Fuzzy Hashing for Digital Forensic Investigators

Dustin Hurlbut - AccessData
January 9, 2009

Abstract

Fuzzy hashing allows the discovery of potentially incriminating documents that may not be located using
traditional hashing methods. The use of the fuzzy hash is much like the fuzzy logic search; it is looking
for documents that are similar but not exactly the same, called homologous files. Homologous files have
identical strings of binary data; however they are not exact duplicates. An example would be two
identical word processor documents, with a new paragraph added in the middle of one. To locate
homologous files, they must be hashed traditionally in segments to identify the strings of identical data.

Introduction

This document will discuss in lay terms what a fuzzy hash is and the theory behind it. FTK contains a
fuzzy hash utility that will enable investigators to locate evidence that otherwise could take considerable
time to track down. This would include trying to compare live documents active in the file system to
partial files recovered from unallocated or slack space. This applies to the law enforcement analyst who
is trying to determine if files were ever on a suspect’s system, or the corporate investigator who is
dealing with an employee who is removing proprietary documents and then making minor alterations to
them to avoid detection through conventional hashing techniques.

Fuzzy hashing is not a new concept. In 1999, Dr. Andrew Tridgell wrote the rsync checksum which he
later incorporated into his program called spamsum in 2002*. Spamsum using rsync is a fuzzy hash
utility that attempts to identify e-mail that is similar to known spam®. In 2003, Stephen Payne added a
utility called C-Hash to his forensic tool Datalifter.Net Bonus Tools that allowed the investigator to
combine keywords and a hash of each sector of a file which could then be compared to other sectors
both in allocated and unallocated space®. This was an effective tool to locate full and partial files from
the media. Jessie Kornblum identified the potential presented by spamsum to be used forensically in

2006 in his paper “Identifying almost identical files using context triggered piecewise hashing”’.

Background

There are three types of hashes the investigator must be familiar with to understand the fuzzy hash
utility; Cryptographic (traditional), Rolling, and Context hashing.

Cryptographic Hashes: Traditional hashing is used to validate media, to locate exact duplicate
files, alert us to known files of interest, or let us skip files that are
known to not contain evidence. Altering a single bit of data will
radically alter the hash. There is no way a cryptographic hash by itself
can show us associations with files that may have had even small
alterations of their data.

Dustin Hurlbut - January 9, 2009 Copyright AccessData 2009 Page 1



Faragrapn I Paragraph L1

rhis is a document to test the process of the fuzzy hash This is a document to test the process of the fuzzy hash
tility in FTK 2.1. I will make successive documents as I add tility in FTK 2.1. I will make successive documents as I add
paragraphs to this document to test the abilty of fuzzy hashing paragraphs to this document to test the abilty of fuzzy hashing
ko recognize and identify potentially similar documents. ko recognize and identify potentially similar documents.
Paragraph 2 Paragraph 2

rhis document should look similar to document one as they share This document should Took similar to document one as they share
khe same first paragraph. It should also Took similar to the the same first paragraph. It should also Took similar to the
next document number three as it will share two identical hext document number three as it will share two identical
baragraphs. baragraphs.

Paragraph 3 Paragraph 3

s more data is_added to the document, traditional hash methods s more data is_added to the document, traditional hash metheds
would not be able to assocate the documents; however fuzzy would not be able to assocate the documents; however fuzzy
hashing can since much of the data between the documents is hashing can since much of the data between the documents 1is
Eimilar. similar.

Paragraph 4 Paragraph 4

The next step after this paragraph is to add a paragraph in the The next step after this paragraph is to add a paragraph in the
middle of the document to see if the documents can 5till be middle of the document to see if the documents can 5till be
associated. we'1l call it paragraph 2a and it will come right associated. we'1]1 call it paragraph 2aA and it will come right
Efter paragraph 2. after Parigraph 2.

File 1 File 2

File 1 MD5 Hash = aa060a95f2732612f80dd80e5133b0f6
File 2 MD5 Hash =290423c55ee6f9148c45¢6e02d126420

Figure 1 — Traditional Cryptographic Hash Results with a Minor Data Change

In Figure 1, a traditional hash is used to compare two files. In the second file, the “1” in the top title was
removed and the two files were hashed using the MD5 cryptographic hash. The hashes are radically
dissimilar, and there is no way to ascertain that the documents are virtually identical through this type
of hash analysis.

The fuzzy hash utility makes use of traditional hashing, but in segments. The document is hashed in
sections defined in part by the size of the document. These hash segments contain fragments of
traditional hashes that are joined together for comparative purposes. Before this segmented hash can
be done, a rolling hash is used to begin the process.

Rolling Hashes: A rolling hash is used to identify the segment boundaries. It uses a
trigger value, or reset point, generated by the rolling hash engine to
determine where these segments will be created. Once located, the
data before and after each of the reset points will be processed to
create sequences of traditional hash strings.

In FTK, the trigger value is first based on the file size and on the number of trigger values in the
document. Once each trigger value is determined, the traditional hash for that segment is generated
and archived. Final hashes are computed based on dividing the file into two blocks and parsing between
the trigger values® in each block.

The final hash is displayed using a colon to separate the hashes derived from the two blocks of data.
This hash result is called a Context Triggered Piecewise Hash (CTPH) as postulated by Jessie Kornblum®.
The CTPH makes use of the traditional and rolling hashes to create a segmented hash to evaluate
documents for potential matching binary strings.

CTP Hashes: The Context Triggered Piecewise Hash is based upon segments of
traditional hashes. Comparisons can be drawn between documents
with similar strings of data that are not exact duplicates.

Dustin Hurlbut - January 9, 2009 Copyright AccessData 2009 Page 2



E | Trigger Value

aragrapn 1 |

rhis is a document to test the process of the fuzzy hash —_— 109f60
itility in FTK 2.1. I will make successive documents as|I]add
paragraphs to this document to test the abilty of fuzzy hashing
ko recognize and identify potentially similar documents. |

_— fa7693b3

Segment 1 |

Segment 2 |

Paragraph 2

rhis document should look similar to document one as they share
the same first paragraﬁh. should also look similar to the |
ree a

S it will share two identical _  » 390c49

Segment 3 |

hext document number t
paragraphs.

Paragraph 3

s more data added to the document, traditional hash methods
joould not be 3ble to assocate the documents; however fuzzy bdo3 |
"l?s!['ljling can since much of the data between the documents is EE—

kimilar.

Segment 4 |

Paragraph 4

the next step after this pa.ragraph to add a paragraph in the|
middle of the document to see if the documents can still be
hssociated. we'11 call it paragraph 2A and it will come right | ———— 6d9714

Segment 5 |
Efter Paragraph 2.

CTPH = 109fe0 + fa7693b3 + 390¢49 + bd93 + 6d9714

Figure 2 — Context Triggered Piecewise Hash Analogy — Original Document

Figure 2 shows an analogy of a CTPH string. In this example, there are four trigger values. Each trigger
value is located by using the rolling hash. The data segments between each trigger value are hashed
traditionally and stored.

!aragr'apn 2 |
rhis is a document to test the process of the fuzzy hash _— > 109fe0 |

itility in FTK 2.1. I will make successive documents as [T]add
paragraphs to this document to test the abilty of fuzzy hing)
to recognize and identify potentially similar documents.

Segment 1 |

— » 4129200651 | Segment2 |

Paragraph 3

s more data added to the document, traditional hash methods|
jould not be able to assocate the documents; however fuzzy
hzsty‘]lng can since much of the data between the documents 1s — » bdo3

similar.

Segment 3 |

Paragraph 4

the next step after this paragraph to add a paragraph in the
middle of thg document topseeg'ifptlEkdocuments ga.n gti?'! be

associated. we';'l call it paragraph 2A and it will come right | ———— 6d9714 | Segment 4 |
fafter Paragraph

CTPH = 109fe0 + 41a92c¢0651+ bd93 + 6d9714

Figure 3 — Context Triggered Piecewise Hash Analogy — Altered Document

Figure 3 shows the same document as Figure 2, however in this example; the second paragraph has
been removed. The documents are not exact; however they are similar and should obtain a probability
match when using the fuzzy hash utility.

Traditional hashing alone will not make any conclusion between the two documents as to similarity;
however the CTPH will use the sequences to display potential homologous documents. In the example
in Figures 2 and 3, the segmented traditional hashes can be compared for potential associations. Figure
4 shows an analogy of the two hashes from Figures 2 and 3 for comparative purposes. Evaluating these
hashes shows a similarity of some identical binary streams between the two documents.

Dustin Hurlbut - January 9, 2009 Copyright AccessData 2009 Page 3



File 1 CTPH = 109fe0 + fa7693b3 + 390c49 + bd93 + 649714

File 2 CTPH = 109fe0 + 41292¢0651+ bd93 + 6d9714

Figure 4 — CTPH Comparisons from Figures 2 and 3

The comparison hashes are created by dividing the file into two blocks; BS1 and 2xBS1 (Where BS stands
for Block Size)*. Each block will have a hash that is a compilation of the traditional hashes that were
generated for each data stream between the trigger values. The two blocks will have a colon as a
separator in the hash sequence. In Figure 5, note the similarities between the hash sequences. In the
figure examples, a comparison was made of six text files. Each numbered file; 1, 2, 3, 4, and 5 were
updated by adding a new paragraph. Number 6 had Paragraph 2 removed from the number 5 version.
The second number four document (seen in Figure 6); “Trad Test Change the 1” had only a single byte of
data changed between it and document number 4. This was the document shown in Figure 1 where
traditional hashing did not show a match.

MName Fuzzy hash

Fuzzy Hash Testl.txt JCK6JFu+BVGUKxOccPbUDsoMILudFBHIuSdRgAIuB1ouPEYECq02Q0X+ga:MK2ugFxOcAwDoluHAIAIDoUPEZQCpa

Fuzzy Hash Test2.txt MK2ugFx0OcAwDoluHAIAIDouPEZQCp//eBSIRtdCRSTAGrFis7a:MfnAuQOhHxMyLCulFiN

Fuzzy Hash Test3.txt MK2ugFxOcAwDoluHAIAIDouPEZQCp//eBSIRtdCRsTAGrFis7/MNzMnlbl3g3I1nt:Mfn AuQOhHxMyLCuJFiGZMntl3E1thx
Fuzzy Hash Testd.txt MfnAuQOhHxMyLCuFiGZMntl3ELthglFrpk WMME:SA+tWoCeZCnH3E/hgllpkWMz

Fuzzy Hash Test5.txt MfnAuQOhHXxMyLCUFiGL+4LXaZMntI3EIthgIFrpkWMME:SA+tWqgCeZLeCnH3E/hgllpkWhz

Fuzzy Hash Test6.txt MK2ugFxOcAwDoluHAIAIDOUPEZQCH/NzMnlbl3g311nthiPURFiyRDKWICKXEn:MfnAuQOhHXMZNMntI3ELthgIFrpkWMME

Figure 5 — CTPH Examples from FTK

Associations are made by scoring from 1 to 100 with 1 being the lowest and 100 being the highest
probability for similarity’. A “0” means that no meaningful sequence of data exists between the files. A
comparative threshold can be set to further limit the comparative hits in FTK prior to conducting the
search, such as setting the comparative value of “50” rather than the default “1”.

Minimurm match similarity: I 0| 3:

If files of interest are located, they will be displayed in descending order of probability. Itis important to
note that this process is not perfect. Documents may or may not show a probability match depending
on a number of factors, including the type of document and the type of formatting it uses. Text
documents have no inserted formatting codes so are more reliable in comparisons with fuzzy hash
techniques than are documents created by a word processing program which have considerably more
data than just the text that is entered. Differences between formats of graphics files can also alter the
effectiveness of a fuzzy hash such as the difference between JPEG formatting procedures and Bitmaps.

Dustin Hurlbut - January 9, 2009 Copyright AccessData 2009 Page 4



Example A — Single paragraph text file Mame | object ID | Similarity
Fuzzy Hash Test1.bxt 1010 100
Fuzzy Hash Test2 txt 1011 60
Fuzzy Hash Testé.txt 1016 47
Fuzzy Hash Test3,txt 1012 46

Example B — Two paragraph text file Name | object 1D | Similarit
Fuzzy Hash Test2.kxt 1011 100
Fuzzy Hash Test3.txt 1012 77
Fuzzy Hash Test1.txt 1010 &0
Fuzzy Hash Testé.txt 1016 52
Fuzzy Hash Test4.txt 1014 47
Fuzzy Hash Test4-Trad Test Change the 1.kxt 1013 44
Fuzzy Hash Tests txt 1015 40

Example C — Deleted paragraph Narme | Object 1D | Similarity
Fuzzy Hash Testé.txt 1016 100
Fuzzy Hash Test4.txt 1014 80
Fuzzy Hash Test4-Trad Test Change the 1.txt 1013 77
Fuzzy Hash TestS.txt 1015 69
Fuzzy Hash Test2.txt 1011 52
Fuzzy Hash Test3.txt 1012 S0
Fuzzy Hash Testl.txt 1010 47

Figure 6 — Fuzzy Hash Results of Modified Text Files

The results of FTK fuzzy hashing on these documents are shown in Figure 6. Each numbered file; 1, 2, 3,
4, and 5 were updated by adding a new paragraph. Number 6 had Paragraph 2 removed. The second
number four document; “Trad Test Change the 1” had only a single byte of data changed between it and
document number 4. This was the document shown in Figure 1 where traditional hashing did not show
a match.

In Example A, the first document with a single paragraph was checked for possible similar files. It did
not compare to all the related files as being homologous and is missing documents 4 and 5. The second
and sixth document values shown in Examples B and C saw all the files as being potentially related.

When the testing is conducted on more complicated files, such as word documents or spreadsheets that
have embedded formatting, the results are not always as expected. Tests that discover matches should
be run on other potentially matching files to ensure all probable homologous documents are located.

This type of action can also be conducted on other types of files such as graphics. Viewing a set of
twelve bitmap graphics that were analyzed as being related, did have a functional similarity; they all had
the same border color around the graphic. See Figure 7.

Because the files are tested and a similarity is indicated won’t always mean they are similar or related.
The hash is not as distinctive as an MD5 or SHA hash. The more segments in a document, particularly
one with many minor changes, can show the document as not being related even when it may be.

Dustin Hurlbut - January 9, 2009 Copyright AccessData 2009 Page 5



Forensic Issues

Creating the fuzzy hash sets takes processing time, more than that needed to create MD5 hashes for
example. The use of the fuzzy hash utility may decrease performance by 7 to 10 times the normal time
to process a case® if fuzzy hashing wasn’t selected.

Obtaining a fuzzy hash of a file is limited to the file size. Smaller files under 100 bytes generally won’t be
able to generate a fuzzy hash, since they don’t have sufficient size to find the requisite trigger values.

Identical files with the same MD5 hash will fuzzy hash with the same fuzzy hash string. They will show a
100 for matching when compared to their duplicate counterparts.

The strength of fuzzy hash sets are their ability to locate similar files. They can be used to match altered
documents, such as multiple or incremental versions of the same document. Malicious alteration of a
document to avoid detection such as stolen proprietary corporate files is difficult to detect but is
apparent from fuzzy hash analysis. Fuzzy hashing will point to the documents that should be reviewed.

Fuzzy hashing can also be useful in examining partial files such as carved documents to compare to
other documents of interest. Carving may retrieve partial documents that can be related to the original.
Fuzzy hashes may also relate a document to a suspect when the incriminating document doesn’t exist in
the active file system. If the investigator has access to the original or suspected document in question,
that document can be fuzzy hashed from outside of FTK by pointing to it. It can then be compared with
carved items taken from within the image to determine if it was ever in the system at one time.

Partial graphics without headers may also be discovered in this manner. It seems to be common to
search a drive for child pornographic photos only to discover no active documents. Other evidence may
point to their existence at one time, but the files are not in the active file system. Data carving may
reveal graphics, but if their headers aren’t carved with them, they can’t normally be viewed. Fuzzy
hashes may uncover matches to partial graphics that will help determine if such files were ever in the
system at one time.

Text documents make excellent candidates for fuzzy hash comparisons. Word processed documents,
spreadsheets, and other types of documents that have extraneous formatting applied are not as
reliable; however the strings of user inputted data will often be detected in the associations.

Graphics present different issues than documents that contain textual data. The potential of successful
comparisons with graphic files will depend upon the type of graphic format that was used. A
comparison was run on a small image (Mantooth32’) for matches to a particular Bitmap graphic as
shown in Figure 7.

A visual inspection of the bitmaps will show they do have a similarity; their borders are all a similar
color. These bitmaps were all icons from what appears to be a single website. Each had a similar size
ranging from 1180 to 1464 bytes. It would appear from this example and others that the bitmap format
lends itself to a reasonable chance of finding similar files based in this example on similar colors, sizes,
and origin.

Dustin Hurlbut - January 9, 2009 Copyright AccessData 2009 Page 6



FuzzyHash |
Marne | object 10 | Sirilarity
04c.bmp 4031 100
16c.bmp 4033 a4
27c.brp 4034 a9
10c.brnp 4032 a5
gamz.bmp 4042 g4
47c.brp 40365 a0
44c.brp 4035 ao
vmaz_s1.bmp 4084 79
per0Sh. bmp 4056 75
sc2. brp 4060 70
= = = 5 e & o
@D‘Ic.bmp [ 10c. brp [ 16c.brmp [#127c.bmp [#144c.bmp [#147c.bmp [#1gamz. brmp [Fper0shb. bmp [#]sc2 bmp [#ymaz_s1.bmp
u 0. brmp AiSumlgfu AupuERm ke PYEWIKHoh 7haHO7 T4 ke Ldm: 4 Uinjg2EpudmetgPrTEHiml Ry oy S
ﬂ 10c.bmp Aisumlgfuy AupuEkmM ke Py FW TXHoh 7hgHO7 T4 b Liif avioC 4 injg2EpusmetgPr IXHImU 7y FiFH
d 16c.brmp ALiSumUghuy AupuEMmM Ik PY Pt THoh ZhgHO? T 4w LOm-+m: 4Uivig=E pugmetgPr IsHimi 7yl 3
u Z7c.bmp A liSumlgFuy AupuERmi ke Py EW THoh 7hoHO 7 T4 et Le0u0dH: 4LiujgZEpumetgPrTsHimU Py cekdHd
a 4, bmp CXxurnUgfuy AupuEMmMItePYFW LEHoh 7hgHO7 TalowWLHGUY R d K8 Sujg2E pusmetgPr L HimU 7y TS0
a 47c.bmp C TxumUafuly AupuEMmi ke PYFW TEHah 7haHO 7 T4boYL YSqaASRLoGEKL: Suig2EpusmekaP TRHimU Fy e LILG
ﬂ gamz.bmp CXxurnUgfuy AupuENmMIte/PYFW LEHoh ThgHO 7 TaboAL T 7w SujgZEpudmetgPrIxHimi o HoP
u per0Sh.brnp CIeumUgfuy dupuENmMIte/PYFWIkHoh ?hgHO 7 T4hoYLsZmco fiwo0rzER: Sujig2EpugmetgPr IxHimU 7y woHo SF
ﬂ 52, bmp jujgZEpuSmetgPrIsHiml 7y WS IDzNIT: jujoUpACahu
ﬂ wvmaz_sl.brmp  iCRyumUgfuy AupuEMmMIte/PYFWIEHoh7hgHO7 Tl WL cL Bk sFL+-bramlasF Lgu:igvuig2Epudmet gPr IxHimU 7y Y PEsd

Figure 7 — Fuzzy Hash Results for .BMP Files

Comparisons of .GIF files that appeared similar did not display any matching characteristics like the
bitmap graphics example.
files exhibits any similar comparative hashes from a fuzzy hash comparison.

Figure 8 shows five .GIF files of similar size and appearance. None of these

D

SNOPES
COMMUNITY

[FInaw_community[ 1

RANDCM SITE INFO CONTACT US SUBSCRIBE

[ZInav_random[1].gi|[[#nav_site_info[1].¢{#nav_contact[1].qi|[Znav_subscribe(1].

nav_community[1].qif
nav_random[ 1], qif
nav_site_info[1].gif
nav_rcontack]1].qif
nav_subscribe[1]. gif

4+4+Maz+Ur IwBedATLPILKnuUu3DEz95mH 1 Y 4Hh L 2ISwulu 39 H 1Y

QL 361 whCmiGikS 7 XG0 1532 Mtkgtnky LiniQHPFEcZigltr 1 A2 diG3GEW0NES: proFnBaknnky L+t awiagh
dvHpwroeWRToOh2 p+hE2558iovdmpaD: x vso/p+h3Wonhpac

15§i0Ph04 7Ok AwguLoSUILL 7iYiEkLi4 A4 7 2ii0PHT 1 xLovFLEF4L

Py U332 I6EmmmnoMBC4UZiEYFhELARF : ¥ SuxgZ Y OamrvELg

Figure 8 — Fuzzy Hash Results for .GIF Files

Dustin Hurlbut - January 9, 2009 Copyright AccessData 2009 Page 7




The JPEG graphic format also presents unique issues based upon its format design that uses lossy
compression. Each time a JPEG is changed, it compresses portions of the data, specifically the least
significant bit(s) of pixel data. Saving a .JPEG file using the Save As dialog, Copy To, or any minor
changes such as rotating the graphic and rotating it back can change the compression. This will lead to
an inability of fuzzy hashing to detect similarities when the human eye can clearly detect what appear to
be identical graphics. There are so many minute changes that occur across the document that fuzzy
hashing can’t derive a similarity between the segments.

MG 5955 - ORL(CIUSYI mod 1 copy HICIUSYI rotate.jpg  [|CIUSYI-Modl-Low, jFf|CUSYI-Mod 1-Med. ji|[CUSYI-Turtle2 Mod:

a IMiG_5955 - ORI.jpg WskPPhlgbeYM7hs AT odclhHkucr: FrnCasy sCFL 1 Zr985d Civ0m: kkPPhsMd Tkl s CiFL398510m

u USYI mod 1 copy ko PG hQiSGEmgcserdvinwHLdswwaqack siFZ S THZ ke mSGmbcdvhd sywladxiFE35E S

d USYI rotate. jpg 1akamDBCmz55IFbP NG BNEDW aszFlpaMEABI0vhakMNeIPasy NpUIEHKF : YkREmpFHP a3t 1Dy 9z0vhbMdapoe
a USYI-Modl -Low, jpg CalbdakemiQ3darFn3gms T4y REgiv AP TrxF o K gRw0z 390 8 p  GE: TWiQ3Ehagms Thy Ckmwm 925

ﬂ 1SWI-Mod1-Med.jpg S oSty OCUpdwl Y FEMB LRPYF T 1iaHy G ThixOui SFyuS T IO AdwLY MyHTHEAKVIOKSST

USVI-TurtleZ Modl.jpg ALBYkpuzSIowQ7DezrwS) 1 905 CmLbFHL SE09H: KpNTwSDrmd) 155 Fr 7S¢

Narme | object 10 | Similarity
SYI mod 1 copy ko, JPG 2027 100

Figure 9 — Fuzzy Hash Results for .JPG Files

Figure 9 shows the same photograph as it was modified, Copied To, Saved As, rotated and rotated back,
and had resolution changes. None of these graphics obtain a match using the fuzzy logic utility. Each
graphic was altered and the MD5 hash sets show no matches. Even minor alterations will radically
change the format of JPEG graphics; hence, they are not a good candidate for comparative analysis using
fuzzy hashing techniques. The only matches obtained were to the document itself.

Considering the issues with the JPEG format, the potential still exists to locate matches based on partial
files obtained from data carving. The test shown in Figure 10 involved making identical copies of the
same graphic (no changes were made through lossy compression). The graphics were in turn modified
by having just the header removed, then the front, middle and back one third of the document
removed. Clicking on the original unmodified graphic didn’t match to the others. However, the
modified documents did match to the other files.

Libraries of known fuzzy hashed graphics could be used against a suspect’s machine to locate partial files
carved from unallocated space that are no longer active in the file system. This assuming no changes
from the lossy compression algorithm which would not normally occur from a download or simple copy.

Dustin Hurlbut - January 9, 2009 Copyright AccessData 2009 Page 8



Marne | obiject 10 | Similarity
Copy (2) of Buck Island - Turtle 2.9pg 3051 100
Copy of Buck Island - Turtle 2.ipg 3054 an
Copy (30 of Buck Island - Turtle 2.9pg 3052 46
Copy (40 of Buck Island - Turtle 2.ipg 3053 39
O a Buck Island - Turtle 2.jpg FizalfFpJxxpfyUgk T4nkFSiffua e sk SKKgBFHsHADE 3 sfpDyUNKF S uts Ls kS A sHAW 3

O=  Copyi2)of Buck Island - Turtle 2.jpg  SIRUGIFSUgKz4HGFSD dxOapaSioxr2qgr SBfntHgUN:: 54GY0HGFSD 1 x D asSsrSgiHgwm

O ﬂ Copy (3) of Buck Island - Turtle 2.9pg  ES4B4UEFEZOU4w7FUGIRER &4 FSPakhtJeHueHyFSDMBFPKuMkAW apask: FIJ/FF I JRUGIFSUGK z4Hgf SO dxOapask

O ﬂ Copty (4) of Buck Island - Turtle 2.9pg  ES4B4UFEZQUWTFEQ4 X a+20jRP LPgk 3mSzfI2MHUGgMER:: FI/FF 1R My r2qak 3BFnMHgRY

O= copyof Buck Island - Turtle 2.5pg SIIFFIIRUGIFSUgkz4HgfSDy dxO apaSioyr2qqk 3BFrMHgUR: 7F14GWOHAPSD 1 x0as5sxS gfMHguE

D, " IPEG Header Comparison. bxk H4 0w 1 32Tsux6Z L dBwGoCII2mMZKDr 1 S70IDAITKEZISSpkI W FSSpry IS5y H4Z 1 3KZI L LHPED{QRPRiG Tyl

OE  MDS Hash Check Prior to Changes.csy  BhZjcEwGEGmIatm+0WTS6GE4FET SIS TS ThIYSECCBwEGmIatm+0WTEEGE4FET SI5CBDicBnEEmMC 161 1 vWWECEBnEEme 1637 16x

Figure 10 — Fuzzy Hash Results for Altered .JPEG Files

Tests were also run on .ZIP files (WinZip Version 11.1). Hits were obtained when different Zip files
contained combinations of the same archived files. Zip archiving appears to compress in a predictable
manner and zipped documents were successfully compared to partially carved zip files for matches.

FTK can create libraries of fuzzy hashes for specific document types*” such as proprietary corporate
documents or known child pornographic files. These libraries can be applied to a seized media to see if
potential matches exist without a close initial examination of each document. Letting the fuzzy hashing
utility make initial comparisons has the potential to save considerable analysis time in locating matching
documents.

Use of the fuzzy hash to locate comparative matches can be helpful; however, a complete reliance on
them could result in missing similar files in an investigation. Many file types lend themselves to
comparative matches such as text files, but some documents, like JPEG graphics do not. Investigators
should test the specific file types of interest in a case before relying on a completely automated result
returned from a fuzzy hash utility. It would appear the Mark Il eyeball of the investigator will still be
required to make the final decision on whether certain documents in a case are similar or not.

References

! Kornblum Jesse. Identifying almost identical files using context triggered piecewise hashing. August
2006. http://dfrws.org/2006/proceedings/12-Kornblum.pdf. Published by Elsevier Ltd.

2 Tridgell Andrew. Readme. http://www.samba.org/ftp/unpacked/junkcode/spamsum/README.

* Datalifter. http://www.datalifter.com/products.htm.

* AccessData. Fuzzy Hashing. 2008.

> AccessData. FTK Users Guide. 2008.

® Kornblum Jesse. jessekornblum.com/research/fuzzy-hashing-cdfsl-2007.ppt.

7 AccessData. BootCamp classroom Image Mantooth32.

Dustin Hurlbut - January 9, 2009 Copyright AccessData 2009 Page 9



