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Abstract

This thesis proposes new techniques for finding and eliminating application-specific
bugs in web applications. We demonstrate three approaches to finding these bugs,
each representing one position in the compromise between specificity and automation.
All three are powered by a scalable symbolic execution specifically tailored to the
structure of web application implementations, allowing analysis of even the largest
real-world applications.

In contrast to existing general-purpose verification approaches, this work was in-
spired by the hypothesis that narrowing our focus might produce more effective tools.
Our approach has been to take advantage of properties specific to application-specific
security bugs in web applications in order to produce more effective tools. The results
suggest that focusing on a particular class of applications (web applications) and on
a particular class of bugs (missing security checks) we can build static analysis tools
that are both significantly more scalable and more automated than general-purpose
bug-finding tools.
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Chapter 1

Introduction

The web is fast becoming the most popular platform for application programming,
but web applications continue to be prone to security bugs. Web apps are often imple-
mented in dynamic languages, using relatively fragile frameworks based on metapro-
gramming. Most importantly, security policies themselves tend to be ad hoc, and
many security bugs are the result of programmers simply forgetting to include vital
security checks.

While programming frameworks and static analysis tools have begun to address
those bugs-such as injection, cross-site scripting and overflow vulnerabilities-that
violate generic, cross-application specifications, application-specific bugs (like missing
security checks) have received less attention. Traditional solutions, such as verification
and dynamic policy-enforcement techniques, ask the user to write a specification of
the intended access control policy-a burdensome requirement-and have therefore
seen little adoption in practice.

A report by the security research company Cenzic 1 suggests that, as of 2014,
96% of web applications contain security bugs, and nearly half of those bugs are
application-specific. Moreover, a comparison of bugs found in 2013 and 2014 shows a
decreasing number of cross-application bugs (like injection, cross-site scripting, and
overflow vulnerabilities) over time, and an increasing number of application-specific
bugs. This finding is in line with our experience with web frameworks and existing
formal techniques, which are valuable in eliminating cross-application bugs but less
useful for avoiding application-specific bugs.

This thesis proposes new techniques for finding and eliminating application-specific
bugs in web applications. We demonstrate three approaches to finding these bugs,
spanning the spectrum from general-purpose but burdensome to the user (meaning
that the technique can find many different kinds of bugs, but requires relatively more
work on the part of the user) to specific but less burdensome (meaning the technique
finds only bugs from a smaller class, but requires less of the user). All three are
powered by a scalable symbolic execution specifically tailored to the structure of web
application implementations, allowing analysis of real-world applications.

1http://info.cenzic.com/rs/cenzic/images/Cenzic-Application-Vulnerability-Trends-Report-
2013.pdf
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1.1 Thesis Statement

Most verification approaches aim to be general-purpose, in an effort to be broadly
applicable. This research, in contrast, has been successful precisely because it does
not aspire to generality. Instead of producing general-purpose verification tools, our
approach has been to take advantage of properties specific to application-specific
security bugs in web applications in order to produce more effective tools. This thesis
establishes the following:

By focusing on a particular class of applications (web applications) and
on a particular class of bugs (missing security checks) we can build
static analysis tools that are both significantly more scalable and less
burdensome to the user than general-purpose bug-finding tools.

Our hope is that this thesis will promote the discovery and application of similar
domain properties in other areas, producing more effective static analysis tools that
find a wide variety of bugs in many different kinds of programs.

1.2 Summary of Contributions

This thesis makes three observations:

* Web applications are different from regular programs in ways that can be ex-
ploited to improve the scalability of symbolic execution. First, web applications
are built from independent actions, each of which is typically fewer than 20 lines
of code; these actions can be analyzed independently. Second, web developers
tend to embed program logic in database queries, so applications have few con-
ditionals and few loops. These properties minimize the exponential behavior of
symbolic execution, enabling the technique to scale to real-world applications.

" Web application security policies tend to be uniform. Sensitive data is usually
subject to the same security constraints everywhere it is used, so an access that
is missing one of those checks is likely to be a mistake.

* Web applications share common patterns of access control. Programmers usually
select one of a handful of common access control patterns for each data type
in their application. While applications often mix and match different security
patterns for different kinds of resources, they usually intend for a particular
pattern to be applied uniformly to all uses of a given resource type, so a possible
access outside the pattern is likely to be a mistake.

To take advantage of these observations, we have developed the following techniques:

o A scalable symbolic execution framework for Ruby on Rails web applications.
Our symbolic execution framework leverages our observations about the struc-
ture of web applications to scale its analysis to even the largest real-world ap-
plications. To cope with the challenges of Ruby's dynamic environment and the

14



complexity of Rails, our technique implements symbolic execution as a library,
hijacking the standard Ruby interpreter to perform symbolic execution.

" Derailer, a tool for exploring data exposures to find bugs. Derailer uses our
symbolic execution framework to build a list of data exposures-ways the appli-
cation can expose information from the database-and then interacts with the
user to uncover the security policy already specified by the code itself. Derailer
then finds gaps in the uniform application of this policy; these gaps tend to
represent security bugs.

" SPACE, a tool for comparing application code to a catalog of security patterns.
SPACE uses symbolic execution to discover data exposures, then checks that
every exposure allowed by the code is also allowed by some security pattern
in our catalog. When the application allows a data exposure not covered by
a security pattern, we report that exposure as a security bug. This process
requires only that the user provide a mapping of application resources to the
basic types (such as user, permission, etc.) that occur in our access control
patterns. From this information alone, application-specific security bugs are
then identified automatically, based on the predefined catalog of patterns.

* Rubicon, a tool for comparing application code to a user-provided formal speci-
fication. Rubicon provides a specification language extending the Rails testing
framework with quantifiers, allowing programmers to write complete specifica-
tions of behavior. Rubicon uses symbolic execution to run both the specifica-
tion and the application code, obtaining verification conditions necessary for
establishing that the code implements the specification. Then, Rubicon uses a
bounded verifier to discharge the verification conditions automatically.

The first part of this thesis describes our symbolic execution framework, while the
second part explains the techniques we have built upon it to support bug finding.

The tools based on these techniques all focus on finding missing security checks,
but each one makes a different compromise between expressive power and level of
automation. Rubicon, for example, can be used to perform full functional verification

(so it is very expressive) but it requires the user to write a complete specification of
the desired behavior. Derailer, in contrast, does not require a specification, while
SPACE is an attempt to find the same kinds of bugs using a built-in set of patterns.
This tradeoff space is summarized in Figure 1-1.

1.2.1 Limitations

Our contributions are focused only on detecting missing security checks. While our
symbolic execution framework may be useful for finding other kinds of security prob-
lems (or even non-security-related bugs), the tools we have developed will miss bugs
in the following categories:

15



ORubicon

O Derailer

0 SPACE

Automation

Figure 1-1: Comparison of our Three Techniques, in terms of Expressive Power and
Level of Automation

" Injection. Injection attacks rely on a failure to sanitize inputs. Since static and
dynamic techniques already exist for ensuring input sanitization, our tools do
not address this problem.

" CSRF and XSS. Cross-site attacks represent a large portion of bugs, but can
be addressed by general-purpose frameworks that automatically prevent them,
and are therefore outside the scope of our tools.

" Low-Level Bugs. Bugs in software other than the web application itself-for
example, the operating system, Ruby, Rails, or the client's browser-are also
outside the scope of this work. Existing techniques tackle the problem of general
software correctness, and widely-used pieces of software such as these are good
targets for verification efforts.

* Other Side-Channel Attacks. We do not address other kinds of side-channel
attacks-for example, denial of service, runtime and termination-based attacks,
and client-side attacks-since there are simply too many for a single approach
to reasonably detect all of them.

These limitations are, for the most part, solvable using general-purpose frame-
works that automatically prevent security problems. Frameworks already exist to pre-
vent injection, CSRF, and XSS; verification efforts have resulted in reliable operating
systems, web servers, and so on. Our contributions instead target the application-
specific security problems that existing techniques have so far failed to solve.

1.3 Part I: Symbolic Execution

Symbolic execution [20, 33] is one of the oldest strategies for reasoning about pro-
grams, and yet still forms the basis of many modern tools [11, 31, 39, 45, 44, 271.
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The scalability of analyses based on symbolic execution remains a problem, how-
ever. In particular, symbolic execution of a conditional requires executing both
branches of that conditional-creating the potential for an exponential number of
execution paths through the program. This "path explosion" problem has limited the
application of symbolic execution in practice.

Fortunately, web applications differ from traditional programs in ways that im-
prove the scalability of symbolic execution. In particular, web applications typically
use fewer loops and simpler branching structures than traditional programs, mini-
mizing the exponential behavior of symbolic execution. Even more important, web
applications are composed of independent actions, each of which acts like an indi-
vidual program. By analyzing each action independently, our approach performs
many small analyses rather than one large one-minimizing the effects of exponential
behavior even when it does occur.

The second challenge of symbolic execution is building a complete evaluator that
handles the entire target language and also handles concrete computation efficiently.
Analysis tools based on symbolic execution, such as the symbolic extension for Java
PathFinder t31, 391 and the CUTE concolic testing engine for C [451, are capable of
analyzing real-world programs, but these tools are themselves large projects compris-
ing hundreds of thousands of lines of code.

The similarity of symbolic execution and standard execution (indeed, the sharing
of the very term "execution") suggests a simpler approach, in which the standard
engine is used to propagate symbolic values, and to compute in the normal way with
concrete values when available. The uniquely symbolic component is achieved by
introducing a library written in the target language itself. Such a library comprises an
encoding of symbolic values and new symbolic definitions for the primitive operations
of the language, and effectively transforms the standard (concrete) implementation
of the target language into a symbolic executor.

Implementing symbolic execution as a library means that concrete parts of the
target program execute at full speed, just as they would during concrete execution. As
a result, even large programs become amenable to symbolic execution if the number
of symbolic inputs is small. At the same time, the library-based approach eliminates
much of the burden of building a specialized symbolic execution engine, since a small
number of primitive definitions often suffice to extend symbolic execution to the entire
language.

The first part of this thesis describes a symbolic execution framework based on
these two insights-that taking advantage of the implementation structure can im-
prove scalability, and that implementing the evaluator in the language itself can
improve compatibility and ease implementation. Using this approach, we have built
a scalable symbolic execution system for Ruby on Rails web applications comprising
fewer than 1000 lines of Ruby code. Despite its small size, this system scales to Rails
applications with more than 45k lines of code, and has been used to build tools that
have found previously unknown bugs in a number of open-source Rails applications.
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1.4 Part II: Verification

1.4.1 Exploring Data Exposures

To find security bugs without requiring new frameworks or specifications, we built
Derailer. Rather than verify an application's implementation against a specification,
Derailer uses a combination of symbolic evaluation and user interaction to help the
programmer discover mistakes.

This particular combination is motivated by two hypotheses. First, web applica-
tions differ from traditional programs in ways that improve the scalability of sym-
bolic execution. In particular, web applications typically use fewer loops and simpler
branching structures than traditional programs, minimizing the exponential behavior
of symbolic execution. Second, security policies tend to be uniform: sensitive data is
usually subject to security checks everywhere it is used, so an access that is missing
one of those checks is likely to be a mistake.

Derailer is designed to be applied to web applications that accept requests and
respond with sets of resources obtained by querying the database. Each response
is characterized by the path through the database leading to the resource, and the
control flow of the application's code imposes a set of constraints under which a
particular resource is exposed to a client. We call the combination of a path and a
set of constraints a data exposure.

An automatic strategy for finding security bugs might enforce that all exposures
with the same path also share the same set of constraints; if a security check is
forgotten, a constraint will be missing. But many constraints-like those used to
filter sets of results for pagination-have nothing to do with security, and would
cause an automatic strategy to report many false positives.

Derailer therefore asks the user to separate constraints into those representing
security checks and those that are not security-related. In making this separation,
the user effectively constructs a specification of the desired security policy-but by
selecting examples, rather than writing a specification manually. Our tool makes this
process easy, allowing the user to drag-and-drop constraints to build the policy. The
tool then highlights exposures missing a constraint from the security policy-precisely
those that might represent security bugs.

We evaluated Derailer on five open-source Rails applications and 127 student
projects. The largest of the open-source applications, Diaspora, has more than 40k
lines of code, and our analysis ran in 112 seconds. The student projects were taken
from an access-control assignment in a web application design course at MIT. Derailer
found bugs in over half of these projects; about half of those bugs were missed during
manual grading. The bugs we found supported our hypothesis: most bugs were
the result of either a failure to consider alternate access paths to sensitive data, or
forgotten access control checks.
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1.4.2 Checking Code Against Security Patterns

To further automate the discovery of missing security checks, we propose a technique
for finding application-specific security bugs using a catalog of access control patterns.
Each pattern in our catalog models a common access control use case in web applica-
tions. We built this catalog based on our experience with real-world web applications,
which suggests that while applications often mix and match different security pat-
terns for different kinds of resources, they usually intend for a particular pattern to
be applied uniformly to all uses of a given resource type.

Our approach checks that for every kind of data exposure allowed by an applica-
tion's code, some security pattern in our catalog also allows the exposure. When the
application allows a data exposure not allowed by a security pattern, we report that
exposure as a security bug. This process requires only that the user provide a mapping
of application resources to the basic types (such as user, permission, etc.) that oc-
cur in our access control patterns. From this information alone, application-specific
security bugs are then identified automatically, based on the predefined catalog of
patterns.

We have built a prototype implementation of this technique, called SPACE (Security
PAtern CheckEr). Our implementation uses symbolic execution to extract the set of
all possible data exposures [37] from the source code of a Ruby on Rails application.
The constraints associated with these exposures and the user-provided mapping are
passed through a constraint specializer, which uses the mapping to re-cast the con-
straints in terms of the role-based access control model upon which our catalog of
patterns is based. Then, SPACE translates the specialized constraints into the Alloy
specification language, and uses the Alloy Analyzer to perform automatic bounded
verification that each data exposure allowed by the application is also allowed by a
security pattern in our catalog.

Of the 50 most popular open-source Rails applications on Github, 30 implement
access control. We have used SPACE to find security bugs in nearly 1/3 of these-a
total of 23 unique bugs. Both the symbolic execution and bounded verification steps
of our technique scale well to applications as large as 45k lines of code-none of our
analyses took longer than 64 seconds to finish.

1.4.3 Checking Code Against Specifications

To provide full-functional verification of web application code, we developed Rubicon,
a bounded verifier for Ruby on Rails applications. Rubicon allows programmers to
write specifications of the behavior of their web application and performs automatic
bounded analysis to check those specifications against the implementation. Rubicon
aims to be both powerful and easy to use: its specification language is expressive but
based on a popular domain-specific testing language, and its analysis is implemented
as a Ruby library.

Rubicon's specification language extends the RSpec testing language 116] with the
quantifiers of first-order logic, allowing programmers to replace RSpec tests over a set
of mock objects with general specifications over all objects. This compatibility with
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the existing RSpec language allows converting test cases into specifications.
Rubicon's automated analysis comprises two parts. First, Rubicon uses our sym-

bolic execution framework to generate verification conditions from the code and spec-
ifications; second, it invokes a constraint solver to check those conditions. To check
the verification conditions, Rubicon compiles them into Alloy [30], a lightweight speci-
fication language whose analyzer is an automatic, bounded model finder for relational
first-order logic. Alloy's logic is a good match because its semantics closely match
those of relational databases, but the solving of the verification conditions is a sepa-
rate problem, and in principle might be handled with a different technology (e.g. an
SMT solver or theorem prover).

We evaluated Rubicon on five open-source web applications for which the original
developers had already written RSpec tests. We converted a random sample of these
tests into Rubicon specifications; in every case, Rubicon's analysis took no more
than a few seconds per specification. In the largest of these applications, a customer
relationship management system called Fat Free CRM, Rubicon's analysis uncovered
a previously unknown security bug. The authors of Fat Free CRM have acknowledged
and fixed this bug.
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Chapter 2

Web Applications

2.1 Web Applications

Web applications are distributed applications consisting of a server (typically a web
server) and a number of clients (each of which is typically a web browser). In modern
web applications, the application developer writes code that executes both on the
client (within the browser) and on the server. Clients communicate with the server
via HTTP requests.

2.1.1 HTTP and the Browser

The HTTP architecture was designed to be stateless and synchronous. Clients would
issue HTTP requests to the server, which would respond with HTML representing
a single web page. Since an interactive distributed application requires both clients
and servers to save some state between requests, a database is typically used as a
persistent data store connected to the web server. This strategy allows the server
to store session information in the database, so that the server can remember which
user is logged in, what items are in the user's shopping cart, and so on. This basic
architecture of a web server, database, and client web browser is shared by all web
applications.

The web browser used by the client traditionally had predefined behavior (being
able to issue requests only according to the HTTP standard), and was incapable
of executing arbitrary code. Modern developments include sophisticated client-side
programming capabilities, allowing the browser to execute arbitrary Javascript code
issued by the server. This client-side code has the ability not only to modify the
document presented to the user, but also to issue new HTTP requests to the server
and act on the responses, enabling rich new applications like Gmail and Facebook.

2.1.2 Frameworks and REST

Modern web applications are typically written with the aid of a framework, which
imposes a particular structure on the implementation of an application. A common
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approach views the application as defining a set of resources and an API for perform-
ing operations on those resources. To implement the API, the application defines a
controller for each resource type, and within each controller, an action for each API
operation.

The most common model for defining resources and building an API is called
REST (Representational State Transfer). REST specifies a structure for the URLs
used to invoke the most common elements of resource APIs, and then defines the
semantics of each HTTP verb on each of those URLs. To these standard API opera-
tions, the application adds its own composite operations to extend the API.

For example, for a blog post resource, REST defines a resource collection URL

(e.g. http://example.com/posts) for listing all blog posts, and a resource element
URL (e.g. http://example.com/posts/1) for accessing a particular post by its ID.
REST also defines the semantics of the four HTTP verbs (GET, PUT, POST, and
DELETE) on these URLs:

" GET displays the resource element or lists the resource collection

" PUT updates the resource element or replaces the collection with another

" POST makes a new resource element or adds to a collection

" DELETE deletes a resource element or collection

2.2 Rails

Rails' is a modern web programming framework implemented in the Ruby program-
ming language. Rails uses a model-view-controller (MVC) strategy to enforce separa-
tion of concerns; it allows the programmer to define application resources via models;
and it provides an object-relational mapper called ActiveRecord to allow these re-
sources to be stored in and retrieved from a persistent database.

Figure 2-1 contains a summary of how a request is handled by the Rails archi-
tecture. Each request is sent to the router, which decides which controller action
to invoke. The controller may call some methods of the model, which may in turn
use the ActiveRecord API to perform database accesses. The controller also calls
the rendering engine, specifying which view to render; the rendering engine loads the
appropriate view template, runs the Ruby expressions embedded in it, and responds
to the client with a rendered page.

2.2.1 Model-View-Controller

Model. Rails programmers define application resources using model classes. These
are implemented as class definitions in Ruby, but represent composite conceptual
resources. Each model class defines a set of relationships to other resources (e.g.

1http://rubyonrails.org/
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Figure 2-1: Ruby on Rails Architecture

a user has many blog posts), allowing the programmer to build complex resource

structures and treat them in the same way as composite objects in traditional object-

oriented programming.
Model classes also contain definitions of model operations, which are private op-

erations exposed to the controller but not part of the public API. For example, a

shopping cart might define a model operation to calculate the total price of the items

in the cart.

View. The view component is defined using the Rails templating system. This

system associates a template with the output of each action; these templates may

contain Ruby expressions, and the rendering engine executes these expressions in the

context of the action's results to produce a final rendered page to send to the client.

2.2.2 Routing

To assign requests to the controller actions that handle them, Rails provides a router.

The routing system is configured via a set of rules that map URLs to controller

actions. These rules are specified via a syntax that encourages the use of RESTful API

practices for the application's resources: a complete set of URL routes for a particular

resource can be specified using the form "resource :User." This specification results

in mappings like the following:

e GET http: /example.com/users -4 UsersController//index
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" GET http://example.com/users/l -+ UsersController/show(:id => 1)

" POST http: //example.com/users/1/update -+ UsersController/update(: id =>
1 ... )

The Rails router also allows one-off mappings like "get 'login', : to 'users #login',"
which results in the following:

* GET http://example.com/login -* UsersController/login

2.2.3 Rendering

The Rails rendering system transforms templates into HTML strings ready to be
sent back to a client. The rendering engine is responsible for finding the appropriate
template for rendering, executing the Ruby expressions that are part of the template,
and integrating the resulting Ruby values into the rendered HTML.

The rendering engine picks a template to render based on the form of the request
and the call to "render" in the controller action. The client may request a standard
HTML response, or a response in XML or JSON format. The rendering engine picks
the appropriate template based on what rendering formats are available.

The rendering engine then executes the Ruby expressions embedded in the tem-
plate in the context of the instance variables defined by the controller action and the
Rails environment corresponding to the current response. Some of these embedded
expressions result in string values, and those are simply inserted into the resulting
HTML. Others, however, may reference other templates or call special helpers (de-
fined by the Rails API) for constructing HTML forms or links. These helper functions
reference a part of the environment to produce HTML either by rendering another
template (in the case of template references) or by constructing the HTML directly
(in the case of form and link helpers).

2.2.4 ActiveRecord

ActiveRecord is the Rails object-relational mapper. It allows the programmer to
pretend that the database contains Ruby objects: objects appear to be stored in
the database directly, and queries result in lists of objects. ActiveRecord uses the
application's set of model classes to define a database schema for storing objects of
those classes in the database, and to map fields of those classes to database tables.

ActiveRecord provides an object-based query API, allowing the programmer to
write queries like "User.find _by(:name => "Joe")." This query results in a list of
User objects with the name "Joe." The query API is designed to replace SQL queries
entirely, so that Rails programmers are never required to write SQL.

Through associations, ActiveRecord provides the illusion of composite objects.
The programmer specifies the association in the model class definition using keywords
like belongs_ to; ActiveRecord defines new database columns with foreign keys linking
to the referenced object, and adds a field referencing the other object. For example,
given the following model classes:
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class Customer < ActiveRecord : Base
hasmany : orders

end

class Order < ActiveRecord Base
belongs to customer

end

the programmer can find all of a customer's orders by writing:

Acustomer. orders

exactly as if the customer object had a field referencing an actual order object.
ActiveRecord accomplishes this by adding a column "customer id" to the Orders
database table, and transforming the above expression into a database query that
looks up orders with customerid = Acustomer.id.

2.3 Representing Application Behavior for Security
Analyses

Most web applications have two security goals: first, data integrity: that the infor-
mation in the database remains uncorrupted by changes not allowed by the security
policy; and second, privacy: that information in the database is only exposed to users
of the application according to the security policy.

The distributed nature of web applications makes accomplishing these goals diffi-
cult. In contrast to desktop applications, web applications store all user data centrally,
so a bug in enforcing the security policy could result in the exposure of every user's
data at once.

Our model uses the idea of a data exposure to characterize the behavior of a web
application with respect to data integrity and privacy. In this model,

" the database stores resources

" the application API exposes resources

" each data exposure characterizes the exposure to a user of an application re-
source

Our representation of data exposures includes:

" the type of resource exposed

" the path through the database (i.e. database query) to retrieve the resource

" the constraints the application enforces on exposure of the resource
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This representation allows a simple characterization of the behavior of an applica-
tion with respect to the security properties of data integrity and privacy, eliminating
the state changes usually present in imperative implementations of web applications.
The set of exposures characterizing an application is suitable for direct comparison
against a declaratively-specified security policy, for example, to determine if the appli-
cation allows exposing some data that the policy says should be private. Data expo-
sures are the common intermediate format supporting all three of the tools explained
in the second part of this thesis, and our implementation is specifically designed to
produce the set of exposures efficiently.

In the rest of this section, we formalize the notion of application and exposure,
as well as the desired semantics of the symbolic execution we will use to transform
application code into a set of data exposures.

2.3.1 Alloy Primer

The model is given in Alloy 1301. For readers unfamiliar with Alloy, the following
points may help. A signature (introduced by keyword sig) introduces a set of objects;
each field of a signature introduces a relation whose first column is the set associ-
ated with the signature, and whose remaining columns are as declared. Thus the
declaration

sig Request {params: Param -+ Value}

introduces a set "Request" (of request objects), and a ternary relation "params"
on the sets Request, Param and Value; this relation can viewed as a table with three
columns. A tuple (r,p, v) in this relation would indicate that in request r, parameter p
has value v. Equivalently, the signature can be thought of as a class with the fields as
instance variables; thus this field declaration introduces, for each request r, a mapping
r.params from parameters to values.

Signature extension introduces subsets. Thus

sig ValueResource extends Resource {value: Value}

says that some resources are value resources, and introduces a relation called "value"
from value resources to values. Equivalently, the subsignature can be viewed as if it
were a subclass; thus a value resource yr has a value vr.value.

2.3.2 Web Applications

Clients issue requests that contain a binding of parameters to values, and a choice of
action:

sig Request {
params: Param -+ Value,
action : Action

I

There is no need to distinguish clients or represent client-side state (such as cook-
ies), since the analysis must be conservative and assume the worst (e.g. that a client
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could manipulate a cookie). The model does not currently allow for access control
through client-side certificates or reliance on signed cookies. The choice of HTTP
method (eg, GET or POST) need not be modeled, nor whether the request is syn-
chronous or asynchronous, since these factors do not impact what we seek to analyze

(namely what data is released in response to a query). Nor do we need to distinguish
how the parameters are passed (in a form, query string, or JSON object, eg); in Rails,
and many other web frameworks, the request is accessed homogeneously through a
single hashmap.

The response to a request is just a set of resources (to be elaborated shortly):

sig Response {resources: set Resource}

The internal state of the application is just a database mapping paths to resources:

sig Database {resources: DBPath-+ Resource}

A path is an abstraction of a general database query, representing a navigation
through the database's tables using only the relational join. Such queries can be used
to extract any resource the database contains, and filtered to contain only the desired
results.

To represent these filters, we introduce constraints. A constraint has a left and
right side, each of which may be a path, a parameter or a value, and a comparison
operator:

sig Constraint {
left , right : DBPath + Param + Value,
operator: Operator

}

(In fact, constraints can have logical structure, and our implementation puts con-
straints into conjunctive normal form. This detail is not relevant, however, to under-
standing the essence of the approach.)

The behavior of an application can now be described in terms of two relations.
Both involve a database (representing the pre-state, before execution of the action)
and an incoming request. The first relates these to the resulting response, and the
second to a database (representing the post-state, after execution of the action):

sig App {
response : Database - Request -+ Response,
update: Database - Request -+ Database

}

2.3.3 Exposures

An approximation to this behavior is inferred by static analysis of the code, and
consists of a set of "exposures" of resources, with an exposure consisting of a path, an
action, and a set of constraints:
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sig Report {
exposures: set Exposure

}
sig Exposure {

path: DBPath,
action : Action ,
constraints: set Constraint

}

The presence of an exposure in the report means that a set of resources might be

exposed under the given constraints.

Example. The exposure with path User.notes. content, action update, and con-

straints User.notes. title = notetitle and User.notes. owner = session.user would repre-
sent the set of content strings that might be exposed when the update action is
executed. The constraints limit the notes to those with a title matching the notetitle
parameter and that are owned by the currently logged in user. The set of notes u.notes
associated with a user u need not, of course, have user u as their owner; a constraint
such as the one we have here would typically be used to ensure that while a user can
read notes shared by others, she can only modify notes she owns.

2.3.4 Analysis

Our analysis uses the application's code to obtain a set of exposures. More precisely,
it produces a superset of the exposures for which some concrete database and request
exists such that the application produces the concrete results represented by the
exposure.

fun symbolic_ analysis[app: App]: set Exposure {
{e: Exposure I

some db: Database , request : Request {
db.resources e.path] in app.response db,

request I . resources
request . action e. action
e. constraints {c: Constraint holds [c , app]}

}

This specification says that for each exposure, some concrete database and re-
quest exist such that (1) the application responds with the same resource as specified

by the exposure, (2) the exposure's action matches that of the request, and (3) the
constraints associated with the exposure are those enforced by the application's code.
Our model does not define the holds predicate, since it depends on the semantics
of the application's implementation language and on the particular representation of
constraints. Symbolic execution satisfies this specification, since it uses the applica-
tion code directly to build the set of exposed resources and the constraints associated
with them.
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Chapter 3

Symbolic Execution with an Existing
Interpreter

Symbolic execution is the practice of executing programs with symbols, rather than
values, provided as inputs. Executing a program symbolically in turn leads to out-
puts that are symbolic expressions rather than values. The traditional formulation
of symbolic execution for languages with mutable state calls for a symbolic represen-
tation of the program's state during execution that includes both the possible values
of the symbolic variables and a path condition-a boolean formula representing the
conditions necessary for a particular variable to take a certain value.

Despite its status as one of the oldest strategies for reasoning about programs [20,
33], symbolic execution remains popular as the basis of many modern tools [11, 31,
39, 45, 44, 27].

Building a symbolic executor, however, is difficult, and building one that also han-
dles concrete computation efficiently is more difficult still. Analysis tools based on
symbolic execution, such as the symbolic extension for Java PathFinder [31, 39] and
the CUTE concolic testing engine for C [451, are capable of analyzing real-world pro-
grams, but these tools are themselves large projects comprising hundreds of thousands
of lines of code.

The similarity of symbolic execution and standard execution (indeed, the sharing
of the very term "execution") suggests a simpler approach, in which the standard
engine is used to propagate symbolic values, and to compute in the normal way with
concrete values when available. The uniquely symbolic component is achieved by
introducing a library written in the target language itself. Such a library comprises an
encoding of symbolic values and new symbolic definitions for the primitive operations
of the language, and effectively transforms the standard (concrete) implementation
of the target language into a symbolic executor.

In this chapter, we formalize this technique and show that it results in a symbolic
evaluator with equivalent semantics to the traditional strategy. We begin by formally
defining symbolic execution for the side-effect-free untyped A-calculus, and then show
how the same results can be achieved without modifying the language's semantics.
Next, we demonstrate the same progression in the more complicated setting of the
untyped A-calculus with side effects.
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3.1 Symbolic Execution without Side Effects

In this section, we demonstrate our approach in the simplest context by applying it
to a minimal language without side effects: the untyped A-calculus. Our goal is to
define both standard symbolic execution and our new approach formally, then prove
their equivalence. This process involves 3 steps:

1. We define the target language formally.

2. We extend the set of values with symbolic ones and the set of inference rules to
allow computing with those symbolic values, defining the standard approach to
symbolic execution.

3. We define a set of operators in the target language to compute with symbols,
and use them to perform symbolic execution.

4. We prove that the set of possible executions defined in step 2 (the standard
symbolic execution semantics) is the same as the set defined in step 3 (our new
approach).

The original semantics of the untyped A-calculus are drawn from Pierce [40j, and
appear in Figure 3-1. We formalize the standard notion of symbolic execution (the
second step) in Figure 3-2. This formalization adds symbolic values to the existing
concrete ones, and adds evaluation rules for terms containing symbolic values. We
use s to denote the class of symbolic values, which may be either symbolic variables or
symbolic expressions containing an arbitrary number of symbolic or concrete values.
The result of a symbolic execution under these semantics will be a concrete value if no
symbolic values are involved, or a symbolic expression if computation using symbols
is performed.

The key difference between the symbolic semantics and the concrete semantics is
that the symbolic semantics must execute both branches of a conditional dependent
on a symbolic value. This is accomplished by the rules IFSYMB1 and IFSYMB2 in
Figure 3-2.

Because the target language omits side effects, no notion of symbolic state or a
global path constraint is required. The resulting symbolic expression itself represents
the condition necessary for the given term to yield a particular value. For example,
consider the following term and its value under the symbolic semantics (where -
represents zero or more reductions):

t if iszero s1then 0 else succ 0
4 Exp(if, Exp(iszero, si), 0, succ 0)

The resulting symbolic expression alone represents the possible results of executing t
concretely: if the input variable is zero, then the result is zero; otherwise, it is zero's
successor.

Figure 3-3 contains our approach to symbolic execution for the pure untyped A-
calculus (the third step). Our approach comprises a set of symbolic values-identical
to the ones added in Figure 3-2-and a set of redefinitions for the primitive operations
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of the language. Aside from the addition of symbolic values, this implementation can
be executed directly under the standard semantics in Figure 3-1. This approach also
works in languages without symbolic values, by encoding symbolic values in a form
the language does support. Our implementation in Ruby, for example, uses a special
set of classes to represent symbolic values.

Using our approach also requires the ability to selectively redefine language prim-
itives, including "if." Many existing languages make this possible, and there are
workarounds for some of those (like Ruby) that do not. When programs are side-
effect free, invocations of these primitives can be either call-by-value or call-by-name;
when side effects are introduced, call-by-name must be used.

Our approach produces the same results as the traditional symbolic semantics
shown in Figure 3-2. The example given above, for example, evaluates as follows
under the standard semantics with our redefinitions:

t if iszero si then 0 else succ 0

o if sym? Exp(iszero, si)
then Exp(if, Exp(iszero, si), 0, succ 0)
else if (iszero si) then 0 else succ 0

->o if true
then Exp(if, Exp(iszero, si), 0, succ 0)
else if (iszero si) then 0 else succ 0

-4 then Exp(if, Exp(iszero, si), 0, succ 0)

3.1.1 Proof of Equivalence to Standard Approach

The proof that our approach corresponds to the symbolic semantics is straightforward,
and is accomplished by induction on terms. A short version of this proof, considering
only the relevant cases, follows.

Theorem 3.1.1 Let -* be the transition relation of the symbolic semantics described
in Figure 3-2, and let -o be the transition relation of the standard semantics plus
redefinitions of primitive operations described in Figure 3-3. Then for all terms t,
t *> t' -- t *+0 t'.

In other words, if the standard definition of symbolic execution (4) allows re-
ducing a term t to another term t', then our new approach (-*+o) allows the same
reduction, and vice versa. The proof of this property considers two important classes
of cases: first, conditionals, where we show that calling our redefined "if" yields the
same "Exp" expression as the symbolic semantics; and second, built-in functions,
where we show that calling our redefined versions also produces the same expression.

Proof By induction on t, considering the relevant cases.

o t = if sv1 then v 2 else v3 . We have:
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x Ax.t I t t

true | false if t then t else t
0 1 succ t pred t I iszero t

v Ax.t
true I false
nv

nv 0 | succ nv

(APPi)
t 2 - t'

V t 2 - V
(APP2)

(Ax.t)v e [ els v]t (APPABS)

if true then t 2 else t3 -4 t2 (IFTRUE)

if false then t2 else t3 -4 t3 (IFFALSE)

t1 - t'

if ti then t2 else t3 -4 if t' then t2 else t3
(IF)

pred 0 -4 0

iszero 0 -+ true

iszero (succ nvi) -4

pred (succ nvi) -

t1  t,

succ t1 -+ suc

ti -+ t'r

pred t1 -a pre

(PREDZERO)

(ISZEROZERO)

alse (ISZEROSUCC)

nv1 (PREDSUCC)

(SUCC)

' (PRED)

Figure 3-1: Syntax and Reduction Rules for Untyped A-calculus with Booleans and
Natural Numbers
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v

sv

sv ::= sx I Exp v*

t2 -4 t'2

if svi then t 2 else t 3 -4 if sv1 then t' else t3

t3 -+ t 3

if sv1 then v 2 else t3 -4 if sv1 then v 2 else t'

(IFSYMB1)

(IFSYMB2)

if sv1 then v 2 else v3 -+ Exp(if, sv1 , v 2 , v 3 ) (IFSYMB)

pred sv1 -+ Exp(pred, svi) (PREDSYMB)

succ svi -+ Exp(succ, svi) (SUCCSYMB)

iszero sv1 -+ Exp(iszero, svi) (IsZEROSYMB)

Figure 3-2: Syntax and Reduction Rules for Mixed Concrete and Symbolic Execution
of Untyped A-calculus with Booleans and Natural Numbers

V
8v

sv ::= sx Exp v*

sym? sv1 - true (SYM)

sym? v, -+ false (NOTSYM)
where v, 1  sv

t sy t (SYM2)
symn? ti symn? t'1

if A t,c,a. if sym? t then Exp(if, t, c, a)
else if t then c else a

pred A v. if sym? v then Exp(pred, v) else pred v
succ A v. if sym? v then Exp(succ, v) else succ v

iszero A v. if sym? v then Exp(iszero, v) else iszero v

Figure 3-3: Implementation of Primitives to Achieve Mixed Concrete and Symbolic
Execution of Untyped A-calculus Under Standard Semantics
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t 4 Exp(if, svi, v 2 , v 3 )

and:

t -+o if sym? sv1 then Exp(if, sv1 , v2 , v3 )
else if sv1 then v 2 else v 3

4 Exp(if, svi, v 2 , v 3 )

which are equivalent.

* t = pred svi. We have:

t 4 Exp(pred, svi)

and:

t -O if sym? sv1 then Exp(pred, svi) else pred svi

4+ Exp(pred, svi)

which are equivalent.

* Similarly for succ and iszero.

3.2 Adding Side Effects

We now turn our attention to languages with side effects. We present the standard
semantics for the untyped A-calculus with side effects in Figure 3-4. This formalization
of mutable state introduces the set 1 of labels and the store p to hold a mapping from
labels to values. The corresponding reduction rules update the store as a given term
is reduced, and the final result of a program is represented by both the fully-reduced
value of the term and the final value of the store.

This new style of execution makes symbolic execution more difficult. Given sym-
bolic inputs, a program with side effects should produce both a symbolic value and
a store-but the value of the store depends on the path taken through the program.
To perform symbolic execution, we introduce a new symbolic store o- that represents
all the possible values a symbolic variable could take, and also records the conditions
necessary for the variable to take each of those values.

Each condition recorded in the symbolic store represents a single path through the
program, and is therefore called a path constraint. Symbolic execution keeps track
of the current path constraint during execution, and uses that path constraint when
updating the symbolic store.

We formalize the symbolic semantics with side effects in Figures 3-5 and 3-6. We
call the current path constraint 0, and the symbolic store is -. The majority of the
reduction rules correspond to those of the standard semantics in Figure 3-4, except
that the new rules propagate the values of # and -.

The rules for handling assignment and conditionals have changed significantly to
deal with symbolic values. Intuitively, the rule for " if" must execute both branches of
the conditional, constructing the appropriate path constraint for each branch. Rules
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IFSYMB1 and IFSYMB2 perform this task, using the condition's value to extend the
path constraint. When both branches have evaluated to values, IFSYMB transforms
the conditional into a symbolic expression.

The rules for assignment are responsible for extending and merging symbolic

states. The ASSIGN rule handles the entirely concrete case, and operates just as

before. ASSIGNSYMB1 handles situations in which the variable being assigned to is

not symbolic, but its new value is dependent on a symbolic value, as in the following

program:

x := 5;
if sv then x := 6

In this case, "x" must take a symbolic value, even though it is only assigned con-

crete values, since its value is dependent on the symbolic value "sv." ASSIGNSYMB1

constructs a new symbolic variable for this purpose, assigns that symbolic variable

to the given location, and adds both possible values for the variable to the symbolic
state.

The final case, handled by ASSIGNSYMB2, is the situation in which the target of

an assignment is already symbolic. Consider the following program, for example:

x := 5;
if sv then x := 6
else x := 7

After executing the first assignment, the symbolic state for "x" will be:

(sv 4 6), (true A -,sv =4 5)

For the second assignment, since "x" already has a symbolic value, we take its

symbolic state and duplicate it. One copy of the symbolic state has its path conditions
conjoined with the current path condition, and its values replaced with the value

being assigned (this part of the symbolic state represents all possible paths through
the program that end up going through the current path). The other copy has its
path conditions conjoined with the negation of the current path condition, and its

values remain unchanged (this part of the symbolic state represents the possible paths

through the program that do not end up going through the current path). After the
second assignment, then, the symbolic state for "x" is:

(sv A -,sv = 7), (true A -sv A -,sv # 7),

(sv A sv = 6), (true A -,sv A sv => 5)

Of these possible outcomes, the first and the last are impossible, reflecting the fact
that there is no way to take more than one path through the program simultaneously,
and making sure that some path is taken (as a result, it is impossible for "x" to have
the final value 5). The rule ASSIGNSYMB2 implements this duplication and updating
process on the symbolic state, computing a o-' that correctly merges the possible
symbolic states.
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The end result of executing a program with symbolic inputs is a symbolic value, a
store p mapping labels to symbolic variables or concrete values, and a symbolic store
o mapping symbolic variables to sets of values paired with path conditions.

Figure 3-7 contains our redefinitions of operations that produce the same results
as the symbolic semantics. Like the symbolic semantics, these redefinitions keep
track of the current path constraint and symbolic state; in the absence of semantic
constructs, however, these elements are encoded in the target language. The path
constraint is stored in a global variable "pc," while the symbolic state is encoded as
a data structure tagged with the unique value we label "SYMTAG" and is treated
symbolically by the redefined primitives.

Just as in the symbolic semantics, the major changes occur in the definitions
of assignment and conditionals. The definition of assignment performs the same
additions to the symbolic state as the rules of the symbolic semantics do, but the
redefinition places these changes in tagged data structures inside the store, rather
than in a. Similarly, the redefinition of conditionals modifies the path constraint by
updating its value in the store before executing the first branch of the conditional,
updates the path constraint again before executing the second branch, and resets it
before returning.

3.2.1 Proof of Equivalence to Standard Approach

Theorem 3.2.1 Let -+ be the transition relation of the symbolic semantics described
in Figure 3-5, let -+o be the transition relation of the standard semantics plus redefi-
nitions of primitive operations described in Figure 3-7, and let -Y be a concretization
function encoding the contents of the store and symbolic state such that Y(, a-)(l) =
(SYM TAG, a(fp(l))) if p(l) E sx, and -y(pt,-)(l) = p(l) otherwise. Then for all terms
t, # t~p, o- 4 t'Ii', o-' <-> t -Y(t , o-), pc -+#) -* t' ('Y( ', -'), pc

In other words, given a function -y that turns a symbolic state into the concrete
representation that our redefinitions use, reducing a term t to a new term t' (plus new
values /u' and -' for the store and symbolic state) using the standard approach (-*>)
is equivalent to performing the same reduction using our approach (-*4o) and then
applying -y. The proof considers four important cases: one involving conditionals and
three involving side effects.

1. We show that our redefinition of "if":

" Uses recursive calls to execute both branches; by the inductive hypothesis,
we determine that these recursive calls produce the same results as the
symbolic semantics.

* Updates the symbolic correctly (as defined by 7).
* Updates the current path constraint correctly.

2. We show that when the path constraint is "true," updating a concrete vari-
able causes an update in the regular (non-symbolic) store in both the symbolic
semantics and our approach-in other words, everything remains concrete.
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t
I reft ! t t:= t I

unit 1

0 1 l = v

t1tp -+ ti Il'
tit2lA - t'it2lA'

(Appi) t 2 IA -4 t'2

V t2 Ip v t2 I A

(Ax.t)vl _+ [x + v]tly (APPABS)

if true then t2 else t3IP -+ t2P (IFTRUE)

if false then t2 else taIl - t3 lp (IFFALSE)

tip- 4 'p'

if ti then t2 else t3|p -+ if t' then t2 else t3 |/'

(APP2)

(IF)

pred OJA - Olp (PREDZERO)

iszero Olp a truelp (ISZEROZERO)

iszero (succ nvi)|i - falsejg (ISZEROSucc)

pred (succ nvi)Iy - nvily (PREDSUCC)

succ tijIA -+ succ t',|p'

ti It 4 1ip'
pred t1lit - pred t'Ip'

I dom(p)

ref vi|p -+ 11(|, 1 v1)

ef t il ' r ,
ref t11 p,- ref t' I p'

(Succ)

(PRED)

(REFV)

(REF)

PM 4 v (DEREFLOc)
!lip -+ vl

ti~p I' 1 I' (DEREF)
ti p !t1|p'1

I:=v2 1A -+ unitl[l -+ V2]P (ASSIGN)

t~lp 'llp, (ASSIGN1)
ti:=t 2I|p -+ t'1:=t2 lP'

t~lA-+ t21P (A SSIGN2)
V1:=t2|p I v1:=t' 2Ii'

Figure 3-4: Syntax and Reduction Rules for Untyped A-calculus with Side Effects
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v

S :: sx I Exp v*

a : 0 1 I , s = {#, v}

F) tilyIA, 0, t'iIt', /' (Arpi)
I tit2A, 0- a I A',

4 H t 2 |A, t'2 a (A PP2)

4 H v t2 U V t'21/', 0a

5 - (Ax.t)vlp, o -+ [x -+ v]tIp,, o (APPABS)

5 H if true then t2 else t 3 |1 , a -+ I2A, 0 (IFTRUE)

q5 - if false then t2 else t3ap, O 31p, 0a (IFFALSE)

4 H ti It, a -+ 4'1|p', (
# H if t1 then t 2 else t3|p, a 4

if t'i then t 2 else t1Ap', a'

4 H pred 01p, a -0p, o (PREDZERO)

# H iszero 01p, o -+ truelp, a (ISZEROZERO)

# H iszero (succ nvi)Ip, o - falsely, o (IsZEROSUcc)

# H pred (succ nvi)lp, o-* nvi1p, o (PREDSUCC)

4 H tily, a -+ t'iI', o (Succ)
4 H succ tilp, 0' succ tIit', ' (

0 1- ti ty, o 4A a I'1|p', )
) F pred tily, o- pred t'jp', a'

1 0 dom(p)

4 H ref vil oa -* l(p,l v1), (REFV)

) F tilyp, o- t'Ip',a ' (REF)
4 H ref tilip, a ref t' ly', a'

Figure 3-5: Syntax and Reduction Rules for Mixed Concrete and Symbolic Execution
of Untyped A-calculus with Side Effects (Part 1 of 2)
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p(l) = v (DEREFLoc)
SF !ly, o , v EL, 0

4) H tilii,C - ' l' -
F- !t IlI, -4 1A (DEREF)

# t I pil , ! 
t'i ly, 0'

ti F- t1 4 0,iC t' Ita (ASSIGN1)
4 F t1:=t2IP, O t'1:=t2IP', 0'

4) F t22t,C -+ taL|',CT'
4 ) F t 2 1 T / 1 , O r t'2 A ' , r ' ( A S S I G N 2 )

# V1: =t2 IM, O V1:=t21p', 0'

p (l) sA
true F l:=v2|L,O ' unit,[l -+ v2],, (ASSIGN)

sx 4 true sx1  dom(a) (ASSIGNSYMBI)

1: H I:v2IA, 0 -
unitl[l sx1]P, (0-, sX1 - {(0, V2), (,0, pWO)}

p(l) = s4 (ASSIGNSYMB2)
#F 1:=V2 1A, U -+ unit~p, o'

where a'= [sx1 - {( A 0', v2 )1(0', v) E u(si)}U
{ (,0 A #', v) 1(0', v) E a (sx 1)}1] 0

SF- pred svilly, o aExp(pred, svl)lp,T (PREDSYMB)

SF- succ svyIt, o, -+ Exp(succ, svi)1p, o (SUCCSYMB)

4 H iszero svilp, a -4 Exp(iszero, svi)p, o- (ISZEROSYMB)

# A svi F t2I , O -+ t'2IA"' (IFS'MB1)

SF- if svi then t2 else t31l, 0 -
if sv1 then t' else t 3 ', _ta

4)A -svi F t31/, O -4 t'3,C0' (IFSYMB2)

SF- if svi then t 2 else t31/L, 0 -

if svi then t2 else t'3 I 1 , 0./

4 F-if svl then V2 else v3 1A, -4 (IFSYMB)
Exp(if, SV1, V2, v3 )IJP, CT

Figure 3-6: Reduction Rules for Mixed Concrete and Symbolic Execution of Untyped
A-calculus with Side Effects (Part 2 of 2)
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V

sv sx Exp v*

A a, b.
if sym? !a then
a:=sym({(!pc A pc', b)l(pc',v) E !a} u

{(-,!pc A pc', v)j(pc',v) e !a})
else if !pc != true then

a:=sym({(pc, b), (-ipc, !a)})
else a := b

if A c, t, e.
if sym? c then

let oldpc = Ipc in
pc := oldpc A c;
let v1 = t.call in
pc := oldpc A ,c;
let v 2 = e.call in
pc := old_pc;
Exp(if, c, v 1, v 2 )

else if c then t.call else e.call

sym = A vals. (SYM_TAG, vals)
sym? A v. v = (SYMTAG, vals) or sym? v

pred A v. if sym? v then Exp(pred, v) else pred v
succ A v. if sym? v then Exp(succ, v) else succ v

iszero A v. if sym? v then Exp(iszero, v) else iszero v

Figure 3-7: Implementation of Primitives to Achieve Mixed Concrete and Symbolic
Execution of Untyped A-calculus with Side Effects Under Standard Semantics
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3. We show that when the path constraint is not "true," updating a concrete
variable causes the same update in the symbolic state in both the symbolic
semantics and our approach-in other words, the variable is concrete, but its
value depends on a symbolic value.

4. We show that updating a symbolic variable causes the same update in the
symbolic state in both the symbolic semantics and our approach-in this case,
the variable itself is symbolic, so the symbolic state is updated to store the new
value for the current path condition and the old value with its negation.

Proof By induction on t, considering the "if' and assignment cases involving symbolic
values.

Case 1 t = if sv1 then t2 else t3 |p, a

By IFSYMB1, IFSYMB2, and IFSYMB, if:

# A sv 1 H t2 |p, ~ -+ v2 |u', U'

#A , svi ta 3' O-' V3|" o-"

Then we have that:

# H tip, o *+ Exp(svi, v 2 , v 3 ) P", O-"

By -+O, we have that:

tI((A, a), pc '- )
-4+, if sym? svi then ... else ... I (y(p, a), pc ' q)

-+ pc : A svi; ... ( (P, or), PC - 0)
-+0 let v, = t2.call in ... (-y(p, a), pc - 0 A svi)
-+0 let vi = v 2 in ... I(y(p', a'), pc I- A svi)

(by inductive hypothesis)
O pc := A -svi; ... |(Iy(p', a'), pc - # A svi)

-40 let v2 = t3.call in ... I (-u(p', o-'), pc - # A -sv 1 )
+o let v 2 = v 3 in ... ((", o"), pc - # A -,svi)

(by inductive hypothesis)
+ pc := p; ... |((", a"), pc F-+ 0 A -svi)

-+o Exp(svi, v2 , v 3 )1 (Y(Y", a"), pc - #)

Case 2 t= l:=v 2 |IA, a- where p(l) V sx and # = true.

By ASSIGN, we have:

true H tip, a -4 unitl[l - v2|P, a
By -+*:
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t I(-Y(ti, or), PC F-- 0)
-*o 1 v2 (( , a), pc -) P )
-O unit[l [- v2](7l(, O-), Pc - q)
= unit ( ([l 'V2]P, O), pc - q)

Case 3 t = l:=v2 |P, o where p(l) sx and # # true.

By ASSIGNSYMB1, we have:

# H thp, o *4 unitl[l -+ sxi]p, (-, sx1 '-4 {(#, v 2 ), ( , p(l))})

By - O:

t (1(p, o-), pc C
4 1 := sym({(#O, V2), (1, l)})I(7Y(P, -), pc - q)
-> := sym({(#, v2), (1, (l))})(7(pI, a), pc ' #)

(because p(l) sx)

-o 1 := (SYM _ TAG, {(#, V2), (,4, t(l))})I((pI, a-), pc '-+ #)
*+0 unit I[l -- (SYM _ TAG, {(,V2),( , p (-(/(p, a), PC F #)
= unit(([ bW +sX1i1p, (9, si a (#, V2), (,,pl)),PC 1+

(by definition of -y)

Case 4 t = 1:=v 2 IP, a where p(l) = sx1.

By ASSIGNSYMB2, we have:

# - t~p, a -4* unit~p, a-'

where or' [sxi - {( A #', v 2 )1(0', v) E O-(s)U

{(,#$A 0', v)1(0', v) c o-(sxi)}]a

By - O:

tI(Y(p, a), pc 9)
-+o l:=sym({(#$ A pc', v2)1(pc',v) E !l} U

{(-,-1 A pc', v)I(pc',v) c !l})(y(p, a), pc F- )
-*+o l:=sym({(#$ A pc', v2)1(pc',v) E a(sxi)} U

{(-,#0 A pc', v)I(pc',v) E a(sxi)})I(y(p, o-), pc '-+ 9)
(since p(l) = sxi, 7(p, u)(l) = o-(sx1 ))

*4o l:=(SYMTAG, {(O A pc', v2)1(pc',v) E U-(sxi)} U
{(--,o A pc', v)I(pc',v) E o-(sxj)})I(-(p, a), pc - 9)

*+0 unit|[l 1-+ (SYM _ TAG, S)](y(p, a), pc F-+ #)
where S ={(# A pc', v2 )1(pc',v) E -(sxi)} U

{(,#$ A pc', v)l(pc',v) c o-(sxi)})
S unit (7(nti, o'), Pc )

(by definition of 7
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The remaining cases are straightforward. I

3.3 Related Work

Research on symbolic execution has a long history, with the first systems due to
King [33] and to Clarke [20], both in 1976. Interest in symbolic execution has con-
tinued, and new developments have greatly increased the scalability of symbolic exe-
cution engines [11, 31, 39, 45, 44, 27].

Two notable examples of modern symbolic execution systems are the symbolic
extension of Java PathFinder [31, 39], which has been used to analyze Java code used
by NASA, and CUTE [451, a "concolic" testing tool for C that interleaves invocations
of a symbolic and concrete execution.

The recent popularity of dynamic languages has lead to a corresponding interest in
symbolic execution for these languages. Saxena et. al [44] perform symbolic execution
on Javascript programs, for example, to discover malware; Rozzle [22] is a similar
effort that uses symbolic execution along with other techniques to detect malicious
Javascript. Apollo [4] is a symbolic evaluator for PHP, and finds run-time errors,
while Ardilla [32] uses this evaluator to additionally detect SQL injection and cross-
site scripting attacks. CutiePy [43] is a standalone concolic evaluator for Python, but
it has not been applied to web applications. NICE-PySE [12] and Commuter [21]
implement symbolic execution as a library, as we do, to analyze programs written
in two domain-specific languages embedded in Python. Unlike our approach, these
tools do not attempt to cover the entire host language, and do not apply to web
applications.

Chef [91 produces symbolic evaluators for interpreted languages by symbolically
executing the standard interpreter itself on the target program, allowing a single
native-code symbolic evaluator to be converted into a symbolic evaluator with min-
imal effort. Like our approach, Chef results in a system that is 100% compatible
with the standard interpreter; it improves on our approach by directly executing calls
to native code, too (our approach requires specifying these methods). On the other
hand, the indirection of symbolically executing the interpreter incurs significant over-
head (at least 5x over NICE-PySE [12], which is implemented in the same way as our
approach) even when all program inputs are concrete-whereas our approach allows
the interpreter to run at full speed on concrete inputs. Despite its lower performance,
Chef may indeed produce a symbolic evaluator fast enough to analyze web appli-
cations; had it been available when we developed our symbolic evaluator, we likely
would have tested it before investing the time to build our own system.

As in our approach, Yang et al. [53] and K6skal et al. [34] both embed symbolic
values in the host language-in this case, Scala-to enforce security policies and
perform constraint programming, respectively. Both require that symbolic values
interact only with a short list of "symbolic" library functions, however, and do not
allow symbolic values to flow through arbitrary program code. Rosette [51] also uses
our approach, but in the context of Racket, to perform both verification and program
synthesis; Rosette does not allow symbolic execution of arbitrary Racket programs.
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Austin et. al [5] propose virtual values, and allow the programmer to provide
definitions for primitive operations over these values. Such a mechanism provides
the perfect platform on which to build library-based alternative execution models
like our approach to symbolic execution, but has not yet been applied to real-world
programming languages.
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Chapter 4

Implementation: A Symbolic
Evaluator for Ruby on Rails

In this chapter, we demonstrate the implementation of a symbolic evaluator for Ruby
on Rails programs as a library. This library transforms the standard Ruby interpreter
into a symbolic evaluator, capable of computing both with concrete values and with
symbolic objects. Ruby's flexibility aids us in this task: its metaprogramming features
allow most of the evaluator to be implemented using standard Ruby features, with
only a small amount of code rewriting required.

Implementing symbolic execution as a library means that concrete parts of the
target program execute at full speed, just as they would during concrete execution. As
a result, even large programs become amenable to symbolic execution if the number
of symbolic inputs is small. At the same time, the library-based approach eliminates
much of the burden of building a specialized symbolic execution engine, since a small
number of primitive definitions often suffice to extend symbolic execution to the entire
language.

4.1 A Simple Symbolic Evaluator

To explain how our implementation performs the analysis described by our formal
model, we begin by illustrating the basics of symbolic execution as a library. We
construct a simple symbolic evaluator for side-effect free programs. We first introduce
a class to represent symbolic values, and a descendant of that class to represent
symbolic expressions:

class SymbolicObject
def method _missing(meth, *args)

Exp.new(meth, [self] + args)
end

def ==(other)
Exp.new(:equals , [self, otherj)

end
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end

class Exp < SymbolicObject
def initialize (rator , rands)

(rator = rator
Arands = rands

end
end

An instance of "SymbolicObject" represents a symbolic variable. The class defines
the "methodmissing" method so that an arbitrary method invocation on a symbolic
object yields a symbolic expression representing that invocation. For example, the
following program produces a symbolic expression:

x = SymbolicObject .new
y = SymbolicObject .new
x.foo(y)

Exp(foo, [x, y])

Ruby only invokes the "method missing" method if the receiver is missing the
called method; since it is defined on the Object class, every object has the "=="

method. We therefore must redefine "==" specifically:

x = SymbolicObject .new
y = SymbolicObject .new
x + y = y: + x

Exp(==, [Exp(+, [x, y]) , Exp(+, [y, x]) ]

4.2 Conditionals

Handling conditionals is a key part of symbolic execution, since the system must
execute both branches of conditional that depends on a symbolic value. In the ideal
implementation of Ruby, we could write the following definition of "if" as a call-by-
name function:

def if(condition , then_ do , elsedo)
c = condition . call
if c.isa? SymbolicObject then

Exp.new(:if, [c, then_ do.call , else _ do.call])
else

if c then thendo.call else else _ do.call end
end

end
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This definition would enable the user to write code with conditionals and get
symbolic results:

x = SymbolicObject.new
if x.even? then

(x+1).odd?
end

Exp(if, [Exp(even?, [x]) , Exp(odd?, [Exp(+, [x, 1])])J)

While Ruby makes it easy to redefine most primitive operations, there are a select
few that have been hard-coded. These include "if," "and," "or," "not," "while," and
"until." These operators cannot be redefined using Ruby alone, meaning that we
cannot use our metaprogramming approach to implement symbolic versions of them.

To solve this problem, we used a Ruby library called VIRTUALKEYWORDS de-

veloped with the motivation of handling conditionals in Rubicon. The library allows
programmers to redefine the hard-coded keywords in Ruby, passing a block repre-
senting the new definition. It works by performing code transformation: the library
intercepts method calls, replaces calls to the affected keywords with calls to the re-
defined versions, and then executes the transformed code.

Rubicon uses VIRTUALKEYWORDS to redefine the hard-coded keywords as fol-

lows:

virtualizer = VirtualKeywords :: Virtualizer .new
for _ subclasses_ of -> [ActionController : : Base,

RSpec:: Core :: ExampleGroup]

virtualizer . virtual _ if do Icondition , then_do , else_ do I
c = condition . call
if c.is_a? SymbolicObject then

Exp.new(:if, [c, thendo.call , else_ do.call])
else

if c then thendo.call else elsedo.call end
end

end

virtualizer.virtualand do la, bi
a = a. call
if a.is_a? SymbolicObject then

Exp.new(:and, [a, b.call])
elsif not a then
a

else
b = b.call
if b.is_ a? SymbolicObject then

Exp.new(:and, [a, b])
else
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b
end

end
end

Lines 1-3 construct a virtualizer object, which is the interface through which key-
words are redefined; the restriction in lines 2-3 means that the redefinitions will take
effect only in Rails controllers (which hold the implementations of Rails applications,
and which are descendents of ActionController:: Base) and in Rubicon specifications
(which are descendents of RSpec::Core::ExampleGroup).

Lines 5-12 redefine "if." The redefined version first invokes the block containing
the condition; if the condition turns out to be symbolic, then the redefinition produces
a symbolic conditional based on invoking both branches (line 8). If the condition is
concrete, the redefinition falls back to the standard definition. This version does not
handle side effects, but we will address them in the next section.

Lines 14-28 redefine "and." The redefinition executes the first conjunct first (line
15); if it is symbolic, then the redefinition returns a symbolic expression containing
both that value and the value of the other conjunct (lines 16-17). If the first conjunct
is false, the redefinition returns false (lines 18-19), preserving Ruby's short-circuiting
behavior for "and." Next, the redefinition executes the second conjunct; if it is
symbolic, then a symbolic expression containing both conjuncts is returned (lines
21-23). Otherwise, the redefinition returns the value of the second conjunct.

4.3 Side Effects

Supporting side effects in the presence of symbolic values requires a significant change
to the way conditionals are handled. Since both branches of the conditional may
contain updates to the same variable, it becomes necessary to save both values, along
with the path condition under which the variable takes a particular value.

We begin by adding a representation of symbolic state, which we store in symbolic
objects themselves. We add a method to symbolic objects that adds a new possible
value, along with the associated path condition, to the symbolic state:

class SymbolicObject
def initialize

@vals []
end

def addval(cond, val)
@vals < [cond,val]

end
end

To handle side effects properly, the new definition of "if" must save the current
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def get state(binding)
Hash[eval("local _variables",

map{lvarl [var, eval(var
end

def save _state(binding)

state getstate (binding)

state . eachpair do Ivar , val
eval(var + " old-=-" + var ,

end

get _state (binding)
end

binding).

, binding)]}]

binding)

def update _ state(state , state1 , binding)
statel.eachpair do var, valI

if val.equal? state [varl then

# no change
else

if state [var]. is_ a? SymbolicObject then
eval(var + "-=-" + var + " old", binding)
state [var]. addval($path_ condition , val)

else
eval (var + ".=z SymbolicObject .new" , binding)
newobj = eval (var, binding)
newobj. add_val(true , state [var]) if state [var]
newobj. add_val ($path condition , val)

end
end

end

end

Figure 4-1: Helpers for "if" to Handle Side Effects
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def if(condition , thendo, else_do)
c = condition . call
if c.isa? SymbolicObject then

pc = $path_condition

state = save _ state (thendo. binding)
$path _condition = Exp.new(:and, [c, pc])
v1 = thendo.call
statel = getstate (then _ do.binding)
update _state(state , statel, thendo.binding)

state = save _ state (else-do. binding)
$pathcondition = Exp.new(:and, [Exp.new(:not, [c]) , pc])
v2 = else_ do. call
state2 = getstate(else _ do. binding)
update _state (state , state2 , else-do . binding)

$pathcondition = pc
Exp.new(:if, [c, v1, v21)

else

if c then thendo. call else elsedo. call end
end

end

Figure 4-2: Redefinition of "if" to Handle Side Effects
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state, execute the conditional's first branch, update the symbolic state based on the
updates made during that execution, and repeat the process for the second branch.
In addition, the path condition must be set appropriately for the execution of each
branch, and used in updating the symbolic state.

Figures 4-1 and 4-2 contains a definition of "if" that handles side effects. It
works by saving the current state, updating the path condition based on the branch
being executed, executing the branch, and updating the symbolic state based on the
updates to the concrete state. Because it is impossible to set the value of a variable
stored in a Ruby Binding object directly, the "savestate" procedure saves a copy
of each variable with the suffix " old" and the "update state" procedure uses these
copies to retrieve previous values of updated variables.

The procedure "get_state" (lines 1-4) is equivalent to the "getstate" operation
from Section 4, and "update_ state" (lines 17-33) corresponds to the "updatesymb" of
Section 4. The "savestate" procedure (lines 6-14) combines "getstate" with an im-
plementation trick to save the old values of all variables so that they can be recovered
after a branch is executed. Lines 35-57 are the definition of "if."

The redefinition first executes the condition (line 36) to determine whether or
not it is symbolic. If not, the redefinition falls back to the standard definition (line
55). If the condition is symbolic, the redefinition gets the current path condition
(line 38) and saves the current state (line 39). The "savestate" procedure (lines
6-14) gets the current state (line 7), saves a copy of the value of each variable in a
new variable with the suffix "-old," (lines 9-11) and gets the current state again (line
13), so that the returned version of the state contains the saved "-old" values. This
implementation trick is required because Ruby does not allow the value of variables in
an environment (in Ruby, an instance of the class "Binding") to be updated directly.
Instead, we update these variables using "eval," as in line 10.

Returning to the redefinition of "if," lines 41-44 updates the path condition, exe-
cutes the first branch of the conditional, gets the updated state, and calls "updatestate."
That procedure, which corresponds to "updatesymb" from Section 4, examines each
member of the state (line 18). If there has been no change, the procedure does noth-
ing (lines 19-20). If the variable's value has changed, and the variable was previously
symbolic (line 22), then the procedure resets the variable's value to the previous sym-
bolic object (line 23) and adds the new value to the symbolic state of that object.
If the variable's value was not previously symbolic, the procedure constructs a new
symbolic object (line 26) and adds both the previous value of the variable, if it exists,
(line 28) and the new value (line 29) to the symbolic state of the new object.

The other branch of the conditional is treated the same way (lines 46-50), but
with the path condition modified to contain the negation of the condition. Finally,
the path condition is reset (line 52) and a symbolic expression containing the resulting
values is returned (line 53).

This redefinition allows the programmer to write code like the following:

x = SymbolicObject .new
y = SymbolicObject .new
if x.even? then
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y = true
else

y = false
end

Executing this program gives the variable "y" the following symbolic state:

Exp(even?, [x]) =e true,
Exp(not, [Exp(even?, [x]) ] false

This symbolic state represents the two possibilities for "y:" if "x" is even, then the

value of "y" will be true; otherwise, it will be false.

4.4 Stubbing Rails

Rails web applications interact with a persistent database through ActiveRecord, an
object-relational mapper. In general, the properties of Rails applications that Rubicon
checks should be true for all configurations of the database. As a result, Rubicon must
treat the database as symbolic data when checking properties.

Fortunately, Rails enforces the use of the ActiveRecord interface for accessing the
database, so we can simply provide a new implementation of that interface which
returns symbolic values instead of actual database records. In a Rails application,
objects to be stored in the database extend ActiveRecord, and the ActiveRecord class
provides methods such as "find" and "all" to query the database for records repre-
senting objects of the receiver's type. For example, given the following User class:

class User < ActiveRecord : :Base
end

A Rails application could find all users with the name "Joe" using the following
expression, which evaluates to a list of records with the given property:

User.find :name= "Joe"

Our goal is for expressions like these to evaluate to symbolic expressions repre-
senting the database query itself. The obvious way to accomplish this is to use Ruby's
open classes to redefine "find" and the other querying methods of ActiveRecord. Un-
fortunately, Rails prevents this approach by defining the methods on ActiveRecord
objects dynamically. At runtime, then, our redefinitions would be overwritten with
the originals as defined by Rails. Rails defines methods dynamically so that each
ActiveRecord object responds to a set of methods representing the fields of the cor-
responding database records. Given a User object "u," for example, the expression
u.name evaluates to the name field of the database record corresponding to the user
"U."

The solution is to employ dynamic redefinition ourselves. We redefine each in-
stance method corresponding to a database field so as to return a symbolic expres-
sion, and we redefine the class methods for constructing database queries to return
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class TypedSymbolicObject < SymbolicObject
def initialize (type)

type = type
end

end

klasses = ActiveRecord Base. descendants

klasses.each do Iklassi
metaklass = class < klass; self; end
metaklass . send (: define method, :new, lambda

{TypedSymbolicObject .new( self) })
met aklass . send (: define _method, :my, lambda

{TypedSymbolicObject . new ( self) })
met aklass . send (: definemethod , : all , lambda

{TypedSymbolicObject . new ( self) })

klass .columnnames.each do Inamel
klass . send (: define _method, name.tosym, lambda {

Exp.new(: field _ get , [self , name.tosym]) })
klass . send (: define_ method, (name + "=") .tosym, lambda

{argI Exp.new(:field_ set , [self, name.tosym, arg])

end

klass . reflect _on _all _associations . each do I assoc
klass . send (:define_ method , assoc .name, lambda {

Exp.new(:field-get, [self , assoc.name]) })
end

end

Figure 4-3: Code to Stub Rails Database Accessor Methods
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symbolic queries.
Figure 4-3 contains the code used to perform this step, along with a definition

of typed symbolic objects. The code works by redefining both the class methods
and instance methods of ActiveRecord's descendents. Lines 10-13 show how some
of the database query methods are redefined. Lines 16-19 redefine the getters and
setters for the database field methods of the class, and lines 21-23 do the same for the
associations-relationships with other objects through a separate database table-
belonging to the class.

With this redefinition, we can symbolically execute code like the following defini-
tion of the "show" method of the "User" controller of Fat Free CRM, which method
starts by fetching the user associated with the provided ID:

class UsersController < ApplicationController
def show

Auser = User.my. find (params [: id])

end
end

Given a symbolic ID, the "Auser" variable will get the value:

Exp (: find , [Exp (: query , [ User 1) , SymbolicObject1 1)

4.5 Extracting Exposures

4.5.1 Rendering

A Rails action serves a request in two steps: first, the code defined in the controller
populates a set of instance variables; then, Rails evaluates an appropriate template
which may reference those instance variables-to produce an HTML string. We wrap
the Rails renderer to extract the set of symbolic values that appear on each rendered
page. These values, along with the constraints attached to them, contribute to the
set of exposures resulting from the action being executed.

4.5.2 Normalization

Since two constraints can be logically equivalent but syntactically different, we at-
tempt to normalize the set of constraints so that whenever possible, two logically
equivalent constraints will also be syntactically equal.

We uses two basic methods to accomplish this normalization. First, calls to the
ActiveRecord API are rewritten in terms of the find method, and queries are merged
when possible. For example, User.find (:name => 'Joe').filter (: role =a 'admin') becomes
User.find (:name => 'Joe', :role =a 'admin'). Second, we convert all constraints to con-
junctive normal form, eliminating issues like double negation.
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4.6 Challenges

Both the dynamic nature of Ruby and the size of the Rails library pose significant
challenges to standard symbolic execution strategies. These challenges motivated our
unique solution.

Rails is large and complicated. The Rails framework is notoriously complicated
for many years, it was compatible only with the standard MRI Ruby interpreter due
to its use of undocumented features. This provided the strongest motivation for im-
plementing our symbolic evaluator as a Ruby library. It allows some code, such as
Rails's configuration code, to be run concretely, and at full speed. In addition, us-
ing the standard Ruby interpreter gives us confidence that our symbolic evaluator is
faithful to the semantics of Ruby and Rails, since it runs the actual implementations
of both.

Ruby does not allow the redefinition of conditionals. Ruby provides facil-
ities for metaprogramming, but they are limited. When a conditional expression de-
pends on a symbolic value, symbolic execution requires that we execute both branches,
but Ruby does not allow the programmer to attach special behavior to conditionals.
We rewrite the application's code, transforming if expressions into calls to our code
that runs both branches. This can result in the exponential blowup characteristic of
symbolic execution, so we execute only the appropriate branch when a conditional's
condition is concrete.

Rails plugins use metaprogramming. Rails plugins are extra libraries that
can be included in applications to provide additional functionality. The CanCan
plugin, for example, provides user authentication and access control-features not
built into Rails. Unfortunately, the use of metaprogramming in plugins often conflicts
with our own use of the same technique. CanCan, for example, replaces many of
ActiveRecord's query methods with versions that perform security checks. Since
our versions of the same methods are essentially specifications of the default Rails
behavior, our replacement methods eliminate the extra security checks introduced by
CanCan.

Our solution is to allow our specifications to be extended to match the function-
ality added by plugins. Using this technique, adding CanCan's security checks is
accomplished in just a few lines of Ruby code.

Rendering makes it difficult to extract the set of symbolic values the
user will actually see. Rails's rendering mechanism is complicated, so we prefer to
run its implementation rather than specify its semantics manually; since the output
of rendering is a string containing HTML, however, it is also difficult to reconstruct
the set of symbolic values from the renderer's output.

Our solution assumes that the set of objects receiving the tos method-which
converts an object into a string-during rendering is exactly the set of objects appear-
ing on the resulting page. This is a conservative assumption, since while a template
may convert an object into a string and then discard it (a situation we have yet to en-
counter in practice), Rails always calls to__s on objects appearing in templates. Under
this assumption, we modify the tos method of symbolic values so that each value
keeps track of whether or not it has been converted into a string, and run Rails's ren-
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derer unmodified. After rendering has finished, we collect the set of symbolic values
that have been converted to strings, and return them as the set of results.

4.7 Assumptions & Limitations

Our strategy for symbolic execution relies on several assumptions. While we consider
these assumptions reasonable, some of them do imply corresponding limitations of
our analysis.

We assume that to s is called on exposed objects. But since the Rails
rendering engine calls tos automatically on every object that appears in a template,
we consider this a reasonable assumption. An application may use a conditional to
decide whether or not to display a particular string; in this case, the result could leak
some information about the symbolic values present in the condition without calling
to_s.

Our system does not handle symbolic string manipulation. We record
manipulations performed on symbolic strings, but cannot solve them. Fortunately,
Rails applications tend to perform few string manipulations, especially on objects
drawn from the database, and almost never base control flow on the results of those
manipulations. We have therefore not found the inability to solve string manipulation
constraints to be a problem in practice.

We assume that all actions are reachable. Rails uses routes to define the
mapping between URLs and actions. We ignore routes and simply analyze all actions
defined by the application. This strategy is an over-approximation: it is possible for
an action to exist without a corresponding route, making the action dead code. But
the converse is not true: it is impossible to miss an exposure by ignoring some code
that is actually live-we simply analyze all the code.

We assume that the application under analysis uses ActiveRecord. Our
system wraps the ActiveRecord API to make database queries symbolic, but an ap-
plication that uses a different method to make database queries may bypass this
wrapping. The application may therefore have access to concrete database data dur-
ing analysis, meaning the results will not generalize to all database values. But since
our analyses are intended for use by an application's developer, we assume that he
or she will know whether or not the application uses a database API other than
ActiveRecord-and if so, we provide a simple mechanism to specify that API.

4.8 Soundness & Optimizations

To guarantee soundness in a dynamic language such as Ruby is a difficult task. Be-
cause Ruby's modularity constructs are permeable, a module's semantics depends on
the environment in which it executes. It is therefore impossible to provide a modular
analysis for Ruby that is sound, since loading the module in a different context could
change its semantics. Our solution is to instruct users to perform the analysis in
the environment they will use in production; in practice, this is sufficient to produce
correct results.
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Program Element
Functional maps

For-each loops with side
effects

Other loops

Array & hash operations

Database queries

Model class calls

Figure 4-4: Summary of Optimizations and their Effect on Soundness

We also use a number of optimizations that, while unsound in theory, produce cor-
rect results in practice. In addition to aiding in performance of the symbolic analysis,
these optimizations can actually produce more precise symbolic results. Chief among
these is the ability to treat certain kinds of loops as functional maps, allowing their
behavior to be characterized precisely using only a single execution of the loop body.
In addition, all of our loop-handling strategies are guaranteed to terminate, meaning
that our analysis also always terminates. These optimizations are summarized in
Figure 4-4 and detailed below.

The general strategy is to attempt to convert looping constructs into set com-
prehensions (eliminating side effects). For functional maps, this is easy, since they
already contain no side effects. For loops that do perform side effects, we construct a
special symbolic expression representing a universally quantified index into the target
collection and run the loop body on that expression; we then construct a functional
map by examining the results of the side effects performed while running the loop to
find the quantified expression we constructed. This result is then converted to a set
comprehension.

Functional maps. Instead of side-effecting loops, many Rails applications make
extensive use of functional maps. These can be characterized precisely by running
the mapped function on a single symbolic value, and the resulting symbolic value can
be represented as a set comprehension. For example, this code from Diaspora finds
a post, accesses the list of "likes" attached to the post, and then derives a list of the
people who did the "liking" using a functional map. In our system, it evaluates as
follows:

Alikes = Post . find (params [: postid ).likes
Apeople = Alikes .map(&:author)
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Exp(: map, Exp (Post, Exp (Post, :find, :params [:post _idl),
: likes) , : author)

The resulting symbolic expression simply records the fact that a map is performed
on the collection. For tools that perform constraint solving, this expression can be
transformed into a set comprehension that applies the appropriate field access to each
element of the collection:

{u: User | some p: Post p.id = post_id and u in
p.likes.author }

Loops with side effects. Some for-each loops in Rails applications perform side
effects on objects constructed outside the loop. Running the loop body just once
does not adequately capture the behavior of such a loop, which is commonly used to
fill up an array for later use. The following code, for example, constructs a hash of
conversation authors using a side effect:

Aauthors = []
Aconversations = current _user . conversations
Aconversations . each { I c authors < c . last _ author }

Such loops are equivalent to a functional map with a filter. Our system detects
this condition and transforms the resulting symbolic expression into the equivalent
functional map in two steps. First, the loop body is run once with a special copy of the
collection being looped over tagged with the type "foreachvar," which specifies that
this expression represents an arbitrary index into the collection it contains. Second,
the system transforms the resulting values into functional maps by checking for the
tagged value; when it is found, the transformation treats the enclosing value as if it
is defined by a functional map over the original collection.

For the code above, our strategy results in setting the "Aauthors" variable to the
following:

[Exp (: foreach _ var , Exp (: Conversation, : current _ user,
: conversations)

last _ author ) ]

which is an array of length one, containing a "foreachvar" expression representing
the invocation of the "lastauthor" method on the original list of conversations. This
value is transformed into the following functional map:

Exp (:map, Exp (: Conversation, : current _user , : conversations ),
: last _ author )

which is, in turn, equivalent to this set comprehension:

{ u: User I u in currentuser. conversations . lastauthor }

Other loops. When a Rails programs contains a "while" loop, our approach simply
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unrolls the loop a finite number of times (by default, 3 times). These loops are so
rare in practice that this simple technique has so far produced correct results in all
cases. For example, this loop in Diaspora is used to find the original "sharer" in a
chain of "re-shares:"

Aabsolute root Il= self
Aabsolute _root = absolute _root . root while absolute _ root . is _ a?

Reshare

Unrolling this loop three times allows the system to consider re-sharing chains up to
length three, which does not precisely match the semantics of the original loop, but
which is sufficient to check the security properties of the application.

Array & hash operations. When array operations are performed on an array
containing a "foreach _var" expression (i.e. the results of a side-effecting loop), those
operations must treat the entire collection as if it is defined by the "foreachvar"
expression. Consider a functional map performed on the final value of "@authors"
from the code above:

Aauthors = [1
Aconversations = current _user . conversations
Aconversations . each { Ic Oauthors < c. last _author }
Anames = Oauthors.map{ jai a.firstname }

When the final line of code runs (setting the "Anames" variable), the "Lauthors"
variable is bound to the value:

[Exp (: foreach _ var , Exp (: Conversation , : current _user

conversations)
last _ author)

We redefine "map" to recognize this structure and produce the following value for
"@names:"

Exp (: map,
Exp (:map, Exp (:Conversation, :current user, :conversations),

:last _author),

first name)

resulting in the following set comprehension:

{ s: String I s in
current _ user . conversations . last _ author . first _name }

Database queries. ActiveRecord is designed so that all database queries are even-
tually recast in terms of the "where" and "update attributes" methods, which generate
SQL queries. We redefine these to return symbolic database queries:

class ActiveRecord :: Base
def where(query)

Exp.new(classof(self), :query, query)
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end

def update _ attributes (tuple)
set _updated(self , tuple)
true

end
end

The new definition of "where" returns an expression representing the results of the

query in a symbolic database; the new definition of "update attributes" records the

specified changes and returns true. Since the other ActiveRecord methods use these
two as their interface, we execute them directly until one of the two is called.

Model class calls. ActiveRecord defines a huge number of methods for model
classes, many of which are seldom-used but large. We redefine all of these to return

symbolic expressions recording simply that they were called, by redefining each one

to call "basemethod" instead:

class ActiveRecord : : Base
def basemethod(methodname, *args)

Exp.new(class_of(self) , methodname, args)
end

end

This is a conservative approximation of the behavior of the methods we replace.

The symbolic expression returned represents the results of a particular method call.

Thus, if two pieces of code call the same method, they will produce syntactically
identical results, and be comparable. Our experience has been that these methods

perform tasks like time zone localization, and therefore calls must be identical for

most properties to hold anyway.

This modification is unsound if the replaced methods might perform side effects.

We manually checked the ActiveRecord methods we replace this way to make sure
that none of them do perform side effects.

4.9 Evaluation

The goals for our symbolic evaluator were compatibility-the ability to symbol-
ically execute a wide variety of web applications-and scalability-the ability to
symbolically execute those applications quickly.

4.9.1 Experimental Setup

We tested our symbolic evaluator on the 1000 most-popular open-source Ruby on
Rails applications hosted by Github. We approximated popularity based on the
number of "stars" a project has. These applications fall into two basic categories:
mature, stable applications intended for installation by end-users (which are popular
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because of their user base), and fragments of example code intended for helping
programmers to build new applications (which are popular because they are copied
and pasted into other applications). Security bugs are a serious issue in both types of
application: in mature applications, they make user data vulnerable, while in example
code, they can propagate to other applications that have copied the code.

We used Ubuntu GNU/Linux on a virtual machine equipped with a single Intel
Xeon core at 2.5GHz and 2GB of RAM. We used RVM to install the version of Ruby
required by each application and Bundler to install each application's dependencies.

4.9.2 Results

The results of this experiment are presented in Figure 4-5, which plots each applica-
tion's symbolic execution time against the number of lines of source code it contains.
Most importantly, symbolic execution finished within one minute for every applica-
tion, with most taking much less time.

These results indicate that our symbolic execution framework scales to large, real-
world Rails applications. The largest of these applications is Diaspora, with over 40k
lines of code-our evaluator finishes in just 45 seconds.

Many of the applications we tested were much smaller than Disapora. Indeed,
the Rails framework is designed to encourage concise implementations, and the Rails
community values small codebases. Our evaluator analyzes these small applications
especially fast-normally finishing within 20 seconds.

Moreover, the number of lines of code we report in Figure 4-5 may be an over-
estimate of the number of lines actually executed during analysis. The number of
reported lines corresponds to the total number of lines of Ruby code present in the
project (i.e. the number of lines reported on Github). Since not all of this code may
be reachable during our analysis (for example, test suite code), the actual number of
lines executed during our analysis may be much smaller. We discuss one example of
this phenomenon in the next section.

We examined the error output of our symbolic evaluator, and found only a handful
of cases in which the symbolic execution process did not finish normally. These were
situations in which the application used features like TCP socket and email APIs
features our system does not support, and ones that generally will not affect detection
of security bugs.

4.9.3 Discussion

To further explore the performance characteristics of our own symbolic execution
system and of symbolic execution on web applications in general, we examined the
codebase of the largest application we tested, Diaspora, in more detail. Figure 4-6
summarizes the number of lines of code of each implementation language present in
each subdirectory of the codebase. Including every single file, Diaspora has more than
one hundred thousand lines of code.

However, for the purposes of our analysis, the actual amount of code considered
is much smaller. The YAML files in the configuration directory, for example, which
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Directory

app/assets/
app/controllers/
app/helpers/
app/models/
app/presenters/
app/views/
app/workers/
config/
db/
features/
lib/
spec/
vendor/
Total

Ruby
0
2228
902
2981
526
0
440
848
1361
1656
3375
16608
1824
32749

JS
5690
0
0
0
0
0
0
0
0
0
1828
4617
0
12135

Language
HAML YAML
0 0
0 0
0 0
0 0
0 0
4679 0
0
0
0
0
0
0
0
4679

0
82664
0
0
0
14
0
82664

Figure 4-6: Size of Diaspora's Codebase, by Language and Directory
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Figure 4-7: Occurrences of Language Features in Diaspora's Codebase

65

SASS
5077
0
0
0
0
0
0
0
0
0
0
0
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comprise over 80,000 lines, are localization options for translating the site into differ-
ent languages, and actually contain structured constant data rather than code (i.e.
no YAML file can perform a side effect or make a database query). Our analysis runs
the application's configuration file, which specifies a set of concrete localization op-
tions, and then consults the appropriate subset of these YAML files during rendering.
Because the YAML files cannot do any computation, however, ignoring them entirely
would be a sound optimization.

Similarly, our analysis runs only Ruby code, and does not examine the Javascript
code (about 12,000 lines) delivered with Diaspora. Since this code runs on the client
side, we consider it untrustworthy no matter what its semantics, and therefore con-
sider any value passed to a Javascript function to be exposed.

We also do not consider some of the Ruby code. The test suite, for example,
is more than 16,000 lines of code-nearly half the total amount of Ruby code-and
is not needed for our analysis. On the other hand, the HAML files representing
view templates (about 4,600 lines of code) contain Ruby expressions executed by the
rendering engine, and are therefore also executed in our analysis.

The actual controller code, which defines the application's logic, is only 2000
lines of code; the model code, which defines the behavior of resources, is less than
3000 lines. Some methods in this code may call procedures defined in the helpers,
presenters, and workers directories, as well as library code from the features, lib, and
vendor directories, plus additional code from libraries installed via Rubygems. But
as a lower bound, our analysis need consider only the roughly 5000 lines defining the
application itself-a number far smaller than the total lines of code.

Diaspora's codebase also contains evidence that its code is especially suited to
symbolic execution. Figure 4-7 summarizes the number of times various language
features are used in Diaspora's Ruby code. Diaspora's controller code contains only
two while loops, but uses more than 50 "for each" loops and more than 50 functional
"maps"-precisely the kind of loops our analysis is optimized for.

Diaspora's controllers contain 745 conditionals, but these are distributed over a
total of 225 actions. This means that each action contains an average of 3.3 condi-
tionals; since our system analyzes each action independently, the number of possible
paths per analysis is small. The amount of code per action is also small, averaging
just 10 lines.

While Diaspora is only one application, its codebase suggests that our analysis
runs quickly for three reasons. First, the actual code considered for our security anal-
ysis is smaller than the total size of the codebase. Second, the language features used
in the code we analyze is conducive to symbolic execution. Third, our optimizations
target precisely those language features most used in the code under analysis.

Like many of the applications we considered, Diaspora's main functionality is
CRUD-y: its goals are centered around users creating content and sharing it with
others. This results in a set of controller actions whose logical operations are relatively
simple. The same may not be true of applications that resemble traditional desktop
software, such as Microsoft Office or Google Docs, so we do not expect our analysis
to perform nearly so well on these applications.
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4.10 Related Work

Existing work on the application of static analysis to web applications focuses on
modeling applications, and especially on building navigation models. Bordbar and
Anastasakis [8], for example, model a user's interaction with a web application using
UML, and perform bounded verification of properties of that interaction by trans-
lating the UML model into Alloy using UML2Alloy; other approaches (135, 49, 41J)
perform similar tasks but provide less automation. Nijjar and Bultan [381 translate
Rails data models into Alloy to find inconsistencies, but do not examine controller
code. Subsequent to the work presented here, Bocid and Bultan [7] used a similar
technique to check Rails code.

Techniques that do not require the programmer to build a model of the applica-
tion tend to focus on the elimination of a certain class of bugs, rather than on full
verification. Chlipala's Ur/Web [18] statically verifies user-defined security proper-
ties of web applications, and Chaudhuri and Foster [15] verify the absence of some
particular security vulnerabilities for Rails applications.
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Chapter 5

Exploring Exposures with Derailer

Derailer is a tool for finding security bugs without a specification. Instead, it uses
a combination of symbolic evaluation and user interaction to help the programmer
discover mistakes.

This particular combination is motivated by two hypotheses. First, web applica-
tions differ from traditional programs in ways that improve the scalability of sym-
bolic execution. In particular, web applications typically use fewer loops and simpler
branching structures than traditional programs, minimizing the exponential behavior
of symbolic execution. Second, security policies tend to be uniform: sensitive data is
usually subject to security checks everywhere it is used, so an access that is missing
one of those checks is likely to be a mistake.

Our approach considers web applications that accept requests and respond with
sets of resources obtained by querying the database. Each response is characterized
by the path through the database leading to the resource, and the control flow of the
application's code imposes a set of constraints under which a particular resource is
exposed to a client. We call the combination of a path and a set of constraints an
exposure.

An automatic strategy for finding security bugs might enforce that all exposures
with the same path also share the same set of constraints; if a security check is
forgotten, a constraint will be missing. But many constraints-like those used to
filter sets of results for pagination-have nothing to do with security, and would
cause an automatic strategy to report many false positives.

Our approach therefore asks the user to separate constraints into those represent-
ing security checks and those that are not security-related. In making this separation,
the user effectively constructs a specification of the desired security policy-but by
selecting examples, rather than writing a specification manually. Our tool allows
the user to drag-and-drop constraints to build the policy. The tool then highlights
exposures missing a constraint from the security policy-precisely those that might
represent security bugs.

We have built a tool implementing this approach. Called Derailer1 , it performs
symbolic execution of a Ruby on Rails application to produce a set of exposures.

available for download at http://people.csail.mit.edu/jnear/derailer
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def index
@notes = Note. where (user : current _user . id) +

Note. permissions . find_ byuser-id (current _user . id)

respond-to do I formatI
format . html # index . html. erb
format . json { render json : Anotes }

end
end

def show
note = Note. find (params [: id I)

respond-to do Iformat I
format . html # show. html.erb
format .json { render json : Anote }

end
end

Figure 5-1: Example Controller Code from Student Project

We evaluated Derailer on five open-source Rails applications and 127 student
projects. The largest of the open-source applications, Diaspora, has more than 40k
lines of code, and our analysis ran in 112 seconds. The student projects were taken
from an access-control assignment in a web application design course at MIT. Derailer
found bugs in over half of these projects; about half of those bugs were missed during
manual grading. The bugs we found supported our hypothesis: most bugs were
the result of either a failure to consider alternate access paths to sensitive data, or
forgotten access control checks.

5.1 Derailer: An Exposure Exploration Tool

Derailer uses an automatic static analysis to produce an interactive visual repre-
sentation of the exposures produced by a Ruby on Rails web application. The tool
displays the constraints associated with each exposure, and allows the user to separate
the security-related ones from those unrelated to security. Then, Derailer highlights
inconsistencies in the implemented security policy by displaying exposures lacking
some security-related constraints.

To see how this works, consider the controller code in Figure 5-1, taken from a
student project. The application's purpose is to allow users to create "note" objects
and share them with other users; users should not be able to view notes whose creators
have not given them permission. This code, however, has a security bug: the "index"
action correctly builds a list (in line 2) of notes the current user has permission to view,
but the "show" action displays a requested note without checking its permissions (line
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Constraints

Filtered Constraints

Snote : NoW j roteld In per %Nini~ j })$W -

note: Note I noteid In paremsdM ).conteit

NotesController / Index

NotesController / show

SnOt: Note tot d in ParVms~dq }.OWnerWMAMi

{ no N0i no*ld In pafamsd }'M, Usem mamno

(1) The user has expanded the Note node and its child node representing

the note's content, since this node represents sensitive data.

Constraints: 1

noteuser == currentuser or
note.permissions.find._byuserjId(currefnuser-id)

Filtered Constraints

#9W

(2) The user has selected the NotesController / index action, which can

result in a note's content appearing on a page. A constraint representing the

security policy on a note's content appears in the Constraints area.

Figure 5-2: Example Bug-finding Session using Derailer (Part 1)
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Constraints
ActiveRecord

Note

(note Note noteldinparamlidj).content

NotesController I show

Filtered Constraints

note.user == current user or
note.permissions.find_byuserid(current.user.id)

(3) The user has dragged the constraint
straints area. The NotesController
it is subject to a filtered constraint.

ActiveRecord

Note

that appears into the Filtered Con-
/ index action disappears, because

Constraints: 0

Filtered Constraints

note.user == currentuser or

n para tsfid t note.permissions.findbyuser_id(currentuser.id)

I show

(4) The user has selected the remaining action, which remains visible because
it is not subject to the filtered constraint. In fact, it is not subject to any
constraints at all. This represents a security bug in the application.

Figure 5-3: Example Bug-finding Session using Derailer (Part 2)
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11). The application's programmer assumed that users would follow links from the
index page-which does correctly enforce access control-to view notes, and neglected
the case in which the user requests bypasses the "index" action and requests a specific
note directly using the "show" action.

Figures 5-2 and 5-3 contain a sequence of screenshots demonstrating the use of
Derailer to find this security bug. In shot (1), the user has expanded the "Note"
node, which represents the note resource type, and then the "{note: Note I note.id
in params[id]}.content" node, which is a resource path rooted at the note type, rep-
resenting a note's contents. The "User" node represents the programmer-defined user
resource, while "session" and "env" are system-defined resource types containing in-
formation about the current session and configuration environment.

Then, in shot (2), the user picks the "index" action from the list of actions resulting
in that exposure. When an action is selected, the set of constraints governing the
release of that data by that action is displayed in the Constraints area. In this case,
the displayed constraint is:

note . user currentuser or
note . permissions . find_ byuser id ( current _user . id )}

which says that the currently logged-in user must either be the creator of or have
permission to view all visible notes. The user drags security-related constraints to
the Filtered Constraints area, which will eventually contain the complete security
policy of the application.

Dragging constraints to the Filtered Constraints area causes the nodes subject to
those constraints to disappear, as in shot (3). Once the Filtered Constraints area
contains all security-related constraints, remaining exposures of sensitive information
represent inconsistencies in the implemented security policies, and are likely to be
bugs. In shot (4), the "show" action remains, despite the filtered constraint; selecting
it, the user discovers that it is not subject to any constraints at all.

We took the approach described in this section in using Derailer to analyze 127
similar student projects from the same course, and found bugs in nearly half of them.
The results of that experiment are described in Section ??.

5.2 Implementation

Derailer uses our symbolic execution framework to produce a list of data exposures
from the target Rails application, then uses a web-based user interface to display a
hierarchical view of those exposures and help the user filter them based on user-defined
policies.

5.2.1 Exposure Generation

Normalization. Derailer's interface allows the user to explore candidate security
policies through filtering, which compares constraints syntactically. Since two con-
straints can be logically equivalent but syntactically different, Derailer attempts to
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normalize the set of constraints so that whenever possible, two logically equivalent
constraints will also be syntactically equal.

Derailer uses two basic methods to accomplish its normalization. First, calls to the
ActiveRecord API are rewritten in terms of the find method, and queries are merged
when possible. For example, User.find (:name =a 'Joe').filter (: role =* 'admin') becomes
User.find (:name =* 'Joe', :role => 'admin'). Second, Derailer converts all constraints to
conjunctive normal form, eliminating issues like double negation.

Filtering and Formatting. Next, Derailer eliminates duplicate constraints by
comparing them syntactically. After normalization, this strategy tends to detect the
vast majority of logically duplicate constraints.

For each exposure, Derailer builds a structure containing the exposure's path,
symbolic expression, constraints, and the location in the code that produced the ex-
posure. This structure is used to build Derailer's hierarchical exposure view. Derailer
uses this list of structures to build a tree of exposures: the root of the tree is the
common superclass of the exposures' data types (usually ActiveRecord); the next
level of the tree contains the application-defined data types; the third level contains
exposures, sorted into bins based on their symbolic expressions.

This tree structure is serialized to a JSON file for processing by Derailer's web-
based front end.

5.2.2 Exposure Visualization and Exploration

Derailer's GUI. Derailer implements a web-based GUI to display the tree of expo-
sures. The interface takes advantage of the D3 2 Javascript library for data visual-
ization to display the tree and allow the user to interact with it.

Derailer extends D3's standard tree layout by adding panes on the right-hand
side for displaying constraints and allowing the user to specify which constraints form
the security policy. When the user selects a particular exposure, the constraints
associated with that exposure are displayed in the "Constraints" pane.

Derailer specifies the origins of each exposure by listing the set of actions allowing
a particular exposure as children of that exposure. In some cases, two different
actions allow the same exposure (according to the symbolic expression defining the
data it exposes) under different conditions-so constraints are attached to these code
locations, rather than to the exposure itself.

Filtering. To find bugs, the user selects an exposure and examines its constraints.
The user drags those constraints that are security-related from the constraints pane
to the filtered constraints pane. After every such change, Derailer performs a filtering
step to determine which exposures correctly respect the new security policy and which
ones do not.

Derailer's front end stores an array of constraints for each data type representing
that type's security policy. When the user adds a constraint to the policy, Derailer
updates this array and re-performs the filtering step. Derailer examines each exposure
with the same data type as the updated constraint: if the set of constraints on the

2http://d3js.org/
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Type of Bug No.

No access control implemented 15
No write control implemented 10
No read control implemented 27
Security bug in read control 13
Security bug in write control 17

Figure 5-4: Types of Bugs Found During Analysis of Student Projects

exposure is a superset of the policy, then the exposure is marked in green to indicate

that it correctly respects the new policy; otherwise, the exposure is marked in red to

indicate a bug. Red markings are propagated to the parent of a node, so that the

path through the tree to a bug is immediately apparent.

5.3 Evaluation

To evaluate whether or not Derailer is effective at finding security bugs, the authors

used Derailer to examine 127 student assignments from a web application design

course at MIT. The assignment was open-ended, so the applications had similar, but

not identical, intended security policies. The results show that Derailer was able to

highlight significantly more security bugs than were found by the course's teaching

assistants during grading.
The project asks students to implement access control for a "Notes" application,

which allows users to log in, write short textual posts, and share them with others.

The assignment requirements are purposefully vague: students are expected both to

design a security policy and to implement that policy. Each assignment must therefore

be graded against its own intended security policy, making it impossible to write a

single specification for all assignments. The existing grading process consists of a

teaching assistant running the application and experimenting with its capabilities in

a browser, along with extensive code reivew. The teaching assitants estimated that

they spent an average of 30 minutes grading each project.

The author, who was not a teaching assistant for this course, used Derailer to

evaluate all 127 student submissions for this assignment. We used the constraints

present on Note accesses to infer the security policy the student intended to imple-

ment, and then we looked for situations in which those constraints were not applied.

Our goal was not to evaluate the policies the students had chosen-though we found

some that did not seem reasonable-but rather to determine whether or not the stu-

dents correctly implemented those policies. These are the kind of bugs Derailer is

intended to find: situations in which the programmer has simply forgotten to enforce

the intended security policy.

It took about five minutes per student submission to interpret the results of De-

railer's analysis. For most projects, we were able to determine the intended security

policy after examining only one or two exposures; we spent roughly a minute as-
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Figure 5-5: Ratio of Exposures to Constraints in Student Projects

sembling constraints into a description of that policy, and then another couple of

minutes to decide whether the highlighted exposures were security bugs. Since De-

railer points directly to the action responsible for each exposure, confirming each bug

in the student's code also took only a couple of minutes.

5.3.1 Results

Figure 5-7 contains information about our analysis, including average, minimums,
and maximums for lines of source code, analysis time, number of exposures gener-

ated during analysis, and number of unique constraints applied to those exposures.

Figure 5-6 contains a histogram of analysis times, showing that the vast majority of

analyses took fewer than 10 seconds.

The average number of exposures generated by the analysis was 47. Projects with

very few generated exposures were instances in which the student had not completed

the project. Projects with a very large number of exposures-the maximum was

236-generally used many different ways to query the database for similar kinds of

information. We found it easy to distinguish these cases, because the Rails API places

heavy emphasis on making database queries human-readable.

The average number of unique constraints was only 12, and the average ratio of

exposures to constraints was 3.1 (meaning that for each unique constraint, there were

more than three exposures on average). Figure 5-5 contains a histogram showing that

the majority of assignments had exposure-to-constraint ratios close to the average.

While these ratios are lower than those for the open-source applications, they are still

overwhelmingly greater than one, again supporting our hypothesis that similar data

is accessed in similar ways.
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Figure 5-6: Analysis Times for Student Projects

Metric Avg. Max. Min.
Lines of Code 2,125 24,341 278
Analysis Time 4.37s 20.28s 0.23s
Exposures 47 236 4
Unique Constraints 12 45 0

Figure 5-7: Results of Analyzing 127 Student Projects

5.3.2 Bugs Found

Figure 5-4 contains a summary of the bugs we found in student projects using Derailer.

Roughly 20% of the students failed to complete the project (they did not implement

access control). Another 65% did implement access control, but failed to implement

a consistent security policy. In other words, less than 15% of the student assignments

were correct.
The bugs we found could be roughly partitioned into the following groups:

" No access control implemented. The student has implemented functionality

for creating Notes, but not for restricting access to them. The analysis results

for these projects no security constraints on any "Note" objects rendered to

pages.

" No write control implemented. The student has added access control to

the application, but has not restricted the ability of users to write to others'

Notes. The analysis results show constraints on Note objects in the context of

reading (the "index" and "show" actions) but none in the context of writing (the

"update" and "destroy" actions).

" No read control implemented. The student has added access control for
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writing only, meaning that any user can read the Notes of any other user.
Results show constraints in write actions but none in read actions.

" Security bug in read control. The student has added full access control,
but made a mistake allowing users to read Notes they should not have access
to. The most common example was implementing read control in the "index"
action but forgetting to check the same policy in the "show" action.

" Security bug in write control. The student has added full access control,
but made a mistake allowing writing that should not be allowed. The most
common example was checking access in the "edit" action but forgetting in the
"update" and "destroy" actions.

The most common issue seemed to be that students considered only the most
common method of accessing a piece of data, and failed to consider other ways of
accessing it. For example, many students correctly checked for permission when a
user loads the "edit" page for a Note, but failed to check again when the user issues a
POST request to the "update" action for that Note. Most of the time, users will issue
the POST request only after loading the "edit" page, and so will be shown the "access
denied" message instead of the editing form. However, a malicious user can construct
a POST request directly to the "update" action, bypassing the security check. Since
the student did not consider this access path, he or she did not secure it. Derailer is
perfect for finding this kind of problem, since it considers all the ways data can be
accessed.

5.3.3 Comparison with Teaching Assistants

We also compared the set of bugs we found in student assignments with the grading
reports given to those students by their teaching assistants. Out of 56 grade reports
we obtained, 38 (or 68%) agreed with our analysis. In 17 cases (30%), we found a
bug using Derailer that the teaching assistants missed.

Only one assignment contained a bug that the teaching assistants found, but that
we missed. In this case, it was possible for a user to grant permissions to a non-
existant user ID which might later be associated with some new user. This situation
does not cause a sensitive exposure at the time it occurs. Since Derailer only reports
exposures-which by definition require some output to the user-our analysis was
unable to uncover this bug.

We asked the teaching assistants to validate the security bugs we found, and in
each case, they agreed that the additional bugs we found were indeed violations of
the student's intended security policy.

5.4 Related Work

Derailer combines static analysis with human interaction to find security bugs. In
this section, we discuss the related work in each of these areas, and compare Derailer
to other existing solutions.
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5.4.1 Interactive Analyses

We share the idea of using human insight as part of a semantic program analysis with
Daikon 125] and DIDUCE [28], which use runtime traces to produce possible program
invariants and ask the user to verify their correctness. Like Derailer, these tools do
not require a specification. However, both systems rely on dynamic analysis (e.g.
collecting traces during execution of a test suite) and therefore may miss uncommon
cases. Derailer, by contrast, uses symbolic execution to ensure coverage.

Teoh et. al [47] apply a similar strategy to the problem of network intrusion de-
tection, producing visual representations of the current state of the network. Over
time, users of the tool learn to recognize normal network states by their visual repre-
sentations, and can therefore quickly determine when an intrusion has occurred.

5.4.2 Automatic Anomaly Detection

In addition to producing candidate invariants, DIDUCE raises errors at runtime when
these invariants are violated, allowing it to run in a completely unsupervised mode.
This approach is a type of automatic anomaly detection-an area which has received
much attention [141. Most approaches to anomaly detection use machine learning
techniques to learn the appearance of "normal operation," and then use the resulting
classifier to automatically find anomalies at runtime. These techniques have not often
been applied to code, however, since software specifications are often specialized and
difficult to learn.

It may be possible to use an automatic anomaly detection technique along with De-
railer's analysis to detect security problems without human input. However, anomaly
detection techniques rely on a large training set of examples, often spread across many
applications in the same domain; Derailer's results, by contrast, usually contain only
a handful of elements per data type, and since security policies are not common across
applications, pooling results from many applications is not likely to be helpful.

5.4.3 Run-Time Approaches to Web Application Security

Resin [541 is a runtime system that enforces policies attached to data objects; it has
been successfully applied to web applications. Jeeves [53], a similar language for
enforcing privacy policies, has also been applied to the web. Jif [36], an extension of
Java, also supports checking access-control policies at runtime.

GuardRails [101 allows the programmer to annotate ActiveRecord classes with
access control information, then performs source-to-source translation of the appli-
cation's implementation, producing a version of the application that enforces, at run
time, the access control policies specified by the annotations. Nemesis [23] is a similar
effort for PHP applications: it is a tag-based system that enforces authentication and
access-control at runtime.
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Chapter 6

Checking Security Patterns with
SPACE

This chapter discusses an automated technique for finding application-specific security

bugs using a theory of access control patterns. Our theory is a catalog of security

patterns, each of which models a common access control use case in web applications.

We built this catalog based on our experience with real-world web applications, which

suggests that while applications often mix and match different security patterns for

different kinds of resources, they usually intend for a particular pattern to be applied

uniformly to all uses of a given resource type.

Our approach checks that for every kind of data exposure allowed by an applica-

tion's code, some security pattern in our catalog also allows the exposure. When the

application allows a data exposure not allowed by a security pattern, we report that

exposure as a security bug. This process requires only that the user provide a mapping

of application resources to the basic types (such as user, permission, etc.) that oc-

cur in our access control patterns. From this information alone, application-specific

security bugs are then identified automatically, based on the predefined catalog of

patterns.

We have built a prototype implementation of this technique, called SPACE (Security

PAtern CheckEr). Our implementation uses symbolic execution to extract the set of

all possible data exposures [37] from the source code of a Ruby on Rails application.
The constraints associated with these exposures and the user-provided mapping are

passed through a constraint specializer, which uses the mapping to re-cast the con-

straints in terms of the role-based access control model upon which our catalog of

patterns is based. Then, SPACE translates the specialized constraints into the Alloy

specification language, and uses the Alloy Analyzer to perform automatic bounded

verification that each data exposure allowed by the application is also allowed by a
security pattern in our catalog.

Of the 50 most popular open-source Rails applications on Github, 30 implement
access control. We have used SPACE to find security bugs in nearly 1/3 of these-a

total of 23 unique bugs. Both the symbolic execution and bounded verification steps
of our technique scale well to applications as large as 45k lines of code-none of our

analyses took longer than 64 seconds to finish.
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6.1 Formal Model of Access Control

In this section, we formalize the comparison SPACE makes between a web application's
code and our generalized security patterns. The first step is to derive a list of data
exposures from the application code, representing the different ways in which users
of the application can read or update data stored in the database. Second, SPACE
uses the mapping defined by the user to specialize the security pattern library to
the resources defined by the application code. Finally, SPACE verifies that each data
exposure allowed by the application code is also allowed by some pattern in the library.

6.1.1 Web Applications

We consider web applications in terms of sets of Databases, Requests, and Resources.
An application defines relations response and update describing (in the context of
a given database) the resources sent to the requester and updated in the database,
respectively. Note that the updates do not specify the resulting state of the database;
our concern is only whether modifications can be made to particular resources, and
not the actual values of those modifications.

Databases C P(Resources x Values)
response C Databases x Requests x Resources

update C Databases x Requests x Resources

SPACE approximates these relations by using symbolic execution to build the
exposures relation, representing the application's set of data exposures:

Operations = {read, write}
Constraints C first-order predicates over requests

and databases
exposures C Requests x Constraints x

Operations x Resources

The exposures relation characterizes the conditions (#) under which the appli-
cation code allows a particular resource to be read or written. (db, req, res) E
response =- # means that if the application exposes resource res, it must be un-
der conditions q-in other words, # captures the conditions the application places on
that exposure. The set of read and write exposures is constrained to contain exactly
one exposure per possible response or update allowed by the application, each one
accompanied by the condition imposed by the application.

Vdb, req, res, # . ((db, req, res) E response => 0) 4==>

(req, #, read, res) E exposures
Vdb, req, res, 4 . ((db, req, res) E update = 4) <=

(req, #, write, res) E exposures

SPACE builds the exposures relation using symbolic execution. It invokes each
action of the web application under analysis, passing a symbolic value for the database
and for the user-supplied parameters. At each invocation of the render method (which
causes Rails to render an HTML page), SPACE enumerates the symbolic values flowing
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from the database and parameters to the renderer and constructs an exposure. This
exposure has the form (req, /, read, res), where req is the original symbolic request,
0 is the path condition derived from the symbolic execution, and res is the symbolic
expression representing the database resource being exposed.

Similarly, when SPACE finds an invocation of the save or update methods (which
cause Rails to update the database), it constructs an exposure of the form (req, q, write, res),
where req is the request, # is the current path condition, and res is a symbolic ex-
pression representing the database resource being updated.

6.1.2 Role-Based Access Control

As a basis for representing security policies, we adopt the role-based access control
model of Sandhu et al. [42] (specifically, RBACO). The standard model of role-based
access control consists of sets Users, Roles, Permissions, and Sessions, over which the

following relations are defined to assign permissions and users to roles:

permissiona C Permissions x Roles
user, C Users x Roles

We adopt the extension of this model by Ferraiolo et al. [26] with Objects and
Operations, where Objects contains the targets of permissions (which will correspond
to the web application's resources) and Operations (for our applications) contains the
operation types read and write already used in the definition of the exposures relation.
This model defines Permissions to be a set of mappings between operations (either
read or write) and objects allowed by that permission:

Permissions = P( Operations x Objects)

6.1.3 Security Pattern Catalog

Each pattern in our catalog specializes the generic RBAC model by adding specific
constraints on these relations. These constraints are designed to prevent users from
accessing objects in ways that differ from the common web application use-cases.
Each one of these pattern definitions corresponds to a standard use case for resources
in web applications; in effect, the patterns "whitelist" the kinds of data accesses that
we expect to succeed.

Access Pattern 1: Ownership. In most applications, resources created by a user
"belong" to that user, and a resource's creator is granted complete control over the
resource. To express this use case, we define a relation owns between users and
objects, and then allow those owners to perform both reads and writes on objects
they own:

owns C Users x Objects
VU, o . (u, o) E owns =>

*r . (u, r) c useraA
((read, o), r) E permissiotaA

((write, o), r) E permissiona
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Access Pattern 2: Public Objects. Many applications make some resources

public. A blog, for example, allows anyone to read its posts. This pattern defines

PublicObjects to be a subset of the larger set of Objects, and allows anyone to read

(but not write) those objects:

PublicObjects C Objects
Vu, r, o, p . o E PublicObjects A (u, r) E usera *

((read, o), r) c permissiona

Access Pattern 3: Authentication. Every application with access control has

some mechanism for authenticating users, and many security holes are the result

of the programmer forgetting to check that the user is logged in before allowing

an operation. To model authentication, this pattern defines logged in, a (possibly

empty) subset of Users representing the currently logged-in users, and constrains the

system to allow permission only for logged-in users (except for public objects):

logged in C Users

Vu, r, o, op, p .
(u, r) E usera A ((op, o), r) E permission0

(op = read A o E PublicObjects)V
u E logged_ in

Access Pattern 4: Explicit Permission. Some applications define a kind of

resource representing permission, and store instances of that resource in the database.

Before allowing access to another resource, the application checks for the presence of a

permission resource allowing the access. To model this use case, this pattern defines

Permission Objects to be a subset of Objects, defines a relation permits relating a

permission object to the user, operation, and object it gives permission to, and allows

users to perform operations allowed by permission objects:

PermissionObjects C Objects
permits C Permission Objects x Usersx

Operations x Objects
Vu, o, p, op. (p, u, op, o) E permits =*

3.r,. (u, r) E usera A ((op, 0), r) E permissiona

Access Pattern 5: User Profiles. Applications with users tend to have profile

information associated with those users, and allow other users to view that informa-

tion. Programmers commonly forget checks requiring that the user updating a profile

must be the owner of that profile; this pattern constrains the allowed writes on users

so that no user can update another user's profile:

Vu . 3r . (u, r) E usera A ((write, u), r) E permission.

Access Pattern 6: Administrators. Many applications distinguish a special class

of users called administrators that have more privileges than normal users. We can

represent these users with a special role called Admin, which grants its users full

permissions on all objects:
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Admin E Roles
Vo . ((read, o), Admin) e permissionaA

((write, o), Admin) E permission0

Access Pattern 7: Explicit Roles. A few applications specify distinct roles and
represent them explicitly using a resource type. They then assign roles to users and
allow or deny permission to perform operations based on these assigned roles. This
pattern introduces a level of indirection to allow mapping these resource-level role
definitions to the RBAC-defined set of roles:

RoleObjects C Objects
object_ roles C RoleObjects x Roles

user_ roles C Users x RoleObjects
Vro, r, u . (ro, r) E object rolesA

(u, ro) E user_ roles =>

(u,r) E user,

6.1.4 Mapping Application Resources to RBAC Objects

To compare the operations allowed by an application to those permitted by our secu-
rity patterns, a mapping is required between the objects defined in the RBAC model
and the resources defined by the application. In many cases, this mapping is obvious

(a resource named "User" in the application, for example, almost always represents
RBAC users), but in general it is not possible to infer the mapping directly.

SPACE asks the user to define this mapping. Formally, it is a mapping from types
of application resources to types of RBAC objects; the mapping is a relation, since
some application resources may represent more than one type of RBAC object. The
set of resource types can be derived from the application's data model (which is
present in its source code), and the set of RBAC object types is based on the formal
model of RBAC defined here.

TResource = application-defined types

TRBA C = User, Object, Perm issionObject,
OwnedObject, PublicObject,
RoleObject}

map C TResource X TRBAC

We also need to provide definitions from the application for the new concepts
introduced in our pattern definitions: PublicObjects, Permission Objects, and the owns
and permits relations. The map relation can be used to define public and permission
objects, but we must define a separate mapping from field names of resources to the
corresponding relations they represent in our security patterns. We use mapfields for
this purpose.

FieldNames = application-defined field names
RelationNames = {owns, permits, logged in,

object_roles, user_ roles}
mapei,1d, C FieldNames x RelationNames
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Finally, we define session relating web application Requests and the currently logged-
in RBAC User:

session C Requests x Users

The session relation is needed to determine the currently logged-in user (if any-some
requests are sent with no authentication) of the application. Since Rails has session
management built in, this mapping can be inferred automatically.

6.1.5 Finding Pattern Violations

To find bugs in a given application, the goal is to find exposures that are not allowed
by some security pattern. For each exposure in exposures, this process proceeds in
two steps.

To check exposure (req, 4, op, res):

1. Build a specialized constraint 0' from # by substituting RBAC objects for ap-
plication resources using the map relation supplied by the user.

2. Determine whether or not some pattern allows the exposure by attempting to
falsify the formula:

0' = (u, r) E usera = ((op, obj), r) E permission,

where u, r and obj are RBAC objects corresponding to the current user sending
req and the resource res. Intuitively, this formula holds when the conditions
imposed by the application imply that some pattern allows the exposure.

Building #'. We use map to build a specialized constraint 0' from 0 as follows:

* Replace each reference res to an application resource in # with an expression
{r| (res, T) E map} representing the corresponding set of possible RBAC objects.

* Replace each field reference o.f ld in 0 with an expression {o'1 (fld, r) E mapfilddA

(o', o) E r} representing a reference to the corresponding relation defined by our
security patterns.

Intuitively, this means replacing references to application resources with the corre-
sponding RBAC objects (based on the user-supplied map), and replacing references
to fields of resources that represent object ownership, permission type, or permission
for a particular object with formulas representing those concepts in terms of RBAC
objects.

Checking Conditions. For each (req, 0, op, res) C exposures:

" Let #' be the result of performing substitution on # using the user-supplied
map.

* Let obj be the RBAC objects corresponding to the application resource res, so
that if (res, o) E map then o c obj.
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e Let u be the current user, so that (req, u) E session.

* Then the following formula must hold:

#' =t Vr. (u, r) E user, A ((op, obj), r) E permissiona

This process checks that if the specialized condition holds, then a pattern exists allow-

ing the current user u to perform operation op on the RBAC object obj corresponding

to the resource res acted upon by the application code. If a counterexample is found,
it means that the application allows the user to perform a particular operation on

some object, but no security pattern exists allowing that action. In other words,
such a counterexample represents a situation that does not correspond to one of our

common use-cases of web applications, and is likely to be a security bug.

6.2 SPACE: A Pattern-Based Bug Finder

SPACE is designed primarily to find mistakes in the implementation of an application's
security policy. Most often, these mistakes take the form of missing security checks.

In this section, we describe an example open-source application (MediumClone) and

demonstrate how we used SPACE to find security bugs in its implementation.

6.2.1 Example Application: MediumClone

MediumClone' is a simple blogging platform designed to mimic the popular web site

Medium. Using MediumClone, users can read posts and log in to create new posts

or update existing ones. The site requires users to sign up and log in before writing

posts, and prevents users from modifying others' posts.

MediumClone is written in Ruby on Rails 2 , a popular web application program-
ming framework for the Ruby programming language. A Rails application is com-
posed of actions, each of which handles requests to a particular URL within the appli-
cation. Controllers are collections of actions; conceptually, each controller's actions

implement an API for interacting with a resource exposed by the site. Resources are

defined using the ActiveRecord library, which implements an object-relational mapper

to persist resource instances using a database, and which provides a set of built-in

methods for querying the database for resource instances.

Figure 6-1 contains a part of the controller code for MediumClone's UserController,
which define actions to provide a RESTful API for user profiles. Following the REST
convention, the show action is for displaying profiles, the edit action displays an HTML
form for editing the profile, and submitting that form results in a POST request to
update action, which actually performs the database update (using updateattributes).

The call to before filter installs a filter-a procedure that runs before the action
itself-for the show and edit actions. The filter checks that the logged-in user has
permission to perform the requested action, and redirects them to an error page if

lhttps://github.com/seankwon/MediumClone
2http://rubyonrails.org/
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class UserController < ApplicationController
beforefilter :signed in user, :only =- [:show, : edit, :update]
beforefilter :correct_ user, :only =4 [:show, : edit]

def show
@user = User.find (params[: id])
@posts = find_ posts_ by_user_ id @user.id
@editing = true if signedin?

end

def edit
@user = User.find (params[: id])
@url = '/user/' + params[:id]

end

def update
@user = User.find (params[: id])
if @user.updateattributes(user_ params)

redirectto @user, success: ' Editing successful !'

else
redirectto edit_ user_ path(@user.id), error : ' Editing failed !'

end
end

end

Figure 6-1: Controller Code for MediumClone
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not. This use of filters-to enforce security checks-is common in Rails applications,
and helps to ensure that checks are applied uniformly to all the appropriate actions.

6.2.2 MediumClone's Security Bug

The code in Figure 6-1 contains a security bug: it fails to apply the correctuser filter
to the update action. As a result, an attacker can craft an HTTP POST request
and send it directly to the update URL of the MediumClone site to update any user
profile. The filter is properly applied to the edit action, ensuring that a user can only
retrieve this page for his or her own profile.

In our experience, this kind of mistake is common in web applications. The
developer's assumption is that users will use the interface provided by the site (in
this case, the user will use the edit page to make changes, and will be shown an
error message if that action is not allowed), and will not craft malicious requests to
constructed URLs. As a result, developers often do not consider paths to a particular
piece of action code that are not accessible through the application's interface, and
therefore forget to include vital security checks.

6.2.3 Finding the Bug Using SPACE

SPACE compares the checks present in the application code against its built-in catalog
of common security patterns. When the application code is missing security checks
required by the appropriate pattern, SPACE reports a bug in the code.

Mapping to Role-based Access Control. To ensure generality, SPACE's security
patterns are formalized in terms of the concepts of the role-based access control
(RBAC) model. This model defines sets of users, roles, operations, and objects, and
defines a set of permissions allowing an operation on an object.

SPACE's formal models of security patterns enforce security checks by restricting
the definitions of these relations. In order to check these patterns against a piece of
code, the user provides a mapping of the application's resources to the sets of con-
ceptual objects defined in the RBAC model. MediumClone AAs User type represents
the User type in the RBAC pattern, and Posts are special RBAC objects that have
an owner. The user provides this mapping for MediumClone as follows:

Space.analyze do
mapping User: RBACUser,

Post: OwnedObject(user: owns)
end

Running SPACE. SPACE takes the mapping defined above and MediumClone's
source code and attempts to find a security violation based on its catalog of security
patterns. SPACE uses symbolic execution to discover the checks (security-related and
otherwise) present in the application code, then verifies that those checks imply the
set of checks required by the pattern catalog. Intuitively, this is the case when the set
of checks present in the code is a superset of those present in the pattern catalog, so
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Figure 6-2: SPACE Counterexample Showing MediumClone Security Bug: user can
update another user's profile
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id

Figure 6-3: SPACE Counterexample Showing a Second MediumClone Security Bug:
unauthenticated user ("NoUser") can update any post
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checks unrelated to security issues simply do not contribute to satisfying this property

(and are therefore ignored).
The mapping provided by the user translates between the RBAC concepts con-

strained by the pattern catalog and the resource types defined in the application code.
SPACE uses this mapping to specialize the constraints derived from the checks present
in the code to the set of RBAC objects, so that the two sets of security checks can
be compared.

SPACE compares the specialized constraints against the constraints required by
the applicable pattern from the catalog. When MediumClone exposes user profiles,
this is the User Profile Pattern, which requires that users can update only their own
profiles.

When SPACE finds a missing check, it builds a counterexample demonstrating the
security vulnerability caused by the missing check. The counterexample is specific to
the application code under analysis: it involves resource types defined in the code,
rather than RBAC concepts. SPACE also reports the check present in the pattern
catalog that is missing in the application code.

For MediumClone, SPACE produces the counterexample shown in Figure 6-2. The
"UpdateO" box indicates that an update is possible on the profile of "AUserO" (the
"target"-a renaming of "User" to avoid clashes) by the distinct "AUseri" (the "cur-
rent user", or currently logged-in user).

This counterexample demonstrates a user updating another user's profile using
the update action-a situation that, according to the security pattern catalog, should
not be allowed. The bug can be fixed by adding :update to the list of actions for
which the : correct user filter is used to enforce security checks.

More Bugs in MediumClone. Running SPACE on the fixed MediumClone code, we
discover a new counterexample, shown in Figure 6-3. This counterexample suggests
that Post resources in MediumClone can be updated not only by users who did not
create them, but by users who are not logged in ("NoUser") at all! The code for
PostController begins as follows:

class PostController < ApplicationController
beforefilter :signed in user, :only -> [:new, :create, : edit]

def new
Opost = Post.new
Ourl = '/post/create'

end

end

This controller definition checks that the user is logged in before performing the
new, create, and edit actions, but omits this check for the update action. In addition,
the definition makes no attempt to ensure that the current user owns the post being
modified.

This bug is especially interesting because a condition of the intended security
policy-that users only modify their own posts-is forgotten across the entire appli-
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cation codebase. This mistake exemplifies a class of bugs that are difficult to detect
with testing or with existing consistency checkers like Derailer [37].

6.3 Implementation of SPACE

We have developed an implementation of our technique, called SPACE (Security
PAtern CheckEr), that finds security bugs in Ruby on Rails web applications. SPACE
uses the symbolic execution framework previously developed for Derailer [37] to ex-
tract a set of exposures from a given application. Then, SPACE's constraint specializer
uses the resource-to-object mapping provided by the user to specialize the constraints
of each exposure to the set of role-based access control (RBAC) objects. The result-
ing specialized constraints are written in the Alloy specification language, a variant of
first-order relational logic with transitive closure; the basic RBAC framework and our
security patterns are also specified in Alloy. Finally, SPACE uses the Alloy Analyzer-
an automatic bounded verifier for properties of Alloy specifications-to find security
bugs by comparing the specialized constraints against the formal models of security
patterns. Figure 6-4 contains a graphical overview of SPACE's architecture.

6.3.1 Extracting Exposures

SPACE uses the symbolic execution framework we defined in chapter 4 to extract
exposures from a target Rails application. SPACE enumerates the actions defined by
the application; for each one, it constructs a symbolic request and runs the action
symbolically. The set of symbolic objects present on the resulting rendered pages is
the set of possible exposures for that action.

Rendering. A Rails action serves a request in two steps: first, the code defined in the
controller populates a set of instance variables; then, Rails evaluates an appropriate
template-which may reference those instance variables-to produce an HTML string.
SPACE wraps the Rails renderer to extract the set of symbolic values that appear on
each rendered page. These values, along with the constraints attached to them,
contribute to the set of exposures resulting from the action being executed.

6.3.2 Constraint Specializer

The constraint specializer substitutes objects from our model of role-based access con-
trol for references to application resources in the constraints present on the exposures
generated in the symbolic execution phase. The user provides a mapping defining
how this substitution should proceed; the specializer uses the mapping to perform
substitution and translate the specialized constraints into the Alloy language.

User-provided Mapping. As in the example in Section ??, the user provides the
mapping between application resources and role-based access control objects using a
SPACE-provided embedded domain-specific language. This mapping specification has
the following form:
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95

C

Constraint Specializer



Space.analyze do
mapping mapspec

end

where map spec is a dictionary (a Ruby hash) mapping application-defined re-
source types and RBAC object types (for example, User: RBACUser means that the

User class represents RBAC users). The RBAC object types optionally accept an-
other dictionary as an argument, to specify a mapping between field names of the
application-defined resources and relation names of the pattern catalog (for example,
Post: OwnedObject(user: owns) means that the Post class is an RBAC object with an
owner, and the user field of that class stores the post's owner).

Resource/Object Substitution. As in Section 6.1.5, the specializer replaces all
references to names in the Resource set with references to their corresponding RBAC

objects in Object. A field reference r.f is replaced with a constraint in terms of the
relations defined by our patterns using the mapping from FieldName to MapRelation

(if one is present). Some field references are not security-related; for these, since no

mapping is provided, the specializer leaves them unchanged.

Translation to Alloy. Finally, the specializer translates the substituted constraints
into Alloy for comparison to the security pattern models. Since Alloy is based on
first-order relational logic, this translation is straightforward.

6.3.3 Pattern Library

We model web applications and role-based access control in Alloy after the formal

description given in Section ??. We also model the security patterns described in Sec-

tion 6.1.3. Each pattern defines an Alloy predicate specifying the general constraints

it imposes on the security checks required in an application. The patterns that define

new subsets of the set of RBAC objects are modeled Alloy's extends keyword, and

the new relations defined by the pattern catalog are represented using Alloy's global

relations.

6.3.4 Bounded Verification using the Alloy Analyzer

Alloy [30] is a specification language based on first-order relational logic with tran-
sitive closure. SPACE uses Alloy to represent both the complete pattern catalog

presented in Section ?? and the specialized constraints derived from an application's
exposures.

SPACE uses the Alloy Analyzer to compare the specialized constraints to the secu-

rity pattern models and find bugs. The Alloy Analyzer is a tool for automatic bounded

analysis of Alloy specifications; it places finite bounds on the number of each type

of atom present in the universe, then reduces the specification to propositional logic.

Alloy's model finder, Kodkod [501, handles the translation from relational logic to

a satisfiability problem using algorithms that optimize relational expressions. This

makes Kodkod, and thus Alloy, especially suited to database-backed applications.
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Application LOC Exposures Generation Verification Bugs False Bound
Time Time Found Positives Required

rails3-bootstrap-devise-cancan 1103 16 45.02 s 7.66 s 0 0 -
fb-graph-sample 655 87 41.13s 8.31 s 2 1 2

jquery-fileupload-rails-paperclip 727 15 28.71 s 7.11 s 0 0 -

ember-auth-rails-demo 742 28 28.94 s 6.48 s 0 0
ember-rails-devise-demo 619 24 29.84 s 3.25 s 0 0 -

sportbook 3568 94 49,67s 7.16 s 4 0 3
rails-container-and-engines 778 39 23.94 s 7.20 s 0 3 -
TOT2 1470 54 34.07 s 5.21 s 2 0 2

bootstrap-rails-startup-site 389 17 41.00 s 4.72 s 0 0 -
furatto-rails-start-kit 293 16 44.69 s 4.95 s 0 1
postgis-on-rails-example 206 22 21.56 s 4.14 s 0 0 -

jqm-rails 340 43 24.66 s 3.84 s 3 0 2
rails-4-landing 800 21 41.67 s 3.09 s 0 0 -

redport 142 9 22.68 s 3.73 a 0 0 -
league-tutorial 833 31 22.50 s 3.14 s 0 2 -

requirejs-rails-jasmine-template 197 11 23.36 s 8.17 s 0 0 -

grinch 1059 24 32.27 s 5.44 s 0 0 -
rails-angularjs-example 423 17 23131 s 8.18 s 0 0 -

railscrm-advanced 2373 132 59.75 s 4.63 s 5 0 3

dreamy 243 13 22,14s 8.84s 0 1 -
tada-ember 200 8 26.60 s 6.67 s 0 0 -

ribbit 473 41 24.53 s 3.35 2 0 2
test-signet-rails 282 20 27.05 s 4.51 s 0 0 -

yelp 1077 48 21.78 s 6.55 s 0 1
world.db.admin 866 63 27.95 s 7.22 s 0 0 -
MediumClone 797 46 38.43s 3.43 s 4 0 2

permissions 523 58 22.82 s 7.82 s 0 0 -
rails-devise-backbone-auth 296 14 26.19 s 7.69 s 0 1
geochat-rails 9596 89 49.32 s 3.99 s 0 0 -
rails-api-authentication 1003 51 32.22 s 4.56 s 1 0 2

Figure 6-5: Results of Running SPACE on the 50 Most-Popular Open-Source Rails

Applications on Github

To perform the analysis, SPACE builds a single Alloy specification containing the

model of role-based access control, the definitions of security patterns, an Opera-

tion definition for each exposure, and a predicate application _policy imposing the

specialized constraints on those operations. Finally, SPACE invokes the Analyzer to

check that for all exposures, application_ policy implies pattern _catalog-the name of

the predicate in our model that imposes the constraints from our pattern catalog.

6.4 Evaluation

In evaluating SPACE, we examined two questions:

0 Is SPACE effective at finding bugs? We applied SPACE to the 50 most pop-

ular open-source Ruby on Rails applications on Github. Of those applications

implementing access control, SPACE found bugs in nearly one-third-a total of

23 bugs. SPACE reported a total of 10 false positives in addition to these actual

bugs. These results suggest that SPACE is effective at finding security bugs and

does not produce excessive false positives.
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* How does the bound selected for verification affect the number of bugs
found and the scalability of the analysis? Since SPACE uses our existing
symbolic execution framework, our earlier experiments suggest that exposure
generation scales well to large applications. The addition of a bounded verifi-
cation step, however, creates new scalability challenges. For the bugs found in
the experiment described above, we re-ran the bounded verification step at pro-
gressively lower finite bounds until the verifier no longer detected the bug. The
minimum finite bound sufficient for all of the bugs we found was 3; SPACE uses
a bound of 8 (meaning 8 objects of each type are included in the finite universe
considered by the analysis) by default. We recorded the verification time for
these analyses, and found that for a bound of 8, the verification step finished
in under 10 seconds for all applications. These results suggest that SPACE's
default bound of 8 is a good compromise between minimizing verification time
and maximizing the number of bugs detected.

6.4.1 Bug-Finding and False Positives

We tested SPACE on the 50 most-popular open-source Ruby on Rails applications
hosted by Github. We approximated popularity based on the number of "stars" a
project has. These applications fall into two basic categories: mature, stable ap-
plications intended for installation by end-users (which are popular because of their
user base), and fragments of example code intended for helping programmers to build
new applications (which are popular because they are copied and pasted into other
applications). Security bugs are a serious issue in both types of application: in ma-
ture applications, they make user data vulnerable, while in example code, they can
propagate to other applications that have copied the code.

Building Mappings. We first performed a brief examination of each application's
code, and eliminated those applications with no access control whatsoever. This
left 30 applications implementing some form of access control. For each of these 30
applications, we constructed a mapping from application resource types to RBAC
object types as detailed in section 3. We used application documentation and the
code itself as a guide in constructing the mapping; in most cases, it was a trivial
process, involving mapping the "User" type to RBAC users, a "Permission" type to
permission objects, a subset of resources to owned objects, and perhaps one or more
resources representing roles to role objects. This process took us approximately 10
to 15 minutes per application.

Experimental Setup. We used Ubuntu GNU/Linux on a virtual machine equipped
with a single Intel Xeon core at 2.5GHz and 2GB of RAM. We used RVM to install the
version of Ruby required by each application and Bundler to install each application's
dependencies. We ran SPACE on each application using its default finite bound of
8 (atoms per data type) for the verification step. After running the experiment, we
examined each reported bug and classified it as either a duplicate, a false positive, or
a real bug.
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No. Bugs Pattern Violated
5 Ownership
2 Public Objects

10 Authentication
3 Explicit Permission
3 User Profiles

Figure 6-6: Classification of Bugs Found by Pattern Violated

Results. The results of the experiment are summarized in Figure 6-5. In total,
SPACE reported 23 bugs and 10 false positives. The longest analysis took 64 seconds,
while the average time was 38 seconds. In most cases, the symbolic execution step
(generating the exposures) took most of the time. All of the bugs we found would
have been detected using a finite bound of 3-well below SPACE's default bound of
8.

Bugs Found. Figure 6-6 classifies the 23 bugs we found according to the pattern
they violated. The largest category by far is Authentication, indicating that the check
programmers forget most often is the one ensuring that the user is logged in. The
next largest categories, Ownership and Explicit Permission, indicate situations in
which a user is allowed to view or modify a resource owned by someone else without
permission. The User Profiles category includes situations where a user can modify
another user's profile, and the Public Objects category includes bugs where a resource
was marked public when it should not have been.

We did not find any bugs violating the Administrator or Explicit Roles patterns.
Where the applications in our experiment used these patterns, they used them cor-
rectly.

e Authentication failure (6/23): the programmer forgot to make sure that the
user was logged in before allowing access (either read or write) to a resource.

e Forgotten Read Check (5/23): the programmer forgot a security check,
allowing the user to read a resource he or she did not have permission to see.

e Forgotten Write Check (12/23): the programmer forgot a security check,
allowing the user to write to a resource he or she did not have permission to
modify.

The vast majority of vulnerabilities we discovered involved accessing a URL di-
rectly, rather than clicking on links defined by the programmer. This is the kind of
security bug that is difficult to detect using testing, because the programmer writing
the test cases is biased towards the standard use cases of the application, and often
ignores access paths outside of those use cases.

Incorrect Mappings. SPACE relies on the user-provided mapping both to determine
the correct pattern and to correctly populate the set of RBAC objects for its analysis.
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If the wrong pattern is applied, then SPACE could miss bugs: for example, if all objects
are marked public in the mapping, then SPACE will not report any read access as a
bug. An incorrect mapping can also cause false positives: applying a too-restrictive
pattern will yield bugs on accesses that the developer actually intended. We consider
false positives less problematic than false negatives, because the user receives some
feedback that a problem exists (rather than a silent failure to find a bug).

In our experiments, we mitigated both problems by starting with very restrictive

patterns and using the false positives reported to refine our mappings. This was
effective for our experiment, since we did not always know ahead of time what the

target applications were intended to do. We expect this strategy will also be useful
for users, who will be even less likely than we were to create buggy mappings (since
they know their own applications well).

False Positives. In our experiment, SPACE produced a total of 10 false positives.
All of these were situations in which the application exposed a particular field of a
resource in a different way from the other fields of that resource. Because SPACE
maps whole resource types to RBAC objects, it does not allow per-field permissions
to be specified.

However, this limitation is not inherent in our approach-it is a decision made
in the design of SPACE to make constructing the mapping from resources to RBAC
objects easier. A finer-grained mapping would eliminate these false positives, but

constructing it would require more effort from the user. For our prototype imple-
mentation, we decided that users would find it easier to examine and discard false
positives than to spend more time constructing the mapping.

False Negatives. The possibility of false negatives is inherent to our approach:
our security patterns are intended to capture common use cases of web applications,
but some applications may intend to implement a security policy that is more re-
strictive than the common cases expressed by our patterns. A mistake in such an
implementation would not be caught by our technique.

For example, an e-commerce web site may implement administrative access, but
may disallow even administrators from viewing customers' saved credit card numbers.
Our catalog, on the other hand, includes a pattern allowing administrators to view
everything. In this case SPACE would not raise a false positive, since every exposure

allowed by the application is also allowed by the pattern. However, if the programmer
introduced a bug allowing administrators to view credit card numbers, then SPACE
would not find the bug, since the intended security policy is actually more restrictive
than the pattern SPACE has applied.

We examined the code of the applications in our experiment for precisely this
situation-security policies intended (based on evidence in the code itself) to be more
restrictive than the corresponding patterns in our catalog-and found none. Given
the correct user-provided mapping, the patterns applied by SPACE were always at
least as restrictive as those enforced by the target applications.

This result gives us confidence that SPACE did not miss any bugs. Since our
patterns were just as restrictive as the policies enforced by the applications, any
mistake in enforcing those policies would have contradicted the corresponding pattern,
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Figure 6-7: Effect of Finite Bound on Verification Time

and resulted in a bug report.

6.4.2 Choice of Finite Bounds

SPACE uses the Alloy Analyzer, a bounded first-order verifier, to perform its verifi-

cation step. For each analysis, the Alloy Analyzer requires the user to place finite

bounds on the number of objects of each type it will consider. Since these bounds can

affect not only the scalability of SPACE but also its ability to find bugs (because bugs

requiring a counterexample larger than the finite bound will be missed), choosing the

default bound carefully is vital.
To determine the effect of the choice of finite bounds on the time taken in the

verification step, we ran that step against the applications in Figure 6-5 using finite

bound settings from 3 to 15. Figure 6-7 contains the results, which indicate that the

verification step seems to run in an acceptable time at finite bound settings below

10. Above that bound, the verification time grows quickly. This experience-that

performance is good below a particular "threshold" but degrades quickly thereafter-is

common when using the Alloy Analyzer.
We used these results, along with the knowledge that a finite bound of 3 was

sufficient to detect all the bugs we found, to select SPACE's default bound of 8. Users

of SPACE are welcome to select a different bound in order to tune the verifier for

either faster running time or more confidence that no further bugs exist.
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6.5 Related Work

Conceptually, our catalog of security patterns is similar to the built-in specifications
of common bugs that static analysis tools have used for decades: memory errors, race
conditions, non-termination, null pointer exceptions, and so on. Like SPACE, tools
that attempt to find these classes of bugs can run without user input. However, these
specifications represent a blacklist-a model of situations that should not occur-in
contrast to our catalog of patterns, which whitelist only those situations that should
occur.

Our pattern catalog is similar in approach to the formal model of web security
by Akhawe et al. [11, which defines a general model of the actors (browsers, servers,
attackers etc.), and threats (XSS, CSRF, etc.) involved the larger picture of web
security problems, then uses a constraint solver to discover attacks that potentially
involve several different components; the model is not directly applicable to code. Our
technique, by contrast, focuses on mistakes in access control policies, and compares
the model against the code automatically.

Commercially-available web application "scanners" also use built-in libraries of
specifications to automate their analyses, but these are typically specifications of
attacks, and in contrast to our whitelist-based approach, are used as a blacklist to
find potential attacks. Examples of such tools include the Trustwave App Scanner3 ,
netsparker4, IBM AppScan5 , and HP WebInspect'. These tools are useful for finding
common cross-application bugs, such as injection, XSS, and CSRF, but cannot find
the application-specific bugs we target.

3https://www.trustwave.com/Products/Application-Security/App-Scanner-Family/
4https://www.netsparker.com/web-vulnerability-scanner/
5http://www-03.ibm.com/software/products/en/appscan
6http://www8.hp.com/us/en/software-solutions/webinspect-dynamic-analysis-dast/
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Chapter 7

Full-functional Verification with
Rubicon

This chapter discusses Rubicon, a bounded verifier for Ruby on Rails applications.
Rubicon allows programmers to write specifications of the behavior of their web appli-
cation and performs automatic bounded analysis to check those specifications against
the implementation. Rubicon's specification language is expressive but based on a
popular domain-specific testing language, and its analysis is implemented as a Ruby
library.

Rubicon's specification language extends the RSpec testing language 116] with the
quantifiers of first-order logic, allowing programmers to replace RSpec tests over a set
of mock objects with general specifications over all objects. This compatibility with
the existing RSpec language allows converting existing test cases into specifications.

Rubicon's automated analysis comprises two parts. First, Rubicon generates ver-
ification conditions from the code and specifications; second, it invokes a constraint
solver to check those conditions. Rubicon uses symbolic execution to execute both
code and specification, producing verification conditions rather than values. To check
the verification conditions, Rubicon compiles them into Alloy 130], a lightweight speci-
fication language whose analyzer is an automatic, bounded model finder for relational
first-order logic. Alloy's logic is a good match because its semantics closely match
those of relational databases, but the solving of the verification conditions is a sepa-
rate problem, and in principle might be handled with a different technology (e.g. an
SMT solver or theorem prover).

We evaluated Rubicon on five open-source web applications for which the original
developers had already written RSpec tests. The author converted a random sample
of these tests into Rubicon specifications; in every case, Rubicon's analysis took no
more than a few seconds per specification. In the largest of these applications, a
customer relationship management system called Fat Free CRM, Rubicon's analysis
uncovered a previously unknown security bug. The authors of Fat Free CRM have
acknowledged and fixed this bug.
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7.1 Specifying Behavior

Rubicon provides an embedded domain-specific language for writing specifications.
This language is based on RSpec [16], a testing framework for the Ruby language
whose goal is to make testing easier and more useful, and that has made test-driven
design popular amongst Ruby programmers. RSpec tests are concise, avoid repeti-
tion, and resemble English specifications of application features. The framework also
encourages programmers to write documentation for each test by providing fields for
that documentation and using it to generate error reports when tests fail.

The Rubicon language is designed for writing specifications of Rails applications.
Rails is a popular web programming framework for Ruby, and was designed specifically
to allow testing with RSpec. The integration of Rails with RSpec means that test-
driven development is just as popular in the Rails community as it is in the larger
Ruby community, and many open-source Rails applications are shipped with large
RSpec test suites.

7.1.1 The RSpec Approach

To introduce the style of testing promoted by the RSpec library, we take the open-
source Rails application Fat Free CRM1 as a case study. Fat Free CRM is a customer
relationship management system (CRM) designed to be tailored for different organi-
zations. Development began in 2008. Fat Free CRM is released under the AGPL, has
a codebase of roughly 23kloc, and is accompanied by a suite containing more than
1000 developer-written RSpec tests.

Figure 7-1 contains two examples of RSpec tests from the Fat Free CRM code-
base. The first (lines 1-8) is intended to test that the show action correctly displays
summaries of the site's users. What it actually tests is that a particular user (cre-
ated by the call to the Factory) is displayed. The test begins with a natural-language
specification of the feature under test (line 2); the body of the test (lines 3-7) is Ruby
code written in the RSpec domain-specific language. This particular test constructs
a mock object representing a single user (line 3), requests the summary page for that
user (line 4), and then checks that the user that will be displayed matches the mock
object just created (line 5). This check is written as an RSpec assertion, the general
form of which is a.should p b, where a and b are objects and p is a predicate describing
the desired relationship between them. The assigns variable is actually a Ruby hash
populated by the Rails framework to contain the names and values of the instance
variables set by the page request in line 4.

The second test (lines 10-17) is intended to check that private contacts are never
displayed to users other than their owners. What it actually tests is that a particular
private contact is hidden from a particular user. The test begins by building a mock
object for the private contact owned by a mock user (line 12). The test then attempts
to display the private contact (line 13). Since the mock user created as the owner of the
contact in line 12 is by default distinct from the mock user representing the currently

1http://www.fatfreecrm.com/
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describe UsersController do
it "should expose the requested user as @user and render [show] template" do

@user = Factory(: user)
get :show, : id #, @user.id
assigns [: user]. should == @user
response.should render tem plate("users/show")

end
end

describe ContactsController do
it "should redirect to contact index if the contact is protected" do

@private = Factory(:contact, :user a Factory(:user), :access #, "Private")
get :show, : id #, @private.id
flash [:warning]. should _ not == nil
response.should redirectto (contacts_ path)

end
end

Figure 7-1: RSpec Tests for Displaying Users and Restricting Access to Private Con-

tacts

logged-in user, this request should fail. The test checks that it does indeed fail by
asserting that the value of flash [: warning], which displays site errors, is populated

(line 14), and that the user should be redirected to the index of contacts (line 15).
Each test in Figure 7-1 checks a desirable property-the property the programmer

intended the program to have-for only a single case; these tests may easily miss

corner cases that the programmer does not anticipate. For example, users in Fat Free

CRM can be suspended. Fetching the page associated with a suspended user results
in an error. The first test in Figure 7-1 succeeds despite this corner case because of

the assumption, implicit in the use of a factory that creates non-suspended users by

default, that the user being tested is not suspended. Unfortunately, this assumption

is hidden from the programmer when factories are used, and it is difficult to anticipate

the resulting corner cases.

7.1.2 Adding Quantifiers

Rubicon allows programmers to write specifications for web applications by extending

the RSpec language with the quantifiers of first-order logic. Rather than testing just

a single case for compliance with the application's specification, Rubicon performs
symbolic execution for a truly arbitrary case, generates verification conditions that
cover all possible cases, and uses an automatic bounded verifier to check all of them
below a certain size.

Rubicon introduces two new methods on objects-forall and exists-which repre-
sent the universal and existential quantifiers of first-order logic. Both methods accept
a single argument: a Ruby block, representing the property over which the quantifier
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SpecFile describe <class> do <Spec*> end
Spec :: it <string> do <Expr*> end
Expr <Ruby Expression>

<object>.forall do lxi <Expr> end
<object>.exists do ixt <Expr> end
<class>.forall do lxi <Expr> end
<class>.exists do lxi <Expr> end
<Expr>.implies do <Expr> end
<object>.should_equal <Expr>
<object>.should_notequal <Expr>

<object>.should <Pred> <Expr>
<object>.shouldnot <Pred> <Expr>

Pred ==
be
include
raise

throw
respond to
have

Figure 7-2: Syntax of Rubicon Specifications

ranges; quantifiers succeed or fail in the same way as other RSpec tests.
Figure 7-2 specifies the core syntax of Rubicon specifications. Rubicon's syntax is

exactly that of RSpec, with the addition of quantifiers. A set of Rubicon specifications
begins with a describe block specifying the class being specified; each individual
specification is written inside an it block with a string documenting that specification.

A specification is simply a sequence of expressions, each of which may be a standard

Ruby expression or a Rubicon assertion. A quantifier is also an assertion; a.forall do

IJx b end means that the assertions in b should hold for all possible values of x from

the set a, and a. exists do I x b end means that the assertions in b should hold for at

least one value of x from a.
Figure 7-3 presents Rubicon versions of the RSpec tests from Figure 7-1. This

specification for displaying users (lines 1-9) quantifies over all users, rather than

testing the intended property for just a single user. The block passed to the forall

method is precisely the code we wrote in the original test-only the underlined code

has changed, reflecting the introduction of quantified variables in place of mock ob-

jects.
The specification for restricting access to private contacts (lines 11-25) changes

only slightly more. In order to check that permissions are respected no matter which

user is logged in, we quantify over users (line 13) and then set the logged-in user
correspondingly (line 15). To express the class of contacts for which the property
should hold, we introduce a logical implication (lines 17-18) whose left-hand side
requires that the contact's access should be set to private and that its owner should

be distinct from the logged-in user.
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describe UsersController do
it "should expose the requested user as @user and render [show] template" do

User.forall do luserl

get :show, : id a user.id
assigns [: user]. should == user
response.should rendertemplate(" users/show")

end
end

end

describe ContactsController do
it "should redirect to contact index if the contact is protected" do

User.forall do Iuserl

Contact.forall do jprivatel
set_ current user(user)

get :show, : id a private. id
((private.access == "Private") &

(private.user != user)).implies do

flash [: warning]. should_ not == nil
response.should redirect-to (contacts_ path)

end
end

end
end

end

Figure 7-3: Rubicon Specifications for Displaying Users and Restricting Access to

Private Contacts
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7.1.3 The Power of Specification

By generalizing tests into specifications of application behavior, programmers can
catch errors that tests alone are unlikely to find. Rubicon's automated analysis of
formal specifications can explore corner cases, check for general regression errors, and
build complicated object hierarchies for testing-areas in which standard RSpec tests
fall short. Moreover, Rubicon allows the programmer to replace complicated code for
constructing mock objects with simpler quantifiers.

The previously mentioned assumptions that accompany the use of factories to
construct test data can easily lead to bugs that are difficult to find using testing
alone. Because mock objects must take concrete values, a programmer will tend to
construct mock objects that represent the most common situation. Fat Free CRM
provides a good example: each contact has an associated list of opportunities, but
the contact factory assumes that list to be empty. The original RSpec test therefore
makes no mention of opportunities.

In writing specifications, on the other hand, the tendency is to provide as little
information as possible, so as to have the highest chance of discovering corner cases
that were not considered by the programmer.

The Rubicon specification in Figure 7-4 checks that permissions on all displayed
elements are respected when displaying a contact. The specification quantifies over
users, contacts, and opportunities (lines 3-5), sets the current user to the quantified

one (line 6), and requests the contact display page (line 7). The specification then
checks two properties: first, that for any contact, if that contact's permissions are
set to private and its contact's owner is not the current user, then that contact
should not be displayed (lines 9-12); and second, that for any opportunity, if that
opportunity's permissions are set to private and its owner is not the current user, then
that opportunity should not be included in the list of opportunities to be displayed
(lines 14-17).

This specification makes no assumptions about any properties of the contact and
opportunities in question; most importantly, it does not rule out the case that the
requested contact is public, but one of the associated opportunities is private and not
owned by the current user. Indeed, Rubicon catches this case immediately, returning
the following counterexample for the second property:

Su =User { : id = 1 ... }
c = Contact { :access => 'public', : user =a u,

: opportunities [o] ... }
o = Opportunity { :access =a 'private',

:user =: userl ... }

This counterexample represents the case in which the current user owns the contact
being displayed, but does not own the opportunity associated with that contact. Even
though that opportunity is private, it will be displayed to the user.

The blame for this fault lies in the assumption, made in the show action of the
contacts controller, that the permissions and ownership of a contact and its opportu-
nities will be identical. The show method uses the my method of the Contact class to
determine which contact to display; the developers of Fat Free CRM have redefined
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describe ContactsController do
it "should not display other users' private contacts or opportunities" do

User. forall do lul
Contact. forall do Icl

Opportunity. forall do 0l1
setcurrentuser(u)
get :show, : id -> c.id

((c. access == 'private') &

(c. user != u)). implies do
assigns [: contact]. should _not == c

end

((o.access == 'private') &

(o. user != u)). implies do
assigns [:contact]. opportunities shouldnot

include o
end

end
end

end
end

end

Figure 7-4: Rubicon Specification for Displaying Contacts
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describe ContactsController do
it "should be able to associate newly created contact with the opportunity" do

Oopportunity = Factory(: opportunity, : id =>. 987);
@contact = Factory. build (:contact)
Contact.stub !(: new).and return(@contact)

xhr :post, : create, :contact { :first-name # "Billy"}, :account {
:opportunity => 987

assigns (:contact). opportunities .should include (@opportunity)
response.should render_tem plate( "contacts/create")

end
end

Figure 7-5: RSpec Test for Contact Creation

the my method elsewhere so as to return only those records that the current user has
permission to view. Referencing a particular contact's opportunities field, however, ac-
cesses the associated opportunities directly, bypassing the redefined my method, and
ignoring the opportunities' permissions settings. If a user has permission to display
a contact, then, he or she will be able to access all of its associated opportunities,
regardless of their permission settings.

7.1.4 Exploiting the Bug

The corner case discovered in the previous section only qualifies as a serious security
bug if it is possible to exploit it. The exploit described in the counterexample requires
an invariant on the database to be broken-that the permissions of all the opportu-
nities associated with a particular contact are compatible with the permissions on
that contact. Rubicon can help us again, this time in checking whether or not it is
possible to create a new contact that violates the invariant.

Invariants can be checked the same way using tests, but the contrived nature of
test cases makes this strategy less useful than might be hoped-run-time assertions
checking for invariant violations are therefore much more popular. Figure 7-5 contains
the RSpec test written by the Fat Free CRM developers to check that the invariant is
preserved. As usual, this test uses mock objects (lines 3-5) to construct the common
case-one with the default permissions-creates a new contact (line 7), and tests that
the opportunity is correctly associated with the contact (line 8).

The corresponding Rubicon specification (Figure 7-6), on the other hand, quan-
tifies over all users, contacts, and opportunities (lines 3-5), constructs a new contact
associated with the quantified opportunity (line 7), and checks that if the opportu-
nity is private and not owned by the current user, then it should not be included in
the resulting contact's set of associated opportunities (lines 9-11)-in other words, it
should be impossible to create a contact that violates the invariant.

Once again, Rubicon's analysis yields a counterexample, informing us that it is
indeed possible to violate the invariant:
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describe ContactsController do
it "should not associate another user's private opportunity with newly created

contact" do
User. forall do luser|

Contact. forall do Icontactl
Opportunity. forall do lopportunityl
setcurrent_ user(user)
xhr : post, create, : contact * contact. attributes , : opportunity 4

opportunity.id

((opportunity. user != user) &
(opportunity. access=='private')). implies do

assigns [:contact]. opportunities .shouldnot include opportunity
end

end
end

end
end

end

Figure 7-6: Rubicon Specification for Contact Creation

zzuser = User {:id A= 1 ... }
contact = Contact { : opportunities

[opportunity] ... }
opportunity = Opportunity { :access

= 'private' , : user > userl }
Investigating the code for the create action in the contacts controller, we found that

the code that looks up the attached opportunity uses the find method, rather than

the permission-enforcing my method, to find the opportunity whose ID is referenced

in the HTML form submitted by the user.

Exploiting this security bug, then, is as easy as submitting a contact creation

request with the ID of another user's opportunity in the "opportunityid" HTML field.

The developers of Fat Free CRM have acknowledged the bug, and are working on a

fix.

7.2 Rubicon's Analysis

Rubicon is implemented as a library on top of Ruby, RSpec, and Rails. It extracts
verification conditions from specifications by using the standard Ruby interpreter
to perform symbolic, rather than concrete, execution; instead of concrete values,
this style of execution produces abstract syntax trees representing the appropriate
verification conditions. Rubicon then compiles the verification conditions into an

Alloy [30], a lightweight specification language for software engineering, and performs
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E(obj. forall b) Vx. E(b. call (x))
E(obj. exists b) ]x. E(b. call (x))
E(obj.should p e) E(obj. p(e))
E(obj.shouldnot p e) -E(obj.p(e))

E(e) Rubyinterpreter (e)

Figure 7-7: Semantics of Rubicon Specifications; "b" is a Ruby Block, "p" a Predicate,
"e" an Expression

bounded analysis using the Alloy Analyzer.

7.2.1 Rubicon's Semantics

Rubicon's semantics are intended to match those of Ruby precisely, and to combine
Ruby's semantics in a natural way with the standard semantics of the quantifiers of
first-order logic. Figure 7-7 contains an informal summary of Rubicon's semantics, us-

ing the standard quantifier symbols (V, ]) and a function representing the semantics of

the standard Ruby interpreter (RubyInterpreter). Given standard quantification over

Ruby values, we can represent Rubicon's basic assertions (should and should_ not)
by simply invoking the predicate on the object in question; a true result means that
the assertion holds. It is the goal of Rubicon's implementation to implement these
semantics faithfully.

7.2.2 Rubicon's Implementation

To implement the semantics in Figure 7-7, Rubicon transforms specifications into ver-

ification conditions represented as abstract syntax trees and checks those conditions

using a constraint solver. Figure 7-8 summarizes that transformation; the transfor-

mation is based on the use of symbolic objects defined by the Rubicon library to

represent quantified variables.
To avoid re-implementing the Ruby interpreter, Rubicon implements the trans-

formation from Figure 7-8 by persuading the standard Ruby interpreter to perform

symbolic execution. Rubicon accomplishes this by defining symbolic objects in such

a way that all method invocations on symbolic objects yield abstract syntax trees

rather than values. Since specifications necessarily refer to symbolic objects if they

use quantifiers, Rubicon can use the results of running code with symbolic objects to

build abstract syntax trees representing verification conditions for the specification.

This strategy seems to work especially well for web applications. We offer two

possible explanations based on our experience: first, the database schema of a web
application specifies exactly the set of possible symbolic objects, limiting the size

of that set; and second, web applications typically move much of the application's
logic into the database, so the remaining code has few branches. Moreover, when

specifications are partial (as they tend to be when generalized from tests), much of
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C(obj. forall b)
C(obj. exists b)

C(obj.should p e)
C(obj. attribute )
C(obj.meth(args))
C(obj.where(e))

C(e)

all(x, C(b. call (x))
some(x, C(b. call (x))

(X is a new symbolic object)

call(:should, C(obj), C(p),C(e))
field ref(C(obj), C(args))
call(meth, C(obj), C(args))
query(v, obj, C(e))

(if obj is symbolic)

Rubylnterpreter (e)

(if e is concrete)

Figure 7-8: Compiling Specifications to Abstract Syntax Trees

Normal Test

Rspee

Hbrres

Rubicon Check

counterexample

Figure 7-9: Comparison Between RSpec Execution and Rubicon Analysis

the execution takes place over concrete objects (e.g. the application's settings, or the
page to be fetched) using the standard Ruby interpreter.

A diagram comparing Rubicon's execution model to that of RSpec is presented
in Figure 7-9. Rubicon's analysis proceeds in three parts: first, the Rubicon library
stubs the standard libraries and ActiveRecord objects; second, Rubicon runs the
specification body in the standard Ruby interpreter, producing verification conditions;
and finally, Rubicon compiles those verification conditions for the Alloy Analyzer to
check.

7.2.3 Preprocessing: Stubbing Objects

Rails uses the ActiveRecord class as the basis for its object-relational mapper. In a
standard Rails application, every object to be stored in the database is descended from
ActiveRecord. To determine the set of classes that should be represented by symbolic
objects, then, Rubicon builds a list of all the classes descended from ActiveRecord.
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T(all(x, e)) all x: typeOf(x) I T(e)

T(some(x, e)) some x: typeOf(x) I T(e)
T(field_ ref(obj, f)) T(obj).f
T(call(:include, obj, a)) T(obj) in T(a)
T(call(:==-, obj, a)) T(obj) = T(a)
T(query(name, type, e)) { name: type I T(e) }
T(call(:should, obj, p, a)) T(call(p, obj, a))
T(v) v

Figure 7-10: Compiling Abstract Syntax Trees to Alloy Specifications

The next step is to stub those classes-replacing them with new classes that re-

spond the same way to the operations defined on them, but with different behavior.

Rubicon takes each ActiveRecord class and redefines two basic types of methods: class

methods that query the database, and instance methods that allow the programmer

to get and set the attributes (values to be stored in the database) of an object rep-

resenting a particular record in the database. For example, the call User.all returns a

list of all users, and given a user object, user.id returns that user's ID number.

Rubicon redefines these methods to produce abstract syntax trees rather than

values: User.all returns ExprCall(:all, User), and user.all returns Expr_ Field_ Ref(user,
:id).

The classes that define abstract syntax trees are defined so that methods invoked

on them produce new trees reflecting these operations, and the should method for

building assertions is also redefined to produce abstract syntax trees. As a result, the

following Ruby expression:

useri. id .should == user2.id

Evaluates to the following abstract syntax tree, instead of a value (Expr_ Call represents

the constructor of an abstract syntax tree node):

ExprCall(:should, :==, Expr_ Field- Ref(userl, :id), Expr Field_ Ref(user2, :id))

Having prepared the environment this way, running Rubicon specification code in

the standard Ruby interpreter yields abstract syntax trees representing verification

conditions.

7.2.4 Postprocessing: Producing Alloy

All that remains is to translate verification conditions into Alloy specifications. Since

our abstract syntax trees are designed for this purpose, doing so is straightforward.

We summarize the translation in Figure 7-10.
The Alloy language includes all of first-order relational logic, plus transitive clo-

sure. Quantifiers, therefore, are translated into their analogues in Alloy; field ref-

erences become relational joins based on Alloy's global relations, database queries

become Alloy set comprehensions, and Rubicon assertions turn into logical formulas.
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Alloy's universe is made up of uninterpreted atoms, which are divided into sets
based on user-defined signatures. In addition to designating a set of atoms, signa-
tures may define global relations; Alloy specifications are typically based on these
global relations, and logical formulas are built from the results of relational joins or
membership tests over these relations.

Rubicon uses Alloy's atoms to represent objects. It defines a signature for each
type of object that is mentioned in a given specification, with relations to represent
the values of the object's fields. Given this representation, a field reference in Ruby
is equivalent to a relational join in Alloy. This paradigm is popular in Alloy, so the
syntax of relational join is designed to make the representation of a field reference
appear similar to the typical syntax in programming languages-obj.f means the
relational join of the atom obj with the global relation f, but it also represents the
reference to field f of object obj, given our encoding.

To generate a complete Alloy specification, Rubicon constructs a signature defi-
nition for every class referenced in the corresponding Rubicon specification. For each
signature, Rubicon consults the application's database schema (encoded in the Ac-
tiveRecord) to determine the set of attributes associated with that type, and adds a
field definition to the signature for each attribute. For example, the first part of the
signature definition for the User class from Fat Free CRM is as follows:

sig User {
name: String,
createdat: Datetime,
updated at: Datetime,
email: String,

}
Rubicon combines these signature definitions with the translated verification con-

ditions and invokes the Alloy Analyzer to determine whether or not the specification
is satisfied. The Alloy Analyzer is a tool for automatic bounded analysis of Alloy
specifications; it places finite bounds on the number of each type of atom present
in the universe, then reduces the specification to propositional logic. Alloy's model
finder, Kodkod 150], handles the translation from relational logic to a satisfiability
problem using algorithms that optimize relational expressions. This makes Kodkod,
and thus Alloy, especially suited to database applications. If a counterexample is
found, Kodkod maps the SAT result back to a valuation for the original specifica-
tion's relations.

Rubicon, in turn, maps the counterexample Alloy produces back to a Ruby object
structure, which forms the printed counterexample the user sees when a specification
is found not to hold.

7.2.5 An Example: Contact Permissions

As a complete example of Rubicon's analysis, consider the example of checking that
the user has permission to view a contact and its associated opportunities (Figure 7-
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def show
@contact = Contact.my.find(params[:id])
@stage = Setting. unroll (:opportunity_ stage)
@comment = Comment.new

end

User. forall do lul
Contact. forall do Ici

Opportunity. forall do 1l1
setcurrent user(u)
get :show, : id -> c.id

((o.access == 'private') &
(o. user != u)). implies do
assigns [:contact ]. opportunities should not

include o
end

end
end

end

Exprlmplies(
ExprAnd(

ExprCall(:==, Expr Field Ref(o, :access),
' private ') ,

ExprCall(:!=, Expr Field Ref(o, :user),

u)) ,
Expr Not(

ExprCall(: include,
Expr Field_ Ref(c, :opportunities),

o)))

one sig stringprivate extends String {}
sig Opportunity{

id: ID, access: String, ... , user: set User

}
sig Contact{

id: ID, access: String, ... ,

opportunities: set Opportunity

}
sig User{

id: ID, ...
}

check {
all u: User

all c: Contact
all o: Opportunity I

(o.access = stringprivate and
o.user != u) implies

!(o in c.opportunities)

} for 5

Figure 7-11: Verification Condition and Corresponding Alloy Specification
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4). Figure 7-11 demonstrates how the second of these two properties is checked.
First, during execution by the Ruby interpreter, the property, along with the Fat

Free CRM implementation, produce a verification condition to be checked by the
Alloy Analyzer. The page request (line 12) passes the quantified contact's ID to the
show method, where the call to the stubbed version of Contact.my.find (line 2) yields
a symbolic record representing precisely the quantified contact. The method returns,
having set assigns [: contact] to that symbolic record.

The two conditions on the left-hand side of the implication (line 15) evaluate to
expressions involving the quantified opportunity; the condition on the right-hand side
of that implication (line 16) evaluates to an expression involving both the symbolic
record constructed above and the quantified opportunity. The expression representing
the complete verification condition is listed in lines 22-31. While Rubicon cannot yet
handle constraints involving string manipulations, it does allow testing string equality,
as in lines 24-25.

Second, the Rubicon postprocessor produces an Alloy specification equivalent to
the verification condition. Each expression type produced by the methods Rubicon
stubs corresponds directly to an Alloy expression. Rubicon wraps the verification
condition produced above with the appropriate quantifiers, combines it with a set of
signatures corresponding to the classes used in the specification, and produces the
Alloy specification listed in lines 32-51.

7.3 Evaluation

To confirm that Rubicon's analysis is capable of scaling to real applications, we tested
it on five open-source Rails applications whose distributions contain RSpec tests writ-
ten by the original developers. We tried to select applications that perform a variety
of tasks and that have a sizable user base. All of the applications we examined contain
extensive RSpec test suites with documentation. The five applications we examined
are:

" Insoshi, a social networking platform

" Fat Free CRM, a customer relationship management platform

" RubyTime, a time-management system

* RubyURL, a URL-shortening service

" Tracks, an application to implement the "Getting Things Done" methodology

7.3.1 Methodology

For each application, we selected a random subset of the files containing developer-
written RSpec tests for the application's controllers. We included at least three test
files, or all of them if the application provided fewer than three. The controller tests
tend to express properties of the application's behavior, rather than properties about
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Filename Number Average RSpec Average Rubicon Original RSpec Rubicon
of Tests Time per Test Time per Test Lines of Code Lines of Code

Insoshi (12k LOC)
people controller spec.rb 27 0.41s 1.52s 272 314
topicscontroller spec.rb 4 0.52s 1.86s 42 57
comments controller spec.rb 14 0.38s 2.08s 126 143
Totals 45 0.44s 1-82e 440 514

Fat Free CRM (23k LOG)
home -controller_ spec~rb 8 0.64s 2.45s 98 115
comments controller spec.rb 21 0.53s 2.12s 254 301
users -controllerspec. rb 27 0.42s 1.87s 343 386
contacts controllerspec.rb 53 0.44s 1.97s 696 754
Totals 109 0.51s 2-.100 1391 1556
RubyTime (Ilk LOC)
users_spec.rb 31 0.32s 2.118 271 294
clientsspec.rb 11 0.28s 2.54s 104 132
Totals 42 .0 2.35a 375 426
RubyURL (1k LOC)
links cont roller- spec.rb 8 0.36a 2.63s 73 94
Totals 8 0.36s 2.63s 73 94
Tracks (22k LOC)
todo spec.rb 20 0.27s 2.16s 182 207
user spec.rb 26 0.23s 2.46s 174 197
Totals 46 0.25s 2.31s 356 404

Figure 7-12: Case-Study Summary: the Number of Tests, Average Runtime of Orig-
inal Test and Corresponding Rubicon Specification, and Lines-of-Code Comparison
Between Original Tests and Rubicon Specifications

the database schema, so we considered them both a better test of Rubicon's ability
to check an application's behavior and more likely to find behavioral bugs in the
application.

We converted all of the tests from each selected file into Rubicon specifications by
replacing mock objects with quantifiers over objects. This process was straightforward
for most tests, since the natural language description of each test combined with the
Ruby code implementing it generally described the intent of the test. The conversion
process took fewer than ten hours over the course of a month.

We ran both the original RSpec tests and our Rubicon specifications on an Intel
Core 2 Duo E7500 with 4GB RAM under Ubuntu 10.04 and Ruby 1.8.7, with the
latest version of each application (when available, the development version). Rubicon
makes use of version 4.1 of the Alloy Analyzer.

By default, Rubicon uses a finite bound of five during analysis, meaning that the
corresponding Alloy Analyzer analysis searches for a counterexample in universes con-
taining five objects or fewer per Ruby class. We used this bound in our experiments.
Specifications from this evaluation are available on the Rubicon webpage.

7.3.2 Results

We converted a total of 250 developer-written RSpec tests into Rubicon specifications.
The table in Figure 7-12 contains a summary of the size of each application, the
filenames of the test files we converted, the number of tests per file, the average
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Figure 7-14: Effect of Finite Bound on Solving Time of Verification Conditions from
Examples in Figures 3, 4, and 6

execution time of the original tests and their associated Rubicon specifications, and a
comparison between the number of lines of code used before and after the conversion
to Rubicon.

The results show that while analyzing Rubicon specifications is several times
slower, on average, than executing the original RSpec tests, Rubicon's analysis usu-
ally takes only a second or two. Moreover, converting the original RSpec tests into
Rubicon specifications made the source code only 11% longer, suggesting that writ-
ing Rubicon specifications may not be significantly more difficult than writing RSpec
tests.

Figure 7-13 is a visual representation of the range of per-specification analysis
times for each of the test files in Figure 7-12. For each test file, the bar represents the
average analysis time over all of that file's specifications; the extent of the error bars
represents the maximum and minimum analysis time for any specification in that file.
The maximum analysis time for any test we converted was just over five seconds;
more importantly, the maximum and minimum analysis times were always close to
the average, suggesting that Rubicon's analysis is consistently fast.

To evaluate the effect of the finite bound on Rubicon's analysis time, we generated
the Alloy specifications corresponding to each of the four Rubicon specifications listed
in this paper (in Figures 3, 4, and 6) and manually tested the differences in solving
times at different scopes using the Alloy Analyzer. The results of this experiment are
displayed in Figure 7-14. As is common with SAT-based analyses, the solving time
begins to increase exponentially as the finite bound rises above ten atoms per class.
Rubicon's default bound of five is a compromise attempting to produce consistently
fast analysis times without missing bugs.
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7.3.3 Fat Free CRM Bug

Of the RSpec tests we converted, only one led to the discovery of a previously unknown
bug. As discussed in Sections 2.2 and 2.3, testing the permissions of both contacts and
their associated opportunities, along with the ability of bounded analysis to explore
corner cases, allowed us to discover a situation in which a user can view another user's
private opportunities.

Several other tests we converted led us to the discovery (also discussed in Section
2.3) that the Fat Free CRM developers had redefined the ActiveRecord my method to
enforce permissions. Rubicon also redefines this method, and interprets the resulting
verification condition as if its use has the semantics originally intended by the Rails
developers. The result was a false positive: Rubicon originally reported that any user
could view any entity in the system, regardless of permissions. We worked around this
problem by renaming the method defined by Fat Free CRM and calling it directly.
This was the only Fat Free CRM issue that caused false positives to be reported by
Rubicon.

7.4 Related Work

Rubicon's specification language is based on RSpec, an embedded domain-specific
language for testing [16]. Our approach of embedding an expressive specification lan-
guage directly in a programming language is most heavily influenced by QuickCheck [191,
a random testing framework for Haskell in which the programmer specifies properties
by writing code. Parameterized unit testing [48] takes a similar approach, allowing
the programmer to write specifications as tests parameterized by their inputs.

Existing work on the application of formal methods to web applications focuses
on modeling applications, and especially on building navigation models. Bordbar
and Anastasakis 181, for example, model a user's interaction with a web application
using UML, and perform bounded verification of properties of that interaction by
translating the UML model into Alloy using UML2Alloy; other approaches ( 135,
49, 41]) perform similar tasks but provide less automation. Nijjar and Bultan 138]
translate Rails data models into Alloy to find inconsistencies.

Most techniques focus specifically on navigation from one page to another, and
can analyze only those properties related to possible navigations. Some existing work
([2, 13]) models possible navigations using UML, others ([6]) using directed graphs,
and still others ([24, 17, 521) using statecharts.

Those techniques that allow programmers to specify an application's behavior are
closest in their aim to Rubicon. Syriani and Mansour [46] use SDL (the Specification
and Description Language) to model some aspects of application, and provide auto-
matic test case generation based on the model. Haydar et al. [29] use communicating
automata to build the application's model, and have explored techniques for verifying
properties of those automata. Finally, Andrews et al. [3] use finite state machines
to model applications, and also generate test cases. All of these techniques require
the programmer to build a separate model of their web application's behavior, and
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limitations of the modeling technique used mean the set of properties that can be
checked is also limited. Rubicon, in contrast, is capable of checking any property
expressible in first-order logic.
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Chapter 8

Conclusion

This thesis has proposed new techniques for finding and eliminating application-
specific bugs in web applications. We have demonstrated three approaches to finding
these bugs; all three are powered by a scalable symbolic execution specifically tailored
to the structure of web application implementations, allowing analysis of even the
largest real-world applications.

In contrast to existing general-purpose verification approaches, this work was in-
spired by the hypothesis that narrowing our focus might produce more effective tools.
Our approach has been to take advantage of properties specific to application-specific
security bugs in web applications in order to produce these tools. The results suggest
that focusing on a particular class of applications (web applications) and on a par-
ticular class of bugs (missing security checks) we can build static analysis tools that
are better at finding bugs than general-purpose tools.

8.1 Discussion

This thesis makes two key contributions. First, we explored how taking advantage of
properties of a target application can make static analysis easier. Second, we explored
how properties of a class of bugs can lead to better techniques for finding those bugs.

We took advantage of Ruby's flexibility to build a symbolic evaluator as a library,
and use the standard Ruby interpreter to perform symbolic execution. This strategy
ensures compatibility with Rails, since the standard interpreter is used. The symbolic
evaluation library defines a class of symbolic values and overrides the operators of the
standard library to compute over them. The resulting symbolic execution library is
less than 1000 lines of code long, but can analyze even the largest Rails applications
in just minutes.

We used the fact that programmers intend security policies to be uniformly ap-
plied to build Derailer, a bug finding tool based on exploring the data exposures
allowed by the application. To find missing security checks, the developer and the
tool together infer a specification of the application's security policy, and the tool
finds exposures that do not obey the policy. When the developer is finished with
this iterative process, the selected constraints represent a specification of the security
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policy, and the remaining highlighted exposures are security bugs. This approach has
been very successful in finding bugs, mainly because Derailer does not require the
time-consuming step of writing a specification.

We automated this process even further by taking advantage of the fact that many
applications share common patterns of access control. Based on this observation, we
hypothesized that a small set of formal models-a catalog of access control patterns
is enough to capture a large portion of the access control policies that web applications
use in practice. SPACE leverages this idea to find security bugs by checking every
data exposure allowed by the application is also allowed by some pattern in the
catalog. This approach produces few false positives and found a significant number
of previously unknown bugs; it also re-discovers the bugs we found using Derailer,
without requiring Derailer's interactive step.

Finally, Rubicon brings together the ideas of testing, formal specification, and
bounded analysis, and applies them to web applications. Its combination of an ex-
isting testing framework and first-order quantifiers is powerful enough to express rich
behavioral specifications without requiring programmers to learn a new specification
language. Rubicon allows programmers to specify and check functional properties of
web applications, including full-functional verification, and scales to large applications
thanks to its use of our symbolic execution framework. Our anecdotal experience with
security bugs suggests that most classes of bugs can be more easily detected with more
specialized tools, but a broadly-applicable technique such as Rubicon is still useful
when no specific tool exists for a target domain or when full-functional verification is
desired.

In theoretical terms, Rubicon is the most powerful of these tools. It is capable
of detecting all violations of the specifications it supports, including both security-
related properties and others. Derailer is designed to detect a subset of these bugs:
it is limited to security bugs, and only finds mistakes in the uniform application of
policies. Derailer may therefore miss bugs where a security check is missing from every
single access of a data type. It also requires that the user not mis-read or mis-classify
any constraint; either mistake could cause an incorrect security policy to be applied.
SPACE finds an even smaller class of bugs: only those that violate the policies built
into the tool. In contrast to Derailer, SPACE can detect situations in which an entire
data type is missing a check, and does not rely on the user to classify exposures;
however, SPACE produces false positives when the target application deviates from
one of the built-in patterns.

In our experience, Rubicon is effective at detecting the kinds of bugs it was de-
signed to find. Its specifications are more general than test cases, and so catch bugs
lurking in corner cases. However, it can still be difficult to write the right specifi-
cation, and it is possible to miss bugs by forgetting to specify some behavior. For
example, in one specification for Fat Free CRM, we simply forgot to specify that
authentication was required, and missed a bug because of it. We later detected this
bug using Derailer.

Our experience suggests that Derailer's visual representation of an application's
behavior can be especially useful for Users unfamiliar with the target application, and
that its uniformity-based analysis is good at zeroing in on potential bugs quickly.
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This makes Derailer potentially even better than SPACE for tasks like security audits
or grading student homeworks. However, we have also experienced missed bugs with
Derailer: one student application used the constraint "currentuser. id = params[:id],"
which looked reasonable, and which was applied uniformly, but which actually rep-
resented the wrong security policy. And in MediumClone, an entire controller (the
Users controller) is missing authentication checks-again, a situation in which the
wrong policy was applied uniformly.

While SPACE is intended to be more automated than Derailer, our experience
suggests that it can be useful to use Derailer to learn more about an application before
using SPACE, since this information helps in writing the mapping that SPACE requires.
Once this mapping is written, however, SPACE does catch bugs that Derailer misses (it
found both of the bugs described above that we missed when using Derailer). While
we have not experienced it, there is also the potential to mis-classify a counterexample
as a false positive when it is actually a bug. Thus the best use of SPACE may in fact
be in tandem with Derailer, with each tool helping to cover the blind spots of the
other.

While our experience suggests that tools with increased automation, such as De-
railer and SPACE, can provide more effective interfaces for finding security bugs, these
anecdotes are not strong evidence that our solutions will be more usable for users than
existing approaches. Our tools could likely be improved significantly using the results
of usability studies asking users to put them into practice.

However, our results suggest broader lessons on static analysis tools for improv-
ing program reliability. First, taking advantage of properties unique to a particular
domain, as we did in our symbolic execution framework, can significantly improve
scalability. Second, taking advantage of properties of a particular class of bugs allows
formal specifications to be replaced by automated analyses or interactive tools, as in
Derailer and SPACE.

8.2 Future Directions

The scalability of our symbolic execution framework comes from properties unique
to the domain of web applications. Similarly, the effectiveness of our bug-finding
techniques is based on more domain properties: the uniformity and commonalities of
security policies. The success of these projects suggests both further improvements in
the domain of web applications, and that similar improvements are possible in other
domains.

8.2.1 Cyber-physical Systems

The same domain-specific approach to bug finding could be used to ensure both
security and reliability for the new generation of internet-connected cyber-physical
systems. Cyber-physical systems have similar structural properties to web applica-
tions, suggesting that the same kind of analysis techniques might apply. In particular,
general-purpose verification techniques struggle to deal with the environmental con-
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cerns inherent in cyber-physical systems; a domain-specific approach can tackle this
issue head-on.

We have used our approach to perform a case study in building a dependability
case for the proton therapy system at Massachusetts General Hospital [?], which pro-
vides radiation treatment to cancer patients. The safety requirements of this system
involve statements about its environment, so verification requires building a formal
model of the environment's properties. This is a difficult task, even for an expert,
since the environment is complex; and if the environmental model is incomplete, the
system may be "verified correct" even if it has a bug.

We found that it was sufficient to check only the environmental properties on
which the software actually depended, eliminating the need for a complete model of
the environment. We used static analysis to enumerate the calls to libraries used
for environmental interaction, and produced a short list of conditions for a domain
expert to check.

The same kind of environment-focused analysis could be used to find security
flaws in other devices-like medical devices, cars, home automation products, and
computer-controlled electric and water systems-whose security policies are inter-
twined with environmental concerns.

8.2.2 Access Control and APIs

Libraries for enforcing access-control policies are increasingly popular, since they rep-
resent a significant improvement over ad hoc security checks, but these libraries still
require programmers to use them correctly. Derailer's model of analysis, interaction,
and automation is also suitable for detecting inconsistent API use within an applica-
tion; the techniques we have developed could be extended to detect these mistakes.
In fact, these techniques might even be applicable to other kinds of APIs, since they,
too, expect consistent use.

The idea of consistency is central to most of the properties leveraged in the domain-
specific static analyses I have developed. In security, a consistency-based model of
access control might be more broadly applied than my existing web-centric model.
Such a model might be used to find new kinds of security bugs in web applications,
and also security bugs in other kinds of applications. This model further increases
the level of automation available to the developer-it can be used, for example, to
automatically flag behaviors that are not defined in the model as likely bugs, as in
our work on security patterns.

8.2.3 Statistical Models of Behavior

If two exposures of the same data have inconsistent constraints, one of them repre-
sents a bug. But without information about the security policy, it is impossible to
determine which one is buggy. Automatic anomaly detection techniques consider a
large majority of consistent examples to represent a specification, and highlight ex-
amples outside of that set. Since web applications contain relatively few exposures,
however, these techniques do not apply.
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The set of all web applications, on the other hand, contains a huge number of
exposures. This aggregate set of exposures represents a library of specifications for
different kinds of applications. Individual applications may contain bugs, but the "av-
erage" of all implementations of a particular piece of functionality represents a correct
specification of that functionality. And as the amount of publicly available applica-
tion code grows, so does the size of the library. We have already tested Derailer's
scalability by running its analysis on more than 1000 open-source applications from
Github; using Derailer's analysis to compile a database of the data exposures from
every Rails application on Github would take only a couple months of compute time.

We hope to explore the use of our symbolic execution framework to build clusters
of applications according to aspects of their functionality. Analysis results typical
of a cluster would be considered a specification of that cluster, and would be com-
pared against the analysis results of the target application. Security checks typical
of the cluster but missing from the target represent likely bugs. A tool based on this
approach may produce some false positives, but would enumerate bugs in a target
application automatically.
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