted value read at [bitmap] */

/* The value at [bitmap] is divided by 2048 */

nval = *in table * (read struct->bitmap>>0xb);

if (read struct->old value<nval)
/* If the value at [] is < the value just calculated 'nval' */
/* do the following ...*/
{
/* NOTE: the value is unsigned */
uint32 t sval;
read_struct->bitmap = nval;
/* Start by setting the value [bitmap] to nval */

nval = *in table;
/* set nval to the value stored at the pointer */
sval = 0x800 - nval;

/* Set sval = 2048 - nval */

/* The process it */

sval = ((int32_t)sval)>>5; /* This value is signed */
sval += nval;

/* Set a new value for the pointer */
*in table=sval;

/* More tests - safety measures */
if (read struct->bitmap<0x1000000) {
/* This value is unsigned */
read struct->old value = (read struct->old value<<8) |
load byte(read struct);
read struct->bitmap<<=8;

}

Craig S Wright

135

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the

return 0;

}

/* Set [bitmap] = [bitmap] -nval */
read_struct->bitmap -= nval;

/* Set [old value] = [old value] - nval */
read_struct->old value -= nval;

/* Update nval based on the pointer*/
nval = *in table;

/* Left sift nval, or (nval = nval - nval/32) */
/* OR... nval = 31 x nval/32 */
nval -= (nval>>5);

NsPack 3.4 and 3.7 packer.

/* NOTE: variable is word, unsigned, we will do more checks */

*in table=nval;

if (read_struct->bitmap<0x1000000)
{

/* More security checks as the value is unsigned */

read struct->old value = (read struct->old value<<8) |

load_byte(read_struct);

read struct->bitmap<<=8;

}

return 1;

}

Craig S Wright

136

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

Iluad_single_bit_from_table

uint3d nval;

if ('buffer_bhounded((char *)read struct->table, read struct->table_size, (char *)in_table, sizeof (uintlé_t))) Pn

Iread_structf>error = 1:]

Ireturn Ox£ff;

/* This is a simple bounds check to ensure safety */
/* the real function follows */

/* 'nval' is calculated using the multiplication of the pointer */
/* and the left shifted value read at [bitmap] */

/* The value at [bitmap] is divided by 2048 */
nval = *in_table * (read_struct->bitmap>>0xb);

.

if (read_struct->old value<nval)
/% If the value at [] is < the value just calculated 'nval' */ Ng
/* do the following ...*/

/% NOTE: the value is unsigned */

uint3z_t sval:

read_struct->hitmap = nval:

/* Start by setting the value [bitmap] to nval */
nval = “in_table:

/* set nval to the value stored at the pointer #/
sval = Ox800 - nval:

/* Set sval = 2048 - nval */

/* The process it */

sval = ((int32_t)sval)>>5; /# This value is signed */
sval += nval;

/* Set a new value for the pointer */
*in_table=sval;

/* More tests - safety measures */

if (read_struct->bitmap<0x1000000) }

/* This value is unsigned */
read_struct->old_value = (read struct->old value<<8) | load_byte (read_struct):

read_struct->bitmal 8
Ireturn o

D

/* Set [bitmap] = [bitmap] -nval */

read_struct->bitmap -= nval;
/* Set [old value] = [old value] - nval */
read struct->old value -= nval;

/* Update nval based on the pointer*/

nval = “in_table:

/* Left sift nval, or (aval = nval - nval/32) */
/* OR... nval = 31 x nval/32 */

nval - (nval>>5) ;

/% NOTE: variable is word, unsigned, we will do more checks */
*in_table=nval:

if (read_struct->bitmap<0x1000000) }

Craig S Wright

137

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 138
NsPack 3.4 and 3.7 packer.

load_100_bits_from_table
This function loads 0x100 (or 256) bits from the table.

uint32 tload 100 bits from table(uintl6 t *in table, struct DeNSP *read struct,
uint32 _t ssize) {

/*

read struct(self, struct)

read struct (struct) --> Read structure from file into memory.
This loads the file into memory from
disk without executing it.

'*in table' is a pointer referencing the position in the data
ssize is the 32 bit value at the point of the data we have read into the function.
*/

/* start counting from 1 - we want to read in 0x100 bits */
/* FF or 256 decimal*/

uint32 t count = 1;
/* Run once before looping*/
uint32 t left position, table position;

/* define marker variables (left position and table position) */
/* These are used to read information while shifting information */

/* Clear the last 256 bit value of ssize */
left position = ssize&Oxff;

/* Clear the values of ssize other than the last 256 bits */
/* Bitwise 'OR' the value ssize with the left position */

/* variable that has been AND’d with Oxff in order to */

/* clear the right most 256 bits. */

/* this is: */

/* Binary mask the right most 256 bits (leave left most ok) */
/* Right shift 1 - that is double left position */

/* Bitwise 'OR' the values*/

ssize=(ssize & Oxffffff00) | ((left position<<1)&0xff);

/* Right shift the value 'left position' seven times*/
/* or left position = left position / 128%/
left position>>=7;

/* Set the variable 'table position' as equalling the value */
/* 'left position' plus 1 */
table position = left position+l;

/* Left shift the variable eight times */
/* table position = Table position x 256 */
table position<<=8;

/* Set 'table position += count' */

/* Add Table position and the value at count*/

/* Set the new value of table position to this value */
table position = table position + count;

/* Load a new value from the file as it was read into memory */
/* and stored in an array */

table position = load single bit from table (&in table[table position], read struct);

/* Set the new value of count as equal to double the previous */

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 139
NsPack 3.4 and 3.7 packer.

/* value 'OR'd with the new value just loaded */
count=(count*2) |table position;

/* Check if the variable 'left position' is not equal to */
/* 'table position'. If true, loop, otherwise end. */

/* The loop runs until these 2 values are equal */

if (left position!=table position) {

/* The next loop occurs in a different way to the first */
/* This loop has to run until the value 'count' is less */
/* than 256 or 0x100*/

while (count<0x100)

/* Process the new value of count and load the values from */
/* the array that is associated with the value of the file */
/* as read into memory and stored in the array */
count = (count*2) |load _single bit from table(&in_table[count],
read struct);
}
}
/* Reset the variable count */
/* Adding 255 to the value of count effectively sets */
/* the returned value back to 0 */
return count&Oxff;

FALSE
FALSE
v
- 2
[e)

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 140
NsPack 3.4 and 3.7 packer.

load 100 _bits_from table
ui

uint32_t load_100_hits_from_table(uintlé_t “in table, struct DeNSP “read struct, uint3Z_t ssize) |

/*
read struct(self, struct)
read struct(struct) —--> Read structure from file into memory.

This loads the file into memory from
disk without executing it.
'#in table' is @ pointer referencing the position in the data
ssize is the 32 bit value at the point of the data we have read into the function.
%/
/% start counting from 1 - we want to read in 0x100 bits */
/% FF or 256 decimal*/
uint3Z_t count = 1;
/* Run once before looping*/
uint3z_t left_position, table position:
/#* define marker variables (left position and table position) */
/#* These are used to read information while shifting information */
/* Clear the last 256 bit value of ssize */
left_position = ssizecOxff;
/* Clear the values of ssize other than the last 256 bits #/
/* Bitwise 'OR' the value ssizewith the left position */
/* variable that has been AND'd with Oxff in order to */
/* clear the right most 256 bits. */
ssize=(ssizesOxfff£££00) | ((left_position<<l) Oxff):
/* Right shift the value 'left position' seven times*/
left_position>>=7;
/* Set the variable 'table position' as egualling the value */
/* 'left position' plus 1 */
tablg_position = left_position+l:
/* Left shift the variable eight times */
table_position<<=8;
/* Set 'table position += count' */
/% Add Table position and the value at count*/
/* Set the new value of table position to this value */
table_position = t,able_po;it,ion + count;
/% Load a new value from the file as it was read into memory */
/% and stored in an array */
table position = load_single_hit_from_table (&in table[table_position], read struct):
/* Set the new value of count as egual to double the previous */
/% value 'OR'd with the new value just loaded */
count= (count®2) | table_position;
/* Check if the variable 'left position' is not equal to */
/% 'table position'. If true, loop, otherwise end. */
/* The loop runs until these 2 values are equal */

N

if (left_position!=table_position) } \'1

N7
/#* The next loop occurs in a different way to the first */
/* This loop has to run until the value 'count' is less */
/* than 256 or 0x100%/
while (count<0x100)
/* Process the new value of count and load the values from */ N

/#* the array that is associated with the value of the file */
/* as read into memory and stored in the array */

count = (count®Z)|load single bit_from table(<in table[count], read struct);

=

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

load_n_bits number_of bits_from_table
This function allows a variable number of bits (n) to be loaded from the table.

uint32 tload n bits from table(uint16 t *intable, uint32 tn_bits, struct UNSP
*read_struct) {

/*

read struct(self, struct)

read struct (struct) --> Read structure from file into memory.
This loads the file into memory from
disk without executing it.

'*in table' is a pointer referencing the position in the data

'n bits' is the 32 bit value that determines how many loops this function makes.
*/

/* start counting from 1 - we want to read in 'n bits' # of bits */
uint32_t count = 1;
uint32 t bitcounter;

/* if (n_bits) { always set! */

bitcounter = n _bits;
/* Set the value of the counter to the initial value */

while (bitcounter--)
/* bitcounter = bitcounter -1*/
/* Count down from bitcounter = 'n bits' to zero */
/* at each loop, update the array of bitmaps */
/* reading the 32 bit values as we go */

count = count*2 + load single bit from table (&intable[count], read struct);
/* close the function and return} */

return count - (1 <<(n _bits & O0xff));
/* The value returned is count - a right sifted value */
/* The right sift takes the value 1 and right sifts it */
/* based on the initial value 'n bits' selected with */
/* an 'AND' operation to clear the values of 'n bits' other */
/* then the last 256 bits */

Craig S Wright

141

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 142
NsPack 3.4 and 3.7 packer.

Iload_n_bits_from_table

uint3Z_t count = 1;
uint3Z_t hitcounter:
A% 1f (n_bits) { always set! */
bitcounter = n _bits;
/% Set the value of the counter to the initial value */

1

/* bitcounter = bitcounter -1%/

r—b /* Count down from bitcounter = 'n bits' to zero */H

/* at each loop, update the array of bitmaps */
/* reading the 32 bit values as we go */

while [(bitcounter--)

|c0unt = count®Z + load_single bit_from table (&fintablel[count], read_structj;l

o N

/#* close the function and return) */

N7

lreturn count - (1 <<(n hits & Oxff)):

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 143
NsPack 3.4 and 3.7 packer.

load_a_variable number_of bits _from_table
This function allows a variable number of bits (n) to be loaded from the table.

uint32 tload a variable number of bits from table(uint16 t *in_table, struct DeNSP
*read_struct, uint32 t former size) {

/*

read struct (self, struct)

read_struct (struct) --> Read structure from file into memory.
This loads the file into memory from
disk without executing it.

'*in table' is a pointer referencing the position in the data

former size is the 32 bit value at the point of the data we have read into the function.

*/
/* Test 1 - Test the negated function and return if True (or !False) */
if (!load single bit from table(in_table, read struct))
/* We start by loading the value into the function, */
/* ' load_single bit from table()' - as defined above. */

/* as a test. If the function */

return load a variable number of bits from table (&in table[(former size<<3)+2], 3,
read_struct);

/* Start by testing function values */
/* when these are valid, we continue - otherwise the */
/* function returns by running another function*/

/* Test 2 - Test the negated function and return if True (or !False) */
if (!load single bit from table(&in table[l], read struct))
/* Each of the tests is a negative */
/* that is ! function*/

return 8 + load a variable number of bits from table
(&in table[(former size<<3)+0x82], 3, read struct);
/* The return routing drops the result */
/* without running the next function */

/* Tests did not return - calculate and return a value */
return 0x10 + load a variable number of bits from table (&in_table[0x102], 8,
read_struct);
/* If all else fails (that is the first two tests */
/* we return another value */

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 144
NsPack 3.4 and 3.7 packer.

IStarr_

!

if (!load_single_hit_from_table(in table, read struct))
/* We start by loading the value into the function, */

/% ' load single bit from table()' - as defined above. */
/* as a test. If the function */

l

Ireturn load_a variable nuwber of bits_from table (&in_table[(former_size<<3)+2], 3, read_struct);

)

/% Start by testing function values */

/* when these are valid, we continue - otherwise the */

/* function returns by running another function*/

/* Test 2 - Test the negated function and return if True (or !False) */

if (!load_single_hit_from table(iin table[l], read struct))

/#* Each of the tests is a negative */
/% that is ! function*/

Ireturn S + load_a_wvariable number of hits_from_table [¢in_table[(former size<<3)+0x82], 3, read struct);

D

/#* The return routing drops the result */
/* without running the next function */
/* Tests did not return - calculate and return a value */

Ireturn 0x10 + load_a wvariable nwaber of bits_from table (&in_table[0x102], 5, read struct);

/% If all else fails (that is the first two tests */
/* we return another value */

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

check _malloc

void *check malloc(size_t size)
{

void *alloc;

/* set a max allocation size - Max Alloc */
/* Assumed this is done in an existing function */
/* This is a catch to ensure that memory is not exhausted */

if(!size || size > Max Alloc) {
size tma

/* error message - debug info here*/

return NULL;
}

alloc = malloc(size);
if('alloc) {
/* error message - debug info here*/
/* If the function cannot allocate sufficient memory or if the buffer */

/* will cause an overflow, return an error and exit gracefully */

return NULL;
} else return alloc;

Craig S Wright

145

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 146
NsPack 3.4 and 3.7 packer.

void “alloc;
/% set a max allocation size - Max Alloc*/
/* Assumed this is done in an existing function */

N2

if(!size || size > Hax_AllocjnI \'1

N2

/* error message - debug info here*/

Ireturn NULL:

|alloc = malloci(size)

if('alloc)

i i€ (talioc)]

<7 return alloc:

/* error message - debug info here*/|

Ireturn NULL:

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

The Determination and call to the Unpacking Function

147

We define some of the values used in unpacking in the scanning of NsPack in the first

instance.

Here we find the values in the file that we use in the unpacking sections (below).

/* NsPack scanning routine*/
/* We need the following valiables */

uint32 t eprva = vep;

uint32 t start of stuff, ssize, dsize, rep = ep;
unsigned int nowinldr;

char nbuff[24];

char *src point=epbuff, *destination point;

if (*epbuff=='\xed') { // Run this check as it is likely the
// headers have been altered by

// NsPack

eprva = Read PE (epbuff+1)+vep+5;
/* Read the value from the File PE */

src_point = START; // Set
}

/* Next check for the signature itself */

if (memcmp (src point, "\x9c\x60\xe8\x00\x00\x00\x00\x5d\xb8\x07\x00\x00\x00",

nowinldr = O0x54-READ PE (src_point+17);
// If NsPack: Set *start of stuff;
/* Set the initial values for : */

ssize = READ Value (src_point+5) |Oxff;
dsize = READ Value (src_point+9);

// do this by reading the values as above

/* To find the OEP */

/* This is a small check to find the OEP for files that are packed with NsPack */

// Set by reading a 32 bit value from the data point

eprva=eprva+5+READ Value (START+1) ;

// return;
// Message NsPack-OEP = %08x\n, eprva;

Craig S Wright

break;

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 148
NsPack 3.4 and 3.7 packer.
[+
/* NsPack scanning routine*/
/* We need the following valiables */
maini()
uint3Z_t eprva = vep:
uint32_t start_of_stuff, ssize, dsize, rep = ep;
unsigned int nowinldr;
char nbuff|[24]:
char “src_point=epbuff, “destination point:
if (“epbuff--'\xed'| | AV
N2

/7 NsPack
eprva

src_point

// Run this check as it is likely the
// headers have been altered by

Read PE(epbuff+l)+vep+5:
/#* Read the value from the File PE
START:

*/
/7 Set

/* Next check for the signature itself */

N
if (wemcrmp (src_point, "\xS9chx60%xed x00% x00% x00% x00% x5d) xb84 x074 x004 x004 x00", 13)) F
break:
nowinldr = 0x54-READ_PE(src_point+17):

// If NsPack: Set *start of stuff;
/* Set the initial values for %/
ssize READ_Value[src_point+Sj|Dxff;
dsize READ Walue (src_point+9);

/% To find the OEP #/
/* This is & small check to find the OEP

eprva-eprva+S5S+READ Value (START+1)
/7 return;
// Message NsPack-0EP

$08x\n, eprva,

A/ do this by reading the values as above

/S Set by reading a 32 bit value from the data point

for files that are packed with NsPack */

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the = 149
NsPack 3.4 and 3.7 packer.

The Unpacking Function itself (nspack_unpacking function)

uint32 t nspack unpacking function(uintl6 t *table, uint32 ttable size, uint32 t
table rem, uint32_t allocsize, uint32_t initial byte, char *src_point, uint32_t ssize, char
*destination_point, uint32 t dsize) {

/* Read in the data */

/*

read struct (self, struct)

read struct (struct) --> Read structure from file into memory.
This loads the file into memory from
disk without executing it.

'*in table' is a pointer referencing the position in the data

ssize is the 32 bit value at the point of the data we have read into the function.
*/

struct DeNSP read struct;

/* Start by setting 'i'. This is a */

/* Clear the values of (allocsize+table rem)other than the last 256 bits */
/* We multiply 768 by the last values (0-255) calculated and add 1846*/
uint32_t i = (0x300<<((allocsize+table rem)&0xff)) + 0x736;

/* Initialise the variables - we start with nothing unpacked. */

/* We are doing a shift operation */

/* These are used to hold the prior values of the data as we conduct */
/* swaps */

uint32 t last bit = 0;

uint32_ t amount unpacked to _date = 0;

// These values have been changes from that which is included in a comment
// below. The array is used for bitshift operations and other bitwise
// calculations.

uint32 t last bytes[4]; // We use a 4 element array of 32 bit values
// to manipulate the data section that we

// read from the uncompressed file.

/* The array is initialised with an initial value of 0x0001 */

for (i=0; i<4; ++i) last bytes[i] = 1;

/*

uint32 t former bytes value = 1; // last_bytes[0];
uint32 t former former bytes value = 1; // last_bytes[1];
uint32 t former former former bytes value = 1; // last_bytes[2];
uint32 t former former former former bytes value = 1; // last _bytes[3];
*/

/* Initialise the variables - and the point is at the start of the data. */
uint32 t point in tablel = 0;
uint32 t point in table2 = 0;

/x o/
uint32 t put = (1<<(allocsize&Oxff))-1;

/* Set the initial start value as 0x01 left shifted */

/* This value is calculated outside of this function and is given as */
/* input */

initial byte = (1<<(initial byte&Oxff))-1;

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the = 150
NsPack 3.4 and 3.7 packer.

/* We need to check that we do not exceed the bounds */
if (table_size < i*sizeof (uintl6_t)) return 2;

/* initialise the table and prep it */
/* this is the array of memory to process the decompression */
while (i) table[--1]=0x400;

read_struct.error = 0;
read_struct.old value = 0;
read struct.src point curr = src point;

read struct.bitmap = Oxffffffff;

read _struct.src _point end = src_point + ssize;
read_struct.table = (char *)table;

read struct.table size = table size;

/*x/
for (i = 0; i<5 ; i++) read struct.old value = (read struct.old value<<8) |
get byte (&read struct);

if (read struct.error) return 1;
/* if (!dsize) return 0; - check to ensure valid*/
/* Check for exceptions etc. */

/* loop to unpack the code from the compressed data*/

while (1) {
uint32 t former size = initial byte & amount unpacked to date;
uint32 t table position;
uint32 t temp value = point in tablel;

if (read struct.error) return 1;
/* We need to check once per mainloop for errors and exceptions */
/* Not a part of the decompression itself, but still needed */

if (!load_single bit from table(&tablel (point_in tablel<<4) + former_size],
&read struct)) {

/* Check that jumps to one function if true or processes differently */

/* if not found */

// We start with setting a shift variable used in the process
uint32 t shft = 8 - (table rem&Oxff);
shft &= Oxff; // We only want the last bits

/* These values are used to Right Shift values */
/* these operations change the 32 bit value 'table position' that
/* is used to store values in the data
table position = (point in table2>>shft) +
((put&amount unpacked to_date)<<(table_ rem&0xff));
table position *=3;
table position<<=8;

/* Next, remember that these values (below) are signed */
if ((int32 t)point in tablel>=4)

{ // signed
if ((int32 t)point in tablel>=0xa)
{ // signed
point in tablel -= 6;
} else {
point_in tablel -= 3;

}
}
//Here is the alternate run if the first test value if found
else
{
point in tablel=0;
}

if (last_bit) |
if (!buffer bounded(destination_point, dsize,
&destination point[amount unpacked to date - last bytes[0]], 1)) return 1;
ssize = (ssize&Oxffffff00) | (uint8 t)destination point[amount unpacked to date -

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 151
NsPack 3.4 and 3.7 packer.

last_bytes[011;
point in table2 = load 100 bits from tablesize(&table[table position+0x73],
&read_struct, ssize);
last bit=0;
} else {
point in table2 = load 100 bits from tablesize(&table[table position+0x736],
&read struct);

}

/* At this point we unpack a single byte of data */
/* this is repeated many times */
/* We start by doing some bounds checks */
if (!buffer bounded(destination point, dsize, &
destination point[amount unpacked to date], 1))
return 1;
destination point[amount unpacked to date] = point in table2;
amount unpacked to date++;
/* Check bounds */
if (amount unpacked to date>=dsize) return 0;
continue;

} else {
point_in_table2 = last bit = 1;

if (load single bit from table(&table[point in tablel+0xcO], &read struct)) {
if (!load_single bit from table(&table[point in tablel+Oxcc], &read struct)) {
table position = point in tablel+0xf;
table position <<=4;
table position += former size;
if (!load single bit from table(&table[table position], &read struct)) {
if (!amount unpacked to date) return point in table2;

point in tablel = 2*((int32 t)point in tablel>=7)+9; /* Note: we are using a
signed value */
if (!buffer bounded(destination point, dsize,

&destination point[amount unpacked to date - last bytes[0]], 1)) return 1;
point in table2 = (uint8_ t)destination point[amount unpacked to date -
last bytes[0]];
/* unpack_one byte - real */
destination point[amount unpacked to date] = point in table2;

amount unpacked to_date++;
if (amount unpacked to date>=dsize) return 0;
continue;

} else {

former size = load a variable number of bits from table(&table[0x534],
&read struct, former size);

point in tablel ((int32 t)point in tablel>=7); /* signed */
point in tablel = ((point in tablel-1) & Oxfffffffd)+0xb;
/* jmp checkloop and backcopy (uses edx) */

} /* gotbit uno ends */

} else { /* gotbit due */

if (!load single bit from table(&table[point in tablel+0xd8], &read struct)) {
table position = last bytes[1];

} else {
if (!load single bit from table(s&table[point in tablel+Oxed], &read struct)) {

table position = last bytes[2];

} else {

table position = last bytes[3];

last bytes[3] = last bytes[2];
}
last bytes[2] = last bytes[1l];
}
last bytes[l] = last bytes[0];
last bytes[0] = table position;

Craig S Wright

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the
NsPack 3.4 and 3.7 packer.

former size = load a variable number of bits from table(&table[0x534],
&read_struct, former size);

point in tablel = ((int32_ t)point in tablel>=7);
/* Value used is signed */
point _in tablel = ((point in tablel-1) & Oxfffffffd)+0xb;

/* jmp checkloop and backcopy (uses edx) */
}

} else {
/* Here we swap the stored values repeatedly */
/* The values in the table are cycled as we add new ones to process */

last _bytes[3] = last bytes[2];

last_bytes[2] = last bytes[1];

last bytes[l] = last bytes[0];

point in tablel = ((int32_t)point in tablel>=7);

point in tablel = ((point in tablel-1) & Oxfffffffd)+0xa;

former size = load a variable number of bits from table(&table[0x332],

&read struct, former size);

table position = ((int32 t)former size>=4)?3:former size;

table position<<=6;

table position = load n bits from table(&table[0x1bO+table position], 6,
&read struct);

if (table position>=4) {

uint32 t s = table position;
s>>=1;
s==;

temp value = (table position & point in table2) | 2;
temp value<<=(s&0xff);

if ((int32_t)table position<Oxe) {
temp value += load bitmap (&table[(temp value-table position)+0x2af], s,
&read struct);
} else {
s += Oxfffffffc;
table position = get bitmap(&read struct, s);
table position <<=4;
temp_value += table position;
temp value += load bitmap (&table[0x322], 4, &read struct);
}

} else {
/* gotbit outl */
last bytes[0] = temp value = table position;

}

/* gotbit out2 */

last bytes[0] = temp value+l;

/* jmp checkloop and backcopy (makes use of EDX) */
}

/* checkloop and backcopy */
if (!last bytes[0]) return 0;

/* nspack _unpacking function end */
if (last_bytes[0] > amount unpacked to_date) return point in table2;
former size +=2;
if (!buffer bounded(destination point, dsize,
&destination point[amount unpacked to date], former size) ||
!buffer bounded(destination point, dsize,

&destination point[amount unpacked to date - last bytes[0]], former size)

) A

return 1;

Craig S Wright

152

GIAC GREM Gold: Packer Analysis Report — Debugging and unpacking the | 153
NsPack 3.4 and 3.7 packer.

}

do {
destination point[amount unpacked to date] =
destination point[amount unpacked to date - last bytes[0]];
amount unpacked to date++;
} while (--former size && amount unpacked to date<dsize);
point in table2 = (uint8 t) destination point [amount unpacked to date - 1];

if (amount unpacked to date>=dsize) return 0;

}

/* while true ends */

}
/*

Basically, the function does a series of reads and shift operations based on the previously
listed and detailed functions.

The diagram below is complex, but does demonstrate this flow.
*/

Craig S Wright

Last Updated: January 15th, 2015

- Upcoming SANS Training

Click Here for a full list of all Upcoming SANS Events by Location

SANS Brussels 2015 Brussels, BE Jan 26, 2015 - Jan 31, 2015 Live Event
SANS Dubai 2015 Dubai, AE Jan 31, 2015 - Feb 05, 2015 Live Event
Cyber Threat Intelligence Summit & Training Washington, DCUS Feb 02, 2015 - Feb 09, 2015 Live Event
SANS Scottsdale 2015 Scottsdale, AZUS Feb 16, 2015 - Feb 21, 2015 Live Event
10th Annual ICS Security Summit Orlando, FLUS Feb 22, 2015 - Mar 02, 2015 Live Event
SANS Munich 2015 Munich, DE Feb 23, 2015 - Mar 07, 2015 Live Event
SANS Secure India 2015 Bangalore, IN Feb 23, 2015 - Mar 07, 2015 Live Event
SANS DFIR Monterey 2015 Monterey, CAUS Feb 23, 2015 - Feb 28, 2015 Live Event
SANS Cyber Guardian 2015 Baltimore, MDUS Mar 02, 2015 - Mar 07, 2015 Live Event
SANS Secure Singapore 2015 Singapore, SG Mar 09, 2015 - Mar 21, 2015 Live Event
SANS Northern Virginia 2015 Reston, VAUS Mar 09, 2015 - Mar 14, 2015 Live Event
SANS Abu Dhabi 2015 Abu Dhabi, AE Mar 14, 2015 - Mar 19, 2015 Live Event
SANS Secure Canberra 2015 Canberra, AU Mar 16, 2015 - Mar 28, 2015 Live Event
SANS Stockholm 2015 Stockholm, SE Mar 23, 2015 - Mar 28, 2015 Live Event
SANS Oslo 2015 Oslo, NO Mar 23, 2015 - Mar 28, 2015 Live Event
SANS Houston 2015 Houston, TXUS Mar 23, 2015 - Mar 28, 2015 Live Event
SANS 2015 Orlando, FLUS Apr 11, 2015 - Apr 18, 2015 Live Event
SANS Security East 2015 OnlineLAUS Jan 16, 2015 - Jan 21, 2015 Live Event
SANS OnDemand Books & MP3s OnlyUS Anytime Self Paced

http://www.sans.org/info/36919
http://www.sans.org/link.php?id=36600
http://www.sans.org/belgium-2015
http://www.sans.org/link.php?id=36610
http://www.sans.org/dubai-2015
http://www.sans.org/link.php?id=38087
http://www.sans.org/cyber-threat-intelligence-summit-2015
http://www.sans.org/link.php?id=37797
http://www.sans.org/scottsdale-2015
http://www.sans.org/link.php?id=36715
http://www.sans.org/ics-security-summit-2015
http://www.sans.org/link.php?id=36605
http://www.sans.org/munich-2015
http://www.sans.org/link.php?id=38687
http://www.sans.org/secure-india-2015
http://www.sans.org/link.php?id=37662
http://www.sans.org/dfir2015
http://www.sans.org/link.php?id=32760
http://www.sans.org/cyber-guardian-2015
http://www.sans.org/link.php?id=38272
http://www.sans.org/secure-singapore-2015
http://www.sans.org/link.php?id=37742
http://www.sans.org/northern-virginia-2015
http://www.sans.org/link.php?id=37692
http://www.sans.org/abu-dhabi-2015
http://www.sans.org/link.php?id=38877
http://www.sans.org/secure-canberra-2015
http://www.sans.org/link.php?id=37922
http://www.sans.org/stockholm-2015
http://www.sans.org/link.php?id=37917
http://www.sans.org/oslo-2015
http://www.sans.org/link.php?id=38337
http://www.sans.org/houston-2015
http://www.sans.org/link.php?id=27554
http://www.sans.org/sans-2015
http://www.sans.org/link.php?id=37647
http://www.sans.org/security-east-2015
http://www.sans.org/link.php?id=1032
http://www.sans.org/ondemand/about.php

