LEGBACORE

How Many Million BIOSes

Would you Like to Infect?

Corey Kallenberg & Xeno Kovah

About us

* We do digital voodoo
* Newly independent as of January 2015

* The only company focused primarily on PC
firmware security

This talk has 2 main points

* Because almost no one applies BIOS patches,
almost every BIOS in the wild is affected by at
least one vulnerability, and can be infected

* The high amount of code reuse across UEFI
BIOSes means that BIOS infection is
automatable and reliable

What's past is prologue

Some (mostly-multi-vendor) BIOS
vulnerabilities disclosed since 2012:

CERT VU#127284[0], 912156[1](“Ruy Lopez”),
255726[1](“The Sicilian”), 758382[2] (“Setup
bug”), 291102[4] (“Charizard”), 552286[5]
(“King & Queen’s Gambit”), 533140[6]
(“noname”), 766164[7] (“Speed Racer”),
976132[8] (“Venamis”), 577140[9](“Snorlax”)

And a bunch from others that didn’t get VU#s

THE
INCURSION
WALL IS
HERE.

Incursions (VU#631788)

call [ACPINV+x]

This memory is not protected
ACPINV by the chipset! OS (and
attacker) can modify it at will!

Shellcode

In 2008 ITL disclosed an SMM vulnerability where on some Intel
motherboards SMM code called through non-SMRAM function
pointer table

— Low hanging fruit SMM vulnerability!
* How prevalent are low hanging fruit SMM vulnerabilities today?

http://invisiblethingslab.com/resources/bh09usa/Attacking%20Intel%20BI0S.pdf

 But how do you hit what you cannot see?

 Option 1: Reprogram firmware to disable SMRAM
protection
— Disable TSEG
— Disable SMRRs

* Option 2: Use the power of the dark side

V000A1ED
10004
0002

05 00
00 00
00 00
05 00
0 00
) 05

00 00 00

00 0
JuU U
00 @
JU U

00 00 00 0O
00 00 00 0O
00 00 01 96 22 DO 00

00 00 60 89 05 DB 00

DB

00 00 0

) 16 F9 3

3E 26 7D BF 5B 38

00 00 00 FC BF CB 25

0000 18 39 06 00

0 00 00 00 00 00

0 00 30 00 00 00 00

00 00 00 0O
00 00 00 00 00 00 00
00 00 34 00 00 00 00

00 FF FF FF 00

00 Ju Ut 00

53 46

B2 D5
28 4C
00 00
00 00
00 00
00 00
00 00
00 00
00 00
00 00
00 00

00 00

TE
8D
4c
00
00
00
00
00
00
00
00
00

00

JINS...I.0Qwe . UF~
-58"E0. >&} ¢ [820.
......... i.E% (LL

 We did a little RE work to determine which SMM
code we could invoke from the OS by writing to port
OxB2

* In this case, function OxXDBO5EDCC within SMM can
be reached by writing 0x61 to port 0xB2

* Almost every UEFI system we surveyed used this
format to record reachable SMM code

FFFFFFFF
Untrusted Address

Space

Untrusted Code and Data

SMRAM

}Trusted Code and Data

EIP=Untrusted Address

Untrusted Address
Space

Code Called by SMRAM

00000000

ﬂ

>Untrusted Code and Data

e We found a lot of these vulnerabilities

 They were so easy to find, we could write a ~300 line
IDAPython script that found so many | stopped counting
and (some) vendors stopped emailing me back

* You're the next contestant on... Is it vulnerable???

* Hint: Hexrays detects the external memory accesses
and colors them red.

— When you see red, bad!

int smi_handler 9d37fe78()

{
__int64 vO; // rax@l

LODWORD(v@) =
= VO;
return vo;

}

int smi_handler 9d37fe78()

{
__int64 vO; // rax@l

LODWORD(ve@) =
= VO;
return vo;

}

int smi_handler_9d37fc18()
{
__1nt64 vO; // rax@l
__int64 v1; // rcx@l
char v3; // [sp+406h] [bp+18h]@1

LODWORD(v@) = (*(int (fastcall **)(char *))(+ 24164))(&v3);
Vo,

if (v0 >=0)

{

LOBYTE(v1) = v3;
LODWORD(v@) = (*(int (fastcall **)(_ int64))(+ 64164))(vl);
= vO,;

}

return ve:

int smi_handler_9d37fc18()
{
__1nt64 vO; // rax@l
__inte4 v1; // rcx@l
char v3; // [sp+46h] [bp+18h]@1
LODWORD(v@) = (*(int (fastcall **)(char *))i + 24164))(&v3);
Vo,
if (v@ >= 0)
{

LOBYTE(v1) = v3;
LODWORD(v@) = (*(int (_ fastcall **)(_int64))(+ 64164))(v1);
= vO,;

}

return ve:

char _ fastcall smi_handler bbb8c666(int64 al, _ int64 a2)
{

char v2; // bl@l

signed _inté4 v3; // rcx@l

unsigned _ int8 v4; // dl@le

__int64 v5; // r8@2e

char result; // al@2l

__int16 v7; // [sp+36h] [bp-28h]@2@

__int16 v8; // [sp+32h] [bp-26h]@2e

V2 ;
|= ex30u;
v3 = 3149860880164 ;
qword BBB8DCF8 = 3149860880164;
if (viDl) == -5200 ||
{
LOBYTE(a2) = :
(&qword_BBB8DCF@, a2);

(432i64);

void _ fastcall smi_handler da@889e8(int64 al, _int64 a2)

{
__int64 *v2; // rdx@2

if (*(_QWORD *)a2 == 0x90i64)
{
v2 = &qword DA@87B78[145],;
switch (+ 0Xx80000000)

{

case Qu:

= sub_DA@SSE4Y

break;

case lu:
sub_DA@SBE58 (
break;

case 2u:
sub_DA@88584();
break;

, (__int64)&qword DA@87B78[145]);

void _ fastcall smi_handler_da@889e8(_int64 al, int64 a2)

{
__inté4 *v2; // rdx@2

if (*(_QWORD *)a2 == 0x90164)
{
v2 = &quord_DA@87B78[145];
switch (+ 0x80000000)

{

case ou:

= readmsr_wrapper(

break;
chase 1u:
wrmslr_wrapper(

e al. .
AL LAY

raca 211

, (__1nt64)&qword_DA@87B78[145]);

sub_D73A6B20

((—
sub_D73A6AEQ((un
sub_D73A6AEQ((
sub_D73A6AEQ((
sub_D73A6AEQ((
eI
sub_D73A6AE@((unsigned
sub_D73A6AEQ((unsigned
sub_D73A6AE@((unsigned

((

((

((

((

((

((

((

((

unsigned
unsigned
unsigned
unsigned
unsigned

sub_D73A6AE@((unsigned
sub_D73A6AE@((unsigned
sub_D73A6AEQ((unsigned
sub_D73A6AE@((unsigned
sub_D73A6AE@((unsigned
sub_D73A6AEQ((unsigned
sub_D73A6AE@((unsigned
sub_D73A6AE@((unsigned

int64)&v7, 0x40uikd);

__int64)&v7, vl +
~1int64)&v8, v1 +
__int64)&v9, vl +
__inté4)&vie, vi
~1int64)&v1l, vi
__inte4)&vi12, vi
__1nt64)&v13, vi
__1nt64)&v14, vi
_1int64)&v15, vl
__inte4)&vie, vi
__int64)&v17, vi
_1nt64)&v18, vi
~1nt64)&v19, vi
__int64)&v2e, vl
__1int64)&v21, vi
~1int64)&v22, vi

+ + + + + + + + + + + + +

e W e - e

- -

- W e - e

et N N N N’ N i N’ N S e et e e ow
-

-

sub_D73A6B20((_int64)&v7, Ox40ui6d);
memcopy((unsigned _ int64)&v7, vl +
memcopy ((unsigned _ int64)&v8, vl +
memcopy((unsigned _ int64)&v9, vl +
memcopy ((unsigned _ int64)&v10, vl
memcopy((unsigned _ int64)&v1l, vi
memcopy((unsigned _ int64)&vi12, vi
memcopy ((unsigned _ int64)&v13, vl
memcopy((unsigned _ int64)&vi14, vi
memcopy ((unsigned _ int64)&v15, v1
memcopy((unsigned _ int64)&vi16, vl
memcopy((unsigned _ int64)&v17, vi
memcopy((unsigned _ int64)&v18, vl
memcopy((unsigned _ int64)&v19, vi
memcopy((unsigned _ int64)&v20, vl
memcopy ((unsigned _ int64)&v21, vl
memcopy ((unsigned _ int64)&v22, vl

+ 4+ + + + + + + + + + + +
L™ L™ L™ - L™ - L™ L™ L™ L™ L™ - -
T Nt Nt Nt Nt vt vt vt Nt vt vt et ” N ® Lo e =
- - - - - - - - e = - = e = - = e = e = L - - e =

Looking at Acer in IDA

Vendor Response

 Many vendors didn’t reply to our emails and/
or claimed they weren’t vulnerable

— They are vulnerable

* Dell responded and is pushing patches for all
of our disclosures

* Lenovo also responded and is releasing
patches

What’s possible once you’ve broken
into BIOS/SMM?

LightEater

Hello my friends.
Welcome to my home
in the Deep Dark

ls it safe to use Tails on a compromised system?

Tails runs independently from the operating system installed on the computer. So, if the
computer has only been compromised by software, running from inside your regular
operating system (virus, trojan, etc.), then it is safe to use Tails. This is true as long as
Tails itself has been installed using a trusted system.

If the computer has been compromised by someone having physical access to it and who
installed untrusted pieces of hardware, then it might not be safe to use Tails.

* Tails says that because it runs independent of the
operating system, if you have previously been
compromised by software means (not physical
access), you should be safe...

:\venanis >f lash_programmer.exe 3 w25q128fv-4.8-resized.rom w25q128fv-4.8-clean.hin hBBAGA
rogramming flash: using input file w25q128fv-4.8-resized.rom and clean copy w25q128fv-4.8-clean.hin and starting flad
hBneae
ios_cnt1=8
pttempting to write hius_cnt1=9
liscovered flash size: 1800800
umpallng files for differences
rogranning hlock at: h@1080@
rogramming bhlock at: hB2080
rogramming bhlock at: hB3088
rogramming hlock at: h@408@
rogramming bhlock at: h@5000
rogramming bhlock at: hB6BGA
rogramming block at: hB78080
rogramming bhlock at: h@80GA
rogramming bhlock at: hB9080
rogramming bhlock at: hBaBd@
hlock at: h@BhBBA
hlock at: hBcBBn
hlock at: hAdARA
hlnrk at: hA=ARA

* Exploit delivered remotely on target Windows 10 system.
— No physical access is necessary
— All you need is a remote cmnd.exe with admin access

* Exploit bypasses BIOS flash protection and reprograms the
portion of the flash associated with System Management Mode

CRACLLPACLEAACLRERe
ee eeee

ee ee
CCARCLAACLARCLARCLARCLAE CLRACCLARCLPACCLPACCLACLLRAE
CPARCLARCLPARCLPARLLRAREE CCLPARCLPARLLPARLLPARLLRER
CCARCLAACLARCLRARRLA CCARCLAACLARCLARRLA
CRACCLPARLLARCLRER CRARCLPARLLARCLRRR
CCLAACLLAACLEARCLEA CPACCLPARLLPACLLAE
CRACLLPARLERREE CRACCLPARLLARER
CLERCLEARCLERE 000 000 (CRARLLARLERER
CCEECLLRRRE 0000000 0000000 (RERLLEARCRE
CCRAGCLEARCLPR PAAAPAAAA 00000AP0A CRECCEARCLAE
CCAECLRECP KANBNANBA 00PNNAPB0 GLEAECCEEAEE
GeERER 41515551515 000000 CLEARCER
GeEER (4]5]%] (551%) GeEEe
eeE GeE
eee eeE
Geeeee Geeeee _____—-—_
Geeee i .. GeEEe /
/ _Ge@ H I S | GEE /HENHHHHNY uuuu i
7/ Buuns; eeee ¢ ¢t CRECHENHHNNHHNE oHEHE
Hugsuistninel -GOCCACCLACCLACCLACLLACHIHTNE, Hilikl
PR FIHHHK /i
\ uuuuuuuuuuuuuuuunuuunuuuuuuuuuuuuuuuuuuuuuuuuuuunuu e
\ R AARRRRERERERERT i
\ uuu
1 RBHRRBHERSEEY .-
gugunngungnngnnnin i
pHgnnagnapptapRapsRRBHRRRRRRBHURY
puggnagsagptagstapsRRB BB RRHURY
puggnagsanptnstasRRs B RRHHRY
bEBE B EE RS R R B
guaisaiiniitiboood ittty
biaididididdidididd Sl 1818121318183 12 81013
bi3ididid ’22pAanea’ i2idiEidi 0
B ’22 pAnAeeea’ ’ ’ ’ bi3idide
pugundy ’’’ 000000’ HEBHERS
/ Rinunnggngg 000000000000 HRBREREHEREY

i HugsagpsnggagsnsaigapsasgH ity
/ Rituggnggtasnsnitnis st EsaMPRSYE \
| RBHBREHERBHRRBHERBHER BRI BR R R R RR RS RRY |

I hunger...

Malware that was delivered remotely to the main OS (Windows
10) waits in the background and runs in System Management
Mode

It waits for your secrets to be revealed

Applications Places Q a [% 2] ThuMar12, 2:23PM i i i L] P F

amnesia@amnesia: /media/STUFF

File Edit View Search Terminal Help

$ apg --import papalegba secretkey.key

. key 0A042D5@C9DF6?EBAF secret key imported

. key 0x042D50C9DF67EBAF: public key "Papa Legba <papalegba@inbox.com>" im
ported
gpg: WARNING: key 0x042D50C9DF67EBAF contains preferences for unavailable
gpg: algorithms on these user IDs:
gpg: “Papa Legba <papalegba@inbox.com>": preference for cipher algorgor
ithm 1
gpg: it is strongly suggested that you update your preferences and
gpg: re-distribute this key to avoid potential algorithm mismatch problems

Set preference list to:
Cipher: AES256, AES192, AES, CAST5, 3DES
Digest: SHA512, SHA384, SHA256, SHA224, SHAL
Compression: ZLIB, BZIP2, ZIP, Uncompressed
Features: MDC, Keyserver no-modify

Really update the preferences? (y/N) n

Key not changed so no update needed.
gpg: Total number processed: 1

gpo: imported: 1 (RSA: 1)
gpg: secret keys read: 1

gpg: secret keys imported: 1

$

* If you are practicing OPSEC, perhaps you have a private
email and private key that you only access from the
“secure” Tails so to avoid having confidential
communications compromised

Applications Places [{@ B ¥ [Z] ThuMar12, 224PM &

File Edit View Message Tools Configuration Help

4,0 o 8.8, 8,8 s

Get Mail Compose Reply All Sender Forward Trash

Folder @ | |v| S| 8 Subject From
« &3 Mail (MR) pinentry

€3 Sent You need a passphrase to unlock the secret key for user.
W Drafts "Papa Legba <papalegba@inbox.com>"

@ Queue 1024-bit RSA key, ID Ox6E3AD474096209BC,

® Trash created 2015-03-11 (main key 1D

nread, 1 total (2.52KB)
0x042D50C9DF67EBAF)

Passphrase |

== | jvar/mail/amnesia

[Com [Com.. [amnes [Home] ™ [STU. @ Avar/m. M pinentry .

* Using this style of OPSEC, the password for your key
should never be entered on your normal operating
system (Win10 in this case).

* Since we are in Tails, we are okay though...

confidential message

File Edit View Message Tools Help

8§08 8 B 8

Reply Al Sender Forward Trash
From: Corey Kallenberg <corey@legbacore.com>
To: papalegba@inbox.com

Subject: confidential message

Date: Wed, 11 Mar 2015 17:27:30 -0600

--- Start of PGP/Inline encrypted data ---
This encrypted message will self-destruct in 3... 2...
--- End of PGP/Inline encrypted data ---

* Hence all of your confidential communications
should remain shielded from any malware that was
delivered to your Win10 installation

e Using our malware, this isn’t the case...

65C1008 PGP Key found

CA1FEA4550ACFAEG1 B40PE154DBDAADCY?8175E215CB2BEECC4ATE2A98888169C1856CF4B91 EAC3I6BES21DESBC45928132
4FC4D73BA154D92DFC6A7A2F913D7160ESE4224E1001101 00A1 FER3IA302007989E8691 CFB53CABAT731DBEA4421272B947
BC2453DEESD2BBA?290158573361D8@9597B198AR4AD1 2E4B8A65BI2CI2E2772865E80BA2 304FBoA3434276014C248724
49ABCC119F618D47F?D35FB85C6938B49D3A3711048512D32DDBD844CDA?5D4B658820BF3CC2B52F782382A94603883486
ACBA2FB2F6901E25ACE2FE424B44D53A55E88B951ADAEFI891B753E6FB8788D3269CEAES6DBF?C6D1B42350617861204C
21780000009106842D58C9 DF6 7EBAFC1DAB40B8F25BA1E77696957ABDF33BBFFCSCES65650A64151ABF6CBCAGAIEIABI31
2083188E7B45EBCA1843BCY9DBC6CFA9BAA2724B0A1 3E32D4BD442B1 F6 BRA2BARAT DA1 FER455ARCFOER] A48BCED1 862962
4117AA778BDADBYD288961A6C49CFSEDCB3345D38C2CB8EBIF225941 FAB27F96383F7434E58CD3F4AFB862F8A364127AC
2F25EBEFAC16FFDA6AA13FBFCA9DA291D41B8669659CCIF3F6E?FF8FFDSACFBCCFA9245353E4B271 DF97B85ABBECI39A4
JABC40FCD1493B4CA4363D5E?SAEA1D7685D20F62636682A3AAFBB6DFDBDA3F62E43EE25EERS21C2BB6A2F793CACT5393
34785CD6B7EEAR7BB248551A727D58DDA7CEYSE?BCBCABL CB2BBA74626 778361681 A7DED?2FF55FCRE293BCAAAT17A9FDA
99 7MF37646AE195F7587CD3077DFD813899EASSBAYEDEBA3DEF1C2233DFFFS4081 D46 EAGB2F2ABY4ECL 7 7870EEBE44F 7FF
%ggBBBBBBBB@BB@BBBBBB@B@BB@B@BBBBB@B@B@BB@B@B@BBB@B@B@BBBB@B@BBBBBBB@B@BB@B@@B@B@BBBBBBB@B@@B@B@E
2804008 PGP Msg found

IME-Version: 1.8

Content-Type: text/plain; charset=utf-8

Content-Transfer-Encoding: 8hit

——— Start of PGP/Inline encrypted data ———
This encrypted message will self-destruct in 3... 2...

BAC7?21E password found
FFnsecwestZﬂiS

* Runs independent of any operating system you put on the
platform

* Has access to all of memory

* Can steal all of your secrets no matter what “secure
operating system” you are using

¥ } S K R K K K K ::; T a r' T i ['I En: H i [:| i n EI: T h E l.” E‘ nl |:| r' l.;l
Help: "/usr/bin/sdmem -h"
ipe mode 1s Insecure {(one pass with 0x00)

)

Help: "/usr/hin/sdmem -h"
ipe mode is Insecure (one pass with 0x00)

r. Help: "Zusr/bin/sdmem -h"

ipe mode 1Is insecure (one pass with 0x00)

S K K S K K K S K S S K K K K K KK K
S KK KK
S K K S K K K K K S S K K K K K KK K

* Tails also attempts to erase memory to
scrub any residual secrets that may be
exposed to the main operating system

&) Copernicus_BlOS.bin

Qffset(nh) 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE QF

DOFOOSDO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
o O o LA ‘-4 L". l-l s ‘-4‘_- I-r |.4 L.l ‘-a o LA v I- 5 ‘-a‘-l l—l I-r k", L.l u ‘-4‘- I-r I- L.l ‘-a llllllllllllllll
ARTAAEEA AA AR AR AR AR AR AR AR AR AR AR AR AR AR AR AA
OOFOOSEQ 00 00 00 00 00 00 00 00 OO0 Q0 00 00 OO0 00 00 00 suveveennnnnnnns
ARTAACTA AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR
JOFOQOSF0 OO0 OO0 QOO0 OO0 OO0 OO0 OO OO0 OO OO OO OO OO0 OO0 00 00
JurUlary UL 00 UL OU UL uu 0O Ul Ly Lo UL U0 UU OO DU s osssennnnnnsanas

00F00600 63 61 6E 73 €5 63 77 €5 73 74 32 30 31 35 FF FF Ica:secwestEDLE??
00F00610 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

pppppp

00F00€F0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF {yviyivivvivyvyy

5 2D 56 65 72 73 69 €F 6E E |MIME-Verzion: 1.
O0F00710 30 OD OA 43 6F 6E 74 65 6E 74 2D 54 0 4 J0..Content-Type:
00F00720 2 8 1 63 68 61 | text/plain; cha
00F00730] 6F 6E 74 Jrset=utf-&..Cont
O0F00740 65 6E 74 2D 34 7 ent-Transfer-Enc
00F00750 6F 64 69 GE 0L OD 04 OA foding: 8bit.....
00F00760 OR 2D 2D 2D 20 20 50 47 | .--- Start of BG
70 74 | B/Inline encrypt
ed data ---.This
encrypted messa
ge will self-des

1
s
%]
iy
3
(]
oy
()]
ony
[}
L
=
(%]
i
[N T
[T e T e =
ory
n

1
| L &
1
Lad
o
o
1
¥ =4
Lad
=
1
o
. .
B
o
o
[
=
L&

I
[
=
-
i
vy

1 Moy
s
o LA Oy
= o I
-1 oy =
R3 R3O LS

oy Oy
s on
1 o
W LN
(] 1
o
(%]
=
=
o
oy
=
o
L

[5 B L]

-

-]

-

-]

1

1

-

o

[

P

[

s

Lo

oy

=

o

(]

] —] o . -
T3 W B Lo L e RS

oy

L=

oy

on
1
o
[
o
rxq
o
o

-

-
o
on
oy 4
=1
oy
Lad
1
3
1
V=]
L

-
]
-
-
1
o
[
o
wn
o
¥ =
]
(]
o
=
o
I
1
[]
'_'l
ka3
3
[T L]
=

2D 2D 0&

on

(%=1

o

-1 o
b (N}
1

Lad

2
oy
[,
oy
=
oy
[

J
[%]

J

J
[

h |
[S
o
o
oy
o
[
oy
L)
oy
(¥a]

h |
[

J
L
(=
I

00F00790 20

00FO07RA0 &7 €5 20 77 69 6

(= T
[]
-
1
La
oy
o
o
L]
oy
o

=

oy

[=

oy

o

1

=1

=1
[
=1
o R R

C 20
00F007BO 74 72 75 63 T4 20 €9 6E 20 33 2 E 20 32 2E Jtruct in 3... 2.
00F007CO 2E 2E OA 2D 2D 2D 20 45 6E 64 20 6F 66 20 50 47 §...--- End of PG
00F0O7D0 50 2F 49 6E 6C 69 6E 65 20 65 6E 63 72 79 70 74 JP/Inline encrypt

AATAMTT A

* Our malware still has access to it, as we store the secrets to non-
volatile storage so we can exfil at earliest convenience

— So even if you were to use Tails in offline mode, to try to avoid

exfiltration of secrets, you can still be owned

ls it safe to use Tails on a compromised system?

Tails runs independently from the operating system installed on the computer. So, if the
computer has only been compromised by software, running from inside your regular
operating system (virus, trojan, etc.), then it is safe to use Tails. This is true as long as

Tails itself has been installed using a trusted system.

If the computer has been compromised by someone having physical access to it and who
installed untrusted pieces of hardware, then it might not be safe to use Tails.

 Time to rethink this...

All fall before a LightEater

The US Air Force made the “Lightweight Portable Security” (LPS)
Live CD! with much the same purpose as Tails:

“LPS differs from traditional operating systems in that it isn't
continually patched. LPS is designed to run from read-only media
and without any persistent storage. Any malware that might infect
a computer can only run within that session.”

“LPS-Public turns an untrusted system (such as a home computer)

into a trusted network client. No trace of work activity (or malware)
can be written to the local computer. Simply plug in your USB smart
card reader to access CAC- and PlV-restricted US government
websites.”

Attackers that infect BIOS will always win against non-persistent

OSes, because they can persist across reboots, and live in OS-
independent SMM

thttp://www.spi.dod.mil/lipose.htm

TELL EVERYONE THEIR COMPUTERS ARE ARCHITECTURALLY
INSECURE AT THE LOWEST LEVELS AND NOBODY BATS AN EYE
.

i'f ‘2?‘

2

‘&

i

STEAL ONE GPG KEY FROM MEMORY IN
TAILS AND EVERYONE LOSES THEIR MINDS,

Where’s the architectural flaw?

* The fact that SMM can read/write everyone’s
memory is an x86 architectural vulnerability

* No security system (virtualization, live CDs,
normal OSes) is secure until this is fixed

— We'll come back later to how we intend to fix it

This talk has 2 main points

* Because almost no one applies BIOS patches,
almost every BIOS in the wild is affected by at
least one vulnerability, and can be infected

* The high amount of code reuse across UEFI
BIOSes means that BIOS infection is
automatable and reliable

Further Tales from the Deep Dark

* I’'m going to explain why infecting BIOSes is a
lot easier than you may have realized

Infection Decision Tree

No/Don’t Know-

Infection Decision Tree

No/Don’t Knov:!

“UEFITool FTW” Infection

e As done on the MSI

* Use Nikolaj Schlej’s excellent UEFITool* to replace the

module you care about with one that includes malicious
functionality

® UEFITool File o0

Extract as is...
Extract body...

Rebuild

Insert before...

Insert after...

Replace as is..

* Reflash w/ exploit FTW

thttps://github.com/LongSoft/UEFITool

Infection Decision Tree

./Don "t Know

-

Sanity Check Speed Bumps

Some vendors like HP build in sanity checks

Descriptions of bypasses can be easily found on the
net, and would be developed quietly by anyone who
actually cared enough

We created a 9 byte signature for one HP sanity check
by following the steps in a public blog post

— And 2 variant signatures based on looking at a few models
where the signature didn’t fire

— The 3 signature variants matched 570/789 HP BIOS images

e Could be improved further, but we’re just making a point

If signature found, replace the last 2 bytes w/ 0x9090
Goto previous slide

LightEater on HP

* For a change of pace, let’s see how easy evil-
maid / border-guard / interdiction attacks are!

* NIC-agnostic exfiltration of data via Intel
Serial-Over-LAN

e Option to “encrypt” data with bitwise rot13 to
stop network defenders from creating a “Papa
Legba” snort signature :P

A word about AMT SOL

* Unlike past work for low level networking[10-12], we
don’t need to know anything about the NIC

 We write to a fake serial port that AMT creates

* AMT magically translates it to Intel’s proprietary SOL
protocol (that there’s no wireshark dissector for)

OS Network Driver nghtEater

aulbug Ny

https://software.intel.com/en-us/
articles/architecture-guide-intel-
active-management-technology

Infection Decision Tree

=
**_No/Don’t Knov;;

Yes

“BIOSkit” Infection

 Sometimes UEFITool doesn’t work, and you
don’t care enough to RE why

* Fall back to the generic technique of “hook-
and-hop”, just like a normal bootkit

— Just starting earlier, and more privileged

* You're more or less guaranteed that there’s
an easily targeted, uncompressed, easy-to-
hook starting location in the PEl core file

o e e work Windows Boot Process
[start -

BIOS - Master Boot Record

Partition Bootloader —

¥

v

— ntldr ; bootmgr . OS Loader

— NT kernel m

Ntldr = 16-bit stub + 05 Loader (just binary appended)
Windows Vista splits up nt1dr into bootmgr, winload.exe and winresume.exe

winload.exe [—

Windows XP Windows Vista Processor Environment
ntidr bootmgr Real Mode

OS Loader OS Loader Protected Mode

- winload.exe Protected Mode

NT kernel NT kernel Protected Mode + Paging

Modified from http://www.blackhat.com/presentations/bh-usa-09/KLEISSNER/BHUSAQ9-Kleissner-StonedBootkit-SLIDES.pdf

e pE Modue The UEFI skeleton

IPL = Initial Program Loader (that all vendors just add their own meat to)
DXE = Driver Execution Environment

SMM = System Management Mode =\

BDS = Boot Device Select

SMM
Driver

SMM Dispatcher
PEIM SMM Core
A

SMM IPL

Dxe
/ Driver
PEI Dispatcher DXE Dispatcher

PEI Core DXE Core

Minimal hook paths in UEFI

Uncompressed
On Flash

To normal
bootkitting

Minimal hook paths in UEFI

Rs::e o
Driver P
SMM Dlspatcher
SMM Core

Uncompressed

On Flash Driver

DXE Dispatcher
DXE Core

LightEater on ASUS

* Uses hook-and-hop from DXE IPL to SMM
* From SMM attacks Windows 10

* Gets woken up every time a process starts,
prints information about the process

Evidence of Scalability of Infection

* We wanted to show that the code an attacker
wants to find can easily be identified with
simple and stupid byte signatures

* Only took a couple days to develop

Example: DXE to BDS transition

 EDK open source code for ¢ Equivalent exact
DXE -> BDS transition assembly found in 6

° DxeMain.C Sepal’ate VendOrS’
BlOSes

//
// Transfer control to the BDS Architectural Protocol 4C 8B 1D S8AAF0000 mov rll, cs:gBDS

// 49 8B CB mov rcx, rll
gBds->Entry (gBds); 41 FF 13 call gword ptr [r11]

Yara rule = {4C 8B 1D [4] 49 8B CB 41 FF 13}

56
yes, | know, | obviously should technically make it register-independent, but | don’t care because it worked well enough as you'll see in a second :P)

Analysis targets

* Created YARA signatures from what the code looked like on 9 systems

* Key for next slides: “1,1,2” = “PEI_TO_DXEIPL variant 1, DXEIPL_TO_DXE
variant 1, and DXE_TO_BDS variant 2 matched for this system”

“PEI_TO_DXEIPL.rule”
4 variants “DXEIPL_TO_DXE.rule”
3 variants

/ “DXE_TO_BDS.rule”
3 variants

[I]

Some Analysis Results

 Teddy Reed graciously provided the data set
from his 2014 Infiltrate talk?

e 2158 BIOS images spidered from Lenovo, HP,
Dell, Gigabyte, & Asrock’s websites
— Haven’t counted how many individual models yet
e Signature scanning results:

— PEI_TO_DXEIPL: 3 misses (1 model)
— DXEIPL_TO_DXE: O misses
— DXE_TO_BDS: 4 misses (2 models)

MAnalytics, and Scalability, and UEFI Exploitation (Oh My)” — Teddy Reed
http://prosauce.org/storage/slides/Infiltrate2014-Analytics-Scalability-UEFI-Exploitation.pdf

For reading at your leisure

(from Teddy Reed’s data set)
(2158 images, 7 misses)

Lenovo (442 images) Gigabyte (347 images)

- PEI_TO_DXEIPL: O misses - PEI_TO_DXEIPL: O misses
- DXEIPL_TO_DXE: O misses - DXEIPL_TO_DXE: O misses
- DXE_TO_BDS: 2 misses - DXE_TO_BDS: 0 misses
HP (388 images) Asrock (596 images)

- PEI_TO_DXEIPL: O misses - PEI_TO_DXEIPL: O misses
- DXEIPL_TO_DXE: O misses - DXEIPL_TO_DXE: O misses
- DXE_TO_BDS: 0 misses - DXE_TO_BDS: 0 misses
Dell (381 images)

- PEI_TO_DXEIPL: 3 misses

- DXEIPL_TO_DXE: O misses

- DXE_TO_BDS: 2 misses

For reading at your leisure

(from a completely different LegbaCore data set)
(1003 images, 5 misses)

Lenovo (213 images)

- PEI_TO_DXEIPL: O misses
- DXEIPL_TO_DXE: O misses
- DXE_TO_BDS: 0 misses
HP (401 images)

- PEI_TO_DXEIPL: O misses
- DXEIPL_TO_DXE: O misses
- DXE_TO_BDS: 0 misses
Dell (348 images)

- PEI_TO_DXEIPL: O misses
- DXEIPL_TO_DXE: O misses
- DXE_TO_BDS: 0 misses

LG (13 images)

- PEI_TO_DXEIPL: O misses
- DXEIPL _TO_DXE: O misses
- DXE_TO_BDS: 1 misses
Asus (13 images)

- PEI_TO_DXEIPL: 2 misses
- DXEIPL_TO_DXE: O misses
- DXE_TO_BDS: 2 misses
Acer (15 images)

- PEI_TO_DXEIPL: O misses
- DXEIPL_TO_DXE: O misses
- DXE_TO_BDS: 0 misses

HP Example

HP EliteBook 750 G1 HP EliteBook 755 G2 HP EliteBook 740 G1 HP EliteBook 745 G2
Notebook PC (ENERGY Notebook PC (ENERGY M Notebook PC (ENERGY MNotebook PC (ENERGY

STAR) STAR) STAR) STAR)
1,1,2 1,1,2 1,1,2
HP EliteBook 720 G1 HP EliteBook 725 G2 J HP ZBook 15 G2 Mobile HP ZBook 17 G2 Mobile
Notebook PC (ENERGY Notebook PC (ENERGY j§ Workstation (ENERGY Workstation (ENERGY
STAR) STAR) STAR) STAR)

1,1,2 1,1,2 3,1,3
HP EliteBook 840 G1 HP EliteBook 850 G1 HP ZBook 14 Mobile HP EliteBook 820 G2
Notebook PC (ENERGY Notebook PC (ENERGY | Workstation (ENERGY Notebook PC (ENERGY

STAR) STAR) STAR) STAR)

61

Extrapolation to millions

Preliminary Worldwide PC Vendor Unit Shipment Estimates for 4Q14 (Thousands of Units)

40Q14 Shipments 4014 Market 4013 40132 Market 4014-4Q13
Company Share (%) Shipments Share (%) Growth (%)
Lenovo 16,2848 19.4 151535 18.3 7.5
HP 15,769.6 18.8 13,591.3 16.4 16.0
Dell 10,6741 12.7 89.810.6 11.8 8.8
Acer Group 6,786.9 8.1 6,0834 7.3 11.6
ASUS 6,259.8 7.5 6.220.2 7.5 0.6
Others 279715 334 32,0700 38.7 -12.8
Total 83,746.7 100.0 82,929.1 100.0 1.0

Notes: Data includes desk-based PCs, notebook PCs, premium ultramobiles and all Windows-based tablets. It excludes
Chromebooks and other non-Windows-based tablets. All data is estimated based on a preliminary study. Final estimates will
be subjectto change

Source: Gartner (January 2015)

From https://www.gartner.com/newsroom/id/2960125

Extrapolation to millions

So if almost no one applies BIOS vulnerability
patches...

And if my tiny set of signatures can reliably
find hook points and disable sanity checks in
the machines HP is currently selling...

And if HP shipped ~15M PCs in Q4 2014...

Then we would understand that millions of
these BIOSes could be reliably infected, yes?

Aspire S7-392

2,2,1

TravelMate P255

2,2,1

Veriton M4630G

TravelMate B113

Acer

2,2,1

TravelMate P455

2,2,1

Veriton X2630G

TravelMate P245

2,2,1

TravelMate P645

2,2,1

Veriton M2631

Veriton Z26600G

2,2,1

Veriton Z4810G

2,2,1

Veriton N4630G

ASUSPRO ADVANCED
B53S

miss, 2,1

ASUSPRO ESSENTIAL
P53E

miss, 2,1

ESC2000 G2

2,2,1

PU551JH

2,2,1

ESC4000 G2

B451JA

P751JA

2,2,1

TS500-E8-PS4

4,2, miss

4,2, miss

LG

PC Gram 137940 PC Gram 147950 PC Gram 157950 Ultra PC 14U530

2,1,1

Ultra PC 15U530 Ultra PC 15U340 15N540 22V240

2,1,1 4,1,1

Tab Book 10T550 Tab Book 117740

4,1,miss

It was about this time | got really tired of making these slides and manually downloading BIOSes ;)

A little good news before we go

* Were working with vendors like Dell to do
security assessments to find and fix issues
before they ship on new systems. Lenovo and
others are also on the list.

BARRIER N P,
: crROWS Yoot e Y
s < | OF LEGBA-- |- irk 7m0 7%
LLo\ SEAL THIS
LN\ _ABYSS! /.

A little good news before we go

We're also working with Intel to try to create the
first commercial-grade SMM isolation

Intel has the ability for their hardware
virtualization to jail SMM

We will then work with BIOS vendors to
incorporate the technology into shipping systems

End result will be that even if attackers break into
SMM, they can’t read/write arbitrary memory

— And we could detect attackers through
measurements.

ons

(Vg
=
=
C
®

5

; !‘C

o “‘!:‘

u*"{‘j
‘ i
MW T+ DarKk DIMENSION'S
NN GR/P 1S TIGHT. e
WY ~4r4 cecBa sees
ME THROUGH--
BARELY.

S EE I B R
: hmr.mwwhnhv e | vr o N SR

it § R | ‘

. b rfwm. 1
,‘ -.’wﬂw .ﬁ-mr =

This talk has 2 main points

* Because almost no one applies BIOS patches,
almost every BIOS in the wild is affected by at
least one vulnerability, and can be infected

* The high amount of code reuse across UEFI
BIOSes means that BIOS infection is
automatable and reliable

What we showed

All systems we have looked at contain Incursion
vulnerabilities that allow breaking in to SMM

Incursion vulnerabilities can be found programatically

The LightEater SMM attacker can perform any attack that is
available to lesser attackers
— We showed stealing GPG keys/messages from memory (on

MSI), data exfiltration over the network (on HP), Windows
kernel rootkit behavior (on Asus)

Showed how a physical BIOS attack can be done in 2
minutes by an unskilled accomplice (maid/border guard)

Homogeneity in UEFI BIOSes for the things an attacker
cares about. Creating signatures from ~10 BIOSes is
sufficient to find matches on thousands of images (which
relate to millions of shipped machines)

Conclusions

2 guys + 4 weeks + $2k = Multiple vendors’ BIOSes infected, with
multiple infection capabilities

One hand (purposely) tied behind our backs: Didn’t use special
debug hardware. Serial prints only!

Do you really think that Five Eyes are the only ones who have
developed capabilities in this space?

“Absence of evidence is not evidence of absence”
It’s time to start checking your firmware
— Stop giving firmware attackers a free pass and indefinite invisibility
It’s time to start patching your BIOSes
— Demand the capability from your patch management software
It’s time to demand better BIOS security from your OEM

— Weé'll eventually make a name-and-shame list of vendors who are
perennially leaving their customers open to BIOS attacks

Pour a 40 on the curb
for the PCs we’ve lost...
A@‘\ e BT

=\ Toshiba Tecra...

[™ N 2o . N . : :
\em crh Q Short circuited during disassembly
R T = .

. EL3e .0 gl - K7
¥ 4t Hl gy 7 I_'v.'-.
=3 S o 8
; J X Ve : H
n T s - B
= | .Y M =) F ey
o i " o e
¢ : l o " O =g
e 4, w =
W . » F
) anl
4 QO

Rest in pieces buddy

Contact

Twitter: @coreykal, @xenokovah, @legbacore
Email: {corey, xeno}@Ilegbacore.com
http://legbacore.com/Contact.html for our GPG keys

m OPEN
SECURITY
. TRAINING
INFO

As always, go check out OpenSecurityTraining.info for the free
classes from Corey and Xeno on x86 assembly & architecture,
binary executable formats, stealth malware, and exploits.

Then go forth and do cool research for us to read about!

Throwaway Demo

GIGABYTE Patented DualBIOS™ (UEFI) Design

GIGABYTE 9 series Ultra Durable™ motherboards feature GIGABYTE DualBIOS™, an
\\\ exclusive technology from GIGABYTE that protects arguably one of your PC's most

\’,r/\ crucial components, the BIOS. GIGABYTE DualBIOS™ means that your motherboard
| _,_r-.v"’ { _‘\i:“' J has both a ‘Main BIOS' and a ‘Backup BIOS', making users protected from BIOS failure
due to virus attack, hardware malfunction, improper OC settings or power failure during

the update process.

Ultra Durable |

Exclusiva UEFI
DualBIOS™ with
LED Indicators

Verdict

T

--THEY ARE
VULNERABLE TO
THE LANGUAGE

OF MULL.

References

[0] Attacking Intel BIOS — Rafal Wojtczuk and Alexander Tereshkin, July 2009

(CERT never posted?!)
[1] Defeating Signed BIOS Enforcement — Kallenberg et al., Sept. 2013

(CERT hasn’t posted yet despite request)

[2] All Your Boot Are Belong To Us (MITRE portion) — Kallenberg et al. — Mar. 2014,
delayed from publicly disclosing potential for bricking until HITB at Intel’s request

[3] All Your Boot Are Belong To Us (Intel portion) — Bulygin et al. — Mar. 2014

[4] Setup for Failure: Defeating UEFI Secure Boot - Kallenberg et al., Apr. 2014

(CERT hasn’t posted yet despite request)

References

[5] Extreme Privilege Escalation on UEFI Windows 8 Systems — Kallenberg et al., Aug.
2014

[6] Attacks against UEFI Inspired by Darth Venamis and Speed Racer — Wojtczuk &
Kallenberg, Dec. 2013

[7] Speed Racer: Exploiting an Intel Flash Protection Race Condition — Kallenberg &
Woijtczuk, Dec. 2013

[8] Attacking UEFI Boot Script — Wojtczuk & Kallenberg, Dec. 2013

[9] “Snorlax” bug — Cornwell, et al., Dec. 2013

(CERT hasn’t posted yet despite request)

References

[10] Deeper Door — Embleton & Sparks, Jul. 2008 —

[11] Can you still trust your network card? - Duflot, et al., Mar. 2010 -
[12] The Jedi Packet Trick takes over the Deathstar - Arrigo Triulzi, Mar. 2010

[13] “Mebromi: the first BIOS rootkit in the wild”

[14] “NSA Speaks Out on Snowden Spying”, Dec 2012

[15] "To Protect And Infect” - Jacob Applebaum, Dec. 2012
(contains leaked classified NSA
documents)

[16] “U.S. Gas, Oil Companies Targeted in Espionage Campaigns”, Jan. 2013

References

[X] See all the related work we’re aware of
here:

Backup

* “Should you worry when the skullhead is in
front of you? Or is it worse because it’s always
waiting, where your eyes don’t go?”

— They Might Be Giants

5

